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Abstract

Deep Learning Models for Profiling of Kinase Inhibitors

Linnea Eriksson

With the advent of fluorescence microscopy and image analysis, quantitative 
information from images can be extracted and changes in cell morphology can be 
studied. Microscopy-based morphological profiling assays with multiplexed 
fluorescent dyes, like Cell Painting, can be used for this purpose. It has been
shown that morphological profiles can be used to train AI models to classify
images into different biological mechanisms. Hence, the goal of this project was to 
study the possibilities for Deep Learning models and Convolutional Neural 
Networks to distinguish between different classes of kinase inhibitors based on 
their morphological profiles. Three different Convolutional Neural Network 
architectures were used: ResNet50, MobileNetV2, and VGG16. They were trained 
with two different inputs and two different optimisers: Adam and SGD. Also, a 
comparison between the performances with and without Transfer Learning through 
ImageNet weights was executed. The results indicate that MobileNetV2 with Adam 
as an optimiser performed the best, with a micro average of 0.93 and higher ROC 
areas compared to the other models. The study also highlighted the importance of 
utilizing Transfer Learning.
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Popular Science 
Trots stora framsteg inom cancerforskningen kvarstår många frågetecken, och vad som 
orsakar vissa cancerformer är fortfarande osäkert. På samma sätt vet forskarna inte hur dessa 
cancertyper bäst behandlas. En vanlig cancerorsak är rubbad kommunikation mellan celler, 
vilket kan göra att de berörda cellerna förökar sig okontrollerat. Kinasinhibitorer är biologiska 
molekyler som konstaterats kunna rubba kommunikationen. Det här projektet har studerat om 
algoritmer kan tala om vilka kinasinhibitorer den ser på bilder med celler som behandlats med 
olika kinasinhibitorer. Tack vare ny teknik är det idag möjligt att studera sådana bilder tagna i 
speciella mikroskop med hjälp av algoritmer. Detta möjliggör datorstyrda studier av 
skillnader i utseende mellan celler, skillnader som eventuellt beror på att en kinasinhibator 
påverkat cellen och som kan vara svåra att se för det mänskliga ögat.  
 
Huvudfokuset för projektet har varit att utveckla och utvärdera algoritmer som identifierar 
kinasinhibitorer i bilder av celler. Det har även studerats om några kinasinhibitorer är lättare 
eller svårare för algoritmen att se. För att utveckla sådana algoritmer har maskininlärning 
använts, och specifikt ett område inom maskininlärning som kallas för djupinlärning med 
hjälp av artificiella neurala nätverk. Neurala nätverk är datorns sätt att efterlikna den 
mänskliga hjärnans neuroner, vilka i sin tur är nervceller som med otroligt komplex 
kommunikation talar med varandra vid rörelsestyrning och sinnesintryck. Djupa artificiella 
neurala nätverk består av flera lager av olika lärdomar som algoritmen drar, som sparas och 
förfinas för varje lager fram tills det sista lagret där algoritmen berättar vad den tror att den 
har sett. Det imponerande med dessa algoritmer är att de kan lära sig och förbättra sin 
prestation när de ser mer data. Det kan liknas vid att lära ett barn om vad exempelvis ett bord 
är. Istället för att förklara att ett bord ofta består av en skiva med fyra ben, så pekar du ut ett 
flertal olika bord för barnet. På så sätt lär sig barnet att känna igen ett bord utan att du behöver 
förklara vilka egenskaper som karakteriserar ett bord. En variant av artificiella neurala nätverk 
som användes i detta projekt var faltande neurala nätverk. Skillnaden mot vanligare neurala 
nätverk är att denna typ är specialiserad på att hitta mönster och viktiga egenskaper i just 
bilder. I detta fall fick algoritmen ta del av cirka 20% av alla bilder på celler som studien hade 
tillgång till. På några av bilderna var det celler som behandlats med kinasinhibitorer och på 
några var det obehandlade celler. Algoritmen fick själv leta efter viktiga egenskaper i de olika 
bilderna.  Därefter testades algoritmen på annan del av samma dataset där den fick peka ut 
vilka kinasinhibitorer som fanns bland bilderna den fått se.  
 
Förutom cancerforskning kan tekniker som dessa appliceras på en rad olika områden, allt från 
prediktioner av spridningen av COVID-19 till hemsidor med automatiska chattar som lärt sig 
att svara på vanliga frågor. Möjligheterna för användning av maskininlärning inom biologi 
och medicin är oändliga, men kommer maskininlärning kunna ersätta mänsklig arbetskraft? 
Det är en otroligt omdebatterad fråga. I dagsläget kan i alla fall maskininlärning ses som ett 
extra par ögon som kan assistera människor i att prestera bättre inom vissa analytiska 
områden. I grund och botten handlar maskininlärning om att dra statistiska lärdomar, vilket 
gjort metoden lämplig för just denna studie.  
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1 Introduction 
Cell signalling is a vital process that controls cell division, cell migration, and cell death. 
Phosphorylation is one event that control cell signalling, and is a way for proteins to transmit 
chemical signals to each other (Nature Research 2019). During phosphorylation, there is a 
transfer of a phosphate group onto a particular amino acid in a protein. The phosphate comes 
from adenosine triphosphate (ATP) molecules, which is a source of chemical energy 
consisting of one adenosine and three phosphate groups called alfa, beta, and gamma (Lodish 
et al. 2008). The gamma phosphate can be donated to some amino acids, and although there 
are 20 different amino acids, only tyrosine, serine, and threonine can be phosphorylated 
(García et al. 2006). The enzymes that catalyse the transfer of the gamma phosphate groups 
are called kinases. There are 518 kinases that are divided into four subclasses; tyrosine 
kinases, dual-specificity kinases, serine-threonine kinases, and pseudo kinases (García et al. 
2006). When a protein gets phosphorylated, it attracts proteins that, in turn, can attract other 
proteins. This can cause a chain reaction where signals are passed on across a cell.  
 
Phosphorylation leads to an increase or decrease in the activity of the kinase. Faulty, hyper 
activated kinases can transmit to many phosphorylation signals which can lead to diseases 
such as cancer (Campbell et al. 2014a). All classes of proteins have members that are 
regulated by kinases or phosphatases, which indirectly regulate a variety of cellular pathways 
and reactions. Abnormal kinases that function in the absence of signalling molecules or while 
being inhibited by kinase inhibitors are associated with many kinds of cancer (Campbell et al. 
2014b).  

1.1 Purpose 
Kinase inhibitors play an important role in many biological processes (Blume-Jensen & 
Hunter 2001, Ramón-Maiques et al. 2002, Karaman et al. 2008), and previous studies provide 
a foundation for further exploring of the toxicity and biology of kinase inhibitors. Knowledge 
about kinase inhibitors could potentially be implemented in drug development and further 
research about cellular signalling and cancer (Davis et al. 2011, Campbell et al. 2014a). 
 
Recent advances in fluorescence microscopy and image analysis open up for extracting 
quantitative information from images to study changes in cell morphology induced by drugs, 
the environment, or chemical compounds like kinase inhibitors. One methodology used in the 
research group at the Department of Pharmaceutical Biosciences is Cell Painting (Bray et al. 
2016), a microscopy-based morphological profiling assay with multiplexed fluorescent dyes. 
It has been shown that such morphological profiles can be used to train AI models to classify 
images into different biological mechanisms (classes) (Kensert et al. 2019). Deep learning 
and machine learning have been used to profile kinase inhibitors in multiple papers (Scheeder 
et al. 2018, Zhavoronkov et al. 2019, Moen et al. 2019), and the goal of this project was to 
study the possibilities for Deep Learning models and Convolutional Neural Networks to 
distinguish between different classes of kinase inhibitors based on their morphological 
profiles. This project provided an opportunity to evaluate these methods and find 
improvements. Hence, the performance of the prediction models, as well as factors that might 
affect the result, was analysed as well.  
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2 Background 

2.1 Artificial Intelligence, Machine Learning and Deep Learning 
Artificial intelligence (AI) are computer programs that can perceive the environment, reason, 
act and adapt to maximize the chance of accomplishing a certain goal (Bini 2018). 
Implementations of AI in healthcare opens up new doors of handling and optimising very 
complex sets of data in complex systems such as accurate identification of drug toxicity 
without animal testing (Aliper et al. 2016), and cancer detection (Fakoor et al. 2013, Wang et 
al. 2016, Cruz-Roa et al. 2017). Machine learning can be considered a subset of AI and 
consists of slightly less sophisticated algorithms that learn and improve their performance as 
they are exposed to more data over time. In conventional machine learning, representations 
are manually designed by the use of feature engineering. Machine Learning approaches can 
be broadly classified as supervised or unsupervised. Supervised learning aims to maximize 
the performance of the algorithm on annotated datasets, and is often a very successful 
alternative. Unsupervised learning reconstructs original data after it has been compressed into 
a low-dimensional space. (Moen et al. 2019)  
 
Deep learning is a subset of machine learning and AI, which exploits deep multi-layered 
artificial neural networks (ANNs) that learn from a vast amount of data. The algorithm in a 
neural network learns effective representations of data consisting of multiple levels of 
abstraction and is a form of a statistical model. A neural network (NN) is called a deep NN or 
deep learning if there is more than 1 layer in the network. These deep networks were 
developed to perform well in complex games such as Go, where the number of possible 
permutations is more than there are atoms in the known universe. (Bini 2018) A visual 
representation of the relationship between AI, Machine Learning and Deep Learning can be 
seen in figure 1.  
 

 
Figure 1. A visual representation of the relationships between Artificial Intelligence, Machine 
Learning, Deep Learning and Convolutional Neural Networks.  
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2.2 Biological applications of Deep Learning 
Deep learning can be applied to a number of different applications. Image classification, 
image segmentation, object tracking, and augmented microscopy are some areas within 
computer-assisted image analysis where deep learning can be applied. In image classification, 
meaningful labels are assigned to an image. One famous example of this is the classification 
of cats and dogs in images. Due to a lack of annotated training data for deep learning on 
biological applications, transfer learning can be used and have been proven to function well 
on biological data (Zhang et al. 2016, Pawlowski et al. 2016). Transfer learning trains a deep 
model on a large dataset in order to learn general image features. By using transfer learning, a 
robust model can be created even though a limited amount of data is used. It is then applied to 
a smaller dataset where it is adjusted to perform a specific task. In this case, the large dataset 
could be the ImageNet dataset (Krizhevsky et al. 2012), and the smaller dataset could consist 
of annotated biological data (Zhang et al. 2016).  
 
Deep learning is also a way of accounting for changes in cell morphology in image 
classification where it usually is harder to catch the changes. Hence, several cell morphology 
studies and approaches are using deep learning models (Kandaswamy et al. 2016, Pawlowski 
et al. 2016, Sommer et al. 2017). These models can also be used in other biological 
applications like cell cycle predictions, changes in cell state (Simm et al. 2018), spatial 
patterns in fluorescence images, finding the locations of proteins in yeast (Kraus et al. 2016, 
Kraus et al. 2017, Pärnamaa & Parts 2017) and finding the locations of proteins in humans 
(Sullivan et al. 2018). It has also been used in combination with microfluidics to perform 
image activated cell sorting  (Nitta et al. 2018). Hence, deep learning is an appropriate 
method of choice when profiling kinase inhibitors in this project.  

2.3 Convolutional Neural Networks 
Convolutional neural networks (CNNs) are supervised feature learning techniques and are a 
relatively new breakthrough in the area of image processing and computer vision. The idea 
behind it is that it automatically discovers new and needed features and patterns for image 
classification with fewer connections and parameters compared to standard feed-forward 
neural networks (Krizhevsky et al. 2012). The patterns can be the detection of edges in an 
image, and these types of simple filters often occur early on in the neural network. In later 
layers, the patterns get more complex and can detect features like eyes, hair, and feathers. 
Towards the end, the filters can detect full objects like cells, humans, cats, and dogs as an 
example (Geirhos et al. 2019). Some famous and widely used CNN architectures are LeNet-5, 
ResNet, AlexNet, VGG16, and the GoogLeNet, and they are often implemented in the 
popular deep learning backend framework TensorFlow in combination with the frontend 
library Keras (Nandy & Biswas 2018). 
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Figure 2. A visual representation of a filter sliding over an input image, the performed 
calculations and the result (IndoML 2018). 
 
A convolutional layer lets a filter, also called a kernel, go over the input and performs 
element-wise multiplication and addition that ends up in the next cell in the result, also called 
the feature maps, as seen in Figure 2 (Voulodimos et al. 2018). Commonly used hyper 
parameters are the number of convolutional filters, stride, and padding (Yamashita et al. 
2018). The stride regulates step size of the filter, i.e. the number of cells that the filter steps 
each time. This whole process of the filter sliding across the input is called convolving. The 
values in the convolutional filter correspond to the parameters, i.e. the weights in the network. 
The padding parameter controls the information at the borders of the input image (Yamashita 
et al. 2018).  
 

 
Figure 3: A visual representation of a convolutional layer (IndoML 2018). 
 
The feature maps are generated by a series of convolution and pooling with activation 
functions between the layers. In Figure 3, the Rectified Linear (ReLU) activation unit is used 
which returns the values above zero or simply returns zero if the values are lower than or 
equal to zero (Yamashita et al. 2018). ReLU looks and acts like a linear function, but is 
actually a non-linear function that allows learning about complex, non-linear relationships in 
the data (Krizhevsky et al. 2012). There are other well used activation functions as well, like 
the Sigmoid or the Hyperbolic Tangent (Yamashita et al. 2018). By pooling, the algorithm 
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looks at the values of the neurons of the feature maps. Different types of pooling like max, 
min and average pooling can be applied. Max pooling selects the most activated neurons of 
the feature map, and discards neutral regions where no features were detected. The purpose of 
pooling layers is to reduce the size of the feature maps, speed up the calculations, and make 
some of the detected features more robust (Yamashita et al. 2018). After convolution and 
pooling, the results are flattened into fully connected layers. These fully connected layers are 
also called the hidden layers in the Neural Network, and that is the part of the CNN that 
works as the classifier. Also, the addition of a bias term can be seen in Figure 3. This bias 
term should be a vector with a length similar to the number of used filters.  
 
CNNs also learn filter coefficients from the data, and uses hierarchical feature extraction. This 
is done by only using the raw pixel intensity data (LeCun et al. 2015). One of the big 
advantages of this method is that it does not require image segmentation before using the 
technique since the CNN framework already consists of segmentation and classification 
(Kraus et al. 2016). Another advantage of using CNNs is that, by applying convolving filters 
on the input, the number of parameters are low even if the network is deep. Different 
parameters that are often experimented with to improve the models are different learning rates 
that controls how quickly the model is fitted to the data, the number of epochs and the batch 
size described in 2.7.  

2.4 Training, validation and test 
When using Machine Learning, the dataset is split into three parts: Training, test and 
validation. The training set is what the model is trained on with different optimisation 
methods. The next step is to let the trained model predict the classes in the validation set, 
which then provides an unbiased evaluation of how the model is fitted to the training set. The 
last step is to use the test set, which is used to evaluate how the final model is fitted to the 
training set in an unbiased way as well as giving an approximate measure of what the 
performance of the model will be when being deployed.  

2.5 ImageNet, pre-trained convolutional neural networks and transfer 
learning 

Pre-trained convolutional neural networks are networks that previously have been trained on 
huge amounts of data. The learned features from classification of those images are useful for a 
new set of unseen data as well. In this project, pre-trained convolutional neural networks that 
had been trained on ImageNet (Deng et al. 2009, Stanford Vision Lab et al.) were used. 
ImageNet is a database that contains more than 14 million images that belongs to more than 
20 000 classes. When you use one of the following pre-trained networks, you can specify that 
you want to use the ImageNet weights. The weights are large files that are automatically 
downloaded when the user specifies that these weights should be used, but they are only 
downloaded once and then stored in the Keras cache folder.  
 
The following pre-trained convolutional neural network architectures were used in this 
project: MobileNetV2, ResNet50 and VGG16. MobileNetV2 (Sandler et al. 2018) is an 
architecture that is tuned to the CPUs in a mobile phone. This is a simple architecture that is 
especially suitable for mobile applications, but it still provides all the standard operations 
performed in neural networks. It uses 3 538 984 parameters and has a depth of 88 layers. 
ResNet50 (He et al. 2015) uses 25 636 712 parameters with 50 layers. In 2015, the 
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ResNet152 won the ImageNet competition, which has the same structure as ResNet50 but 
with 152 layers instead. VGG16 (Simonyan & Zisserman 2015) is the most computationally 
heavy out of these three architectures. It uses 138 357 544 parameters in 23 layers. The 
architecture was ranked among the top two best performing for localisation and classification 
in the ImageNet Challenge (ILSVRC) 2014.  
 
These architectures utilize transfer learning, which is when a pre-trained classifier is trained 
for a new task but it uses the previously learned features for classifying the new task. In this 
case, the transfer learning happens thanks to ImageNet weights.  

2.6 Optimisers 
To minimize the error of a machine learning model, an optimiser is used. Two optimisers 
were used in this project, Adaptive Moment Estimation (Adam) (Kingma & Ba 2017) and 
Stochastic Gradient Descent (SGD) (Robbins & Monro 1951). SGD is one version of 
Gradient Descent. Gradient Descent can update the parameters of a model, observe how a 
function would be affected by a change, choose directions that lowers the error rate and 
iterates until the function converges to a minimum. SGD only computes a random selection of 
data or a small subset of data, and when the learning rate is small it provides the same 
performance as regular Gradient Descent. However, it uses a scalar learning rate on all 
parameters. Adam is used for gradient-based optimisation. It combines advantages of two 
SGD extensions, Root Mean Square Propagation (RMSprop) and Adaptive Gradient 
Algorithm. In contrast to SGD, Adam uses one vector of learning rates per parameter, which 
are adapted during the learning process.  
 
When the efficacy of an optimiser is determined, the main factors that are taken into 
consideration are the speed of convergence and the generalization. This corresponds to how 
fast a global optimum in gradient descent is reached, and how the model performs on new 
unseen data. Adam and SGD are said to be able to cover one of these factors, but not both of 
them (Keskar & Socher 2017). Adam seems to perform better in the early stages of training, 
and SGD seems to perform better in the later stages of training. Hence, both of these 
optimisers were used to compare their performance on this data. However, RMSprop was also 
used in the beginning before this decision was made.  

2.7 Epochs, Batch size and Batch normalization 
Epochs defines the number of times that the algorithm goes through the entire training set. 
After one epoch, each sample in the training set has updated the weights. One epoch is the 
result of one or more batches. The batch size means the number of processed samples that is 
required before the model is updated, and it must be more than or equal to one, and less than 
or equal to the number of samples in the training dataset. So, if a dataset consists of 500 
samples and the batch size is 10, the data will be divided into 50 batches containing 10 
samples each. When the model has gone through each of the samples in a batch, the model 
will update the weights, which means that the weights will be updated 50 times in every 
epoch. The best way to configure this parameter, as well as the number of epochs, is by trying 
different values and see what works best. By doing a batch normalisation, different outliers 
like very dark or bright images are being somewhat accounted for.  
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2.8 Model loss and accuracy 
Two metrics commonly used for estimating the performance of a model is the model loss and 
the model accuracy. The loss is calculated on training and validation, and it is a summation of 
the errors made in the training or validation parts of the dataset. The summation of the errors 
in neural networks is often a summation of the negative log-likelihood and the residual sum of 
squares. The result gives an indication of how good the model performs on the two parts after 
each iteration of optimisation. The goal is to minimize, or ideally to reduce the loss function 
after each iteration. Generally, the lower the loss the better the model. This can be achieved 
by changing the model’s weight vector values through different optimisation methods, 
described in 2.6. However, there are exceptions to this, like when over-fitting to the training 
data has occurred. The overfitting process is described in 2.10.  

Accuracy is the percentage of accurate classifications. This is determined by feeding test 
samples to the model after the model parameters have been optimised and fixed, and no more 
learning is occurring. From this, the number of mistakes that the model makes are compared 
to the true targets and the percentage of misclassifications are calculated. One example of how 
accuracy is calculated is when we have 1000 test samples and the model classifies 903 of 
those correctly. In that case, the model’s accuracy is 90.3%.  

2.9 Receiver Operating Characteristic curve  
Receiver Operating Characteristic curve (ROC curve) is a common and useful plot when 
predicting probabilities. It has the false positive rate, i.e. the false alarm rate on the x-axis and 
the true positive rate, i.e. the hit rate on the y-axis. The true positive rate is a description of 
how good the model is at predicting the positive class when the actual outcome is positive. It 
corresponds to the calculated number of true positives divided by the sum of the number of 
the true positives and the false positives. The true positive rate is also called sensitivity. The 
false positive rate is calculated by the number of false positives divided by the sum of the 
false positives and true negatives. This metric provides information on how often a positive 
class is predicted even though the actual outcome is negative. A confusion matrix also 
displays these metrics but is not as informative as a ROC curve. 

From this, the area under the ROC curve (AUC) can be used to summarize the performance of 
the model. Generally, a good model should have a curve that is curved closely to the top left 
corner of the plot. If the curve looks more like a straight line, it indicates that model can’t 
distinguish between different classes and that it could be guessing randomly. From these 
metrics, the micro average performance of the model can be estimated. In a model with 
multiple classes, the micro average aggregates the contributions of all classes and computes 
the average performance of the model from these.  

2.10  Overfitting 
Overfitting is when a function or a model is trained and fitted too close to a specific set of 
data points. To avoid this, methods like data augmentation, drop out and batch normalisation 
can be used. When using CNNs and applying data augmentation, the generalizability of the 
model increases. It generates new training images from the input data by applying random 
transformations which manipulates the images. By letting the model see new and slightly 
altered versions of the original images it can learn more robust features that are common for 
the input images even if they are slightly modified. More robust feature extraction results in a 
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more accurate model. Simply put, data augmentation alters the images in order to find new 
patterns as well as to generate more training images (Moen et al. 2019).  

2.11  Problems with CNNs 
One significant problem with CNNs is when there is a lack of labelled data. Evidence 
suggests that the answer to this bottleneck is transfer learning (Zhang et al. 2016), and that 
deep CNNs in combination with transfer learning results in highly accurate classifications 
(Kensert et al. 2019). 

3 Materials and methods 

3.1 Frameworks, libraries and tools 
A suggestion for this project was to use the TensorFlow framework due to its popularity and 
that it is well documented. It is an interface and a tool for implementing and executing 
machine learning algorithms. TensorFlow has a flexible ecosystem of tools and libraries that 
allows for easy building and deployment of ML applications (Abadi et al. 2016). Another 
suggestion was to use the Keras framework together with TensorFlow. Keras is a library that 
provides building blocks for deep learning networks, and they are built by using TensorFlow 
in this case (Ketkar 2017). The Sequential API is one way of building a Keras model, which 
was used in this project. It allows for building the Deep Learning model layer by layer (Keras 
Documentation).  
 
Keras contains a class called the ImageDataGenerator, which performs data augmentation. It 
accepts a batch of training images, takes that batch and applies a series of random 
manipulations to each training image in the batch. Common manipulations are rotations, 
resizing and shearing. It then replaces the original batch with the new manipulated batch. The 
CNN is trained on this manipulated batch, so the original data is not used for training the 
CNN (Keras Documentation). One subclass of the ImageDataGenerator is called 
FlowFromDataframe. It generates batches of augmented or normalized data by using a data 
frame and a path to a directory (Keras Documentation). This is preferably used when multi 
labelled image data is used and when the image data is not separated into different directories, 
which means that all images with for example a “car” label are in one directory and all images 
with a “dog” label are in another directory. For this project, the data was sometimes labelled 
with several labels per image and was not separated into different directories, hence the need 
for this method. Two common Python libraries that were used in this project was Numpy and 
Pandas. Numpy supports the use of large, multidimensional arrays and matrices. Besides that, 
it comes with many mathematical functions that can operate on these arrays, such as linear 
algebra and Fourier transform (NumPy). Pandas is a data analysis library. One of its many 
benefits is that it can take a CSV or TSV file as an input and create a Python data frame, 
which is an object that consists of rows and columns, similar to tables. This simplifies the 
work compared to working with lists and dictionaries where you often have to use list 
comprehension or for loops to read and process the input data. Since the metadata file with 
labels was used as an input in this project, Pandas was used to make that work easier (pandas-
dev 2020). 
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3.2 The data 
The used data consisted of the Human Bone Osteosarcoma Epithelial Cells, which is called 
the U2OS cell line. The cells were originally harvested from the bone tissue of a human 
fifteen-year-old female with osteosarcoma. In 1964, the first cells were harvested from a 
moderately differentiated sarcoma in the tibia, also called the shinbone. The cells in the U2OS 
cell line are positive for insulin-like growth factors 1 and 2 receptors (IGF-1 and IGF-2). They 
also express several antigens, including blood type A, Rh+, HLA A2, Aw30, B12, Bw35 and 
B40 (+/-) (Niforou et al. 2008, Nikon’s MicroscopyU).  
 
The cells were dyed using Cell Painting (Bray et al. 2016), which is a microscopy-based 
morphological profiling assay with six multiplexed fluorescent dyes. The six dyes were 
imaged in five channels in order to highlight eight different cellular components and 
organelles: 

• Channel 1 shows the Hoechst 33342 dye that binds to and stains the DNA 
• Channel 2 shows the SYTO 9 stain which binds to nucleoli and cytoplasmic RNA 
• Channel 3 shows the MitoTracker Deep Red dye which is used for mitochondrial 

staining.  
• Channel 4 shows the Concanavalin A dye which stains the endoplasmic reticulum 
• Channel 5 shows both the phalloidin and WGA dye. Phalloidin stains actin, and WGA 

stains Golgi and plasma membranes.  
 

The cells from the U2OS cell line was plated in 21 multiwell plates where 60 wells were used 
on each plate. The wells were then treated with 378 compounds from Selleck (Selleck Kinase 
Inhibitor Library) and controls in four different concentrations (10 µM, 6 µM, 5 µM and 4 
µM in a total well concentration of 100 µL). This was done by the research team, which 
means that the images were generated in-house. After this, they were stained, fixed and 
imaged on a high-throughput microscope after 48 hours of treatment. Each well was 
photographed in nine sites in five channels, comprising five sets of 12300 single channel 
images. 

3.3 Metadata, annotation and understanding the metadata 
A metadata file was created from the 12300 images, which was named “dataset.csv” and 
contained 12301 rows and 33 columns. The rows represented different objects, which were 
the images in this case, and the columns represented the features for each image. To fully 
understand the data, another file with explanations of the rows and columns was created. For 
some compounds, the metadata file lacked annotations regarding the compound name and 
their targets. As an example, some of the compound names could not be interpreted, and some 
wells had been treated with several compounds but the annotation did not include them all. 
The annotation was done by using Selleck (Selleck Kinase Inhibitor Library), a webpage that 
contains annotations for kinase inhibitors among other chemical and biological compounds. 
This was done at this stage in order to make the profiling of the kinases more correct and 
easier for me to interpret. Also, by doing this at that stage, it gave me a better understanding 
of the data I was working with. The resulting annotated file can be seen in Appendix A.    

3.4 Join colour channels 
The five colour channels described in 3.2 were joined to get the images in a RGB (three-
dimensional input) format, although it’s optional for the custom-built models used in the 
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beginning of this project. Joining different colour channels allows for the visualization of 
several cell compartments at the same time. Also, many pre-trained convolutional neural 
networks require the input images to be in an RGB format. Later in the project, several pre-
trained networks were used. How the colour channels were joined could be varied, and 
different combinations might reveal different patterns that can be used for classification. In 
this project, the colour channels were joined in two ways: MiCoPh and MiSyHo (input one), 
and MiCoPh and SyHoPh (input two). The names are made up of the first two letters in the 
used dyes. As an example, MiCoPh stands for MitoTracker Deep Red, Concanavalin and 
Phalloidin and WHA dye. Examples of this looked can be seen in figure 4.  
 

MiSyHo 
 

MiCoPh SyHoPh 

 
 

 
 

 
 

 
Figure 4. Three examples of what one same image look like with the differently joined sets of 
colour channels. To the left: One image with the colour channels MiSyHo. In the middle: the 
same image but with the colour channels MiSyHo. To the right: the same image but with the 
colour channels SyHoPh.  
 
Maris Lapins’ script was used to join the colour channels and create a data frame with labels 
for the images called “labels.csv”. This resulted in two folders consisting of images that had 
been joined with three joined colour channels per folder. Folder one contained channel 3, 4 
and 5 described in 3.2 and was named “MiCoPh” and folder two contained channel 1, 2 and 3 
and was named “MiSyHo”. It also resulted in the data frame “labels.csv” that consisted of 
12300 rows, i.e. all images, and eight columns containing: 

• The image index: 0 - 12300 
• The plate number: P009063 – P009083 
• Well position: B02 – G11 
• Site: 1 - 9 
• Well role: Compound or control 
• Compound ID: Ex. CBK013406 (a compound) or DMSO (control) 
• Therapeutic class: Ex. EGFR (a target compound) 
• Compound concentration: 10, 6, 5 or 4 micro molars 

3.5 Compound vs control, 3 colour channels, part of the dataset 
In the next step, a simpler model was created. I started off by comparing controls and 
compounds to see if the classifier worked at a more basic level. Only data from one of 21 
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plates were used at this stage, i.e. 540 images. The first model that was created was a 
combination of a LeNet-5 architecture (LeCun) and an AlexNet architecture (Krizhevsky et 
al. 2012). When that model was up and running, the FlowFromDataframe method was applied 
as described in 3.1. In order to use the FlowFromDataframe method, a new data frame with 
the right format was created according to a tutorial (Vijayabhaskar J 2019). Keras and 
TensorFlow were also implemented at this stage (Vijayabhaskar J 2020). When these 
preparations were working, three colour channels, “MiCoPh”, was used as an input to create 
the data frame and to run the model. As previously mentioned, only 540 images were used at 
this point.  

3.6 Compound vs control, all 5 colour channels, whole dataset 
When that simple model for only three of the colour channels and a small part of the dataset 
was working, it was time to use all colour channels and the whole dataset of 12300 images as 
input in the same model. At this stage, the code was also simplified and restructured by 
adding some new functions. Some different optimisers were tried and parameters were tried:  

• RMSprop with lr=0.0001 
• Added 90 degrees rotation range to the ImageDataGenerator to create more versions 

of the images 
• The Adam optimiser with default parameters, did not improve the loss 
• Nadam Optimiser with default parameters, did not improve the loss 
• SGD with default parameters 
• SGD with default parameters and increased batch size from 32 to 128.  
• RMSprop with lr=0.0001 and batch size=128 

3.7 Kinase inhibitors vs controls 
After different parameters and optimisation methods had been tried, I moved on to profiling 
of the different kinase inhibitors and controls on the whole dataset with FlowFromDataframe 
and ImageDataGenerator. Different parameters, optimisation methods and different batch 
sizes were used: 

• RMSprop with batch size 128 
• SGD with batch size 128 
• RMSprop with batch size 32 and a lower learning rate of 0.00001 
• RMSprop with batch size 128 and learning rate 0.00001 

 
I continued on to deeper prebuilt models. These models consisted of two networks whose 
final layers were concatenated in the end. Two networks were used to enable the 
implementation of transfer learning by using ImageNet weights. This means that two 
networks were created with the input shape (224, 224, 3) with ImageNet weights, otherwise 
one network would have been created with input shape (224, 224, 5) and no ImageNet 
weights. In order achieve this, the final top layers, i.e. the fully connected layers of each 
network which works as the classifier were not included in the models. Instead, the last output 
from each model was concatenated to get one shared output instead of two separates. Lastly, 
global average pooling, dropout and dense was added as some common final layers before 
compiling the model. For this step, the network MobileNetV2 was tried with ImageNet 
weights. It was tried together with RMSprop, a batch size of 32 and a learning rate of 
0.00003. It was also tested with SGD, batch size 32 and a learning rate of 0.00001. These 
results can be seen in 4.2.  
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3.8 Two stream models profiling kinase families, data divided after wells 
At this stage, the focus shifted to profiling kinase families instead of each of the compounds 
since fewer classes and larger classes might be easier to predict for the models. Three two 
stream models for VGG16 were created, all with a learning rate of 0.0001, a batch size of 32 
and two of the models used ImageNet weights. For the optimisers, one model used SGD, one 
used Adam and the third did also use Adam but did not have any ImageNet weights.  
Two stream models were created to enable the use of both sets of joined RGB images as 
input. By doing that, all colour channels were used as input. The basic layers of convolution 
and pooling for each set of input images remained, but the last fully connected layer was 
removed. Instead, global average pooling was performed before the both outputs were 
concatenated. Before the classes were predicted, the concatenated output went through 
dropout and two new hidden layers with ReLu and Sigmoid as activation functions. The exact 
same parameters and structure was used when creating three MobileNetV2 two stream models 
and three ResNet50 two stream models. A script to create subplots of the results of the three 
models for each architecture was created as well.  

3.9 Join colour channels in other ways 
I tried to join colour channels differently and use that as a new input in the same models as 
before in 3.6. When the colour channels were joined the second time, channel 5 was used 
twice. As it is described in 3.2, channel 5 shows both the Phalloidin and WGA dye. This 
channel was chosen this time since it includes several cell compartments. Phalloidin stains 
actin, and WGA stains Golgi and plasma membranes. When this was done, the new joining of 
the colour channels was used as an input in the same three models as in 3.6. Every model was 
run two times with ImageNet weights and one time with no pretrained weights. The exact 
same parameters were used for every run except for the optimiser. The used optimisers were 
Adam and SGD, where SGD was used in one pretrained model and Adam was used in both 
one pretrained model and in the model with no pretrained weights. To summarize, the exact 
same protocol and parameters as in 3.6 were applied to these models, except for the new 
colour channels as input. This was done in order to simplify the analysis and get a good 
comparison of how the models perform on different colour channels, where the only 
difference between the models was the used colour channels as an input. However, in some 
cases, like the MobileNetV2 models in this section, the number of epochs were increased to 
see if the SGD optimiser would behave differently. When comparing the models, it was clear 
that the models with SGD hadn’t finished. Therefore, all models with SGD and MiCoPh and 
SyHoPh as input was run again but this time with a learning rate of 0.1 instead of 0.0001. 
This means that three new models were created, which can be seen in column two in the 
figures in 4.3. 
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4 Results 
This part of the report presents the accumulated results. There are four sections covering the 
first binary models, the profiling of kinase families, the micro average values for the profiling 
of kinase families and the ROC areas for some of the models.  

4.1 Loss for the binary models 
This section presents the very first results. At this stage, the models were binary and were 
only profiling compounds versus controls, not distinguishing between the different kinase 
inhibitors. For some of the figures below, Adam and SGD was used as an optimiser.  
 
 

540 images as input 12300 images as input 

 
 

 
 
Figure 5. To the left: A model made of the combination of LeNet-5 and AlexNet architectures. 
Only one set of three colour channels, MiCoPh and 540 images from a single plate were used 
as in input for this and only compound versus control was being predicted. To the right: The 
whole dataset of 12300 images from all plates were used as an input. A batch size of 32 was 
used for both data sets. The blue line represents the training loss and the yellow line 
represents the validation loss. 
 
For the model in figure 5 with the smaller dataset, the loss is decreasing although there are 
some jumps. The loss reaches approximately 0.11. For the larger dataset in figure 5, the loss is 
decreasing smoothly but only reaches 0.2. 
 
 
 
 
 
 
 
 
 
 
 
 



25 
 

Adam SGD 

 
 

 
 

Figure 6. The whole dataset as input with Adam or SGD as optimisers, profiling compounds 
(treated cells) versus controls (untreated cells). The blue line represents the training loss and 
the yellow line represents the validation loss. 
 
Regarding figure 6 with Adam, the training loss is decreasing with jumps down to 0.28, and 
the validation loss is rather increasing than decreasing. The training loss for SGD decreases 
smoothly down to 0.3 together with the validation loss.  

4.2 Loss and accuracy for kinase families with two-stream models 
This section presents the first results for the two-stream models that utilised transfer learning.  
The models were profiling kinase families and controls, i.e. 113 classes. This was tried with 
the optimisers RMSprop and SGD.  
 

MobileNetV2 with RMSprop MobileNetV2 with SGD 

 
 

 

 
Figure 7. The first two stream models with MobileNetV2 architecture tried with RMSprop and 
SGD. The figures show the training and validation loss, as well as the training and validation 
accuracy. The blue line represents the training loss and the yellow line represents the 
validation loss.  
 
The figure with RMSprop shows a steady decrease in training and validation loss, as well as a 
steady increase in accuracy where an accuracy of 99% is reached after one epoch. The other 
figure depicts a somewhat smoothly descending training and validation loss that only reaches 
0.84 for training and 0.76 for validation. The accuracy ascends to 51.5%.  
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4.3 Loss and accuracy for the two-stream models with different inputs 
In this section, the loss and accuracy for the VGG16, the MobileNetV2 and the ResNet50 
models when classified into kinase families are presented. The results for the two different 
inputs, MiCoPh and MiSyHo as well as MiCoPh and SyHoPh can be viewed. In the figures 
for each input, we can see three different plots. One pretrained model with SGD as an 
optimiser, one pretrained model with Adam as an optimiser and one model without pretrained 
weights and Adam as an optimiser. The pretrained models used ImageNet weights. The 
learning rate was 0.0001 and the batch size was 32 for all of the models with MiCoPh and 
MiSyHo as input. For the second input, a learning rate of 0.01 was used for the SGD 
optimiser and 0.0001 was used for the models with Adam as an optimiser.    

4.3.1 VGG16 
 

MiCoPh and MiSyHo 

 
 
Figure 8. Training and validation accuracy for the three VGG16 models with MiCoPh and 
MiSyHo as input. The yellow line represents validation and the blue line represents the 
training. In the figures to the left, the training and validation accuracy are visualised. The 
number of epochs can be seen on the x-axis and the accuracy on the y-axis. To the right, the 
training and validation loss is visualised. The number of epochs can be seen on the x-axis and 
the accuracy is on the y-axis.  
 
The training loss is decreasing smoothly for all models, and the loss is decreasing for all of 
them. However, the model with SGD should have been run with more epochs to see that the 
curve flattens out. The accuracy is increasing for SGD, but is stable from the beginning for 
Adam. The VGG16 model without pretrained weights was not possible to run with the 
number of available GPUs, hence no results are shown for that. 
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4.3.2 ResNet50  
 

MiCoPh and MiSyHo MiCoPh and SyHoPh 

  

  

  
 
Figure 9. Training and validation accuracy as well as loss for the three ResNet50 models with 
MiCoPh and MiSyHo as input, and the three models with MiCoPh and SyHoPh as input. The 
yellow lines represent validation and the blue lines represent the training. In the figures to the 
left for each input, the training and validation accuracy are visualised. The number of epochs 
can be seen on the x-axis and the accuracy on the y-axis. To the right for each input, the 
training and validation loss is visualised. The number of epochs can be seen on the x-axis and 
the accuracy is on the y-axis. 
 
For the models with MiCoPh and MiSyHo as input, some different trends can be seen. For the 
model with SGD as an optimiser, the accuracy is increasing and the loss is decreasing after 
each iteration. However, the loss is quite high, the accuracy only reaches approximately 60% 
and the loss curve never reaches a plateau. The loss for the pretrained model with Adam as an 
optimiser is lower, and it is decreasing for the training although there are some jumps. For the 
validation, it’s barely decreasing at all but is rather fluctuating around the same loss. The 
accuracy for that models is increasing slightly for the training, up to 99.5%, but is fluctuating 
around 98.7% for validation. The loss for the model without pretrained weights is decreasing 
smoothly for the training but is decreasing with a big jump for the validation. The accuracy of 
the training is increasing but is decreasing with large jumps for the validation.  
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When MiCoPh and SyHoPh was used as input, a higher learning rate of 0.01 and five more 
epochs for SGD was used. The loss for that model flattens out after only one epoch, and the 
loss is reaching 0.05. The accuracy reaches 0.98 after one epoch as well. When Adam was 
used, the training loss reached 0.02 and the training accuracy reached 99.5% with fluctuation 
for both the validation accuracy and the validation loss. The model without pretrained weights 
has a smooth training loss which reaches 0.05 and a training accuracy that reaches 98.75% 
after one epoch.  

4.3.3 MobileNetV2 
 

MiCoPh and MiSyHo MiCoPh and SyHoPh 

  

  

  
 
Figure 10. Training and validation accuracy as well as loss for the three MobileNetV2 
models with MiCoPh and MiSyHo as input and the three models with MiCoPh and SyHoPh. 
The yellow lines represent the validation and the blue lines represent the training. In the 
figures to the left for both inputs, the training and validation accuracy are visualised. The 
number of epochs can be seen on the x-axis and the accuracy on the y-axis. To the right for 
both inputs, the training and validation loss is visualised. The number of epochs can be seen 
on the x-axis and the accuracy is on the y-axis. 
 
For the MobileNetV2 models with input one and with SGD as an optimiser, the same 
argument can be applied as for both the VGG16 and ResNet50. Both lines are descending, but 
they never converge or reaches a plateau. Regarding the pretrained model with Adam as an 
optimiser, the training is decreasing with a small jump at epoch 7, but the validation is 
decreasing and the starts to ascend at epoch 5. The model without pretrained weights and 
Adam as an optimiser show two decreasing curves that are converging towards the end. A low 
loss has already been achieved before the first epoch. However, the scale for that figure is 
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different compared with the other ones which makes it hard to comment the result further.  
The training and validation accuracy for all models looks smooth. A high accuracy is reached 
early on for both models with Adam as an optimiser, but for the model with SGD the training 
and validation accuracy is increasing steadily but does only end at approximately 65% 
accuracy for the training and 75% for the validation. When input two was used, all models 
had five more epochs. The same pattern as for the ResNet50 models can be seen here, 
especially for SGD. The pretrained model with Adam as an optimiser shows a steady decrease 
of the training loss with fluctuations in the validation loss, and the same pattern is mirrored 
for the accuracy. For the model without pretrained weights, both the loss and accuracy looks 
the same for input one and two.   

4.4 Micro average for classification of kinase families 
In this section the micro average values for the VGG16, the MobileNetV2 and the ResNet50 
models are presented when classified into kinase families as described in 3.6.  
 
Table 1: Table with the micro average values for VGG16, MobileNetV2 and ResNet50 and 
the different optimisers. The numbers show the average performance of the model, 
considering the contributions from all classes in these multiclass models. For SGD, two 
different learning rates were used as can be seen in the two columns for SGD.  
 

 MiCoPh and MiSyHo MiCoPh and SyHoPh 
 Pretrained 

SGD 
(lr=0.0001) 

Pretrained 
Adam 

Not 
pretrained, 
Adam 

Pretrained 
SGD 
(lr=0.01) 

Pretrained 
Adam 

Not 
pretrained 
Adam 

ResNet50 0.531 0.912 0.831 0.813 
 

0.939 0.868 

MobileNetV2 0.512 0.904 0.499 0.824 
 

0.932 
 

0.768 
 

VGG16 0.552 
 

0.872 0.766 
 

0.826 0.893 
 

0.822 

 
Table 1 shows that the micro average for the models with SGD as an optimiser and with a 
learning rate of 0.0001 was between 0.51 and 0.55. This indicates that these models were 
randomly guessing when classifying the kinase families. However, when the learning rate was 
0.01 for SGD, the micro average drastically improved with values from 0.8127 to 0.8255. The 
results for the models with Adam as an optimiser had similar micro average values. However, 
all models with MiCoPh and SyHoPh as an input performed marginally better when looking 
at the second decimal. The models without pretrained weights and with Adam as an optimiser 
performs slightly better for the MiCoPh and SyHoPh as an input for ResNet50 model. For 
MobileNetV2, there is a much bigger difference in the micro average where the model 
performs 26.8 % better when MiCoPh and SyHoPh were used as input. For the VGG16, there 
is also a difference in micro average where input two with Adam performed best with a micro 
average of 0.893. Overall, Table 1 states that ResNet50 and MobileNetV2 with input two, 
pretraining and Adam performed equally good.  
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4.5 ROC values for kinase families 
Details for the two best models are presented in this section, i.e. ResNet50 and MobileNetV2. 
The details for VGG16 were not analysed further due to that those models had the lowest 
micro average values in Table 1. This part shows the five top ROC areas and the five lowest 
ROC areas for two models and the optimisers. The presented results in this section are only 
the ROC areas for the MiCoPh and SyHoPh input. The reason for that was a mistake which 
caused the results from the first input to not be saved. ROC AUC plots were constructed as 
well, but due to poor readability, these tables with the individual ROC areas are presented 
instead.  
 
Table 2: The highest ROC areas and the lowest ROC areas for “targets”, i.e. the kinase 
families. The highest and lowest values are presented for the ResNet50 model and the SGD 
optimiser, the Adam optimiser and a non-pretrained model with Adam as an optimiser.  

ResNet50 
SGD Adam Not pretrained with Adam 

   
 
In Table 2, Aurora Kinase, IKK and “DUB, Bcr-Abl” is among the kinase families with the 
highest ROC area. Among the five smallest ROC areas we find Akt and PDGFR. Overall, the 
pretrained model with Adam shows higher ROC areas than the other two, and the model 
without pretrained weights and Adam shows higher ROC areas than the model with SGD.  
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Table 3: The highest ROC areas and the lowest ROC areas for “targets”, i.e. the kinase 
families. The highest and lowest values are presented for the MobileNetV2 model and the 
SGD optimiser, the Adam optimiser and a non-pretrained model with Adam as an optimiser. 

MobileNetV2 
SGD Adam Not pretrained with Adam 

   
 
In Table 3 the CHK and “Flt,Bcr-Abl,Aurorakinase” is among the kinase families that were 
predicted with the highest ROC areas. Among the lower ROC areas PDGFR, Pl3K, mTOR, 
JAK, EGFR is found. Overall, the pretrained model with Adam has higher ROC areas than 
the other two, and higher ROC areas compared to the other architectures as well.  
 

MobileNetV2 with Adam MobileNetV2 with SGD 

  
Figure 11. ROC curve for the two models with MobileNetV2, with ROC curves for all 113 
classes. The false positive rate is on the X-axis and the true positive rate is on the Y-axis. To 
the left is the pretrained model with Adam and learning rate 0.0001, to the right is the 
pretrained model with SGD and learning rate 0.01. The input with MiCoPh and SyHoPh was 
used for both models.  
 
Figure 11 shows that the MobileNetV2 model performed better with Adam than with SGD. 
For Adam, the ROC curves are mostly centred around the top left corner, which indicates a lot 
of true positives. For the model with SGD, the ROC curves are mostly centred around the 
middle, which indicates that the model was doing some random guessing. 
  



32 
 

5 Discussion 

5.1 Loss for binary models 
The binary models never reached a low loss. However, the model for a single plate reached a 
lower loss than the whole dataset. A possible explanation might be that there is always some 
systematic error, and additionally, that there are variations between plates in illumination and 
cell growth. Nonetheless, the smaller dataset showed several jumps in both training loss and 
validation loss compared to the whole dataset. The learning rate might have been too high, but 
it is more likely that the dataset was too small. For the binary models with the whole dataset, 
SGD descends smoother compared to Adam, and both of them reaches approximately 0.3 in 
training loss. The conclusion is that the whole dataset and SGD seems to perform best for the 
binary models. 

5.2 Loss and accuracy for the first kinase families with two stream 
models 

The difference between RMSprop and SGD is huge. RMSprop reached an accuracy of 99% 
and a loss of 0.04, while SGD only reached an accuracy of 51.5% and a validation loss of 
0.76. From the figures and these numbers, you can conclude that SGD needed more training. 
This is especially noticeable since the curve never flattens out, which in turn indicates either 
that the learning rate was too low or that the number of epochs was too small.  

5.3 VGG16 
The VGG16 model without pretrained weights was hard to execute, as the system often 
suffered a “Resource Exhausted Error” even if multiple GPUs were used. The reason for this 
might be that VGG16 is the most computationally heavy architecture used in this project, with 
140 million trainable parameters compared to four million in MobileNetV2 and 25 million in 
ResNet50. At one stage, the predicted values were the same for all classes in a functioning 
VGG16 model without pre-trained weights, proving that the model had not learned. Perhaps, 
the reason was that all ReLU died in some layer. The risk for dying ReLU’s is higher if the 
learning rate is high, but regardless, this highlights that pretrained weights improve the 
performance. In turn, the need for pre-trained weights proves that transfer learning is 
important when training deep neural networks. Without pre-trained ImageNet weights, it is 
impossible to train a deep neural network on a dataset with only a thousand images, which is 
considered to be a small dataset when training deep neural networks.  

5.4 ResNet50 
Overall, both of the ResNet50 models with Adam as an optimiser had a steadily decreasing 
training loss. The same behaviour is found in the training and validation accuracy as well. 
When the validation loss is decreasing with jumps in those models, it might be caused by a 
learning rate that is too high, a dataset that is too small or simply because of the dropout rate 
that is included in the final layers of the models. If the yellow lines start to ascend, it implies 
that the model is over fitted. However, the yellow line also indicates when the model is done 
with the training, and if the yellow line ascends, peaks and then descends, that no more 
epochs are necessary. This is well represented for the non-pretrained ResNet50 model with 
Adam as an optimiser. 
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The pretrained model with Adam has a validation loss that is jumping a bit, a training 
accuracy that reaches almost 99.5% and a validation accuracy that is fluctuating around 
98.7%. The reason for this is that for every epoch, only 50% of the dataset is used (if dropout 
is equal to 0.5). However, the overall trend is that the line is decreasing before it slightly 
ascends in the end. Hence, that model looks good as well. If a dropout rate of 0.1 would have 
been used, or if the learning rate was lower, the yellow line would be smoother with fewer 
jumps. Nonetheless, overall the models look good. When observing the figures for ResNet50 
in 4.3, the accuracy is often very high, above 98% for all models except from when SGD had 
higher learning rate. That might be too good to be true. 
  
From these plots, the SGD optimiser also seems to perform well. However, this cannot be 
verified due to the loss never reaching a plateau, and it is impossible to know how the rest of 
the epochs would look before reaching that plateau. The results for MiCoPh and SyHoPh are 
very similar to the ones where MiCoPh and MiSyHo were used as input. The difference 
between these results is mainly for SGD as an optimiser. For input with SyHoPh and with a 
higher learning rate of 0.01 compared to input one with a learning rate of 0.0001, the main 
difference is that the curve flattens out and reaches a loss of 0.05 instead of 0.650 for input 
one. This proves that the learning rate and the number of epochs are both crucial in order to 
get a model with high performance. 

5.5 MobileNetV2 
Regarding the results for MobileNetV2 with MiCoPh and MiSyHo, the model without 
pretrained weights appears very smooth. As mentioned, the scale is different in that plot 
compared to the other ones for MobileNetV2. The line starts pretty high, but it is actually 
quite random where the net predicts in the beginning. The same behaviour is mirrored for 
training and validation accuracy, where the training accuracy reaches 98.8% after one epoch, 
and the validation accuracy is constantly at 98.8%.  
  
For the pretrained model with Adam, the validation is fluctuating regarding both accuracy and 
loss, and the training is steadily increasing up to 99.25% for the accuracy and decreasing 
down to 0.02 for the loss. it is hard to compare the two models with Adam as an optimiser, 
mainly because of the different scales in the plots, but also since the validation loss is 
ascending in the pretrained model which might indicate overfitting. However, for the 
pretrained model, the training loss falls to 0.02 and judging by the looks of the non-pretrained 
model it drops to approximately 0.02 as well. For the MobileNetV2 model with SGD as an 
optimiser, the same argument as for both the VGG16 and ResNet50 models with SGD can be 
applied. The learning rate has simply been too small compared to the number of epochs. A lot 
more epochs or a higher learning rate could have solved this problem. The scale on that plot 
in figure 10 starts even higher than the ones with Adam. The reason is the very low learning 
rate that was not a standard input for SGD. The training and validation accuracy for SGD is 
increasing steadily but ends at only approximately 65% accuracy for the training and 75% for 
the validation. This highlights that the model with SGD was not finished.  
  
Regarding the results for MiCoPh and SyHoPh as input, the same trends as for the first input. 
The results show that more epochs do not improve the models without pretrained weights, and 
that a higher learning rate is beneficial for the SGD optimiser. For the pretrained model with 
Adam, the model seems to perform slightly better for the second input where the loss reaches 
0.01 compared with 0.02 with the first input.  
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5.6 Micro average for models and optimisers 
Concerning the results shown in table 1, the micro average values seem to improve slightly 
for input MiCoPh and SyHoPh when using the pretrained model with Adam and the not 
pretrained model with Adam. The Phalloidin and WGA dye that was used twice for input two 
stains the actin, the Golgi and the plasma membranes. In other words, several different cell 
compartments were visualized compared to some of the other used dyes. Perhaps, that might 
have visualized more kinase inhibitors present for input two compared to input one. Overall, 
the difference between the two inputs was small and might depend on other factors such as 
plate and compound concentration, as well as parameters in the code as well.  
  
Table 1 with the values for the micro average shows that the pretrained model with Adam as 
an optimiser performed best for the ResNet50 models. The value for the model without the 
pretrained weights has a lower micro average, which makes sense since the pretrained weights 
should contribute with transfer learning which in turn should increase the classification 
power. The value for the pretrained model with SGD as an optimiser is surprisingly low and 
tells us that the model is basically random guessing. This is especially surprising since the 
model’s loss and accuracy looks smooth in the figures. The reason behind this behaviour, as 
mentioned before, might be due to an insufficient number of epochs or that the learning rate 
was too high for the SGD optimiser, which means that the model was not finished training. 
Learning rate 0.01 is better suited for SGD during 5-15 epochs. A learning rate of 0.0001 
might have worked, but the number of epochs would have had to be much larger, perhaps 
around 100, in order to see that the model finished. However, SGD showed great potential to 
perform almost as well as Adam when the learning rate was 0.01.  

5.7 ROC area between models 
The results in Table 2 and 3 all prove that MobileNetV2 pretrained together with Adam 
worked best. All of the ROC areas were above 0.6, compared to the other models that had 
ROC areas all the way down to 0.002, for example the MobileNetV2 model without 
pretrained weights in Table 3. However, if you only have one inhibitor for one kinase, you 
cannot create a good model. Often you need at least eight to ten substances that are active for 
the same target to create a model. If there are kinases for which there are only two to three 
substances that inhibits that kinase, a good model is difficult to achieve. One way to solve this 
problem would have been to group the kinases into larger groups, as an example including all 
tyrosine kinases in one group. Then you would be able to see differences between large 
groups.  
  
Some of the targets with low ROC areas were targets for several compounds. Should that 
increase the validity of those ROC areas? Were they really harder to predict? Not necessarily. 
If two substances are found in the validation set, they might still be hard to predict. If the 
partitioning of the training and test data would change, the results might change as well. 
Another factor that is important to take into account is the fact that some substances does not 
change the morphology of the cell, yet another that the input data was imbalanced. 
  
Observing Figure 11 with the ROC curves clearly states that the MobileNetV2 model with 
Adam performed better that with SGD. Since the lines are close to the top right corner, the 
result can be somewhat trusted regarding the ROC area values. If the lines would have been 
centred around the line in the middle, like for the MobileNetV2 model with SGD, it would 
have indicated that the model was doing some random guessing. It would also mean that there 
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was a lot of false hits and that there are many kinases that you cannot say anything about. If 
the lines would have been centred around the bottom right corner, that would have indicated 
that the low curve was generated by chance. In that case, if there would be curves located 
close to the top left corner as well you would not know for sure if they were placed there by 
chance as well.  

5.8 Validate the models and data quality 
The quality of the data varies. In some plates, a portion of the images were lighter, some were 
darker, and some were black. The black images indicated that there were not any cells left in 
the image, which in turn affected the classification power of the models. There was also a 
difference between the plates. In some plates, the cells grew nicely and on some they did not, 
which led to less cells. All of these factors affect the end result. 
  
When taking the data quality into account, perhaps the results were better when only one plate 
was used as an input instead of all 20 plates? Then the diversity of the possible reduction in 
data quality might be smaller, which might improve the result. However, the results do not 
strengthen that theory. To be able to trust the produced results, you should use hundreds of 
substances with the same mechanisms. There are also other insecurities to account for, for 
example that the substances might not affect only one or five kinases but rather large and 
broad groups of kinases as well as kinases from several groups. For the data used in this 
project we know that the inhibitors have target proteins, but they might have many more that 
we do not know of since that have not yet been tested.  

5.9 Two-stream models and choice of input 
By comparing the binary one-stream models with Adam and SGD in 4.1 with the two-stream 
models in 4.2 and 4.3, there is a significant drop in loss and an increase in accuracy for the 
two-stream models. That is illustrated with RMSprop in 4.2, and for almost all two-stream 
models in 4.3. The SGD models in 4.3 with learning rate 0.0001 did not perform better but the 
ones with learning rate 0.01 did. Once again, the reason for this difference is that SGD needs 
a higher learning rate or more epochs. Nonetheless, a two-stream model outperforms a one 
stream model according to these results.   

5.10  Improvements 
Several improvements can be applied to this project. First of all, more parameters could have 
been tried. As mentioned in part 2.7, the best way to configure parameters like the batch size 
and the number of epochs is by trying different values and see what works best. Initially, I 
only saved images of the results and used the old notebook to write a new model. This made 
the analysis more difficult since I was unable to return and analyse more metrics and 
parameters of the models and their results without having to run them again. Another 
problematic factor was that trying different parameters requires time, which was a limited 
asset in this project.  
  
Every compound was tested in three different wells but in three different concentrations. All 
of the compounds with the different concentrations should be placed either in the training set 
or in the test set so that the same compound cannot be found both in the training and test set. 
From the beginning, the test set contained 20% of all images. The problem with that approach 
is that there are nine images per well, and a few of the images from one well can end up in the 
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test set but there could still be images from the same well left in the training set. An attempt to 
fix this problem was made in part 3.6 when the training and test data were partitioned 
according to the wells so that all samples from one well was assigned to either training or test. 
In exact, the test data consisted of 20% of the wells. However, still the same substance, 
although at various concentrations, was present in both the training and the test set. It would 
have been interesting to see how the models would have performed if the same substance 
could not be present in both the training set and the test set. It could be said that the models 
are “cheating” now that they have seen the compounds before in the training data. With this 
aspect taken into account, it is fair to say the accuracy of the models presented in this report 
has an accuracy that might be too good to be true.  
  
Another measure of improvement would have been to use class weights. The dataset was 
imbalanced in the way that there were fewer active compounds for each target than inactive. 
As an example, for each target protein there might have been 10 active kinase inhibitors and 
368 inactive. By using class weights, this would be accounted for and a more accurate picture 
of the model’s performance could be accumulated. When the dataset is unbalanced, the 
predictions will always be towards the larger classes. Another way to improve this project 
would be to use two datasets, a larger dataset if that was available and conformal prediction. 
Conformal prediction determines the confidence values of newly predicted values (Matiz & 
Barner 2019). One version of conformal prediction called Inductive conformal prediction 
could be used to improve the performance of the classifiers through the use of active 
learning.   
  
Lastly, there is a risk that you might have been lucky with some substance in the test set that 
was easier or harder to predict.  An important measure of improvement would be to use cross-
validation to account for that risk. With 5-fold cross-validation you would create five 
networks and train on five networks, which would generate more results from all of those five 
networks. This step is absolutely necessary if this project would proceed, but it would have 
been hard to accomplish during this project. With five GPUs that might have worked, but 
with the GPUs accessible to this project it would have taken days to accomplish.  

5.11 Ethics 
The ethical debate revolving around AI and machine learning is huge. Many believe in the 
power of AI, but few tend to analyse the predictions critically except for scientist’s that are 
working with AI and Machine Learning. With this in mind, it is easy to imagine that this 
deficit could be abused to create inaccurate results which could be misinterpreted by the 
public. It is easy to make a model biased, from how the data is gathered or constructed to how 
the training and test sets are divided. As always when discussing how the data is gathered, it 
is important that a Henrietta Lacks case is being avoided. Hence, it is important to view AI 
and Machine Learning as critically from every aspect as one would do with new 
pharmaceuticals as an example.  
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6 Conclusion 
The scientific question of this project was whether it is possible to classify kinase inhibitors 
with CNNs and cell painting. The conclusion is that it is possible to some degree. However, 
all of the relationships between the target proteins and compounds are not known yet, and can 
therefore not be annotated and analysed. The data quality needs to be improved with some 
more pre-processing, and the partitioning into training and test needs to consider the different 
concentrations of the compounds. Lastly, cross validation and class weights needs to be 
applied to give credibility to the results. As always, other parameters like batch size and 
learning rate can be fine-tuned to improve the models further. 
 
To summarise which architecture performed the best, pretrained networks with ImageNet 
weights were superior. They performed better than the simple binary models. The micro 
average values showed that ResNet50 and MobileNetV2 performed equally good. However, 
the ROC areas showed that the architecture that performed best out of the pretrained networks 
was MobileNetV2. This assumption was also strengthened by the ROC curve that mostly 
showed high true positive rates. The results also showed that using the same learning rate for 
all models does not necessarily provide a better comparison if the model fails to learn due to 
having the wrong learning rate. Some important lessons that can be drawn from this are the 
importance of choosing the right learning rate for each model, and to look at several 
validation metrics. Another lesson learned is the importance of transfer learning when training 
deep neural networks. Without them, errors like dying ReLUs might occur. This happened for 
some of the VGG16 models without pretrained weights.  
  
The fact that the data was split into training and test sets based upon which well they 
belonged to damage the credibility of the results. The model might have already seen some of 
the validation data in the training set. Hence, even though the results showed that the model 
performed well, that does not necessarily prove that the model learned how to classify these 
kinase families since this can be considered “cheating”. Regarding the choice of optimiser, 
the conclusion is that the whole dataset and SGD seemed to perform best for the binary model 
but for the two-stream models Adam optimised better than SGD regarding the micro average, 
the ROC area and the loss and accuracy plots. However, according to some papers, Adam has 
been proven to not generalise as well as SGD (Keskar & Socher 2017). Perhaps the results in 
this report are too good to be true, and SGD performs better than Adam? As discussed in the 
paragraph above, the results lack credibility, which makes this question highly relevant.  
  
No conclusions could be drawn regarding if any kinase families were easier or harder to 
classify. To analyse that properly, many more substances with the same mechanisms should 
be used. Other insecurities to consider when analysing the results are that the substances 
might not affect only one or five kinases, but rather large and broad groups of kinases as well 
as kinases from several groups. For the data used in this project, we know that the inhibitors 
have target proteins. However, they might have many more that we do not know of since that 
have not been tested yet. It is known for kinase inhibitors in general that they are not 
selective, they interact with large numbers of kinases. 60-70 of the substances used in this 
project were tested on all kinases, and was proven to affect broad groups of kinases.  
  
The two different inputs showed a slightly better micro average for input number two where 
the Phalloidin and WGA dye was used twice. Other than that, no big differences could be 
observed between the different inputs. Nevertheless, there are other input combinations to try 
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out that might reveal other patterns. But are the images useful? Yes, but they would be more 
useful if the differences between very dark and very light images as well as images with few 
cells would be accounted for. Perhaps, a threshold could be used to exclude images where all 
cells died. That could improve the quality of the dataset. 
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Appendix A 
 
The manually annotated metadata file described in 3.1. The csv-file is attached to this report.  
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