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Abstract

Evaluating Response Images From Protein
Quantification

Erik Olby & Mathias Engström

Gyros Protein Technologies develops instruments for automated immunoassays.
Fluorescent antibodies are added to samples and excited with a laser. This results in a
16-bit image where the intensity is correlated to concentration of bound antibody.
Artefacts may appear on the images due to dust, fibers or other problems, which
affect the quantification. This project seeks to automatically detect such artifacts by
classifying the images as good or bad using Deep Convolutional Neural Networks
(DCNNs). To augment the dataset a simulation approach is used and a simulation
program is developed that generates images based on developed simulation models.
Several classification models are tested as well as different techniques used for
training. The highest performing classifier is a VGG16 DCNN, pre-trained on
simulated images, which reaches 94.8% accuracy. There are many sub-classes in the
bad class, and many of these are very underrepresented in both the training and test
datasets. This means that not much can be said of the classification power of these
sub-classes. The conclusion is therefore that until more of this rare data can be
collected, focus should lie on classifying the other more common examples. Using the
approaches from this project, we believe this could result in a high performing
product.
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Sammanfattning

Gyros Protein Technologies AB utvecklar labinstrument för proteinanalyser. Instru-
menten mäter mängden av protein, vilket kan vara viktigt i många applikationer inom
vetenskap, läkemedelsutcveckling och diagnostik. Protein står för mycket funtionalitet
i kroppen, men även orsaker till sjukdom. Det kan handla om att mäta förekomsten av
skadliga protein i prover tagna från en processlinje för läkemedel, från patientprover
eller mäta proteinnivåer i vetenskapliga experiment. Tekniken i instrumenten bygger
på att ta en bild med laser på en mycket liten provvolym som placeras i en speciell
CD-skiva med små kanaler i. Lasern aktiverar speciella molekyler som man tillsatt till
provet. Molekylerna binder till proteiner man vill mäta, och beroende på hur mycket
protein som finns binds olika mycket av dessa molekyler. När de tillsatta molekylerna
som bundit till protein aktiveras av lasern skickar de ifrån sig ljus som fångas på bilden.
Binder fler molekyler skickas mer ljus ut och vice versa. Intensiteten i bilden blir då ett
mått på hur mycket ljus som utstrålats och med detta kan man beräkna hur mycket av ett
protein som fanns i provet.

När bilden tas kan fel uppstå när smuts såsom fibrer och damm hamnar på eller i CD-
skivan som provet ligger i. Detta kan resultera i att ljussignalen på bilden blir fel, och
beräkningen av mängden protein blir då också fel. Det är viktigt att upptäcka detta, och
måste i dagsläget göras manuellt. Instrumenten somGyros utvecklar är väldigt effektiva,
och en körning kan resultera i flera hundra bilder. Detta innebär att det krävs mycket
tid för personal att se till att alla bilder blivit bra. Om detta skulle kunna automatiseras
så att användaren direkt kan se om och vilka bilder som inte borde användas skulle det
innebära en stor tidsvinst. Detta kan i sin tur leda till ett effektivare arbetsflöde inom de
viktiga områden som instrumentet används.

För en människa kan det vara lätt att se om bilderna har artefakter av smuts eller andra
fel. Att med hjälp av en dator avgöra detta kan bli ganska komplicerat. Det finns en rad
verktyg för att analysera bilder. I traditionell bildanalys försöker man manuellt utveckla
algoritmer som fångar variationer av intensitet, ”ljushet”, hos bilder. Detta bygger på
att vi människor säger åt datorn eller algoritmen hur den ska hitta defekter i bilder. Det
kan vara mycket svårt att formulera för oss människor hur vi ser att något är fel eller
inte, vilket gör det väldigt svårt att skriva ett program som ska göra detsamma. Ett annat
angreppssätt är istället att använda sig av artificiell intelligens. Detta innebär att vi låter
ett program eller algoritm lära sig själv hur den ska känna igen de dåliga bilderna genom
att ”titta” på en stor mängd exempelbilder där vi manuellt klassat bilderna som bra eller
dåliga.

Det finns många olika typer av dessa algoritmer som kan lära sig att klassa bilder på
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detta sätt. Den typen som detta projekt siktar in sig på kallas neurala nätverk. Mask-
ineriet bakom dessa neurala nätverk är inspirerat av förståelsen om hur våra egna hjärnor
fungerar, där väldigt många små enkla komponenter kan tillsammans ta komplexa beslut.
Neurala nätverk kommer i massvis av olika strukturer, där var och en är bra i olika
tillfällen. Detta gör det viktigt att pröva och jämföra vilken struktur som lämpar sig bäst
för den givna uppgiften.

Dessa nätverk kräver ofta väldigt stora mängder exempelbilder, vilket kan vara svårt att
få tag på och dessutom är det mycket tidskrävande för en människa att gå igenom och
korrekt märka alla bilder. På grund av detta vill man ofta artificiellt utöka de dataset
man redan har. Detta kan göras på många sätt, men bland annat kan man tänka sig att
simulera bilder. Om man kan utveckla en matematisk modell av hur bilderna ser ut kan
man skapa nya bilder vars utseende vi helt kontrollerar. Detta är ett väldigt frestande
alternativ för det tillåter oss att skapa i stort sett hur mycket data som helst. Det är dock
som man kan tänka sig väldigt svårt, och dessutom är nätverken väldigt känsliga och
kan ofta lära sig att se att bilderna är syntetiserade, och på så sätt lär den sig inte att
klassificera riktiga bilder.

I denna rapport försöker vi utveckla en modell för att automatiskt klassa dessa bilder
som bra eller dåliga med hjälp av neurala nätverk. Vi försöker dessutom simulera bilder
för att skaffa mer träningsdata till nätverken.
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1 Introduction

Gyros Protein Technologies AB develops instruments for automated immunoassays.
These type of assays are used in a wide variety of applications in biomedicine and diag-
nostics. The instruments developed by Gyros are a time efficient alternative to ELISA,
a widely used method for protein quantification. The instruments can be found at many
large medical companies throughout the world. Improving functionality and user friend-
liness of the instruments is important as it can accelerate the workflow of drug research
and medical diagnostics. This project aims at improving the user friendliness of the in-
struments by aiding the user in discarding failed runs. This can be a burdensome task
since each run can produce a large amount of results, and it is important to identify errors
as to not draw false conclusions. By designing an algorithm that detects failed runs the
instrument software can warn the user of results that are not up to standard.

The instruments utilises microfluidics on specially designed CD:s which allow for the
use of very small sample volumes. Concentration of molecules is detected by binding
of fluorescent antibodies and a laser measures the fluorescence, producing a 16-bit gray
scale image that is the basis for quantification. Artefacts in these images might affect
this quantification, why it is important to warn the user of an image displaying suspi-
cious features. There is a range of reasons for artefacts in the images. Hair, dust and
other particles might appear on the image, but also aggregations of molecules can pro-
duce signal ’spikes’ which can affect the quantification. Examples of images, both with
and without artefacts can be seen in Figure 1. The image labeled ”Good” is free from
disturbances and has a desirable binding profile. The image labeled ”Low signal” is also
a good image, but there has been no binding. Saturated images have reached maximum
signal and are useless for quantification. All other images contain various problems that
can occur during a run and for which it is desired to warn the user of. Note that these are
16-bit images, i.e. the pixel values are on the range [0, 65535]. To visualise the images
they have been normalised to a [0, 255] interval, leading to low signal images appear-
ing more noisy, whereas in reality the background noise are on the same scale for all
images presented here. The intensity signal sensitivity can be increased when running
the instrument using a Photomultiplier Tube (PMT). This results in images of different
”PMT-levels”, most common are 1, 5, and 25%. A higher value have a higher overall
signal, both background noise and signal is increased.
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Figure 1: Characteristic images.

An attempt at the task of classifying these images was done in a master thesis project in
2004 but the performance is described in the report as not satisfactory (Olson 2004). The
project sought to classify the images by quality levels ’good’ and ’poor’ by a set of image
features. This idea was based on the occurrence of characteristic features present in good
versus bad images. Although there are features that look easily definable by eye, they
have shown to be hard to capture with high precision using image processing algorithms.
This feature based approach relies heavily on cleverly designed feature statistics and high
performing algorithms. Considering this, our objective was to investigate the possibility
of using a Deep Convolutional Neural Network (DCNN) with the raw image as input to
classify them by quality. Using a DCNNour goal was to circumvent the use of traditional
image processing techniques. DCNNs have proven powerful in detecting features of
images that are hard to define or handle using classic image processing (Guo et al. 2016)
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and have been used in microscopy image quality classification with success as presented
in Yang et al. (2018). Although this paper tries to identify out of focus images, the
similarity in image type and goal of the classifier motivates the feasibility of a DCNN
approach.

The performance of a DCNN is highly dependent on large training data sets. There are
thousands of images available in Gyros’ database for this purpose, however they are not
annotated. Annotating and labeling thousands of images is no doubt a burdensome task,
and efforts to alleviate this is desired. In the previous master thesis project, labeling was
a considerably limiting factor (Olson 2004). The data set annotated was quite small,
consisting of around 500 images. The labels also had some uncertainty, where experts
disagreed on the label of images. Some artefacts are also very rare, making it almost
impossible to get enough examples for a model to learn.

The images can be considered relatively simple, and are quite similar to microscopy
images. Images from microscopy have been simulated with success for validation of
segmentation pipelines in Wiesmann et al. 2017, and in Yang et al. 2018 a DCNN is
trained on real microscopy images with simulated focus artefacts. These papers lead us
to believe that simulation should be possible and also useful. It is highly possible that
we need to train on real data as well, but we believe that augmenting the data set with
simulated images may still improve performance and reduce the number of annotated
images needed.

With this in mind we expanded our objective to investigate the possibility of simulating
images, emulating a wide range of image artefacts and other characteristics. This would
allow for automatic labeling, augmenting the data set considerably without the hours
of labeling by experts. That being said, a comprehensive catalogue of images exerting
relevant features must still be annotated as a basis for the simulation. Furthermore, an
annotated validation set is required to estimate true performance and all the real data
we can add to the training set will be crucial to achieve high performance. Special care
has to be taken when training a DCNN on simulated data. The many parameters within
a network allow it to learn very specific features of images and a considerable risk is
training a network to only recognize simulated from real images.
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2 Theory

2.1 Neural networks

Throughout this entire project, neural networks were used for classifying images as well
as improving the appearance of (refining) simulated images. Therefore it is important
to have a good understanding of how these function. Hence this section will explain the
underlying details and basics.

Figure 2 shows the basic procedure behind a small simple neural network. Neural net-
works consists of many interconnected neurons. Neurons can be seen as functions,
whose output values are defined from the formula seen in Equation 1:

Xout
i = g

(∑
j

X in
j ∗Wij + bi

)
, (1)

whereXout
i is the value of neuron i in the current layer,X in

j is the value of neuron j in the
previous layer,Wij are the weights connected between the previous neurons and current
and bi is the bias value for neuron i. g is the activation function (Lapedes & Farber
1988). Today the most common activation function is the rectified linear unit (ReLu),
which presses all of the negative values to zero: g(x) = Max(0, x) (Glorot et al. 2011).
When all neurons from the previous layer are connected with every single neuron of the
next layer, they are throughout the report denoted as “dense fully connected“-layers.

An example of the process of calculating these can be seen below in Figure 2 where the
values of the input neurons are multiplied by their weights, added together including
the bias, then passed through a ReLu activation function. I.e., In the example below:
ReLu(2 + 2− 6 + 4.4 + 2) = 4.4.

In the output layer, one can have as many neurons as classes being predicted. If the clas-
sification problem is binary, there can be both one or two neurons. Commonly ReLu
activation is not used in the last layer. Instead, softmax or sigmoid activations are pop-
ular. In softmax activation there has to be more than one output neuron. The values
of these neurons are normalised, making the sum of the outputs equals to one. Every
neuron take values on the interval [0, 1]. The closer to 1, the more likely the network
sees the input to be of the class corresponding to that neuron. Sigmoid activation passes
the output from the network through a sigmoid function, also transforming the values to
the interval [0, 1], but skipping the normalisation.
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Figure 2: Shows the basic structure behind a very simple neural network. The network consists
of an input layer with four neurons, two hidden layers with three neurons each and an output
layer consisting of one neuron. The image describes the process of calculating the value of
one neuron depending on the input to the network. The input neurons are multiplied with the
corresponding weights. The bias value and the sum of themultiplied weights are added together.
This value is then passed through an activation function to form the output of the neuron.

The values of the weights and biases are what can be tuned in the network to give it its
classifying capability. These weights and biases are tuned to the correct values from a
training procedure. This training procedure works by passing a known input through the
network, take the given output and pass it through a loss function to calculate a loss value.
The loss value describes how well the network is classifying the current input. This loss
value together with the network is describing a (very) complex differentiable function.
This makes it possible to use a method called backpropagation to find the gradient of the
loss function with respect to all of the parameters in the network. This information can
be used by an optimization algorithm to take steps in the gradient directions, changing
the weights until a loss function minimum is reached.

2.2 Convolutional neural networks

Convolutional neural networks are types of neural networks that are extensively used in
this project. These consist of a feature extraction part and a classification part, classically
a few dense fully connected layers. An overview of this structure can be seen below in
Figure 3. The convolutional layers work by having a matrix (called filter or kernel)
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of weights and biases to slide over the input image. The pixel values of the image are
multiplied with the weights in the filters, these are added together with the bias to form
the output. After the filter has traversed over the whole input image a new output image
is created, where each filter step over the previous image resulted in a pixel in the new
image. Usually in a convolutional layer, one lets many different filters traverse over
the image. Every filter used produces a new image, or dimension, in the layer output.
This can be seen in Figure 3 where the convolutional layer takes the one channel input
image and produces an output consisting of a large number of dimensions. After this
convolutional layer, there is often a max pooling layer. This layer lets a window of a
given size traverse over the input and passes the window max value of each step to the
output. This process is repeated a couple of times to extract all of the features from
the input image. It is important to note that the filters of the convolutional layers are
operating on all of the dimensions of the input, while the max pooling layer is only
operating on two, spatial, image dimensions (one image at a time).

The input to the convolutional layers is often “padded“. That is, the spatial dimensions
are extended. There are different types of padding that can be applied. Common types
are to either create a frame of zero-valued-pixels around the input or to make the pixels
in the frame all have the value that is the mean of the image. This padding procedure is
done so that the convolutional steps do not reduce the size of the spatial dimensions of
the input.

Controlling the step-size, or “stride“, the filters in the convolutional layers take is an
important parameter. If the filter takes one pixel step every iteration and if the padding
is activated the output will be of the same size as the input. But if the step size is larger
the output will be of a smaller size than the input. There are many ways the padding and
stride can be used together to get the most efficient feature extraction.

After this convolutional feature extraction base has been repeated a couple of times, the
resulting multidimensional image is flattened into the form of an array. Flattening is the
process of taking the pixel values of an image and putting them after each other on a
long list or array. This array is then put through a dense fully connected neural network
that makes the desired classification (O’Shea & Nash 2015).
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Figure 3: Shows the structure of a standard convolutional neural network. ConvLayer stands
for a convolutional layer, MaxPool for a max pooling layer and flattening for a flattening layer.
The convolutional layers together with the max pooling layers are repeated n times after which
the result is flattened to an array and passed through a couple of dense fully connected layers
for classification.

3 Material

3.1 Annotation of data

One of the first steps of the project was to get a good data set of annotated images. Other
than being used for training data, it had to be done in order to get a better understanding
of what kind of variations the images can have. This knowledge is the base for the
process of simulating data. Annotated data is also needed in the evaluation steps of the
models, to give a fair representation of how the models will perform on real data sets.

The central role that the annotated data set played for the success of the project made
it an important part where care had to be taken when building it. The images that were
to be annotated were downloaded from Gyros internal database and processed in order
for the annotator to be presented with as much information as possible when performing
the annotation, reducing the error for misclassification. For annotation, the open source
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software Labelme was used (Wada 2020). An example of the view that was presented is
shown in Figure 4.

Figure 4: For each image, a view similar to this was created. This gives the annotator a good
chance at correctly classifying the image. The plot contains the image with and without integra-
tion area marked and the image plotted as a 3D surface from multiple viewpoints. Finally a plot
with the z-axis scaled with the median of the pixel values is presented to give a closer view of
the actual signal within the integration area in the presence of high amplitude peaks.

The actual quantification is done by integrating over only a small part of the entire image,
referred to as the integration area. This area can be seen in Figure 4 as a dashed white
line. The quantification is based on it and thus only artefacts that affect this area affect
the quantification. Where in the image this area is located is calculated by an algorithm
developed by Gyros.

A decision was made that only the artefacts which affected the integration area of the
image should be taken into account, and so this is displayed to the annotator. To counter
personal errors, every annotation was verified by another annotator. The classes used in
the annotations and their corresponding description can be seen below in Table 1.
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Table 1: Labels used when annotating and their corresponding description.

Class name Description

Spike
Sudden points of

relative high intensity

Fiber
A fiber like structure

present across the image

Column bound line
A line of high intensity
present in the column

Low signal Image of low signal

Saturated
Image signal have reached

the maximum value,
losing information

High signal above bed
Signal above column bed
higher than in the column,
image being of low signal

Dark spots
Signal containing spots of

low signal
Asymmetric profile Signal profile is askew

Stop
Very high signal above

column
Atypical profile Atypical binding profile shape

Uncertain
Uncertain of which of the
other labels to choose

Good A good image

These labels were used to acquire a fine grain division of classes to understand our
dataset better. This was for example useful for finding the variation needed for the
simulations. At later stages the classes were condensed to only Good and Bad for classi-
fications, where bad consists of sub-classes Spike, Line, Saturated, Dark Spot and Stop.
The sub-class division is used to see how the classifier handles different types of arte-
facts. A network classifying these sub-classes as separate classes would be interesting,
but was not included in the scope of this project.

3.2 Tools and software

For training the DCNNs Gyros provided two GPUs (Nvidia GeForce RTX 2060). The
training was done in Python 3.7.6 and Keras 2.3.1 using Tensorflow 2.1.0 as back end.
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3.3 Pipeline

The fetching of data was done using a script created beforehand at Gyros. Scripts where
then used for converting the extracted raw images to a format easier to annotate (Fig-
ure 3) and for moving all of the files into directories depending on their PMT-level.
JavaScript Object Notation (JSON) is a common file format for data storage. JSON-
files were generated from the annotation process. The annotation information contained
in the JSON-files were then used to move the images into the correct data set based on
specific criteria discussed below.

3.4 Data set generator

When creating the training, validation and test data sets of annotated data many aspects
had to be considered. The first and most important was that the same image could only
exist in one of the data sets. If this rulewas broken and the same images existed in e.g. the
training data set and the test data set it would lead to themodel being able to overfit on the
training data set without giving out any indications of that being the case, leading to the
result being an overestimation of the truth. When a model overfits it learns the training
data too well. This makes the model “blind“ to general features, classifying images
based on the memory of seeing them before. Another pitfall related to this problem was
in the annotated dataset the presence of the same sample image but taken with different
PMT-levels. At some points, these images could be very similar, to the model acting
as copies. These “PMT-copies“ gave the same overfitting/overestimating of the result
described above, creating the need of keeping track of the related PMT-copies.

Another important aspect when creating the data sets was the balancing of classes. This
needed to be done for the binary classification (Good/Bad) and also, as far as possible,
for the investigated sub-classes (column bound line, spike, saturated, dark spots, stop
and good). If the data sets do not contain balanced data, the model will be better at
classifying certain sub-classes and worse at others.

Two training data sets were created. One for training themodels without cross-validation
and one for training the models with cross-validation (for cross-validation, see section
4.3.1 below). The training data sets used for cross-validation contained no PMT-copies.
The PMT-copies posed no problem when being present in the non cross-validation data
set, as they were seen as a sort of data augmentation, but in the cross-validation data
set PMT-copies can not exist since this would give data overlap between the folds. The
created data sets were balanced so that 75% of the data was put in the training data set and
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validation set and 25% in the testing set. The total cross-validation data set contained
4476 images (in reality the total amount of annotated data was greater, this was the data
set derived if the good/bad classes were balanced 50/50). The number of the different
classes present in the training, test and validation data set can be seen below in Table 2.
As seen, the different sub-classes are imbalanced. An excess of the classes Spike and
Saturated are present. In order to control that the test data set contained all of the data
from one of these classes they were balanced so that the test data set contained 25% of
all the samples per class and the training and validation data set contained the other. In
Table 2 one can also see that this is not entirely the case. E.g. for column bound line
there is 55/231 = 0.238 = 24% of the class in the training data set. This was due to
an error, that was discovered too late in the project to be corrected. Therefore all of the
results are based on these not perfectly balanced data sets. This error has however been
corrected for future use of the code.

Table 2: The number of images of the different classes present in the training data set

Class name Images in training & validation data set Images in test data set Total number of used images
Column bound line 176 55 231
Spike 787 257 1044
Dark spots 21 9 30
Stop 14 5 19
Saturated 726 241 967
Good 1724 567 2291

Images being used in the training of the network were all cropped and then min-max
normalised to an 8-bit scale. The cropping of the images was done because the input to
the DCNN had to be of a specific dimension. Since the raw data images have different
dimensions depending on which CD they originated from this was a necessity. Further-
more, only this part of the image would be needed to pass to the networks, since the
decision was made to only classify the images based on the integration area. The reduc-
tion of the image dimensions also gave the fortunate side effect of reducing the amount
of data being processed by the network, speeding up the training of the networks. The
min-max normalisation transformed all of the pixel values in the image to the range [0,
255]. This normalisation of the images from 16-bit to 8-bit was done since the artefacts
are relative in nature. A spikes absolute intensity is not what is important, but the rela-
tion to the signal. Normalising the images makes sense since this captures this relation.
Additionally, the function in Keras used to load the data could only deal with images of
8-bit depth so a lot of time was saved on not working round this obstacle. Discerning
between PMT-copies posed no problem before normalisation. But after normalisation
arose the need of keeping the PMT-copies separated; shifting the PMT-level created no
difference in the relation between noise and signal in the PMT-copies.
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The last thing that had to be taken into consideration was to create an easy way for
Gyros to, in the future, create new data sets. If the company makes a change in e.g.
the equipment taking the images, the model has to be retrained and re-evaluated on new
data.

To tackle all of these above obstacles python code was written to divide the images into
training, validation and test data sets. This code is compatible with the code used for
pre-processing of the data.

4 Methods

4.1 Network hyperparameters

All of the parameters that are specified before the training process are called hyperpa-
rameters. Not included in these are all of the trainable weights present in the network.
Include in these are network architecture (discussed in the section below), choice of opti-
mization algorithm, choice of loss function, Batch size used for training, initial learning
rate, learning rate decay, among others.

The optimization algorithm used in this project was the Adam algorithm (Kingma & Ba
2015). Adam is an optimization algorithm that works by calculating individual learning
rates per parameter (weights/biases). These are calculated by using the mean and the
variance from the gradients. Adam combines the benefits from the two optimization
methods AdaGrad (Duchi et al. 2011) and RMSProp (Hinton & Tieleman 2012). Ada-
Grad is good at handling problems that have a very low signal and RMSProp handles
noisy gradients well. Adam has both of these qualities (Kingma & Ba 2015).

Recent discoveries show that when using the Adam algorithm the optimal solution is not
always reached. Reddi et al. 2018 shows this in their paper, as well as a solution to it.
They argue that it is the exponential moving average used in the original Adam algorithm
that is the cause for this problem and that this can be fixed by adding a memory aspect
of old gradients when calculating the new gradients. They called their new algorithm
“AMSGrad“.

When looking through literature on which optimization algorithm to choose, Adam
seemed to be better than many other choices (Ruder 2017). Still, AMSGrad was consid-
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ered, since it sometimes showed greater performance than Adam (Reddi et al. 2018). In
the end, since there was not enough time to test them both, Adam was the final choice.

The loss function used was binary cross entropy. Using binary cross entropy rather
than categorical cross entropy was done since the main classification problem to solve
was of binary nature i.e. having two investigated classes. The output from the neural
network was fed through a sigmoid activation function in order to get the result in a
proper format for the cross entropy function. The binary cross entropy loss function
works by calculating the information difference between the true underlying probability
distribution and the predicted one. The lower this value is, the better job the classifier
has done in assigning the correct labels. This function was chosen as the one to try
since when looking around at other implementations it seemed to be the norm, as well
as it seemed to outperform other squared error approaches (Kline & Berardi 2005). The
function used for calculating binary cross entropy loss:

H(c, p) = −(c log2(p) + (1− c) log2(1− p)),

where H is the loss-value, c ∈ {0, 1} the true binary label and p is the predicted output
derived from the sigmoid activation function.

The batch size and the learning rate (initial learning rate) that were used in the training
of the models were parameters that had to be optimized. The process of optimizing these
parameters is discussed in section 4.3.2 below. The batch size specifies the size of the
subset of images that are used to determine the gradient size and direction. While the
initial learning rate parameter specifies the starting step size the algorithm takes in the
gradient direction. During one training “epoch“ the whole set of images in the training
set is iterated through in this batch size manner. Taking one step over the loss function
surface for each batch. This can be imagined as having one big pool of voters and
dividing the pool up into smaller groups. Then instead of letting the majority vote from
the whole pool always decide, let the groups take turns in deciding. For each epoch, the
sample composition of every individual batch changes. This reduces the rate in which
the network loss spirals down a pre-destined path, as well as increasing exploration.

Learning rate decay is a parameter that can be used to decrease the value of the learning
rate after each batch update, making the optimization algorithm take smaller steps, the
closer it is to the solution. This is a useful approach since it reduces the risk of when
being close to the solution, taking a large step in the wrong direction. Learning rate
decay is in a sense implemented in the Adam algorithm. Adam has instead of a direct
learning rate decay two decay rates that affect the size of the learning rate i.e. a decay
of the mean and the variance estimate. These are two parameters, in the paper called
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β1 & β2, which can also be tuned to fit a specific problem. Of the three parameters in
Adam, β1, β2 and the initial learning rate, the latter seemed to be more influential on the
result making this, due to the lack of time, the only Adam parameter to be tuned. The
two parameters affecting the decay of the mean and the variance were set to their Keras
default values: β1 = 0.9, β2 = 0.999.

An important aspect to take into consideration when training a model is to involve el-
ements of regularization. These serve the purpose of making the models less prone to
overfit on the training data. Some types of techniques that have a regularizing effect
are dropout (Hinton et al. 2012), global average pooling (Lin et al. 2014) and batch
normalisation (Ioffe & Szegedy 2015). Dropout works by having some of the neurons
in a layer to be deactivated i.e. not having its weights updated in the current training
iteration. When initialising dropout one has to specify the dropout rate. This rate will
control the probability of every neuron in a specific layer to be deactivated during each
training iteration. The neurons which have been deactivated can be turned on again with
the same probability used for deactivation.

Global average pooling (GAP) is a network architectural method that is sometimes used
at the end of a neural network. GAP replaces the fully connected layers, that are clas-
sically present at the end handling the classification part. When using GAP the fully
connected layers are replaced by a layer taking the average of the spatial dimensions in
the previous layer. E.g. if we have an input with the dimensions 7x7x124 GAP takes the
average of the 7x7 dimension and transforms it into the dimensions 1x1x124. Classically
the output from the GAP layer is fed into a dense fully connected layer with a softmax
activation function containing as many nodes as categories. In this project, since it was a
binary classification task, the output from the GAP layer was fed into a dense single node
fully connected layer with a sigmoid activation function. GAP works because it forces
the convolutional part of the network to be related to the categories being classified.
Moving the classification power from the classical dense fully connected layers to the
feature extractor. The regularizing effect GAP has come from the removal of the dense
fully connected layers. The dense fully connected layers usually have a huge amount
of parameters which removal makes the model much simpler, reducing overfitting (Lin
et al. 2014).

Batch normalisation is not only used for its regularizing properties, it also makes training
more efficient. What batch normalisation does is that it normalises either the input to
a layer or the output of a layer. The normalisation is done for one neuron over all the
values it takes over the batch. The distribution created after the normalisation has a zero
centered mean and a unit variance. This can be changed with two parameters that batch
normalisation introduces. These two parameters can shift the mean and variance and
the values of these are determined in the training process of the network. I.e. they are

15



updated at the same time as the network weights. As stated previously, the training of
the network gets more efficient when batch normalisation is applied. The reason for
this is that the output distribution from a neuron gets more centered around a normal
distribution instead of being completely non bounded. During training, shifts in the
earlier layers of the network will not have as a big of an impact of the result from the
later layers. The regularizing effect that thismethod gives is due to the batch composition
when estimating the mean and the variance in the normalisation process. Because this
batch does not represent the whole data set, it involuntarily introduces some noise into
the mean and variance calculation (Ioffe & Szegedy 2015). In this project, some of the
models used GAP instead of a dense fully connected classification part, for more details
see section 4.2.

Data augmentation is a very valuable technique when trying to reduce overfitting. This
is the process of, in the case of image classification, extend the original training data set
to also include modified original training data set images. In this way, the network will
see more examples of images of a specific class. By extending the training data set this
way, it is less likely for the network to be able to learn all the individual features of every
sample image, hence less likely to overfit. The only type of data augmentation used was
a horizontal flipping of the training images. The reason for this was that it was the only
reasonable, real world like, augmented form the input images could take.

Patience is also a tunable hyperparameter that has some regularizing properties. This
parameter is used in the early stopping process when training the models. It determines
how many epochs to continue the training process while seeing no improvement in a
specified metric. The metric used in the project was the loss value calculated from the
validation data set and the patience was set to 30 epochs. Setting this parameter too high
could result in possibly an overfitted model, and to low in a model that does not learn
enough. Setting the patience to 30 was based on empirical testing as well as how much
time that could be spared when running the training of the models. For the more complex
architectures (see section 4.2) higher patience could lead to a greater result since these
normally need more time for training. Due to the lack of time, investigating higher
values than 30 was not done. The problem of overfitting with respect to this parameter
was somewhat countered by during the training process only saving the model that had
the lowest validation data set loss (always 30 epochs before the early stopping) and not
the model trained for the longest.
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4.2 Network architecture

When using deep learning to solve different classification tasks one of the great chal-
lenges is to build a network architecture capable of solving the problem at hand. The
choice of network architecture will affect the time required to train the model, as well as
how the model will perform in its task. In the design, one must weigh these aspects. Dif-
ferent problems have different requirements and boundary conditions, such as accuracy
and speed.

In the case of this project, the first hypothesis was that a, somewhat, shallow network
should be sufficient since the image dimensions were small (39x42 pixels) and that the
features to be learnt were not extremely complex. Hence a small basic architecture,
inspired by the VGG16 architecture was used and compared against the three ImageNet
competition winning architectures VGG (Simonyan & Zisserman 2015), Resnet (He
et al. 2015) and ResneXt (Xie et al. 2017). ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) or the ImageNet competition is a competition where researchers
benchmark, on the same ImageNet data set, their image analysis neural networks against
other state of the art implementations (Russakovsky et al. 2015).

Transfer learning is the process of taking already pre-trained and pre-defined models and
using them as a template when fine tuning on other data. Even if the model is pre-trained
with data that is not similar to the one at hand, this can still be a success (George et al.
2018). This technique exists as a method in Keras, to use models that are pre-defined
and pre-trained on the ImageNet data set. An attempt at this approach was taken. But,
it proved to be a dead end. The reason for this was that the data given only had one
channel of data (gray scale images) and the cropped images spatial dimensions used for
training and classification were too small. Both of these problems led to the pre-defined
and pre-trained architectures present in Keras to be unusable.

4.2.1 VGG16

One of the architectures tried was the VGG16 architecture. The 16 in VGG16 stands for
the number of layers in the network. In the original VGG paper (Simonyan & Zisserman
2015) six different types of architectures are introduced. The VGG architecture with 16
layers and the one with 19 layers are the ones that achieve the best performance in the
ImageNet competition. For this project, because of the limited time and computational
resources, VGG16 was the only VGG architecture to be tried. VGG16 was implemented
in Keras according to the instructions given in the original paper. The VGG16 architec-
ture has ∼40 million trainable parameters. It was one of the top performing ones (first
and second place) in the ImageNet 2014 competition (Russakovsky et al. 2015). One
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special aspect with all of the VGG architectures is the 3x3 kernel size of the convolu-
tional filters. Before the VGG architecture, it was more common to use a larger kernel
size of e.g. 5x5 or 7x7. Simonyan&Zisserman 2015 show in their paper that for the very
deep VGG architecture using several convolutional layers with the smaller 3x3 kernel
size after each other gave very promising results. Since one ReLu activation was present
after every layer more non-linearity and feature extraction capability was introduced in
the model. At the same time regularizing effects were achieved since the number of
parameters was reduced compared to using the larger kernel sizes.

Table 3 below shows the VGG16 architecture used in this project. Conv2D stands for
a two dimensional convolutional layer, that is, a convolutional layer working in two
spatial dimensions. The 3x3 kernel size was used for all of the convolutional layers
with a stride of 1x1 together with a padding of the layer input (“same“-padding). The
opposite of “same“ padding is called “valid“-padding and is the denotation of using no
padding at all. The max pooling layers have a pool size of 2x2 and a stride of 2x2. ReLu
was used as an activation function for all of the layers except the last dense layer, which
used a sigmoid activation function.
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Table 3: The VGG16 architecture that was used.

Layer type Number of filters/number of units
Input (39x42 grayscale images)

Conv2D 64
Conv2D 64

Max pooling layer
Conv2D 128
Conv2D 128

Max pooling layer
Conv2D 256
Conv2D 256
Conv2D 256

Max pooling layer
Conv2D 512
Conv2D 512
Conv2D 512

Max pooling layer
Conv2D 512
Conv2D 512
Conv2D 512

Max pooling layer
Flattening layer

Dense 4096
Dense 4096
Dense 1

4.2.2 ResNet and ResNeXt

The two related architectures ResNet and ResNeXt were tried. These two were chosen
because of how well they performed in the ImageNet competition. The ResNet im-
plementation came in first place 2015 and ResNeXt second 2016 (Russakovsky et al.
2015). In the competition, the ResNeXt implementation outperformed the ResNet one.
The ResNet architecture is described by He et al. 2015 and ResNeXt by Xie et al. 2017.

The structure used for the ResNet and ResNeXt implementations can be seen in Table 4
below. These networks are made up out of blocks that are repeated different amount of
times. In both the ResNet and the ResNeXt architecture every block consists of three
convolutional layers. In these, the layer being in the middle has a 3x3 filter size, while

19



the others have a 1x1 filter size. The ResNet architecture seen in Table 4 is the one He
et al. 2015 denotes as ResNet-50, due to it being 50 layers deep. This 50 layer deep
ResNet model was chosen since it performed better than its shallower counterparts and
resulted in a lot fewer floating point operations per second (FLOPS) than the deeper
alternatives (3.8 ∗ 109 compared to 7.6 ∗ 109). Inside the blocks, between each of the
layers, batch normalisation is applied together with a leaky ReLu activation. Leaky
ReLu is an activation function that is based on the ReLu activation function (0 if x < 0,
x otherwise). But instead of being 0 for all the negative values, negative x is multiplied
by a factor a where 0 < a < 1. In the original implementation of ResNet/ResNeXt
standard ReLu is used. But since evidence point to leaky ReLu being a better choice
than ReLu this was used (Xu et al. 2015).

The difference between the ResNet and the ResNeXt architecture can be seen in Table
4. ResNeXt has an increased amount of filters and the middle layers in the blocks have
a “cardinality“, “C“, parameter. Cardinality specifies the number of internal width di-
mension (the dimension containing the image channels) splits to be done. These splits
sort the input into subspaces where each subspace is passed through one convolutional
layer each. These transformed subspaces are then merged again and passed to the next
part of the network. Adding this cardinality dimension to networks have been shown
to increase model performance at the same time as keeping the model complexity at the
same rate (Xie et al. 2017).

Table 4 is an adaptation of Table 1 found in the ResNeXt paper by Xie et al. 2017. For
the 2D convolutional layers: 64 - 7x7 - 2, the first digit describes the number of filters
used in the layer, the second the size of the filter and the last one the stride.
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Table 4: Overview of the ResNet and the ResNeXt architectures.

ResNet ResNeXt
64 - 7x7 - 2

Max pool 3x3 - stride 2

3x
[ 64 - 1x1 - 1

64 - 3x3 - 1
256 - 1x1 - 1

]
3x
[ 128 - 1x1 - 1

128 - 3x3 - 1, C=32
256 - 1x1 - 1

]

4x
[ 128 - 1x1 - 2

128 - 3x3 - 1
512 - 1x1 - 1

]
4x
[ 256 - 1x1 - 1

256 - 3x3 - 2, C=32
512 - 1x1 - 1

]

6x
[ 256 - 1x1 - 2

256 - 3x3 - 1
1024 - 1x1 - 1

]
6x
[ 512 - 1x1 - 1

512 - 3x3 - 2, C=32
1024 - 1x1 - 1

]

3x
[ 512 - 1x1 - 2

512 - 3x3 - 1
2048 - 1x1 - 1

]
3x
[ 1024 - 1x1 - 1

1024 - 3x3 - 2, C=32
2048 - 1x1 - 1

]
Global Average Pooling layer (GAP)

1 node dense fully connected, sigmoid activation

Below in Figure 5 the process behind residual learning is shown. Residual learning
works by not only passing the input through a couple of network layers, but also com-
bining the output from these layers again with the input. This alleviates the issue with
vanishing gradients when creating deeper networks. When residual learning is not used
more training of the network is required. This is due to the network layers only needing
to learn the easier residual mapping: Y (x) = H(x) − x. Where x is the input to the
layers, Y (x) the function which the network layers learn andH(x) the combined output.
Another advantage is that, in an extreme case, instead of letting the network layers learn
the identity mapping, i.e. transform the input into itself, the network can learn the much
easier task of making the residual mapping to zero. That is, for certain inputs x to the
layers Y (x) can be set to zero. which would results in the output Y (x)+x = 0+x = x.
The residual learning shortcuts can not be seen above in Table 4 but are present inside
of the blocks. Every block has one shortcut going from the beginning to the end of it.
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Figure 5: Illustration of the process behind a residual mapping. The input is passed to the output
as well as it is passed through a couple of network layers. These are in the end combined to
produce the output.

Since comparisons of CNN model architectures often find the ResNeXt architectures
among the best performing (Bianco et al. 2018) this was one of the main ones to try.
The focus was also put at the ResNet architecture since it was very easy to implement
together with ResNeXt. For the set-up of the ResNeXt and ResNet architecture open
source code provided from Dietz 2017a was used. Previous errors made by Dietz were
fixed and the code was made compatible with previously written code.

4.2.3 Small basic VGG inspired architecture

The structure of the small basic VGG-inspired architecture, called “basic“, can be seen
below in Table 5. This architecture is very small compared to VGG16 (350 thousand
parameters compared to 40 million) and quite small compare to ResNet/ResNeXt (23
million parameters). This architecture is inspired by the VGG architectures in the aspect
that it uses repeated convolutional layers with 3x3 kernel filter sizes, stride 1x1, withmax
pooling between the stacks. The first two convolutional layers have a “same“-padding,
while the rest have “valid“-padding. Compared to VGG this architecture uses dropout
to minimize the effect of overfitting. It also has a much smaller classifying dense fully
connected part, containing only one layer with 256 neurons compared to the two layers
in VGG16 containing 4096 neurons. This architecture also uses the “swish“ activation
function instead of ReLu. The definition of swish activation is Y (x) = x∗sigmoid(x).
Swish gives a very similar result to ReLu, but have been proven to sometimes give even
better performance (Ramachandran et al. 2017).
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The process of creating this structure was done iteratively with empirical testing. Start-
ing with a high dropout rate of 0.5, different amounts of filters in the layers and testing
different padding parameters. The architecture described in Table 5 was the architecture
giving the best result.

Table 5: Description of the ’basic’ architecture.

Layer Type Number of filters/number of units
Input (39x42 grayscale images)

Conv2D 32
Conv2D 32

Max pooling layer
Conv2D 64
Conv2D 64

Dropout (0.2)
Max pooling layer

Conv2D 128
Conv2D 128

Dropout (0.2)
Max pooling layer

Flatten
Dense 256

Dropout (0.2)
Dense 1

4.3 Finding the best model

Much thought was put down into how the bestmodel would be found - how to evaluate all
the different models and how to do it fairly. One has to take into aspect the randomness
in the neural networks and how a network for some initialised starting weights, and
drop out parameters could make the network accidentally fall into a local minimum. I.e.
missing the global minimum it has the potential to reach. This can be solved by making
all of the networks start with the same initialised weights. Doing this would remove
some stochasticity in the models, making them more deterministic. Still, this does not
leave out the randomness in dropping out parameters, and the problem that would arise if
the initial parameters are set to a bad start for the model persists. The approach taken in
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this project was to run the models, with randomly initialised weights, as many times as
possible. Leading to a more robust measurement of the true performance of the models,
which facilitates the process of finding the best hyperparameter settings.

During the training of the networks early stopping was used. A maximum of 300 epochs
was set. The number of 300 was chosen because during initial tests the models seemed
to seldom converge at epoch values over 100, making 300 a value that should only be
reached in the extreme cases. The hypothesis was that this would almost always lead to
the training runs to be early stopped. When the training of a model stopped, either due
to early stopping or finishing the 300 epochs, the network weights from the epoch that
gave the lowest validation loss were saved to disc.

How well the models perform on data not used in the process of training the model is
the most important part of the evaluation. In other words how accurately it classifies
data that the model has not seen before. This gives an indication of how the model will
perform when being deployed. How the different models are performing on the external
test data set can be seen in the results section.

4.3.1 cross-validation

In order to observe how well the different models generalise to unseen data, cross-
validation was used. cross-validation is a process of dividing the data set into a number
of folds, then letting each fold once serve as the test data set while the rest of the times
as the training data set. It is important that the test data set is not present in the training
data set. Once all of these folds have been evaluated a mean and a standard deviation
accuracy value is calculated which indicates how much the model is overfitting to the
training data. If the mean accuracy value is very poor, or if the standard deviation is
high, chances are that the model being tested is not suited for the real world application
and that some regularizing element needs to be added.

5-fold cross-validation was used in this project, i.e. dividing the test data set up into
five folds. All of the models were evaluated with this approach. Early stopping on the
external validation data set was used with the cross-validation.

4.3.2 Bayesian hyperparameter optimization

There are several approaches to use when optimizing the hyperparameters for a machine
learning method. The most common, and simplest, is to do a grid search or a random
search. Grid search is when the user chooses which parameter values to try and the algo-
rithm tries all of these. Random search instead gets the values for the parameters from
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pre-defined probability distributions. Using random search gives a relatively quick and
easy way of approximating which values are good for the hyperparameters. If choosing
between the two, random search is the one to pick since it has been found to be more
effective than grid search (Bergstra & Bengio 2012).

When working with neural networks, training a model and evaluating a set of hyperpa-
rameters can be incredibly time consuming. For this reason, one can seldom try all of
the different combinations of hyperparameters possible. Bayesian hyperparameter op-
timization is a method that tries to circumvent this. This method is more effective than
grid and random search since it takes advantage of known information when choosing
which set of hyperparameters to evaluate. These informed decisions speed up the pro-
cess of finding the best set of hyperparameters. This method works by trying to fit a
posterior function P (accuracy|modelparameters) to the underlying true (initially un-
known) function. Usually, when choosing which new hyperparameter values to be in-
vestigated a metric called expected improvement is used. The hyperparameters having
the highest expected improvement are the next ones to try. The expected improvement
metric is calculated on how well the investigated parameters are performing on the pos-
terior function including a value of exploration. The exploration makes it possible for
the evaluation process to not always choose the next parameters based on how well they
perform on the posterior function, but also on how uncertain certain parts of the posterior
function are. The more uncertain part, the more rewarding part to investigate according
to the expected improvement. See the paper written by Snoek et al. 2012 for further
details.

This method has to have preset bounds for which values the hyperparameters in the opti-
mization process can take. The interval chosen for the batch size was between [70, 140]
and the learning rate [0.001, 1e − 6]. These intervals were chosen based on empirical
testing.

4.3.3 Training procedure

During research on how to create a DCNN classifier the conclusion was reached that
a lot of annotated data was needed. Since it was not possible to manually annotate the
hypothesised needed amount arose the plan of creating simulated images. These images
were used in pre-training of the network. Adjusting the network weights and biases to
be as close as possible to the correct solution before using the small annotated data set
for fine-tuning.

Freezing the convolutional base of the small basic architecture and the VGG16 architec-
ture was an approach that was taken so that the pre-training procedure would be more ef-
ficient. Freezing of the convolutional base means making the weights and biases present
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in all of the convolutional layers untrainable. The hypothesis was that this would lead to
the network being better at learning to extract the features from the simulated data and
keep these feature extractions fixed. Since the simulated data could, compared to the
annotated data, have balanced sub-classes (column bound line, spike, saturated, etc.) it
can give the models during training a more clear-cut signal of how to tune the weights
to capture the features from all of these. Then when the models have learned the fea-
tures in the data, the convolutional base can be frozen and fine tuning of the dense fully
connected layers can begin.

When finding the best models the training process was the same for all. Bayesian hy-
perparameter optimization was used to set the learning rate and the batch size. All of
the other parameters were for the models static (except for the network architectures
& data settings being evaluated). See the section network hyperparameters for further
explanations of these. During the hyperparameter optimization the initial weights were
re-initialised and the evaluation re-run three times per model evaluation. For each of
these runs cross-validation was used in training. This procedure of Bayesian optimiza-
tion with re-running of the models together with cross-validation ended in the training of
15 models per Bayesian optimization step. The total of 23 Bayesian optimization steps
led to the training of 23 ∗ 15, or 345, network types for every evaluated architecture
and data setting. The architectures and data settings all used Adam as an optimization
algorithm and binary cross entropy as the loss function. Simulated data with early stop-
ping on a simulated validation set was used for pre-training. The different alterations
evaluated can be seen below in Table 6. Here we can see that in total 8 combinations of
architectures and data settings were investigated. The result from this can be seen in the
results section.

Table 6: Training schemes for the investigated architectures.

Type of parameter Small basic VGG inspired architecture VGG16 ResNet ResNeXt
Pre-training Yes Yes No Yes Yes No No No
Freezing of convolutional base Yes No No Yes No No No No

In the Bayesian hyperparameter optimization the parameter being optimized was derived
from the mean accuracy from the three weight initialisations that in turn was taken from
the mean accuracy in the cross-validation runs. At first, the plan was to optimize the
value given from µ

σ
, where µ is the mean and σ the standard deviation, instead of just the

mean. But after the conclusion that this could lead to huge values given a low mean with
a small standard deviation and a low value given a high mean and a somewhat bigger
standard deviation this idea was scrapped and accuracy was instead only used as the
metric to optimize.
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for the cross-validation procedure the “winning“ mean accuracy value is calculated by
taking the mean of the mean accuracy values originating from the 5-fold cross-validation
runs. The standard deviation is calculated by taking the standard deviations, transform-
ing them into variance, taking the mean of these and transforming back into standard
deviation values. That is:

σnew =
√

(σ2
1 + σ2

2 + ...+ σ2
n)/n (2)

4.4 Image simulations

Common to all approaches mentioned above is the requirement of a good dataset. In
order to achieve a high performing classifier, a large amount of representative training
data is needed. Although there are plenty of images in the databases at Gyros, the task
of labeling them is burdensome and time consuming. In addition, images that were pro-
duced with an older version of the instrument were filtered out due to some differences
in image appearance, reducing the amount of data available. To combat this a simulation
approach to data augmentation was chosen. There are many possible simulation tech-
niques to consider and all can not be reviewed in the scope of this project, but a few are
presented below:

1. Modeling from scratch by ”hand”. This involves trying to find accurate math-
ematical models and distributions that can build up a good representation of the
real scenario. This can be incredibly hard since real images often exhibit very
large variation, and some of this variation can be hard to model. It is easy to end
up with very straight and ”perfect” shapes that do not represent the reality very
well. If good models are found however, this approach allows for very high level
of control and does not need any training examples. It is worth noting that some
annotated data would be required as templates for how to build the model.

2. Modeling features by ”hand” and adding them to real images. Similarly to
the above, this entails creating models ”by hand” that mimic reality. But instead
of modeling an entire image, this approach aims to only simulate minor features.
This could be very useful if classes are very unbalanced and the distinguishable
features between the classes are possible to model. In this way, a more accurate
representation can be achieved and makes use of images that otherwise would
have been left out when balancing the datasets.

3. Principle Component Analysis (PCA). By using PCA it is possible to combine
images, creating in a sense ”new” images. It is based on creating an average image
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of a set of images and then adding linear combinations of the principal components
of that set of images to this image. This requires an already annotated dataset but
can be used to augment this. The images produced will have realistic features
since it is based on real images, but loses some texture. It can be hard to control
the appearance of the images in an automatic way, and combinations of images
might yield unrealistic scenarios.

4. Machine learning. Various methods for simulating images can be done with ma-
chine learning. Many methods rely on deep neural networks, such as Generative
Adversarial Networks (GAN) (Shorten & Khoshgoftaar 2019). GANs work by
letting a neural network (usually a DCNN) generate synthetic images and feeding
this to a discriminator network (Goodfellow et al. 2014). The discriminator is con-
tinuously trained on real data to distinguish real from synthetic images generated
by the generator network. The weights of the generator is updated based on the
performance of the discriminator, achieving a better and better generator. These
can work in many different ways, usually demanding large annotated datasets for
training. A special type of GAN called simGAN developed by Shrivastava et al.
Shrivastava et al. 2017 uses unannotated real data and a refiner network rather
than a generator. The refiner slightly alters input synthetic images instead of gen-
erating them from scratch. It aims to improve the synthetic image distribution. By
only modifying patches of images and using self regularization simGAN also en-
sures that the annotation of the image does not change. This could be very useful
when a somewhat good model exist for simulations, and much unannotated data
exists.

The approach taken was to develop a full simulation model as suggested in 1 above.
This was chosen as the images were considered relatively regular and simple, and there
was a proposed mathematical model for the signal in the image. This is an ambitious
undertaking but would be very useful if it should be successful. It also opened doors
to explore several of the other options. In developing a model from scratch, models
for each artefact/feature had to be developed which in the future could be used on real
images as suggested in 2. The data acquired was very unbalanced with a large number
of good images left after balancing the dataset which could be used as templates. Some
artefacts, such as stop and saturated, are however hard to just ’add’ to a good image,
so these motivate the development of a model from scratch. Since Gyros had a large
number of unannotated images, simGAN could also be used on the simulations without
requiring any additional annotation efforts.

The PCA idea was only very briefly explored. It seemed hard to reliably recreate realistic
images with artefacts. The average image is not guaranteed to have the desired artefact,
and how high weights for the principal components ensures correct classification was
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hard to determine in an automated manner. Since there was a big abundance of real good
images, there was no need to augment this class.

The simulations were divided into sections presented below. They consist of a back-
ground, a signal and an artefact which there are several of.

4.4.1 Simulating the background

The backgrounds of the images are quite similar and defined by fixed measures of the
microstructure of the CD. In this project two CDs are considered; the Bioaffy 200 and
Bioaffy 1000, the two most common types sold by Gyros. The images appear very
similar with the exception of different measures of the microstructure. In Bioaffy 200
the column is 290 micrometers wide and in Bioaffy 1000 the column is 310 micrometers
wide. Ten micrometers equals one pixel in the images.

The column edges can be faintly seen as two dark lines going from top to bottom, 29
or 31 pixels apart depending on the CD type. The right column edge also appears more
clearly in almost all images observed. Example backgrounds are shown in Figure 6.
To model this a ”column edge image” is created for each background simulation. This
image consists of two inverted Gaussian Probability Density Functions (PDFs) in the
x-direction, stretched along the y-axis as shown in Figure 7. The two distributions are
weighted differently and have different standard deviation to imitate the difference be-
tween the left and right edge. The distributions are then re-scaled to an appropriate value
range. The idea is to multiply the background image with this edge image to add the dark
edges.

Figure 6: Sample of background images for different PMT-levels. Includes both the Bioaffy200
and Bioaffy1000 CDs.
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In the column is the column bed which contains the affinity particles. This area is where
binding occurs and where the signal will appear in a successful run. When the column is
packed a characteristic hyperbolic shape is formed at the top of the bed due to solution
adhesion to the column structure. To model this a quadratic function is interpolated
between three points; two on the column edges and one in between these points. The
middle points y-value must be lower than at least one of the edge points to avoid an
upside down shape. The area above the column bed is often of a different intensity than
the surrounding, slightly brighter or slightly darker. This is modeled by multiplying this
area with a factor. The same can be seen for the column bed, but such a model was not
developed since it more often had a very similar intensity to the rest of the image.

Apart from the structures described above, the background image consists of random
noise. This can be done by assigning each pixel in the image a random intensity value
from an appropriate distribution. As can be seen in Figure 6, it has a ”stripy” quality in
the x-axis. This effect can be achieved by creating an image with random noise and then
applying a Gaussian filter with high standard deviation in the x-direction to the image.
A Gaussian filter smoothes the image by for each input pixel taking a weighted average
of the pixels in the filter kernel as the output pixel. It is likely that the effect is due to
the image acquisition procedure. The image is created with a laser reading one row at
a time, which could result in signal noise correlation between neighboring pixels in the
x-direction.
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Figure 7: Overview of the simulation steps for the background. Parameters are randomised in
intervals. The intervals are mostly based on statistics from real background data, but remaining
parameter intervals were found by trial and error, looking at the appearance of the results.
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The resulting background model has several parameters that need to be randomised in
sensible ranges to as accurately as possible mimic the real backgrounds and the variation
between images in and across different PMT-levels. Choosing viable ranges for all these
parameters is quite difficult to do in an entirely objective and systematic manner, and
many of these were selected by a trial and error methodology. However, some simple
statistics were calculated from real background images to determine valid parameters
for the background model. These were defined as follows:

1. Relativemaximum intensity difference. This is the difference between the high-
est and lowest intensity value of the average column curve of the image, divided
by the mean of the image. This gives a measure of how much the highest intensity
value and the lowest differ from each other in an image in terms of deviation from
the mean. This gives the maximum and minimum of the column edge multiplier.

2. Above bed and bed intensity ratio. This is the ratio of the average pixel intensi-
ties in the column above the column bed and the column bed. This gives a value
of the intensity difference between these areas.

3. Relative noise standard deviation. This is the standard deviation of the pixel
intensities in an image divided by the mean of the image. This gives an estimate
of the standard deviation of the noise we want to apply to the simulated images.
The whole image was used to calculate the standard deviation. An improvement
to this could be to calculate the standard deviations only in ’flat’ areas. That is
areas that do not have any other structure. This makes a better estimate on how to
model the background noise as it is unaffected by the structures that are modeled
separately.

Three models for valid parameter ranges were based on these statistics. The extremes
of the statistics were collected for a set of real background images with PMT-levels 1%,
5% and 25%. All of these scale linearly with the mean of the image, reflecting the higher
PMT-level. A linear model was fitted for each of the statistics extremes and implemented
in the simulation program as a function to calculate the upper and lower limits for their
respective parameter given a particular background noise level. These were based on
only Bioaffy 200 CDs.

The average pixel histograms of a sample of Bioaffy 200 background images for dif-
ferent PMT-levels were investigated to determine how to model the background noise.
The average pixel histograms of the real backgrounds were compared to the average
histograms of the same amount of simulated backgrounds using Laplace and Gaussian
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distributed noise. The mean for each simulated image for both models was chosen ran-
domly from a normal distribution Nµ as:

µ = Nµ(µavg, σavg) (3)

Where µavg is the average of pixel intensity means of the real background images, and
σavg is the standard deviation of the pixel intensity means of the real background images.
Similarly, the standard deviation of the Gaussian model was chosen as:

σ = Nσ(µstd, σstd) (4)

Where µstd is the average of pixel intensity standard deviation of the real background
images, and σstd is the standard deviation of the pixel intensity standard deviations of the
real background images. The β-parameter of the Laplace model was chosen as σ/

√
2

since the standard deviation of a Laplace distribution can be expressed as σ = β ·
√
2.

The results from this for PMT 5% can be seen in Figure 8. They appear rather similar,
and differences in the average histograms could be due to random chance in the simu-
lation parameters. However, the Laplace distribution was chosen due to its fatter tails,
which the model still seems to underestimate in both cases. A difficulty in evaluating
the simulations on this measure is that we are not trying to model the average image,
nor are we trying to model exact examples. Instead we want to encapsulate all types of
images that can possibly occur. Thus this analysis is just a sanity-check that we are not
completely out of bounds.
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Figure 8: To the left are average pixel histograms of the sample real images and equal amount
of simulated images. To the right are example histograms of a single simulated image and a
single real image.

To evaluate the edge model, the ”column curve” of Bioaffy 200 CDs was investigated.
The column curve is defined here as the average over the y-axis, centered around the
column in the image, shown in Figure 9. The left and right edges of the column are found
by taking the minimum and maximum of the integration x-coordinates. The largest area
that could be selected for every single image in the sample, while still centered around
the column was determined to get an as large view as possible of the area around the
column. This was 12 pixels left of the left edge and 15 pixels to the right of the right
edge.
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Figure 9: How the column curve was calculated.

An average calculated for each x-value in a slice 12 pixels to the left of the left edge and
15 pixels to the right of the right edge, from top to bottom of the image matrix, as shown
in Figure 9. The average of these curves was calculated for the sample images and for
equal amounts of the simulated images. The average curves as well as example curves
for PMT-levels 1%, 5% and 25% can be seen in Figure 10. The width of the normal
distributions that creates the edges were adjusted to fit these curves as well as to visually
appear realistic. Since the curves are averages they do not exactly portray reality.
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Figure 10: Comparison of real and simulated column curves. Rows show different PMT-levels
for 1% (top), 5% (middle) and 25%(bottom). To the left are average column curves, calculated
from the sample images and equal amount of simulated images. To the right are example plots
of a single simulated image and a single real image. The intensity on the y-axis is normalised
against the mean of the image.

Based on these plots the model is able to produce some realistic shapes, but seem to
have systematic errors in position and intensity. The simulated curves are offset to the
right, which could be explained by the actual edges of the column not being centered at
the minima of the edge curve, whereas simulated edges have exactly the column width
between the two minima. The average higher intensity could partly be due to the fact
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that the extremes are more represented (which was the goal), as the model chooses the
intensity from a uniform distribution to create even representations of all possibilities.
The model seems to better fit higher PMT curves, and looking at the intensity span linear
model fitted to the points (Appendix C, Figure C3), it has a worse fit to the lower levels.

4.4.2 Simulating the signal

The Gyrolab technology is based on the relation between the concentration of bound
fluorescent antibody and the signal intensity emitted when the fluorescent molecules are
excited with a laser. Example images are shown in Figure 11. As proposed in Finco
et al. 2015, the resulting binding profile can be described by linear combinations of
Landau-like distributions, shown in Figure 12.

Figure 11: Samples of images for different PMT-levels. The samples are of varying intensity and
binding profile. To the far right are examples of somewhat atypical binding profiles.

The Landau-like distribution PDF used to describe the binding profile:

L(x) = y0 + Ae−
1
2
(x−µ

W
+e−

x−µ
W ) (5)

Where y0 is the background noise, A is a normalising constant,W is an ”affinity score”
and µ is the peak location on the x-axis.

To simulate random binding profiles which will be added to the background image we
can ignore parameters y0 since background noise is already present in the image. In
order to produce a distribution that stretches across the entire column, a 1-dimensional
distribution is added in the y-direction for every x in the column.
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As mentioned previously, the binding of the fluorescent molecules occur in the column
bed. Therefore the distribution should be contained within this area in the image. The
peak location should also depend on how far the molecules will have traveled in the
column matrix and since the start of the bed is a hyperbolic shape, the peak of the distri-
bution should reflect this shape. This is achieved by for each x-coordinate in the column
adding a distribution with µ = f(x) + offset where f(x) is the hyperbolic function of
the column bed border for a particular image. This should in the normal case be suf-
ficiently far down so that the added distribution is close to zero outside of the column
bed. How far down this is will depend on theW parameter which controls the width of
the distribution peak and in practise the distribution is placed so as to equal a threshold
at the column bed border. The threshold used was 0.05. W can be interpreted as an
”affinity score” of a given molecule. In fact it has a very strong relation to the more
conventional dissociation factorKD that is used to describe affinity. W is reasonable in
a scale from 2-14. This can roughly be divided into three categories: 2-5 corresponds
to high affinity, 5-9 medium affinity and 9-14 low affinity. W was allowed to go as low
as 1.5 to not exclude extreme cases.
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Figure 12: Overview of the simulation steps for the signal.

A sample may contain more than one population of molecules that can bind the fluores-
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cent antibodies, and molecules can also bind with different affinities. Thus a signal may
consist of multiple different distributions. To emulate this, a linear combination of three
distributions L1 + L2 + L3 is used to simulate the signal. L1 corresponds to high affinity
and will have a W randomly chosen from [1.5, 5] according to above and likewise L2

and L3 represents medium and low affinity respectively. Each distribution is given a
random weight A from zero to one.

Observing many images, there is a tapering effect in intensity values in the x-direction,
centered around a maximum. To simulate this, a random location close to the center of
the column x-axis is chosen as center for a normal distribution with random standard
deviation on the interval [7,20]. Each distribution added is multiplied by a factor corre-
sponding to the probability density of the normal distribution at the current x-coordinate.

As a final touch, relative noise is added to the distributions. The relative noise is nor-
mally distributed with zero mean and a standard deviation equal to the intensity of each
point multiplied by 0.1. The final distribution contained in a vector is then multiplied
with scale factor which gives the desired intensity scale. This scale factor can be ran-
domised from zero and up to a factor of 216. This will simulate images with no signal,
up to maximum signal - resulting in a saturated image. Since the scale factor only gives
the maximum pixel value that the signal will have at its highest point(s), using a higher
multiple of the 16-bit image max value ensures that more pixels reach saturation.

4.4.3 Simulating the integration area

The integration area of the real images is found by an algorithm that uses data from
a whole run in the instrument. This means that processing simulated images with this
algorithm is not trivial and since the images are cropped around the integration area
with a margin, the exact shape of it is of less importance. Instead the integration area
is defined as the curve of the column bed, adding 5 pixels to the curve y-values, and
straight lines in y-direction down to a height so that the total area equals the column
width times 30 pixels. The 5 pixel raise was an artefact from a previous model, and 1
pixel is probably more appropriate, but this was discovered too late to be fixed in this
study. However it is not likely to affect the result greatly because of the margin with
which the images are cropped. Given a hyperbolic column bed function f(x) the height
that gives the desired area is given by:

A+
∑

f(x)

wc

, (6)

wherewc is the column width,A is the area and f(x) is the column bed curve i.e., the hy-
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perbolic function evaluated in the pixel x coordinates. This number needs to be rounded
down since number of pixels is discrete and we do not want to add too many pixels. The
difference in pixels in the area and the desired amount is added by adding pixels at the
lower boundary until the area is of the correct size. This procedure is essentially what
the algorithm attempts to do without prior knowledge of the column bed curve, so it
should provide an accurate estimation of the real scenario. A sample is shown in Figure
13.

Figure 13: Sample image of integration area simulation. The area is indicated by the dashed
lines.

4.4.4 Spikes

One of the most common artefacts that occur in the images are so called spikes. These
are small areas of high intensity that are not the result of expected binding. The spikes
were hypothesised to best be modeled by a 2D Gaussian/Normal (PDF). To avoid ”per-
fect” shapes, random noise is added to the distribution. As illustrated in Figure 14, there
are numerous variants of spikes and the real challenge lies in creating a model that can
simulate different shapes and characteristics of different spikes. This Gaussian model
is rotatable and the size can be varied by altering the standard deviation of the distribu-
tion in order to produce as wide range of spikes as possible. These parameters can be
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randomised within intervals when generating simulated images with spikes. This model
is also used in simulating different artefacts, further described in the below sections. In
these cases, the spike model parameters are controlled by that particular artefact simu-
lation model. The main parameters of the model are presented in Table 7. If more than
one spike is added to an image, overlap between these may result in unexpectedly high
intensity. To avoid this the model checks consecutive spikes for overlap and sets the
overlap area to zero for the second spike to be added.

Figure 14: Examples of real spikes that illustrates the variation among samples.

In practice, the spike or spikes are created as 2D Gaussian distributions on a grid the
same size as the image the spikes will be added to. The coordinates of the spikes are
given as means for the distributions. This image, consisting of a mostly zero array with
the distributions, can then be added to desired real or simulated image. When adding to a
real image, a 3x1 filter with σx = 20 is applied to the spike image first. When adding to
a simulated image, the spikes are added before the same filter as above is applied to the
whole image. As mentioned in the above section, this is to emulate the ”stripy” quality
of the real images.

The model was initially evaluated only visually on a set of template images. The model
was able to produce spikes visually similar to the real spikes. Note that the model ap-
plies random noise to the spikes, meaning they will not be identical each run even with
identical input parameters.
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Table 7: The main input parameters of the spike model.

Parameter Description

µ
Decides the position of the spike in the
image in terms of coordinates (x, y).

Θ Rotates the spike by given degrees.

σx
The standard deviation in x of the spike model.
Controls the width of the spike in x-direction.

σy
The standard deviation in y of the spike model.
Controls the height of the spike in y-direction.

I

Max intensity of the spike. The spike is added to the image
so the final max intensity of the spike will be the intensity
of the image at position µ plus I .

4.4.5 Fibers

Fibers are defined in the scope of this project as irregular smooth curves of relatively
high intensity. It appears as if they are often confined to the column, but there are also a
few cases where they cross the column edges.

Figure 15: Examples of real fibers that illustrates the variation among samples.
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A Bezier curve is used to model random irregular and smooth curves, it is a parametric
curve defined by two endpoints between which the curve will be drawn. A set of ”control
points” drags the curve in their direction, distorting the straight shape creating irregular
smooth curves. This can be seen for varying amount of control points in Figure 16.
The amount chosen for simulations was three since it is capable of creating sufficiently
complex curves without taking unrealistic shapes.

Figure 16: Examples of random Bezier curves. Red points are start and stop points and the
control points used to create the black curve. The top row has two control points, middle row
three points and bottom has four.

The fibers in the images have not been observed to have a constant smooth intensity,
but look more like series of spikes placed along a curve as seen in Figure 17. Based
on this insight the fiber model was developed as an extension of the spike model. A
curve is generated, and for each point in the curve a spike is added with a randomised
intensity and size. The intensity and sizes of the spikes on the curve are confined by
input parameters for the fiber model. The fiber model also has three intensity scales
low, medium and high and probabilities for these scales. The scales define intervals for
the spikes on the curve and the probabilities for how often that intensity interval is used.
There is also an increased probability for adjacent spikes to have the same scale. This is
done to imitate regions of differing intensity and the occasional intensity spike that the
fibers seem to exhibit.
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Figure 17: 3D-plot of fiber.

4.4.6 Lines

Another artefact closely related to the fiber is referred to as a column bound line. These
are characterised by being confined to the column, and usually displaying a more regular
shape than the fiber. This being said, there is no well defined border between what is
to be considered a fiber and a column bound line. It is however a relatively abundant
artefact and thus important to simulate. This category is further divided into a quadratic
model that span the column width edge to edge, and a linear model that is composed by
two straight lines. As with the fiber model, spikes are added to the image at each point
on the line curve. The same intensity variation method as for fibers was used, but with
slightly different parameter settings.
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Figure 18: Examples of real lines that illustrates the variation among samples.

The quadratic line curve is generated by interpolating a quadratic curve between three
random points, very similar to how the column bed curve is generated. The linear line
curve consists of two curves. Each curve is generated by interpolating a linear function
between two randomised points where the end point of the first curve is the start of the
second. The lines are restricted to have a maximum 45 degree angle between start and
end points. Positional weights was added to the quadratic model, choosing a random
center on the line curve and multiplying each spike intensity on the curve with a weight
taken from a normal distribution with mean equal to the random centre. This results in
a small peak in the line, tapering off the further from the peak.

4.4.7 Dark Spots

Spots of low intensity relative to the surroundings can appear in the column bed. This is
likely due to errors in column packing and is very rare. These dark spots are simulated
by a inverted Gaussian PDF, with asymptotes at one and peak lower than one larger than
zero. This is multiplied with the image to create a dark spot. The model is an extension
of the spike model and shares parameters with it. The scale in this case is interpreted as
the lowest value of the inverted Gaussian distribution. A scale of 0.5 would mean the
smallest multiplier, located at the distribution mean, would be 0.5. To get a good value
for this scale it is useful to get the intensity at where the spot will be located Ix,y, and
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the minimum of the imagemin(image). Using (1− min(image)
Ix,y

) · k we ensure the dark
spot does not go below the minimum of the image. The constant k controls how high
above the minimum of the image the spot minima will be. To be realistic, the dark spots
should never be darker than the background.

Figure 19: Examples of real dark spots that illustrate the variation among samples.

4.4.8 Stop

A stop in the column is primarily signified by a very bright area above the column bed
as fluorescent molecules accumulate. The intensity can be the same across this area,
or have a roughly linear gradient with higher intensity at the top of the image. In the
column bed there is usually a quite steep binding profile that has a maximum intensity
usually higher than the intensity of the area above the column. The signal above the
column bed also appears to be less noisy.
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Figure 20: Examples of real stops that illustrate the variation among samples.

This is a different type of artefact in that the entire binding profile is different and thus we
cannot just add the effect on top of a regular image. Instead a different binding profile is
added to the background image. The procedure is very similar, but also includes adding
the above bed signal and only using a high affinity Landau-like distribution. An above
column bed signal is added to the regular one dimensional Landau-like PDF. This is
done by generating a random intensity value below the maximum intensity of the PDF.
A vector which span the image from the top to where the PDF equals the intensity value
is generated. To achieve the linear slope of the signal, the values of the vector are linearly
spaced between the randomly generated intensity value and the same value multiplied by
a random factor. As with the regular binding profile simulation, the column is filled one
by one by adding these vectors to the background image. Theweights of the distributions
added are here kept as one as the signal appears to be even across the column width.

4.4.9 Saturation

Saturated images are images that have reachedmaximum intensity for a substantial num-
ber of pixels. This is simulated by creating a column profile that exceeds 216, the maxi-
mum intensity value of the images. Since the scale parameter only gives the maximum
value of the distribution, a higher value can be used to get a more saturated image.
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Figure 21: Examples of real saturated images that illustrate the variation among samples.

4.5 Evaluating the simulations

Although effort was made to base the simulations on empirical distributions and relevant
mathematical models, many decisions and model parameters were based on subjective
appearance. The same issue arises when trying to estimate the result. A judgment on
similarity is hard to quantify based on peoples perceptions of them. Since there is a
direct purpose for these simulated images, they are best evaluated in that context. The
approach is therefore to evaluate the quality of the simulations by training our classifier
models on them and use the performance of the classifier on real images as a measure
of simulation quality. There are however several parameters outside of the simulation
itself that can affect the result. For example how many images we simulate and for how
long we train can greatly affect the result. These parameters are also very interesting
to optimise for the actual intended use. Other than optimising performance, it can also
reduce training time if an appropriate data set size is used. There are also a number of
ways to use the simulated data in training which could affect how much data is optimal.
In this project five possibilities are considered:

1. Pre-training the network on simulated data, and then tuning the weights on real
data. The theory is that by pre-training the network we do not start with random
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weights when starting the training procedure on the real data. This could help to
avoid some local minima.

2. Pre-training the network on simulated data, freezing the feature extracting layers
and then tuning the classification layers on real data. Freezing means that the
weights of the layers are not trained and remain constant. This is an example of
transfer learning, where the simulated data is used to train the network on detecting
useful features, while the fully connected classification layers are re-trained on
real data. Which and how many layers are frozen are parameters of this approach.

3. Include simulated data as an augmentation of the real data set.

4. Train solely on real data.

5. Train solely on simulated data.

When using pre-training the early-stopping of this step may be done in two ways, using
a real or simulated validation set. Which is preferred may depend on the chosen training
approach. If the training is stopped on a simulated validation set the model will most
likely still be overfitted on the simulated data. If real data is used, the training risks being
stopped very early which could result in sub-optimal weights for the feature extraction.

To investigate this, a series of ten simulated data sets 1x, 2x, ... 10x were created with
7,000 images as the smallest increasing by 7,000 up to 70,000 as the largest. Each larger
data set is a superset of the preceding data set as to keep the variation limited to data
set size only. The images are generated by creating randomised backgrounds and signal
images, applying specific artefacts to get all possible variants. Details on how each class
of images was simulated can be found in Appendix A.

All images were cropped to size 39x42 and min-max normalised to a 0-255 interval.
Each of these ten data sets was used to train the VGG16 and ’basic’ DCNN models
ten times and the average accuracy together with the standard deviation of the accuracy
was recorded. The reason for repeating the training is the stochasticity in the training
procedure of the DCNNmodels. This was repeated for all proposed training procedures.
The 3x dataset, containing 21,000 images was used when pre-training the networks in
the comparisons of networks and network optimisations described above. The dataset
size test was run in parallel, so the 3x set was chosen as a middle-ground, not being very
large producing long training times, but still of considerable size.

The amount of good and bad images were simulated to create balanced datasets, the good
class split into equal amounts with and without signal. Equal amounts of all artefacts
were simulated. Artefacts that are added to no signal images were simulated 50/50 on
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Table 8: Network parameters used for the simulated dataset size analysis.

Parameter Value/Setting
Optimizer Adam
Loss function Binary Cross Entropy
Learning Rate 0.001
Batch Size 100
Patience(when applicable) 15

no signal and signal templates. When using real data for fine-tuning of weights and
for early stopping, the non-cross-validation training and validation datasets were used.
The performance was tested on the external test set. The network parameters used were
selected without prior optimisation, since this was to run in parallel. The parameters are
presented in Table 8. These were used for both VGG-16 and basic architectures.

4.6 Refining the simulations with simGAN

In Shrivastava et al. 2017, a GAN-model called simGAN is developed that tries to close
the gap between the distributions of simulated and real images of various types. As de-
scribed previously, this model consists of a refiner network and a discriminator network.

The refiner network alters the simulated images by applying filters to them. The dis-
criminator classifies local patches of the refined image as fake or real. This means that
it looks at small parts of the image and determines if they look realistic or not. The
loss is then based on the average of the probabilities of all the patches being fake. The
idea is that any sampled part of the image should have a realistic intensity distribution.
This loss is passed to the refiner, enabling it to alter its parameters to better fool the dis-
criminator. In order to not alter the annotation of the image, the loss function also has a
self-regularization component. This means that the refined images should not differ too
much from the input image. Both the refiner and the discriminator are DCNNs but with
different structures. The general architecture is presented in Figure 22. An important
parameter λ is introduced which is a weight for the regularization loss. This controls
how restrained the refiner is to preserve the appearance of the input image.
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Figure 22: The general architecture of simGAN. The simulated image is passed to the refiner
which alters the pixel values of the image using filters in the convolutional layers of the network.
The refined images are passed to the discriminator which has been trained on unlabeled real
data and refined simulations to discriminate real from refined images. The refiner weights are
updated based on regularization loss; how similar the refined and input image are, and discrim-
inator loss; how well the refined images fooled the discriminator. For each two updates of the
refiner, the discriminator is updated once. Adapted from (Shrivastava et al. 2017).

An open-source Keras/TensorFlow implementation of this model was downloaded from
GitHub from Dietz 2017b. This implementation was done in old versions of Tensor-
Flow and Keras and was translated to be compatible with TensorFlow 2.1.0 and Keras
2.3.1. Since this implementation was not created by the original authors of the simGAN
the code was reviewed in comparison with the article, but seemed to be accurate in all
respects.

The simGAN network was trained using a simulated data set consisting of 21,000 im-
ages, and a real unannotated dataset of 19,059 images for 10,000 steps, saving the model
each 100 steps. The parameters were kept as described in the original paper where avail-
able. simGAN was discovered to have substantial edge effects on the images. Because
of this, images fed to the network were cropped with 3 extra pixels in all directions.
These were removed after refining. The λ parameter was not given in the paper. Dur-
ing the development of the simulations a few trial runs were performed with simGAN
for different values of λ. These initial tests pointed toward the GitHub implementations
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value of 10−4 was a bit high. The only proper test conducted with the final image sim-
ulations was performed with λ = 10−6. More tuning and testing of this parameter is
needed, but the training time for this network was quite long, so only a few experiments
were able to be performed in the scope of this project.

The same images used to train the refiner were then refined using the trained model.
The basic network with the same parameters as in Table 8 was trained using the refined
images.

5 Results & Discussion

5.1 Simulations

In this section, samples of simulated images are compared to real images. Analysing the
simulations visually illustrates obvious flaws with them, but it is important to remember
that the classification networks can discern features that we struggle to see. Some of the
simulations are visually quite similar, while others are clearly discernable as simulated.
It is important to note that both the real and simulated images here are only samples.
Although effort was made to select representative samples, a wider variation can be
found for both real and simulated images.

5.1.1 Images simulated from scratch

Samples from the background simulation model can be seen in comparison with real
background images in Figure 23. The structure of the column looks fairly realistic, but
the texture only seem to be somewhat accurate for PMT 1%. For higher PMT-levels
the texture appears smoother, indicating that the use of a larger smoothing filter could
improve the quality. PMT 5 and 25 % seem to have very similar textures. The simulated
images appear very straight and with ”perfect” shapes. Although some real images are
quite straight in nature too, there also exists much more variation. A larger smoothing
filter could make the images less straight but also more randomness in generating the
structures are probably needed.

53



Figure 23: Comparison of simulated and real background images at different PMT-levels. The
textures of PMT 5 and 25 % seem to differ from the 1% level. The simulations texture are more
in the range of the 1% level.

The signal model samples are compared with real images in Figure 24. Much like with
the background models the texture of higher PMT images appear smoother. Also the
simulated signal can appear very straight and ”perfect”. The combined Landau-like dis-
tributions seem to capture the normal case quite well from a visual standpoint. However
there are many atypical binding profiles that are poorly represented in the simulated
dataset.
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Figure 24: Comparison of signal images at different PMT-levels. These images are simulated
background images with a simulated signal added. The same texture difference as in Figure 23
can be seen between the lowest and other PMT-levels. An assortment of low medium and high
intensity signal simulated images were selected, together with a very high affinity profile, to the
right in the figure. A similar composition was chosen from real data.

A sample of the final spike model simulations is shown in comparison with real spikes
in Figure 25. The spikes in the figure were added to simulated images, from one to three
spikes per image. Visually they appear quite similar, but it is very hard to evaluate small
details. The simulations seem to be able to capture the variation in rotation, size and
intensity somewhat well.

55



Figure 25: Simulated spikes compared to real spikes. The simulated spikes were added to
simulated templates.

Samples of simulated fibers can be seen in Figure 26. From a visual standpoint this
model seems to capture the different characteristics of fibers rather well. Both curvature
and intensity variation of the fiber appear realistic, and the model succeeds in producing
different types of fibers. The boundary where the fiber meets the column profile some-
times appear a bit steep in intensity change, as seen in the bottom right of the simulated
images in Figure 26.

Figure 26: Simulated fibers compared to real spikes. The simulated fibers were added to simu-
lated templates.
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The linear line model samples are shown in Figure 27. This model is also visually rather
accurate. The intensity variations and shape of the lines mimic many real cases quite
well. The real image in the top left of Figure 27 is however a bit different in appearance
and does not seem to be captured well within the simulated dataset. The real cases also
appear to often have more spread in the x-direction.

Figure 27: Simulated linear lines compared to real linear lines. The simulated linear lines were
added to simulated templates.

Samples from the quadratic line model is presented in Figure 28. The model seems to
capture some examples quite well, but suffers a bit from poor variety. The simulated
images look quite alike and fails to capture lines such as presented in the bottom left of
the real samples in Figure 27.

57



Figure 28: Simulated quadratic lines compared to real quadratic lines. The simulated quadratic
lines were added to simulated templates.

Samples of simulated and real dark spots are shown in Figure 29. Most simulated dark
spots look realistic. In cases where the signal is low, they might be too dark. In the
bottom left image of the simulated images in Figure 29, the dark spot appears almost
darker than the background which is not realistic. The image to the bottom left also
exhibits a problem with the model. If the spot is placed at the very edge of the signal it
might actually not have a proper dark spot and will be wrongly annotated, although this
seems to happen very rarely. This is on the other hand a problem with the dark spot class
itself. A dark spot at the edge is still a dark spot, but might not really be a problem. The
question is if it should actually be classified as bad.
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Figure 29: Simulated dark spots compared to real dark spots. The simulated dark spots were
added to simulated templates.

The stop model samples are shown in Figure 30. The simulated stops are very easily
identified as simulations, lacking realism on several fronts. They have obvious differ-
ences in texture of the signal, in particular in the border of above the column bed and the
column bed. They also have very straight column edges. Adjusting the parameters for
the distributions that weights the signal based on distance from the centre could improve
these very straight edges. Also a larger smoothing filter could help.

Figure 30: Simulated stop compared to real stop.
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Samples of saturated images are shown in Figure 31. The way of simulating saturation
workswell, being able to produce very saturated images and less saturated images, where
the saturation is located at the signal peaks. The differences between real and simulated
here further showcase the flaws of the signal simulation model, since saturated images
are just a special case of simulating the signal. Again, the very straight edges are evident
here, further motivating the need for adjusting related parameters and the filter.

Figure 31: Simulated saturated compared to real saturated.

Much work remains to achieve consistently realistic images that can be randomised to
include all variation found in real images. Both fine tuning of the model parameters
and development of the models is probably necessary. Simulating is hard and incredibly
time consuming and many details were left out due to the lack of time. The background
statistics were for example based on only the 200 CD, although we believe this would
have a very minor impact since they appear similar. Only a very limited set of filters
were tested on the images, and the texture difference between PMT-levels was ignored,
which could easily be improved by changing filter. Many model parameters are quite
arbitrary, resulting in visually acceptable results but with a lack of evidence to support
them. There are next to no previous knowledge on how to model many parts of the
images since the images are rather unique to Gyros’ product and have never before been
attempted to replicate artificially.

It is possible that the simulations could be utilised in other contexts than in this report as
well. Since we have control over the shape of the profile via the Landau-like distribution
it could be possible to for example train a classifier on recognising high from low affinity
profiles.
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5.1.2 simGAN

Since very much time was put into creating the simulations, very little time was left
to evaluate the simGAN approach. A sample of results from the training performed is
shown in Figure 32. The network actually seems to improve the texture. The images
appear smoother, and as mentioned above this is a desired improvement. It also seems to
target the peaks on the images and emphasizing them, which is something that is a little
bit lacking in the simulated model. However, it also seems a bit like it is emulating sat-
urated images. It seems to have a bias toward increasing the pixel intensity values. This
could be the result of a too low self regularization component and/or too large proportion
saturated images in the unlabled dataset. This could lead to images shifting annotation
when refining. In fact, when comparing the performance of a refined 3x dataset with the
original in training a basic network, the performance is lower. An average of 0.76 (10
runs) for simGAN compared to an average of 0.79 (10 runs) without simGAN.

Figure 32: The changes made by simGAN to simulated images. The third column shows which
pixels are modified with the simGAN (white), and which are not (black). The image difference
is the refined image subtracted from the original image. The absolute difference is the absolute
values of the image difference.
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It does however appear to able to achieve what we want. With proper optimisation
of parameters and maybe a more selective training dataset it is very possible it could
improve the texture of the simulated images.

5.1.3 Simulation evaluation

The performance of a basic network using different amount of simulated images in train-
ing are presented below, exact parameters are presented in Table 8. In Figure 33 the per-
formance of a basic network trained only on simulated data is presented. The training
was early stopped using the real validation set, and performance measured on the exter-
nal test set. It is quite hard to see any trend in better data size in this range. The best
performances, 86% occur for a 21,000 images dataset, and for a 70,000 images dataset.
The averages seem to be somewhat higher for size > 21,000, but dips again for 70,000. It
is more likely that the threshold for minimum dataset size lies in a lower range. However
increasing the size does not appear to significantly further affect performance. Variation
among the different sizes seems random, and is likely due to chance. The training seems
very unstable judging from very high standard deviations, and it is likely that the best
performing models by chance happen in different runs, regardless of the dataset used.
These results indicate that the simulations do not sufficiently represent the real scenario,
7,000 or less images cover all information the simulated images provide.

The highest performance reached is actually quite good, considering that the network is
trained on purely simulated data, only using a small dataset of 400 real images for early
stopping. In comparison, the same network trained on real data has an average accuracy
of 0.92 with standard deviation 0.0038, reaching a max accuracy of 0.93.
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Figure 33: Performance when training on simulated images only, but early stopping on real
images. The network model used was ’basic’. The green points are the averages and red
points the maximum values of the ten runs. The black error bars indicate the standard deviation
between the runs.
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The average performance, although still not too bad is much lower, about 75% for the
different datasets. The accuracy achieved varies greatly between runs, as illustrated by
the standard deviations in Figure 33. The training usually stops very early, since the
model probably quickly overfits to the simulated data. The sub-class accuracy of the
best classifier trained on simulated data can be seen compared with the same network
trained on real data in Table 9 (the top rows). The network still classifies the images
into good and bad, but the accuracy of this classifications is here presented for each
class separately. The network trained on simulated images appear to have a very high
false negative rate, failing to correctly classifying many good images. Since more dark
spots are correctly classified, the simulations might be able to provide some different
information to the network. It is however a marginal difference. It is possible that the
dark spot class is confusing for the network, since it is a lack of intensity artefact in
contrast to all artefacts that have high intensities. Dark spot images can also appear very
similar to good images if the dark spot is close to an edge.

Table 9: Sub-class accuracies between trained models.

Type of run Column bound line Dark spots Good Saturated Spike Stop
Trained on simulated 89.09% (55) 55.56% (9) 76.19% (567) 99.17% (241) 95.33% (257) 60.0% (5)
Trained on real 90.09% (55) 11.11% (9) 95.06% (567) 92.95% (241) 92.22% (257) 80.0% (5)
VGG16 with pre-training 92.73% (55) 22.22% (9) 95.77% (567) 97.1% (241) 93.77% (257) 80.0% (5)
VGG16 without pre-training 85.45% (55) 33.33% (9) 91.89% (567) 97.51% (241) 94.94% (257) 80.0% (5)

The same trend was observed for all simulation strategies and for both VGG-16 and the
basic network. The plots from these runs can be found in the Appendix. The simulated
images do not seem to contain enough variation to increase performance. That being
said, it is possible that the variation contained in the simulated dataset in these numbers
is not beneficial to our particular dataset. We have a very limited amount of for example
fibers in the test dataset, and thus this predictive power is evaluated rather poorly.

More tests to evaluate the quality of different simulationmodels would be beneficial. For
example excluding onemodel from the dataset at a time and see if it actually has an effect
on the accuracy of the network. An attempt at automatically optimising the parameters
of the current model could also improve accuracy. This becomes very complex however,
since there are very many parameters, and a new dataset has to be generated for each
combination and a new network trained. This would be a substantial undertaking that
would take a lot of time.
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5.2 Final CNN

5.2.1 Optimization process

The results from the Bayesian hyperparameter optimization process of the hyperparam-
eters batch size and learning rate can be seen below in Figures 34-36. Figure 34 shows
the process using the basic architecture, pre-training and freezing of the convolutional
base. The same procedure for the VGG architecture with pre-training and freezing of
convolutional base can be seen in Figure 35.

Figure 34: Shows the learning rate and batch size Bayesian optimization process for the basic
architecture with pre-training and freezing of the convolutional base. On the x-axis, for every
step, the top value describes the investigated batch size and the value beneath the learning
rate. We can see that the changing of the learning rate and batch size does not seem to change
the mean cross-validation accuracy by a great amount.

For the basic architecture in Figure 34 almost nothing happens during the 23 optimization
steps taken. For all of the alterations of the learning rate and batch size the accuracy
does not change. This could mean that this model is stable, not so easily affected by the
nudging of these parameters. The VGG architecture (Figure 35) on the other hand do
not seem to be stable for every choice of parameters, dropping down to under 80% for
some combination of hyperparameters.

Optimizing the hyperparameters learning rate and batch size was successful since we did
find optimum values that increased the model performance with about 0.5-1%. How-
ever, the models seldom have their optimum in the end of the optimization process, in-
dicating that using a Bayesian optimization approach was not needed. The more simpler
approaches random search and grid search would probably suffice.
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Figure 35: Shows the learning rate and batch size Bayesian optimization process for the VGG
architecture, pre-training and freezing of weights. On the x-axis, for every step, the top value
describes the investigated batch size and the value beneath the learning rate. All of the different
values of the learning rate and the batch size result in very similar values of the mean cross-
validation accuracy. There are only two outliers where the accuracy value drops below 80%.

The need of pre-traning the VGG16 architecture can especially be seen in the Bayesian
optimization procedure. Figure 36 below shows the process of optimizing the hyperpa-
rameters of the VGG16 architecture when no pre-training was used. Here, changes in
the learning rate and batch size greatly affect the performance of the models. Leading
to this fluctuating behaviour. It is possible that training these models for more than 300
epochs could make them more stable.
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Figure 36: Shows the learning rate and batch size Bayesian optimization process for the VGG16
architecture when no pre-training is used. On the x-axis, for every step, the top value describes
the investigated batch size and the value beneath the learning rate. Changes in the batch size
and learning rate values seem here to impact greatly the result of the mean cross-validation
accuracy.

The result from the optimization procedure seen above is very similar to what happened
for all of the other models. Therefore these are all left out here in the main part of the
report. See Appendix B for the result from the left out runs.

5.2.2 Performance

The results from running the different set-ups can be seen below in Table 10. Here, the
“winning“ learning rate and batch size from the Bayesian hyperparameter optimization
are shown. The resulting accuracy is presented for both the cross-validation set and the
external test set. The procedure used for calculating the mean and standard deviation
accuracy on the cross-validation sets can be seen in section 4.3.3. The external test set
accuracies are calculated on the result from the three weight re-initialised runs.

The best performing architecture & data setting achieved in the cross-validation runs
an accuracy of 93.04 ± 0.84% and on the external test data set 93.83 ± 0.83%. The
architecture used to create this result was VGG16 using simulated data for pre-training
and freezing of the convolutional base. The best performing model with these settings
reached (when trained on a cross-validation data set) an external test data set accuracy
of about 94.8%.

Using the VGG16 architecture compared to the basic architecture with pre-training
seems to give a, marginally, better result in both the cross-validation tests and in the
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external data set tests. A smaller difference can be seen between the cross-validation re-
sults for these two models than compared to the external data set results, where VGG16
is the noticeably stronger contender with 0.8-1.25% more accuracy. An increase of 1%
means that the model is correctly classifying around 46 images more. That the VGG16
and the basic architecture performed very similarly in the cross-validation tests were a
surprise to us. Our hypothesis was that VGG16, having many more parameters and con-
taining no elements of regularization would be, compared to the basic architecture, much
more prone to overfitting. The two architectures seemed to be very similar in this aspect.
The only deviation from this trend was when no pre-training was used. Here, our hy-
pothesis seems to be correct. Where the basic architecture has a higher cross-validation
accuracy value as well as a lower standard deviation. Implying that pre-training plays
an important role in the prevention of overfitting for the VGG16 architecture.

The result for the ResNet & ResNeXt architectures that can also be seen in Table 10
shows that both these architectures are performing rather poorly compared to the VGG16
and the basic architecture. Interestingly to note here is that the ResNeXt architecture is
indeed performing better than ResNet, agreeing with the literature that ResNeXt is the
better choice (Bianco et al. 2018). If more time were at our hands it would be interesting
to investigate further into this architecture, using the simulated data in pre-training and
freezing parts of the convolutional layers. From the massive success this architecture
has seen, it would not be impossible that it would perform well after some tweaking.

When choosing between the VGG16 and the basic architecture for inference an impor-
tant aspect one has to take into consideration is that the handling of the two architectures
are different. VGG16 has a lot more parameters than the basic architecture, thus it re-
quires more memory. This makes the choice between the two architectures dependent
on the system the final model will be implemented in. If RAM and hard drive memory is
very restricted, even though VGG16 performs marginally better, the basic architecture
could be the better choice.

Table 10: Result from the runs described in Table 6.

Type of parameter Small basic VGG inspired architecture VGG16 ResNet ResNeXt
Pre-training Yes Yes No Yes Yes No No No
Freezing of convolutional base Yes No No Yes No No No No
Learning rate value 0.00029 0.00032 0.00020 0.00011 0.00011 0.00030 0.00040 0.00029
Batch size 70 70 70 128 89 70 111 121

cross-validation accuracy
92.89

+- 0.78%
92.64

+- 0.76%
92.77

+- 0.77%
93.04

+- 0.84%
92.80

+- 0.81%
92.30
+- 1.1%

80.75
+- 3.8%

84.54
+- 2.5%

External test set accuracy
93.06

+- 0.37%
92.44

+- 0.37%
93.21

+- 0.19%
93.83

+- 0.83%
93.59

+- 0.23%
93.00

+- 0.72%
79.33
+- 4.2%

86.54
+- 1.7%
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The receiver operating characteristic curve (ROC-curve) from the best performing
model, VGG16, can be seen below in Figure 37. This describes the relationship be-
tween the true positive rate (the rate for which the good class is correctly classified) and
the false positive rate (fraction of images wrongly classified as good) of the model. Here
it can be seen that allowing a false positive rate of ∼0.1 would lead to a true positive
rate very close to 1. What this is showing is that our model is doing quite a good job
in classifying images as good or bad. The area under the curve, or AUC, is a metric
that often is used to compare and determine the performance of a classifier. The AUC
metric describes the fraction of the area in the ROC-curve plot that is underneath the
curve. With 1 being the max AUC, our classifier reached the high AUC value of 0.9879.

Figure 37: Showing the ROC-curve for the best performing model. That is, the VGG16 with
pre-training and freezing of weights. The AUC can be seen to reach 0.9879.

Having a false positive rate of a couple percent is probably acceptable for the application
of the model. But it mainly depends on what the algorithm is ultimately going to be used
for. If the runs being classified as bad are discarded from the process automatically,
removing runs carelessly could affect the result greatly. In this scenario, we would want
to have a very low false negative rate (1-true positive rate). On the other hand, if the runs
that are classified as bad are being flagged instead of removed images that are good can
still get classified as bad without causing to much trouble. In this scenario, one has to
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avoid classifying bad images as good i.e. avoid having a high false positive rate. Since
this would lead to the users getting tricked into thinking a run that is actually bad to be
good.

5.2.3 Sub-class accuracies

Analyses were done on how the models are performing in classifying the sub-classes.
This is of importance since it gives a glimpse of the models different strengths and weak-
nesses.

The accuracy between the sub-classes for the VGG16 architecture when pre-training
is used is shown above in Table 9. Here, all sub-classes except dark spots get mainly
classified correctly. As a disclaimer, when looking at this table it is important to note
the number of samples per sub-class. As an example the model correctly classifies 80%
of the stop samples, where only 5 exists in the whole test set. Making the challenge
of classifying all the stop correctly much easier than doing the same on the 567 good
samples. Therefore these results are somewhat misleading. Note that this is the result
from a good/bad classification, all of the sub-classes shown describes howmany of these
that a classifier only trained on good/bad captures. The model still seems to perform
well, only failing to classify the very subtle dark spots sub-class. The stop images being
similar to the saturated sub-class probably had a role to play in the network learning to
correctly classify these. The dark spots images were instead very similar to the good
class. Probably being the reason for the dark spots images getting classified as good.
Creating a network that predicts specific sub-classes rather than just good/bad could be
interesting to see if it would improve accuracy.

Table 9 above also shows sub-class accuracies for the VGG16 architecture when no pre-
training was used in the training process. This can be compared to the result from the
same table where pre-training was used. Without pre-training, the model gets worse in
classifying images belonging to the good-class. This accuracy is dropping, while many
of the bad-classes are increasing. When pre-training is not used the total perceptive
capability the network seems to drop.

When annotating the images, we encountered quite a few border line cases, especially
images with very small and low intensity spikes and similarly very vague lines. There
was no real consensus on how to treat these so there exists some ambiguity in the datasets.
When looking at what images are misclassified, a large portion of these are border line
cases. The misclassifications of the best performing model (VGG16, pre-train, freeze)
are shown below, but similar trends have been noted for most models. In Figure 38 some
examples of this ambiguity are illustrated. The images are very similar, yet have been
annotated differently, and classified differently. We can also see lines that are misclas-
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sified, and they are indeed very vague, and perhaps should be considered good, as the
network actually does.

Figure 38: Incorrectly classified images. The top two show spikes, then lines and saturated at
the bottom. The networks prediction is shown above the images. The predictions are wrong
compared to what the annotation says.

71



Also for saturated images most of the misclassified images are hard cases, illustrated in
Figure 38. A problem with normalising the images is that images that are not actually
saturated can appear just as saturated images. If many pixels share the same value, and
this is the max of the image, it will look just as a saturated image when normalised. This
could cause trouble for the network in classifying this correctly.

The errors in dark spots and stops do not seem to consist of such border-line cases.

6 Conclusion

This project has explored a wide range of methods for creating an optimal classifier.
Some methods were a bit unorthodox, such as simulating training data. This was indeed
a risky approach with high reward but with significant risk of failure. Although in the
end the simulations seemed to fail in significantly increasing predictive power, it was
a very interesting alternative to explore. We further believe that the results from the
simulations indicate that this is not an impossible approach, albeit perhaps not the most
efficient in terms of time or end result. That being said, we still feel that some of the
artefact models might have strengths that we could not see in the results due to a lack
of test data. It is not to be excluded that the simulations also might be useful in other
contexts.

A lot of classes were extremely underrepresented, and thus accuracies among these are
first of all very poor estimates, but also poor results. It was perhaps a bit over-ambitious
to try to classify them all. We believe that using the basic network or VGG16 together
with the pre-processing pipeline proposed here (maybe some simulated images) and
focusing on classifying spikes and lines could result in a reliable and high performing
product. The models for simulated spikes, lines and fibers are also the easiest to add to
real images, making simulation in this context easier as well. It is possible that more
annotated data would need to be acquired, but with the program and pipeline we have
set up it should be an easy task.

Classifying the other artefacts is probably possible, but the rarity of them makes it really
hard if not impossible to both train and evaluate the accuracy of them. Instead they
introduce confusion to the network. Even if we had perfect simulations for them, there
would be no way of knowing if it actually worked, given the tiny test set.

In the end, we still feel that we succeeded in the task of developing an acceptable image
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analysis product. We hope that Gyros will be able to use it and that it will facilitate the
work for lab technicians at the company for many years.
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Appendices

A Procedure for simulated datasets

Details about how the datasets were generated are presented below for each type of
image:

1. Good images with signal. Backgrounds were created with random intensity
means on the interval [400, 1200] representing PMT-levels between 1% and 25%.
A signal with random intensity on the interval [0, 216 − µb · 1.5], where µb is the
background intensity mean, was added to the backgrounds.

2. Good images without signal. Backgrounds were created as in 1. above, but no
signal was added.

3. Spikes. Spike images were created with one to three spikes on each. The spikes’
sizes, shapes, positions and rotations were randomised within fixed intervals. The
spikes were restricted to always be inside the integration area of the image they
were added to, and the intensity randomly selected as a multiple of the highest
intensity of the template image. The spike images were added to good images
with and without signal, generated as described above.

4. Fibers. Fiber images were created with one fiber on each. The curve, thickness
and intensity variation were randomised within fixed intervals. The max intensity
was chosen randomly as a multiple of the template image max intensity. The
curve was restricted as to have at least 10 pixels within the integration area of the
template image. The fiber images were added to good images with and without
signal, generated as described above.

5. Linear lines. Linear line images were created with similar procedure to fibers but
with different intervals. The curve was created as to always cross or be within the
integration area.

6. Quadratic lines. Linear line images were created with similar procedure to fibers
and linear lines but with different intervals. The curve was created as to always
be contained within the integration area of the template image.

7. Dark spots. Dark spot images were created with one to two dark spots per image.
The spots’ sizes, shapes, positions and rotations were randomised within fixed
intervals. The spots minimum multiplier was set to (1 − min(image)

Ix,y
) · 0.8, where
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Ix,y is the intensity at the spot’s location and min(image) is the lowest intensity
value of the template image. The locations of the spikes are confined to be within
the integration area of the template image. The dark spot images are multiplied
with good images with signal generated as described above.

8. Stops. Backgrounds were created with random intensity means on the interval
[400, 1200] representing PMT-levels between 1% and 25%. Stop signal was cre-
ated with max intensity randomly chosen on the interval [2 · µb, 2

16], where µb is
the background intensity mean.

9. Saturated. Images were created as good images with signal but with max inten-
sity chosen randomly from [216, 216 · 3].
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B Optimization plots

Figure B1: Shows the learning rate and batch size Bayesian optimization process for the
ResNeXt architecture. On the x-axis, for every step, the top value describes the investigated
batch size and the value beneath the learning rate. Here, changes in the batch size and the
learning rate seem to greatly impact the mean cross validation accuracy.

Figure B2: Shows the learning rate and batch size Bayesian optimization process for the ResNet
architecture. On the x-axis, for every step, the top value describes the investigated batch size
and the value beneath the learning rate. Here, changes in the batch size and the learning rate
seem to greatly impact the mean cross validation accuracy.
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Figure B3: Shows the learning rate and batch size Bayesian optimization process for the vgg
architecture when pre-training without freezing of convolutional base is used. On the x-axis,
for every step, the top value describes the investigated batch size and the value beneath the
learning rate. Changes in the batch size and the learning rate does not seem to have any big
impact on the mean cross validation accuracy.

Figure B4: Shows the learning rate and batch size Bayesian optimization process for the small
basic VGG inspired architecture when pre-training without freezing of convolutional base is used.
On the x-axis, for every step, the top value describes the investigated batch size and the value
beneath the learning rate. Changes in the batch size and the learning rate does not seem to
have any big impact on the mean cross validation accuracy.

80



Figure B5: Shows the learning rate and batch size Bayesian optimization process for the small
basic VGG inspired architecture when no pre-training is used. On the x-axis, for every step,
the top value describes the investigated batch size and the value beneath the learning rate.
Changes in the batch size and the learning rate does not seem to have any big impact on the
mean cross validation accuracy.
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C Background image statistics

Figure C1: To the left are average pixel histograms of the sample real images and equal amount
of simulated images. To the right are example histograms of arbitrarily chosen simulated and
real image. PMT-level is 1 %
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Figure C2: To the left are average pixel histograms of the sample real images and equal amount
of simulated images. To the right are example histograms of arbitrarily chosen simulated and
real image. PMT-level is 25 %
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Figure C3: The green lines and points represent the minimum observed for that particular statis-
tic. Likewise, the red lines and points represent the maximum. Each point is the maximum/min-
imum for PMT-levels 1%, 5%, 25%. The lines are the fitted linear models for each statistic.
Standard deviation(top left) is the standard deviation of the pixel intensities in an image. In-
tensity span (top right) is the maximum difference of the average column profile. This profile
is defined as the mean along the x-axis centered around the column. The above bed and bed
relation is the ratio of average pixel intensities above and below the integration area of the image.
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Table 11: Background parameter models

Min Peak Diff Model
Coefficient 0.05811427
Intercept -22.62170559
MSE 0.008580441426569984
R2 value 0.999958177226271
Max Peak Diff Model
Coefficient 0.23687124
Intercept -88.71481939
MSE 57.186947833906196
R2 value 0.9834981455509817
Min Noise Model
Coefficient 0.05111241983506869
Intercept -19.37023205
MSE 0.2136827862131977
R2 value 0.9986553190987958
Max Noise Model
Coefficient 0.0983871656011849
Intercept -37.11863279
MSE 4.185366113624059
R2 value 0.9929325415603213
Min Brightness Model
Coefficient -6.227375968368567e-05
Intercept 1.01865457
MSE 7.89216661352113e-07
R2 value 0.9966609687227642
Max Brightness Model
Coefficient 0.00010610558218856589
Intercept 0.96302449
MSE 5.725303821746931e-07
R2 value 0.9991635391584168
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D Simulation dataset size tests

Figure D1: Performance when pre-training on simulated images, early stopping pre-training and
training on real images. After pre-training the convolutional layers were frozen. The network
model used was ’basic’. The green points are the averages and red points the maximum values
of the ten runs. The black error bars indicate the standard deviation between the runs.
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Figure D2: Performance when pre-training on simulated images, early stopping pre-training and
training on real images. The network model used was ’basic’. The green points are the averages
and red points the maximum values of the ten runs. The black error bars indicate the standard
deviation between the runs.
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Figure D3: Performance when pre-training on simulated images, early stopping pre-training
on simulated images and training on real images. After pre-training the convolutional layers
were frozen. The network model used was ’basic’. The green points are the averages and red
points the maximum values of the ten runs. The black error bars indicate the standard deviation
between the runs.
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Figure D4: Performance when pre-training on simulated images, early stopping pre-training on
simulated images and training on real images. The network model used was ’basic’. The green
points are the averages and red points the maximum values of the ten runs. The black error
bars indicate the standard deviation between the runs.
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Figure D5: Performance when training on simulated images only, early stopping on simulated
images. The network model used was ’basic’. The green points are the averages and red
points the maximum values of the ten runs. The black error bars indicate the standard deviation
between the runs.
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Figure D6: Performance when training on simulated images only, but early stopping on real
images. The network model used was ’basic’. The green points are the averages and red
points the maximum values of the ten runs. The black error bars indicate the standard deviation
between the runs.
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Figure D7: Performance when pre-training on simulated images, early stopping pre-training and
training on real images. After pre-training the convolutional layers were frozen. The network
model used was VGG-16. The green points are the averages and red points the maximum
values of the ten runs. The black error bars indicate the standard deviation between the runs.
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Figure D8: Performance when pre-training on simulated images, early stopping pre-training
and training on real images. The network model used was VGG-16. The green points are the
averages and red points the maximum values of the ten runs. The black error bars indicate the
standard deviation between the runs.
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Figure D9: Performance when pre-training on simulated images, early stopping pre-training on
simulated images and training on real images. After pre-training the convolutional layers were
frozen. The network model used was VGG-16. The green points are the averages and red
points the maximum values of the ten runs. The black error bars indicate the standard deviation
between the runs.
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Figure D10: Performance when pre-training on simulated images, early stopping pre-training
on simulated images and training on real images. The network model used was VGG-16. The
green points are the averages and red points the maximum values of the ten runs. The black
error bars indicate the standard deviation between the runs.

95



Figure D11: Performance when training on simulated images only but early stopping on real
images. The network model used was VGG-16. The green points are the averages and red
points the maximum values of the ten runs. The black error bars indicate the standard deviation
between the runs.
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Figure D12: Performance when training on simulated images only, early stopping on simulated
images. The network model used was VGG-16. The green points are the averages and red
points the maximum values of the ten runs. The black error bars indicate the standard deviation
between the runs.
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