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Abstract

Transparent Machine Learning for Multi-Omics
Analysis of Mental Disorders

Stella Belin

Schizophrenia and bipolar disorder are two severe mental disorders that 
affect more than 65 million individuals worldwide. The aim of this 
project was to find co-prediction mechanisms for genes associated with 
schizophrenia and bipolar disorder using a multi-omics data set and a 
transparent machine learning approach. The overall purpose of the 
project was to further understand the biological mechanisms of these 
complex disorders. In this work, publicly available multi-omics data 
collected from post-mortem brain tissue were used. The omics types 
included were gene expression, DNA methylation, and SNP array data. The 
data consisted of samples from individuals with schizophrenia, bipolar 
disorder, and healthy controls. Individuals with schizophrenia or 
bipolar disorder were considered as a combined CASE class. 

Using machine learning techniques, a multi-omics pipeline was developed 
to integrate these data in a manner such that all types were adequately 
represented. A feature selection was performed on methylation and SNP 
data, where the most important sites were estimated and mapped to their 
corresponding genes. Next, those genes were intersected with the gene 
expression data, and another feature selection was performed on the gene 
expression data. The most important genes were used to develop an 
interpretable rule-based model with an accuracy of 88%. The model was 
then visualized as a network. The graph highlighted genes that may be of 
biological importance, including CACNG8, RTN4, TERT, OSBPL8, and ANTXR1. 
Moreover, strong co-predictions were found, most notable between CNKSR4 
and KDM4C in CASE samples. However, further investigations would need to 
be performed in order to prove that these are real biological 
interactions. 

Through the methods developed and the results found in this project, we 
hope to shed new light towards analyzing multi-omics data as well as to 
reveal more about the underlying mechanisms of psychiatric disorders.
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Sammanfattning 

Schizofreni och bipolär sjukdom är två svåra psykiska sjukdomar som sammanlagt drabbar 
mer än 65 miljoner människor världen över. Båda sjukdomarna kan ha drastiska konsekvenser 
på vardagslivet, även om exakta symptom kan skilja sig mellan individer. Schizofreni 
karaktäriseras av en förvrängning av tankar, uppfattningar och känslor. Symptom för 
sjukdomen inkluderar hallucinationer, villfarelser, abnormalt beteende, oorganiserat tal och 
känslostörningar. Bipolär sjukdom kännetecknas av omväxlande perioder av depression och 
förhöjningar av sinnesstämning (också kallat mani). Under dessa kan känslor, sömnmönster 
och aptit ändras, och under allvarliga episoder kan individer även få hallucinationer och 
villfarelser.  

Trots att sjukdomarna har varit kända i nästan ett decennium vet man inte exakt vad som 
orsakar dem. Det har visats att både schizofreni och bipolär sjukdom är till stor del ärftliga, 
och många studier har gjorts för att hitta vilka gener som orsakar sjukdomstillstånden. För 
både schizofreni och bipolär sjukdom kan psykos vara ett symtom, det vill säga 
hallucinationer och villfarelser. Det finns flera studier som undersöker dessa sjukdomar 
tillsammans på grund av att psykos är ett överlappande symptom. Genom att förstå de 
underliggande biologiska mekanismer inom olika sjukdomar kan diagnosticering bli bättre 
och nya behandlingsmetoder kan utvecklas.  

Många mentala sjukdomar är biologiskt komplexa och i nuläget dåligt förstådda. Tack vare 
framsteg inom bioteknik kan vi samla större mängder biologiska data vilka kan hjälpa oss 
förstå underliggande mekanismer av olika sjukdomar. Eftersom schizofreni och bipolär 
sjukdom kan ärvas i familjer, men även kan påverkas av miljö, är det relevant att undersöka 
arvsmassan och relaterade typer av data hos individer med dessa tillstånd, och det var detta 
som gjordes i detta projekt. 

De typer av data som analyserades i detta projekt var genuttryck, metylering, och SNPs 
(single nucleotide polymorphisms). Genom att mäta genuttryck kan man uppskatta hur starkt 
en viss gen uttrycks i cellerna. Inom bioteknik och liknande fält pratar man ofta om under- 
och överuttryckta gener, det vill säga att en gen uttrycks mer eller mindre i en individ med ett 
tillstånd man mäter jämfört med någon som inte har det. Metylering är en kemisk process som 
påverkar om eller hur mycket en viss gen uttrycks. Huruvida en viss gen är metylerad eller 
inte ändras genom livet och kan påverkas av miljömässiga faktorer. Ofta är man intresserad av 
metylering för att förstå vilka gener som är aktiva vid ett visst tillfälle. En SNP är en position i 
arvsmassan som kan variera inom en population. Många forskar på SNPs för att hitta länkar 



mellan en viss typ av variation och en sjukdom. Genom att analysera flera datatyper kan man 
undersöka mekanismer mellan de olika typerna.  

I data för detta projekt fanns det mer än en miljon insamlade datapunkter för varje individ. Att 
analysera den mängden data manuellt är inte möjligt, så därför kan man använda 
maskininlärning för att få fram den viktigaste informationen. Till exempel om man har en 
grupp med en viss sjukdom och en utan kommer vissa gener uttryckas ungefär lika mycket för 
att de inte är kopplade till sjukdomen medan andra kommer uttryckas olika. Med andra ord, 
man vill hitta vilka aspekter av den biologiska data som är beroende av sjukdomstillståndet 
och vilka aspekter som inte är det. Ofta är en stor del av data irrelevant, så för att förenkla för 
senare analys börjar man i många fall med att minska mängden datapunkter. Många 
maskininlärningsalgoritmer kan kräva stora datorresurser, exempelvis minne eller 
processorkraft, så genom att minska antal datapunkter kan senare analyssteg bli mer effektiva. 
Detta kallas för en feature selection, det vill säga ett urval av särdag (attribut) hos individerna. 
Ett feature (attribut) kan vara exempelvis en viss gen eller SNP. 

Ofta vill man bygga en modell som kan, utifrån nya data, förutse om den okända datan är från 
en person med sjukdomstillståndet man undersöker eller inte. I den maskininlärningsmetod 
som användes i detta projekt består denna modell av regler som konceptuellt liknar ”Om gen 
1 är överuttryckt och gen 2 är underuttryckt är individen sjuk.” Genom dessa regler kan man 
se vilka gener (om det är genuttryck man undersöker) som är viktiga i en sjukdom.  

I detta projekt var första steget att förbehandla alla tre datatyper. Data i detta projekt kom från 
55 individer med schizofreni eller bipolär sjukdom och 27 individer utan någon av tillståndet. 
För alla datatyper behandlades schizofreni och bipolär sjukdom som en grupp så att grupperna 
var sjuk och frisk. Sedan gjordes en feature selection på metylering- och SNP-data. De 
datapunkter som var viktigast användes för att välja ut gener och deras genuttryck. Från dessa 
byggdes en modell med tusentals regler om vilka gener som uttrycks mer eller mindre i 
patienter med schizofreni eller bipolär sjukdom. De viktigaste generna undersöktes i olika 
biologiska databaser och vetenskapliga artiklar. Flera av generna som hittades hade en tidigare 
koppling till sjukdomstillstånden, och några hade inte en direkt koppling men från ett 
biologiskt perspektiv verkade de lovande. Sammanfattningsvis hittades flera gener som kan 
vara intressanta för att förstå schizofreni och bipolär sjukdom bättre. 
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1  Introduction  

Schizophrenia and bipolar disorder are mental disorders that have been known for close to a 
century (Jablensky 2010; Mason et al. 2016), yet the underlying biology is not fully 
understood. It is estimated that schizophrenia and bipolar disorder affect 20 and 45 million 
individuals worldwide, respectively (WHO 2019). Both disorders have been shown to have 
hereditary components, and may severely affect the quality of life of individuals with the 
disorders. For instance, individuals with psychosis (which is a symptom for schizophrenia and 
bipolar disorder) run a higher risk of being exposed to human right violations by ”long-term 
confinement in institutions” (WHO 2019). Due to the technological advancement in genomic 
and other types of omics research as well as in machine learning, we have the tools to further 
understand the complex disorders. By understanding the biological mechanisms of the 
disorders, more accurate diagnosis and more effective treatment may be developed. 

In a recent study by Pai et al. (2019), the authors examined multiple types of genetic data (so 
called multi-omics data) from brain tissue of individuals diagnosed with schizophrenia or 
bipolar disorder, and healthy individuals as control. This master project aims to apply a 
machine learning approach to the same multi-omics data set and to examine the gene-gene 
interdependencies of the different data types. This is with the purpose to find co-prediction 
mechanisms, and thus broaden the understanding of the underlying biology of schizophrenia 
and bipolar disorder. 

1.1  Project Aim  

The general aim for this project was to find co-prediction mechanisms for genes associated 
with schizophrenia and bipolar disorder using a multi-omics approach. To achieve this, a 
pipeline was created which allows for multi-omics analysis, and subsequently transparent 
machine learning was applied to discover interdependencies between the different omics 
layers, meaning the different omics types (e.g. transcriptomics and genomics). This approach 
was developed to achieve a deeper understanding of the underlying causes of the conditions 
as well as predict their occurrence. Given the severity in terms of life expectancy and stigma, 
examining the genetic causes might improve both diagnosis and treatment of the disorders. 
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2  Background  

To understand both the context of the project and its implementation, three main areas need to 
be covered: the background of the mental disorders of interest, various machine learning 
techniques, and the approaches and challenges of multi-omics data analysis. 

2.1  The Mental Disorders and Current Knowledge  

Although schizophrenia and bipolar disorder have been shown to have heritable components, 
the disorders are complex and the genetic components have not yet been fully mapped. With 
the technological advances in biotechnology, analyses on a larger scale have made it possible 
to explore these disorders more in-depth (Geschwind & Flint 2015). 

2.1.1 Psychosis in Schizophrenia and Bipolar Disorder 
Schizophrenia is a severe mental disorder which distorts the thought pattern, perception, and 
feelings of the affected individual. Symptoms include hallucinations, delusions, abnormal 
behavior, disorganized speech, and disturbances of emotions (WHO 2019). The symptoms 
typically start at late adolescence to early adulthood (NIMH 2020). In a meta-study by 
McGrath et al. (2008) they estimated the male to female ratio to be 1.4:1. The disorder, in 
acute state, has a severe impact on quality of life. When assessing the burden of different 
diseases, the severity of the disease is reflected by a weight factor called disability weight on a 
scale from 0 to 1 (WHO n.d.). A study by Salomon et al. (2012) examined this factor for 220 
diseases (including types of mental disorders, cancers, infectious diseases etc.), and found that 
acute schizophrenia had the highest disability weight with a value of 0.756. Another study 
(Laursen et al. 2014) estimated the early mortality of individuals with schizophrenia to be 
between two and three times higher than the general population. 

Bipolar disorder is characterized by alternating periods of depression and elevated moods. 
The elevated mood is also referred to as mania or hypomania, where hypomanic periods are 
less severe (NIMH 2020). During these periods, also called ”mood episodes”, the emotions 
are unusually intense, sleep patterns and appetite may change, and in severe episodes 
hallucinations and delusions may appear (NIMH 2020). The episodes may last for several 
days or weeks, and the manifestation of symptoms varies between patients. The onset of 
bipolar disorder is typically during late adolescence or early adulthood (NIMH 2020). 

Psychosis is an important overlap of symptoms between schizophrenia and bipolar disorder. It 
is a state where a person loses ”some contact with reality” (NHS 2019). The main symptoms 
of psychosis are hallucinations and delusions. Hallucinations are when a person hears or sees 
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something that does not exist. A common example of this is hearing voices. A delusion is 
when someone has strong beliefs which others do not have, such as ”believing there’s a 
conspiracy to harm them” (NHS 2019). Psychosis can be caused by both mental disorders, 
such as schizophrenia and bipolar disorder, and environmental factors, e.g. trauma, stress, 
drugs or alcohol, or brain tumors (NHS 2019). 

2.1.2 Current Genomic Research  
Since bipolar disorder can cause psychotic symptoms, patients can be misdiagnosed with 
schizophrenia (NIMH 2020). Furthermore, schizoaffective disorder is a separate disorder 
which has symptoms that overlaps with both schizophrenia and bipolar disorder (NLM 2020). 
Multiple studies have found that schizophrenia and bipolar disorder are related on a genetic 
level. Lichtenstein et al. (2009) linked the Swedish Multi-Generation Register (a register of 
individuals with respect to their parents) to the Hospital Discharge Register (which includes 
information on inpatient hospitalizations for psychiatric disorders) for over 2 million Swedish 
families. This study found that both schizophrenia and bipolar disorder have heritable 
components (64% and 59% respectively) and that an individual with schizophrenic relatives 
has an increased risk for bipolar disorder and vice versa.  

Another study (Cross-Disorder Group of the Psychiatric Genomics Consortium 2013) 
estimated the genetic variation within and between mental disorders using genome-wide 
single nucleotide polymorphism (SNP) data, and found that schizophrenia and bipolar 
disorder were genetically correlated. In fact, the correlation between schizophrenia and 
bipolar disorder was the strongest among the different disorders examined. In a systematic 
review by Lee et al. (2012), they assessed published copy number variation (CNV) studies 
and genome-wide association studies (GWAS). For schizophrenia, the genes ZNF804A, MHC, 
NRGN, and TCF4 were associated. ANK3, CACNA1C, DGKH, PBRM1, and NCAN were 
significant for bipolar disorder. The study found ZNF804A, CACNA1C, NRGN, and PBRM1 
to be relevant genes in common for bipolar disorder and schizophrenia.  

The data collected by Pai et al. (2019) served as the basis for this project. The data set 
consisted of DNA methylation, SNP, and gene expression data. A cis-methylation quantitative 
trait loci (meQTL) was performed, where the authors found that hypomethylation of the gene 
IGF2 in the enhancer region was significant in individuals diagnosed with schizophrenia or 
bipolar disorder. Additionally, the authors performed targeted bisulfide sequencing around the 
IGF2 locus, although these results were not included as data for this project. When the IGF2 
enhancer was knocked out in mice, the authors observed an up-regulation of tyrosine 
hydroxylase (TH), which is rate-limiting in dopamine synthesis (GHR 2020). Dopamine is a 
neurotransmitter which, if impaired, has been linked to both schizophrenia (Brisch et al. 
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2014) and bipolar disorder (Ashok et al. 2017). Antipsychotic drugs often work by blocking 
dopamine and/or serotonin levels (CAMH n.d.). An increase in IGF2 expression was also 
noted, and ”transcriptomic and proteomic alterations affecting synaptic activity and 
structure.”  

2.2 Machine Learning for Discovery and Interpretability  

Machine learning is a powerful technique for biological discovery, and two different machine 
learning methods were used in this project. Before specifying these techniques, it is necessary 
to define basic terminology that will be used throughout this report. A feature, which is 
synonymous with attribute, is a characteristic of an object (Google Developers n.d.). In the 
context of this project it refers to the SNPs, methylation sites, and genes. An object is the 
individual (sample) from which the data have been collected from. A cohort is the collection 
of objects which share a characteristic (Cambridge Dictionary n.d.), which in this project is 
psychosis. A decision class is the pre-defined ”outcome”, i.e. case and control. A decision 
table is a system compromised of objects, features, and decision (Pawlak 1984).  

2.2.1  Importance of Feature Selection  

Next generation sequencing (NGS) has made large scale genomic analyses possible to 
perform by being faster and cheaper, however, the big NGS data pose new challenges in 
bioinformatics. Some of the NGS data can be irrelevant, redundant, or noisy and thus affect 
the quality of analysis. The dimensionality of such data can be very high which leads to a 
heavy computational load. A common step in machine learning, prior to developing the model 
or classifier itself, is feature selection. Feature selection is the process of selecting relevant 
features for model building (Li et al. 2017), and the purpose of this step in machine learning 
is to reduce dimensionality and improve quality and interpretability of classification. There 
are multiple types of feature selection. The simplest type of feature selection is filtering, 
which compares the feature to the decision class by calculating a statistic, e.g. Pearson’s 
correlation. By ranking according to this statistic, the top features may be selected (Cai et al. 
2018). More complex feature selection techniques, such as decision trees, can take co-
dependencies between features into consideration. In this project, both types were used: 
mutual information (MI), a filtering feature selection, and Monte Carlo feature selection 
(MCFS), a technique which considers co-dependencies between features. The following two 
subsections will cover these in more detail.  
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2.2.2  Monte Carlo Feature Selection  
One of the techniques used in this project was MCFS (Draminski et al. 2007). The algorithm 
creates numerous decision trees from randomly selected subsets of the data (see Figure 1), 
where the most important features are kept when a feature ”(…) is likely to take part in the 
process of classifying samples into classes ‘more often than not’” (Draminski et al. 2007).  

 

Figure 1. Overview of MCFS, based on figure from Draminski et al. (2007).  
Light blue indicates features and darker blue decision classes. 

Given the full data set with d features, s subsets are created with m features in each (each 
feature should appear in multiple subsets) where m << d. Each of these subsets are randomly 
divided into training and test sets (with 67% and 33% of the samples respectively) t times per 
subset, and every training set is used to create a decision tree. The quality of each tree is 
assessed in the form of a weighted accuracy. After the trees have been created, the importance 
of each feature is estimated in terms of relative importance (RI). This measurement is 
dependent on how often that feature is responsible for a split in a tree and the information 
gain. For a feature gk, the RI is defined as: 

(1) 

Where ! is a tree, wAcc is the weighted accuracy of a tree, ngk are the nodes in a tree, and  
IG is the information gain. u and v are fixed positive reals. The number of subsets is denoted 
as s and the number of splits as t. The RI is tested for statistical significance. 
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An interdependency discovery (ID) graph of the N most important features can be plotted (see 
Figure 2 for example). The color of the node indicates strength of contribution (more 
saturated nodes mean higher strength), the size of node indicates how frequent the feature 
appears in a pair with another node (bigger nodes mean higher frequency), and the thickness 
of the edges represents how frequent that pair appears together (thicker edges mean higher 
frequency). 

 

Figure 2. ID-graph constructed from artificial data, generated with  
rmcfs package (Dramiński & Koronacki 2018). 

This method is computer intensive since it creates thousands of trees for a given data set. 
More specifically, it creates s×t trees, where both s and t need to big enough so that each 
feature can appear in multiple subsets. The advantage with this method is that it allows for 
investigation of interdependencies between the features (Draminski et al. 2010). MCFS has 
been successfully applied in the context of rule-based learning, for example on avian 
influenza virus (Khaliq et al. 2015) to find pathogenicity markers. Furthermore, a study by 
Chen et al. (2018) used MCFS to detect gene expression signatures for different types of adult 
neural stem cells.  

2.2.3  Feature Selection Using Mutual Information  
Due to the fact that the data for this project are large and MCFS is computer intensive, a pre-
filtering feature selection method was used. One common approach is to use statistical tests 
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based on information theory. Information theory is ”a mathematical representation of the 
conditions and parameters affecting the transmission and processing of information” and is 
often used in communication engineering (Markowsky 2017). Two measurements from 
information theory were tested and used in this project for feature selection: Shannon’s 
entropy, or simply entropy, and MI. However, in the final pipeline only MI was included. 
Entropy is a measurement of ”the average missing information in a random source” (Lesne 
2011), and is defined as: 

(2) 

Where X is a random variable and x is each outcome. In other words, entropy measures how 
uneven the probability distribution is, or the information gained. If the entropy (H(X)) is equal 
to zero, this means that the value for a feature is constant across the cohort. If H(X) is high it 
indicates that the distribution is uniform. This measurement does not take decision classes 
into consideration. The joint entropy for two discrete variables X and Y is defined as: 

(3) 

Where x is defined as previously and y is each outcome from Y. From equation (2) and (3), the 
MI can be calculated between X and Y. In this project, X was an attribute and Y was the 
decision class (i.e. how much information do we have about the decision class given the 
attribute). MI is a measurement of amount of information of one variable given the other, and 
how two variables are dependent. MI is defined as: 

(4) 

If the information (I) is equal to zero it means that X and Y are independent. MI have been 
used to extract meaningful information in several fields, including biomedicine (Fang et al. 
2015) and genomics (Song et al. 2012). 

2.2.4  Rough Sets Machine Learning  
To find co-prediction mechanisms for features, a classification model based on rough-sets was 
developed. The basic assumption of rough set theory is that we can associate a given type of 
information to every object in the universe of discourse (Pawlak & Skowron 2007). A rough 
set-based approach allows for creating transparent classification models. These are 
represented by minimal subsets of features (reducts) from an information system A, which is a 
decision table excluding the decision column, such that it still preserves the classification 
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x∈X

p(x)log2 p(x) ≥ 0

H(X, Y ) = − ∑
x∈X

∑
y∈Y

p(x , y)log2 p(x , y)

I(X; Y ) = H(X ) + H(Y ) − H(X, Y )



power of the system (Pawlak & Skowron 2007). Subsequently, reducts are transformed into 
legible IF-THEN rules, e.g: 

IF GENE_1=up-regulated AND GENE_2=down-regulated THEN CASE 

The quality of these rules is measured in terms of support, coverage, accuracy, and other 
statistical measurements such as p-value. Several frameworks have been developed that 
utilizes rough set theory for classification, such as RoughSets (Riza et al. 2016) and RWeka 
(Hornik et al. 2007). In this project, ROSETTA (Øhrn and Komorowski 1997) and its R 
package wrapper R.ROSETTA (Garbulowski et al. 2020) was used. These allow for rule-based 
model construction and analysis. 

The classification models can be visualized using rule-based visualization tools such as 
Ciruvis (Bornelöv et al. 2014) or VisuNet (Smolinska et al. 2020). These visualization tools 
are graphic representations of feature-feature interdependencies that allow for rule-based 
model interpretation. In VisuNet, the rules are represented as a network where the nodes 
represent features and the edges are connections between features. The nodes are colored in 
terms of states (such as over- or under-expressed genes), the size of the nodes indicates the 
accuracy/support in relation to decision, and the thickness of the borders represent the number 
of rules the node is part of. Interpretations regarding interdependencies can be made based on 
the connection of the nodes, where color and thickness represent the strength of connection. 

2.3 Multi-Omics Data: Types and Challenges  

Thanks to the possibility to perform large scale analyses relatively cheap and fast, it is now 
easier to incorporate multiple types of omics data. However, as will be further discussed, 
integrating multi-omics data so that all layers are adequately represented is by no means a 
straightforward task. 

2.3.1  Types of Omics Data  
The data of this project (Pai et al. 2019) consisted of three types of data: methylation levels, 
SNP genotypes, and gene expression levels (see Figure 3 for an overview). The omics type for 
these are genomics (SNP), epigenetics (methylation), and transcriptomics (gene expression). 
Other examples of omics types are proteomics and metabolomics. A SNP is a nucleotide 
position that varies within a population, which may serve as biological markers for different 
diseases and disorders (GHR 2020). SNPs can have an effect on ”promoter activity (gene 
expression), messenger RNA (mRNA) conformation (stability), and translational 
efficiency” (Shastry 2009). Often when examining SNP data, the term reference allele refers 
to the variation that is present in the reference genome, while the other variant is referred to as 
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alternative allele. They are denoted as A and B, respectively. Since humans are diploid 
organisms each SNP has two alleles. In the data set, both alleles were included. Given a SNP 
for one individual, the value for the SNP can be AA (both reference alleles), AB (one 
reference and one alternative allele), and BB (both alternative alleles). 

 

Figure 3. Overview of the different omics data types: SNP as genomic, methylation as epigenetic  
(denoted as CH3), and gene expression as transcriptomics (denoted as mRNA). 

DNA methylation is the addition of a methyl group to the DNA molecule (Moore et al. 2013). 
This modification does not alter the genetic sequence but rather the gene activity (GHR, 
2020). Most often, methylation occurs at regions where cytosine (C) precedes a guanine site 
(G), these sites are called CpG-islands and more than half of the methylation occurs on these 
sites. About 70% of promoters are located in regions rich in CpG-sites called CpG islands, 
and these regions are often unmethylated (Moore et al. 2013). A region that has been 
methylated can impair transcriptional activators, thus reducing gene expression or silencing 
the gene.  

2.3.2  Multi-Omics Data: Meaning and Integration 
A multi-omics data set is, intuitively, a data set consisting of multiple omics types. An 
integrative approach to multi-omics data is to analyze multiple omics types simultaneously 
(Sun & Hu 2016). This can for example be done by combining the full data set and use 
statistical methods for analysis (Jiang et al. 2016), or as an exploratory step where parts of the 
omics set are analysed together and then used to identify overlap to another omics type (Wang 
et al. 2019). The latter was the case in this project, due to inconsistent sample size between 
the omics types.  

According to Sun and Hu (2016), important information can go unnoticed if only one omics 
layer is included in the analysis, especially ” (…) the complementary effects and interactions 
between omic layers.” For example, disease risk may change across the life span of an 
individual, hence genomic variant data would not alone be able to explain this change. 
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Different omics types ”often have complementary roles to jointly perform a certain biological 
function” (Sun & Hu 2016). By including different types of omics data, interdependencies 
between different omics layers can be discovered. Intuitively, SNPs and methylation patterns 
both are important for regulation of gene expression, and in a study by Wang et al. (2013) the 
authors found that in 49% of the genes tested, SNPs and methylation sites showed a 
”cooperative/antagonistic regulation pattern” on the gene. 

Part of this project was to design a proper data integration approach, and since the aim of this 
project was to discover interdependencies between omics data types the approach should not 
exclusively reflect one type of data. List et al. (2014) performed a multi-omics study to 
classify subtypes of breast cancer using gene expression and methylation data. The authors 
compared four random forest based classification models: gene expression separately, 
methylation separately, gene expression and methylation combined, and a subset of gene 
expression represented in PAM50. The model with both gene expression and methylation data 
had combined the data sets before feature selection. In the combined model, the remaining 
features were almost exclusively gene expression features. Dabrowski et al. (2018) performed 
MCFS on the joint data, which consisted of gene expression levels from 19,943 genes and β-
values for 396,065 methylation sites. The number of important features were 2 for gene 
expression and 63 for methylation. Another approach (Wang et al. 2019) would suggest a 
feature selection on each data set separately and then integrate the selected features into one 
data set. Considering these studies, a different approach for this project was needed such that 
the signal of one type of data does not get overshadowed by the signal of the other type, while 
still keeping interdependencies between omics types as a focus. Thus, balancing the number 
of features from each type before feature selection was the selected approach in this project. 
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3  Materials and Methods 

3.1  Computational Resources 

The project was written in R 3.6.2 (full list of R packages can be found in Appendix B). For 
heavier computations (such as preprocessing the large data sets and running MCFS), the 
external data server ulam was used, otherwise the computations ran locally.  

3.2  Data  

The initial data set was collected and compiled by Pai et al. (2019), and it is publicly available 
at Gene Expression Omnibus (GEO) with GEO accession GSE112525. The set consists of 
gene expression data, whole-genome DNA methylation data, and SNP array data. The data 
were collected from the post-mortem brain tissue of individuals with schizophrenia, bipolar 
disorder, and controls from 29, 27, and 27 patients respectively (see Table 1 for summary of 
data). In this project, as well as in the original paper, individuals with schizophrenia and 
bipolar disorder were considered as a single class. The gene expression and methylation data 
were obtained using high throughput sequencing. The SNP data were collected through arrays 
designed for known variants in psychiatric disorders (Illumina Human PsychArray-24). The 
data also contain information on demographic factors (age and sex), clinical variables (cause 
of death, medications, etc.), and tissue quality, in a separate table. The data were either loaded 
from comma-separated values (CSV) format or directly into R as an R data frame using the 
package GEOquery (Davis & Meltzer 2007). 

Table 1. Summary of original data. All data is from the same cohort. 

Methylation SNP Gene expression

Patients 82 83 34

Male 61 61 25

Female 21 22 9

Control 27 27 17

Schizophrenia 29 29 7

Bipolar 26 27 10

Features 812,663 588,628 58,219

Platform Infinium 
MethylationEPIC

Illumina Human 
PsychArray-24

Illumina NextSeq 500
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As presented in Table 1, the size of the cohorts are different between the data types. All data 
were collected from the same individuals, where the gene expression levels only were 
collected from a subset of the individuals. However, the size of the cohorts comparing the 
SNP and methylation data were inconsistent even though they were meant to be the same. The 
SNP data had three objects that did not exist in the methylation data. The IDs of these samples 
were 43, 78, and 90. Sample 43 did exist in the patient data file but since the data would later 
be combined with the methylation data it was excluded. Sample 78 did not exist in the patient 
data file and was thus also excluded. Sample 90 did not exist in the patient data file either, 
however when examining the meta data it was identical to sample 95, and was subsequently 
excluded for downstream analysis. 

3.3  Model Overview and Final Integration Model 

For a simplified pipeline of the core parts of the project, see Figure 4. For one omics layer, 
this would be the standard workflow: preprocess the data, perform a feature selection for 
quality and computing performance, develop a classification model to discover 
interdependencies, visualize these dependencies, and finally interpret the resulting networks 
using scientific literature and different biological databases. 

 

Figure 4. Overview of key steps in the project. 

Feature  
selection

Preprocessing

Classification 
 model

Visualization

Interpretation

Data from Pai et al. 
(2019)

Dimensionality reductionrmcfs, MI 

R.ROSETTA

VisuNet

PCA, SVA

Normalization of data, 
structuring of data, 

batch effect correction, 
discretization etc.

Rule-based model

Rule-based networks of 
interdependencies

Scientific literature, 
databases

Biological interpretation, 
gene enrichment 

analysis

22



Since the data for this project consists of different data types, the pipeline was modified 
accordingly, and he developed model for integrating the multi-omics data types can be seen in 
Figure 5. First, the SNP and methylation data were preprocessed and then filtered to the same 
size based on MI. The data were merged and MCFS was performed. The gene expression 
data, which were also preprocessed, were filtered based on the most important genes from 
MCFS on methylation sites and SNPs. MCFS was performed on the top genes, and those 
genes were used to construct the final rough-set based classifier. 

 

Figure 5. Integration of data types. G.E. is gene expression data, Me. is Methylation data,  
SNP is SNP array data. Width of boxes indicates the feature reduction (not to scale). 

3.4  Preprocessing  

As a first step, the methylation and SNP data were preprocessed. The data were investigated 
with regard to formatting, missing values, sample sizes, and batch effects, and addressed 
accordingly. 
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3.4.1  Methylation Data  
The methylation data used in this project had been previously processed by Pai et al. (2019). 
This included normalization, as well as exclusion of probes that: 

• Overlapped with SNPs with minor allele frequency > 0.05 
• Were known to be cross-reactive 
• Failed detectability in > 20% of samples  

In this work, additional preprocessing steps were still necessary. First the data were 
restructured so that it would fit as input to the packages further down the pipeline. This 
included reshaping so that objects represented rows and features columns, modifying the 
object names to o achieve consistent format among the different data sets, averaging technical 
duplicates, and attaching class as case (CASE) or control (CTRL) as last column. After these 
steps, a principal component analysis (PCA) was performed to check for unwanted batch 
effect. Since two clusters could be observed based on sex, the probes on the X and Y 
chromosome were excluded. The chromosome position was extracted using the annotation 
files from the authors. Another PCA was performed to check for possible remaining batch 
effect. The remaining probes were discretized using the following intervals: [0.0-0.2) was 
considered unmethylated (um), [0.2-0.8) was considered indecisive (id), and [0.8-1.0) was 
considered methylated (m) (Du et al. 2010). 

3.4.2  SNP Data  
The first step was to restructure the data in a similar way as the methylation data, i.e. 
reshaping the data so that objects were defined as rows and features as columns. The next step 
was to extract the SNP genotypes. The data consisted of multiple data types, including the raw 
intensity measurements, but since we were interested in the derived genotypes, only those 
were extracted. Next, a quality check was performed where probes were excluded if any of 
the following criteria were met: 

• Missing sample frequency > 0.01  
• Minor allele frequency < 0.05 
• Hardy Weinberg p-value < 10-6 (only in decision class CTRL) 

These thresholds were the same as Pai et al. (2019) used. The Hardy Weinberg p-value 
estimates probability of whether a difference in genotype is due to chance or not, and the 
values were estimated using the R package HardyWeinberg (Graffelman 2015). The number 
of probes that had been removed was roughly the same number as in the original paper 
(214,211 in this project, 228,369 in the paper). After that, technical replicates were combined 
using mode, from the R package modeest (Poncet 2019). The decision class was attached, and 

24



the SNPs from the X and Y chromosome were removed in order to have consistency across 
the data sets.  

3.4.3  Gene Expression Data 
The preprocessing of the gene expression data was performed by Mateusz Garbulowski 
(supervisor of this project), but the steps of this preprocessing were included in the report for 
clarity. First, the duplicated genes were averaged. Next, genes from the X and Y chromosome 
were removed using biomaRt (Durinck et al. 2005), for consistency across data sets. The 
remaining genes were normalized with trimmed mean of M-values (TMM) using edgeR 
(Robinson et al. 2010). The data were transformed to Counts Per Million (CPM) and 
transformed to logarithmic scale. To check and correct for batch effect, the package sva (Leek 
et al. 2012) was used. The gene expression levels for each gene were scaled over 0, meaning 
each value is subtracted by the mean of the attribute (i.e. moving the midpoints of values). 
Finally, the decision class was added as the last column.  

3.5  Feature Selection  

As could be seen in Figure 5, multiple rounds of feature selection were performed, both with 
the purpose of improving accuracy and decreasing computational load, but also to balance the 
data in terms of sites from different types (see 2.3.2 Multi-Omics Data: Meaning and 
Integration for motivation). For the methylation and SNP data, this consisted of two main 
parts: MI exclusion and MCFS. A summary of the resulting number of features after each 
feature selection step can be seen in Table 2.  

Table 2. Summary of remaining features after each feature selection step for methylation and SNP data. 

The feature selection for the gene expression data was based on the results of the feature 
selection of methylation and SNP data, i.e. from the resulting decision table. The most 
important methylation sites and SNPs were mapped to their corresponding genes, and based 
on that, gene expression data were extracted. A round of MCFS was performed on this (see 
Table 3 for a summary). 

Methylation SNP Combined

Original features 812,663 588,628 —

Quality check — 214,211 —

X and Y removal 794,726 211,909 —

MI exclusion 39,683 39,683 79,366

MCFS 3,116 337 3,453
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Table 3. Summary of remaining features after each feature selection step for gene expression data. 

3.5.1  MI Filtration of Methylation and SNP Data 
The entropy and MI values were calculated for all the methylation sites and SNPs using the R 
package infotheo (Meyer 2009). In order to keep as many features as possible (and not lose 
relevant information) while still having a feasible amount of data in terms of computation, the 
threshold for number of features before MCFS was based on the 5th percentile. Since the 
number of features from methylation was larger, this was the threshold and what will be 
referred to the top 5th percentile, which corresponds to 39,683 features. The top 5th percentile 
in terms of MI for methylation and SNP separately was selected, then those top features were 
merged. In later steps, the features appeared homogenous between classes, and to attempt to 
correct for this, the bottom 5th percentile in terms of entropy was removed before selecting 
the top 5th percentile. The motivation for this step was to adjust data for low variance discrete 
features, in a similar manner to how removing low variance continuous variables is 
commonly done to improve downstream quality of the data. This approach did not, however, 
improve the results and was not used in the final model.  

3.5.2  MCFS on Methylation and SNP Data 
The analysis using MCFS was performed with the R package rmcfs (Dramiński & Koronacki 
2018) and ran on the external server ulam (see Table 4 for parameter settings). This was done 
for both approaches mentioned in the previous section (see 3.5.1 MI Filtration of Methylation 
and SNP Data).  

Table 4. Parameter settings for rmcfs. 

Gene expression

Original features 58,219

After preprocessing 45,058

From methylation/SNP 2,002

After MCFS 57

Parameter Value

Number of features (d) 79,367

Number of features per subset/projection size (m) 300

Number of subsets/projections (s) 30,000

Number of splits per subset (t) 5

Number of threads 8

26



The resulting top features for each approach were assessed. The problem with homogenous 
features still remained despite the attempt with entropy filtration (see 5.3 Challenges for 
further discussion), and thus the data with only MI filtration was chosen and kept for further 
analysis. 3,453 features were kept for downstream analysis based on the MCFS cutoff 
threshold using the k-means method. 

3.5.3  Extraction of Genes  
The most important sites were mapped to their closest genes using the Illumina annotation 
files for their corresponding platform (downloaded from the official Illumina website). The 
sites were renamed to the format ”gene_site”, e.g. ”IGF2_cg02613624”. If a site did not have 
an annotated gene, the gene name was represented as ”unspc”, meaning unspecified. The sites 
that were not mapped to genes were excluded for further analysis. The remaining sites were 
used to select genes from the gene expression data. A list of genes was composed by 
extracting the gene names from the top sites. 

The genes from the gene expression data were in Ensembl format, while the genes in the 
annotation files had the gene name. In order to extract the relevant genes from the gene 
expression data, the Ensembl names were translated to the gene name using the R package 
biomaRt (Durinck et al. 2005). The list from the previous step was used to intersect the 
features from the gene expression data, such that 2,002 genes remained. The gene expression 
data for these were used for further analysis. 

3.5.4  MCFS on Gene Expression  
On the 2,002 genes that were selected from the most important methylation sites and SNPs, 
another MCFS-based feature selection was performed. This step was also performed using the 
rmcfs package (Dramiński & Koronacki 2018) with default settings. Using the MCFS k-
means cutoff, 57 genes were deemed important and kept for further analysis. These genes 
were renamed such that the name also included whether it was a methylation site, a SNP, or 
both as well as how many of each that had been responsible for the selection of each gene. For 
example, a methylation site located in the IGF2 region would be named ”IGF2_me,” a SNP in 
that region would be named ”IGF2_snp.” If multiple features from both types were 
responsible for selection of that gene, it could be named ”IGF2_me_me_snp.” 

3.6  Rule-Based Classification Modeling  

The gene expression data from the 57 top genes were run through a rough set-classifier using 
the R package R.ROSETTA (Garbulowski et al. 2019). Multiple settings were tested, but the 
settings for the final model was set to Naive Bayes classifier, Johnson reducer, equal 
frequency discretization for three levels, and false discovery rate (FDR)-based p-value 
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correction of the rules. Johnson reducer and equal frequency discretization are default 
settings. Naive Bayes classifier was used since it, for this data, produced the model with the 
highest quality (Standard Voter was also tested). In the function rosetta, Bonferroni p-value 
correction is the default, however this correction is very strict and can lead to an increased 
false negative rate. Given the small sample size in this step, FDR was more suitable. Leave-
one-out cross validation (LOOCV) was performed due to the small sample size (note that the 
gene expression data had a sample size of 34). As variability of models varied depending on 
order of features, the classification was repeated 100 times, where the order of the features 
time was shuffled in each iteration. Finally, the rule sets were combined and averaged using a 
built-in function in R.ROSETTA. The merged data set was then visualized using VisuNet 
(Smolinska et al. 2020). The rules were filtered out according to if accuracy < 0.7 and 
coverage < 0.3. Only the top 20 nodes were presented in the network for clarity. 

3.7  Biological Analysis and Interpretation  

A functional enrichment analysis was conducted using the web tool gProfiler. This analysis 
was performed on the 2,002 genes selected from the top methylation sites and SNPs. gProfiler 
uses several databases, most notably Kyoto Encyclopedia of Genes and Genomes (KEGG), 
which is a collection of databases of genomes and pathways, and Gene Ontology (GO), which 
is a database of gene functions. The significance threshold was set to 0.05 for FDR-corrected 
p-values. The database Psychiatric disorders Gene association NETwork (PsyGeNET) was 
used to detect if any of the top informative genes from MCFS had previously been associated 
with a psychiatric disorder. PsyGeNET is a database which is based on automatic text mining 
on scientific literature which is then manually curated. The package psygenet2r, which 
connects to PsyGeNET, was used to find which of the top 57 genes were associated to 
psychiatric disorders, and the associated genes and disorders were visualized as a network. 
Additionally, a manual search was performed for the most important genes in the 
classification model, using scientific literature and databases such as GeneCards. 
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4  Results 

4.1  Testing for Batch Effect in DNA Methylation Data 

The PCA revealed two clear clusters from the DNA methylation data. By coloring the data 
points based on the sex of the individual, it fully overlapped these clusters (see Appendix A 
for all PCA plots). After removing the sites located on the X and Y chromosome, there were 
no longer two separate clusters (see Figure 6 for before and after). If a sex bias remains after 
this adjustment, the effect is small enough to not severely affect the first principal component. 
To assert that the bias was fully accounted for, further tests are needed.  

 

Figure 6. PCA plots of methylation data before (left) and  
after (right) removing sites from X and Y chromosome. 

4.2  MCFS on Methylation and SNP 

As mentioned, the approach using entropy filtration did not improve the result and as such the 
approach with only MI filtration was included in the rest of the pipeline. The MCFS algorithm 
selected 3,453 important sites with the k-means threshold. Out of these, 3,116 were 
methylation sites and 337 were SNPs. The ID-graph of the 10 most important features can be 
seen in Figure 7. Using the permutation threshold, the most important sites were cg01932551, 
cg15372217, rs6737786, and rs8004384. See Figure 8 for pie charts of distribution of states 
(methylated, indecisive, and unmethylated) per class. The corresponding results for the 
discarded approach with entropy filtration, see Appendix C. 
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Figure 7. ID graph of top 10 nodes from MCFS. 

   

    
Figure 8. Pie charts of top 4 sites from MCFS. ”m” means methylated, ”id” indecisive, ”um” unmethylated, ”A” is 

reference allele and ”B” is alternative allele. 
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To compare whether the pattern was similar for all the data (and not just what was found from 
MCFS), the most significant sites from Pai et al. (2019) were plotted (see Figure 9). 

    
Figure 9. Pie charts from two of significant sites from Pai et al. (2019). ”m” means methylated, ”id” indecisive, ”um” 

unmethylated, ”A” is reference allele and ”B” is alternative allele. 

4.3  Annotation of DNA Methylation Sites and SNPs 

The annotation of DNA methylation sites or SNPs to their respective genes covered 2,374 out 
of 3,453 of sites (~68.9%). For annotation of top 10 sites, see Table 5. 

Table 5. Gene annotation of top 10 DNA methylation sites and SNPs.  

Site name Gene name

rs6737786 Unspecified

cg15372217 PCOLCE2

rs8004384 ARHGAP5

cg01932551 SRCAP

cg13314145 NPTX2

cg15546015 Unspecified

cg16077055 NCK2

cg22375663 Unspecified

cg22243260 Unspecified

cg25140451 Unspecified
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4.4  Functional Enrichment Analysis 

Out of the 3,453 methylation sites and SNPs that were selected with MCFS, 2,291 mapped to 
a gene. Among these, 2,002 unique genes were present and selected for further downstream 
analysis. The resulting functional enrichment analysis of those genes can be seen in Table 6.  

Table 6. Summary from gProfiler of top molecular functions, biological processes, cellular components, KEGG 
mappings, and reactome for most important genes. p-value was adjusted using FDR correction. 

GO: Molecular Function

Term name padj

Ion binding 8.226 × 10-7

Calcium ion binding 2.036 × 10-6

Enzyme binding 2.036 × 10-6

Kinase binding 5.834 × 10-6

Protein kinase binding 8.521 × 10-6

GO: Biological Process

Term name padj

Homophilic cell adhesion via plasma membrane adhesion molecules 1.100 × 10-13

Cell adhesion 2.623 × 10-13

Biological adhesion 2.623 × 10-13

Cell-cell adhesion via plasma-membrane adhesion molecules 5.387 × 10-11

Anatomical structure morphogenesis 1.320 × 10-9

Nervous system development 2.343 × 10-9

GO: Cellular Component

Term name

Synapse 7.581 × 10-8

Cell periphery 8.691 × 10-7

Plasma membrane 8.691 × 10-7

Organelle 7.766 × 10-6

Cell projection 1.151 × 10-5
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4.5  MCFS on Gene Expression 

The MCFS algorithm selected 57 genes as the most important out of the 2,002 mapped genes 
using a k-means threshold. The ID graph of the top 10 genes can be seen in Figure 10.  

 

Figure 10. ID graph of top 10 nodes from MCFS. 

KEGG

Term name padj

Thyroid hormone signaling pathway 5.576 × 10-3

Pathways in cancer 7.113 × 10-3

Glutamatergic synapse 7.113 × 10-3

Small cell lung cancer 1.075 × 10-2

Cholinergic synapse 1.122 × 10-2

Reactome

Term name padj

Axon guidance 3.116 × 10-2
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Since the gene expression data had Ensembl IDs for features, they were translated to their 
corresponding gene name for consistency (see Table 7 for the translation of top MCFS genes). 

Table 7. Translation from Ensembl ID to gene name for top 10 genes. 

4.6  Connection of Top Genes to Psychiatric Disorders 

Out of the 57 genes selected, 12 were included in the PsyGeNET database. These were 
mapped as a graph with their associated disease (see Figure 11). 

 

Figure 11. Graph of genes and their associated mental disorder. 

Ensembl ID Gene name

ENSG00000091039 OSBPL8

ENSG00000131732 ZCCHC9

ENSG00000107077 KDM4C

ENSG00000171606 ZNF274

ENSG00000274810 NPHP3-ACAD11

ENSG00000165495 PKNOX2

ENSG00000049249 TNFRSF9

ENSG00000013725 CD6

ENSG00000153721 CNKSR3

ENSG00000107404 DVL1
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4.7  Classification Models 

The data set with entropy filtration provided rules that were short or had low coverage and 
was thus not used as a final result. The resulting classification model for the data set which 
was kept (without entropy filtration) had a mean accuracy of 88.2%. The most important rules 
in terms of p-value can be found in Supplementary Materials. 

The resulting network from top 20 nodes (which corresponds to 19 genes) can be seen in 
Figure 12. The top 20 nodes are the nodes most apparent in the model. Stars indicate that the 
gene was found in PsyGeNET, i.e. was associated with a mental disorder. 

 

Figure 12. Network for combined model with respect to both decision classes.  

The network for top 10 nodes for CASE can be seen in Figure 13, the corresponding network 
for CTRL can be seen in Figure 14. 

CTRLCASE
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Figure 13. Network for CASE class. 

 

Figure 14. Network for CTRL class.  
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5  Discussion 

5.1  Biological Interpretation 

From the results, several interesting genes were found. Some of them, such as CACNG8, had 
a previous association with schizophrenia or bipolar disorder, while others have not. Several 
of the important genes from the model seem to have interesting properties in terms of the 
disorders. In this subsection, I will further explain the available literature on these genes and 
attempt to interpret their association to schizophrenia and bipolar disorder.  

5.1.1  Functional Enrichment Analysis 
Many of the resulting functions are related to the nervous system, which is promising given 
that the disorders affect the brain. Examples of this include nervous system development, 
synapse, and axon guidance. Some other functions may provide interesting insights to 
schizophrenia and bipolar disorder. The most significant pathway from KEGG was the thyroid 
hormone signaling pathway whose deregulation has been linked to schizophrenia (Santos 
2012). Glutamatergic synapses, also found by KEGG, may also be of interest, since their 
disfunction may lead to ”cognitive impairments and negative symptoms, and drives 
subcortical dopamine release, resulting in psychosis” (Coyle et al. 2012). Furthermore, an 
elevation of glutamate has been linked to bipolar disorder (Eastwood & Harrison 2010). The 
association of disfunction of the cholinergic pathway to schizophrenia is also long established, 
and the antipsychotic clozapine affects this pathway (Saur et al. 2016). The reason pathways 
in cancer was significantly enriched among the genes may be explained by the fact that cancer 
has been and still is well-studied, so a higher representation of those genes in databases such 
as KEGG might overlap. Overall, the functional enrichment analysis showed pathways and 
functions that may be related to schizophrenia and bipolar disorder.  

5.1.2  Gene Expression 
Comparing the results to the meta study by Lee et al. (2012), ANK3 and CACNA1C both were 
among the 3,453 genes extracted using the methylation sites and SNPs. The focus of Pai et al. 
(2019), IGF2, was also among these genes. However, the focus of this discussion will be 
limited to the top 19 genes in the classification model (see Table 8 for summary of molecular 
function and relevant biological processes), where both established and novel genes of interest 
were found.  
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Table 8. Summary of top 20 nodes (19 genes), all wording from Uniprot or GO. 

Gene Molecular function Biological processes

ANTXR1 Plays a role in cell attachment and 
migration, transmembrane signaling 
receptor activity

Cell adhesion

ATF3 Binds the cAMP response element 
(CRE), a sequence present in many 
viral and cellular promoters, represses 
transcription from promoters with ATF 
sites

Negative regulation of transcription by 
RNA polymerase II, gluconeogenesis, 
positive regulation of cell proliferation

CACNG8 
(TARPλ8)

Regulates the activity of calcium 
channels, and trafficking and gating of 
α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor 
(AMPA)-selective glutamate receptors 
(AMPARs)

Ion transport, calcium ion transport, 
transmission of nerve impulse

CCNJL Contributes to protein kinase activity Regulation of cyclin-dependent protein 
serine/threonine kinase activity, protein 
phosphorylation

CD6 Cell adhesion molecule, T-cell 
activation and proliferation

Immunological synapse formation

CNKSR3 
(MAGI1)

Transepithelial sodium transport Regulation of signal transduction, 
positive regulation of sodium ion 
transport

DENND3 Regulates autophagy in response to 
starvation, plays a role in protein 
transport from recycling endosomes to 
lysosomes

Endosome to lysosome transport, 
cellular protein catabolic process

KDM4C 
(JMJD2C)

Central role in histone code Blastocyst formation, chromatin 
organization/remodeling

MEGF11 May regulate the mosaic spacing of 
specific neuron subtypes in the retina

Retina layer formation, homotypic cell-
cell adhesion

MIR548F3 miRNA, involved in post-
transcriptional regulation of gene 
expression in multicellular organisms 
by affecting both the stability and 
translation of mRNAs

—

MSI2 RNA binding, regulates the expression 
of target mRNAs, may play a role in 
proliferation and maintenance of stem 
cells in the central nervous system

Stem cell development

MTSS1 Actin binding Plasma membrane organization, cell 
adhesion, transmembrane receptor 
protein tyrosine kinase signaling 
pathway

Gene
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CACNG8 may be an interesting gene due to its role in glutamate receptors. The gene has been 
linked to schizophrenia before, and it ”regulates the trafficking and gating properties” of α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (UniProt n.d.). 
Multiple studies have linked abnormal regulation of AMPA receptors to schizophrenia 
(Drummond et al. 2013; Tucholski et al. 2013), and more specifically linking down-
regulation of CACNG8 to schizophrenia (Drummond et al. 2013), which is consistent with the 
result in this project. KDM4C plays a role in the process of demethylation and has been linked 
to schizophrenia (Schmidt-Kastner et al. 2012), but also to alcohol withdrawal symptoms 
(Wang et al. 2012) and autism (Kantojärvi et al. 2010).  

RTN4 was a prominent gene in the classification model for the CASE class. The gene codes 
for the protein Nogo-A which is important for neurite facilitation. One study by Novak et al. 
(2002) reported to be over-expressed in schizophrenic patients, which is in contradiction to 
our finding. However, multiple studies have failed to replicate this association (Takahashi et 
al. 2011). Gardiner et al. (2013) suggested a down-regulation of CD6, a gene involved in T-
cell regulation, in a gene expression study of whole blood. In this project, an over-expression 
was noted in CASE class. However, the gene expression was measured from different sources, 
i.e. brain versus blood, and thus might not be comparable (see 5.2.1 Data Set for further 
discussion). Nevertheless, one review (Horváth & Mirnics 2014) suggests that ”immune 
system activation plays an important role in developing schizophrenia” as well as ”immune 

OSBPL8 Lipid transporter involved in lipid 
countertransport between the 
endoplasmic reticulum and the plasma 
membrane, phosphatidylserine binding

Lipid transport, activation of protein 
kinase B activity

RTN4 (Nogo 
Protein)

Induces the formation and stabilization 
of endoplasmic reticulum (ER) tubules, 
developmental neurite growth 
regulatory factor 

RNA binding, protein binding

SCPEP1 
(SCP1)

Serine-type carboxypeptidase activity Proteolysis, negative regulation of 
blood pressure

SLC22A18AS Antisense to SLC22A18 —

TERT Telomerase activity Telomere maintenance

TNFRSF9 Receptor for TNFSF9/4-1BBL, 
possibly active during T cell activation

Apoptotic process, negative regulation 
of cell proliferation

ZNF343 May be involved in transcriptional 
regulation, DNA binding, protein 
binding

Regulation of transcription, DNA-
templated

Molecular function Biological processesGene
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system activation is persistent throughout the disease.” The gene ATF3 is another gene which 
one study had the opposite gene expression level compared to these findings. In this project, 
the gene was shown to be down-regulated or no-change in case samples, but in a study by 
Drexhage et al. (2010) from monocyte samples, the gene was up-regulated in both 
schizophrenic patients and patients with bipolar disorder.  

In the literature review of the genes, some genes were not directly associated to schizophrenia 
or bipolar disorder, however they do have some interesting connections. The gene ANTXR1 
might be of interest. In the rules for the control group it was marked as no-change, however in 
the top rules for CASE it was always down-regulated. This is interesting due to its possible 
relationship to the gene ZNF804A, a gene commonly associated with schizophrenia (Riley, 
2010). When ZNF804A was knocked out (Hill 2011), ANTXR1 was found to be down-
regulated. If the gene ZNF804A is impaired in schizophrenic patients, this could affect the 
expression of ANTXR1, which is consistent with the results in this project. TERT is a widely 
studied gene for its role in telomere maintenance, and a study by Kao et al. (2008) found a 
significant telomere loss in patients with schizophrenia compared to control (accounting for 
age and sex), however this may also be caused by stress which is also linked to schizophrenia. 
The gene OSBPL8 was shown in this project to be under-expressed in controls compared to 
case samples. One study (Thomas et al. 2003) measured the expression of this gene (among 
others) in mouse striatum and frontal cortex in response to antipsychotic drugs, and found that 
the effect was an up-regulation of OSBPL8. If some of the patients were taking similar 
antipsychotics in our data set this could explain the lower level in control. However, it is 
worth noting that antipsychotics may look different today. 

As can be seen in the networks (see Figure 12-14), some genes indeed seem to be 
interdependent of each other (such as CNKSR4 and KDM4C in CASE). However, at this point 
it is difficult to say what this implies regarding true biological interaction, as more analysis 
and/or experimental validation would be needed. 

5.1.3  Multi-Omics 
As described in the background, other studies and projects which performed a feature 
selection on an unbalanced data set (in terms of number of features from each omics type) got 
a heavily unbalanced feature set after the feature selection. To account for this, MI was used 
such that the number of methylation sites and SNPs were the same before running MCFS on 
the joint data. However, even after this attempt, the number of methylation sites was 
overrepresented compared to the number of SNPs (3,116 and 337 respectively). This may 
suggest that the information of methylation sites, at least in this data set, is stronger than the 
information from SNPs.  
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However, since the result from MCFS on the joint methylation and SNP data was used to 
select genes to analyze gene expression data, and since the pathways and genes extracted were 
promising in terms of association to major psychosis, we can see that the methylation sites 
and SNPs indeed did affect the gene expression. This indicates that meaningful information 
can be found using a multi-omics approach. This approach was relatively straightforward and 
simple to implement, but further adjustments may be needed. Thanks to the machine learning 
techniques used the result was also interpretable, since each gene in the final model had an 
associated important methylation site or SNP. In multi-omics, it may be a challenge to 
combine uneven cohort sizes. An advantage of using the methylation and SNP data as 
selection of genes in the manner of this pipeline is that it allows for different sample sizes. 
The sample sizes for the methylation and SNP data analyses were larger than for gene 
expression data, with 82 and 34 samples respectively, and by using the larger cohort for the 
first selection of features, the higher statistical power could be translated to the smaller data. 

The pipeline is a mix of parallel multi-omics integration (methylation and SNP) and 
sequential. There is a risk that some information is lost by performing this sequential 
integration, since it works if there is indeed a clear causal effect between the omics layers. 
Genes that are not significantly expressed in the post-mortem tissue would be neglected 
despite having important methylation or SNP signal, and similarly genes that might be 
differentially expressed but with a weaker methylation or SNP signal would also be excluded. 
However, if only methylation and SNP data were analysed, we would not get information 
regarding the genes involved, which would be of interest for treatment development. 
However, only including gene expression would limit the analysis in other ways, since that 
would focus on the effect and not the cause. Analyzing all three types simultaneously would 
lead to a loss of information, since only the samples present in all types could be included, 
with gene expression limiting the number of samples to 34 instead of 82. In this project we 
were primarily interested in finding interesting genes from the approach of multiple omics 
types, such that the genes in the final model were both relevant from their methylation or SNP 
data, and from the gene expression data. Some improvements to the pipeline are still needed, 
and in order to get a fuller picture of the disorders attempts should be made to account for the 
lack of SNPs in the final selection. 

5.2  Reliability of Results 

Given the complexity of the disorders of interest, it is important to consider which factors 
could affect the quality of result. As mentioned in 4.7 Classification Models, the accuracy of 
the rule-based classification model was ~88.2%, indicating a strong predictive power given 
the gene expression data. Based on the gene enrichment analysis, the fact that multiple of the 
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important genes seem to have a logical connection to the disorders is promising, as well as the 
results from the literature search. 

5.2.1  Data Set 
The main limitation in terms of statistical power is the size of the data. For the DNA 
methylation and SNP data the sample size were 82 samples, while for gene expression the 
sample size was 34 samples. In the earlier stages of this project, attempts were made to find 
other data sets, however, the fact that the data set from Pai et al. (2019) consisted of multi-
omics data from the same cohort was an advantage compared to data sets with larger cohorts. 
Another key aspect of this data set was that the samples were taken from brain tissue, while 
most of the larger studies use blood samples since it is easier to obtain.  

The clinical data from Pai et al. (2019) also consisted of information regarding lifestyle 
factors such as the usage of antipsychotics and smoking status. In the paper, the authors found 
that after accounting for these covariates for the methylation sites on the IGF2 locus it still 
remained significantly hypomethylated. This type of analysis was not performed on the main 
genes from the analysis of this project, and given that the expression of some genes (as 
mentioned in 5.1.2 Gene Expression) were affected by antipsychotics, it is possible these 
covariates would have an effect on the expression. To improve this project one such analysis 
might be beneficial. One study (Kumarasinghe et al. 2013) compared the gene expression 
level in peripheral blood of 10 patients before and after six weeks of antipsychotic medication 
treatment to 11 controls. The authors found that 624 genes were differentially expressed 
before treatment and 67 after treatment, suggesting that the majority of genes are expressed 
similar to control after using antipsychotics. The implication of this is that antipsychotic 
treatment could potentially have an effect on this study, since not all patients were undergoing 
antipsychotic treatment. However, this study should be viewed with caution, due to the small 
sample size. 

Another issue inherent to the disorders studied is the risk of diagnostic errors. There are 
multiple studies suggesting a risk of misdiagnosis. One study (Goldberg et al. 2008) found 
that only 33% of patients (28/85) with substance use disorder (SUD) that had been diagnosed 
with bipolar disorder actually met the Diagnostic and Statistical Manual of Mental Disorders-
IV (DSM-IV) criteria. In another study by Ruggero et al. (2010), the authors found that 
patients with borderline personality disorder (BPD) in 40% of cases had previously been 
misdiagnosed with bipolar disorder, and a review of misdiagnosis of bipolar disorder by Singh 
and Rajput (2006) found that bipolar disorder had a high comorbidity of other diagnosis such 
as alcohol abuse or panic disorders. Finally, two surveys from 1994 (Lish et al. 1994) and 
2000 (Hirschfeld et al. 2003) found that 73% (363/500) and 69% (414/600) respectively had 
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been misdiagnosed before getting the diagnosis of bipolar disorder. The brain samples were 
collected from different brain tissue banks where the diagnoses of the individuals were 
recorded. While it is difficult to adress this issue from a bioinformatics standpoint, it could 
still pose as a possible source of error. 

Several genes from the model have been mentioned in the scientific literature in the context of 
mental disorders, however for some genes the expression levels were contradictory to the  
results in this project. One possible explanation for this is the type of sample the gene 
expression levels were measured in. The studies mentioned mostly use peripheral blood 
instead of brain tissue since it is easier to obtain (and thus have a larger sample size), but the 
expression of genes can differ between these sample types. Furthermore, considering the fact 
that the disorders studied are in fact mental disorders, with symtoms presented in the brain, it 
can be argued that in terms of reliability brain tissue may contain more important information 
in terms of understanding the underlying biology. Another difference to other studies is that 
this considered data from individuals with schizophrenia or bipolar disorder as one class, so if 
a gene is up-regulated in one subgroup but not the other it would affect the overall 
importance. In other words, this would explain why some common genes associated to the 
disorders separately does not appear as important for both.  

5.2.2  Comparison to Original Paper 
The main focus of the study by Pai et al. (2019) was the gene IGF2 and the fact that it was 
hypomethylated. In the 3,453 most important methylation sites and SNPs, sites from IGF2 
were indeed included. One aspect that may affect these results is that the authors excluded 
genes that encoded synaptic proteins given that a loss in synaptic density characterizes major 
psychosis. This step was not included in this project, which may explain why functional 
enrichment analysis still included some of these functions. However, since none of the top 19 
genes were included in those pathways, we could still find novel information which made 
biological sense. Some attempts were made in this project to improve aspects of the original 
paper, such combining the technical replicates instead of choosing the first replicate, or 
attempt to adjust for sex-based batch affect (although, as mentioned, batch effect might still be 
present even though it is not clear from the first principal component). Nevertheless, it is 
difficult to compare two projects with different aims, since we focused on finding genes of 
interest (which is feasible in a computer driven approach) while the original study focused on 
IGF2 (due to conducting wet-lab experiments as well).  
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5.3  Challenges 

The first main obstacle of this project was the large number of features. It became apparent 
quite early that performing MCFS on the full data set of methylation sites and SNPs (which 
amounted to more than 1,000,000 sites) was not feasible, both in terms of computational time 
and restrictions (such as memory). The balance in this part was to make the computation 
possible with the given time and resources while including as many features as possible since 
measures such as MI does not take interdependencies of features into consideration. MI 
filtration was very fast, and while there was some risk of loss of interdependencies it allowed 
for MCFS to run in a viable timeframe.  

After MCFS, the top features were relatively homogenous comparing case to control. In a 
scenario where genes have clear correlations to the corresponding class, each feature should 
contain variability of decision classes and the decision classes should have different states of 
methylation or SNPs between them. In the case of the top methylation sites and SNPs, the 
distribution was quite homogenous. For example, the methylation site cg01932551 had 
perhaps a fourth of case samples methylated and the rest indecisive, while for control all was 
indecisive (see Figure 7). To account for this, an additional entropy filtration step was tested 
before MCFS. However, the issue still remained (see Appendix C), indicating an inherent 
nature of the data. To asses this further, when compared to the methylation sites for IGF2 that 
Pai et al. (2019) assessed to be significantly differentially methylated a similar pattern could 
be seen (see Figure 8). Given the complex nature of schizophrenia and bipolar disorder, the 
relative homogeneity of methylation levels or SNP variants is still reasonable. Another 
motivation against implementing an entropy filtration would be that it likewise to MI does not 
take interdependencies into consideration, and more than that: does not take class into 
consideration.  

5.4  Future Improvements 

A larger cohort of the same nature as this data would provide a greater statistical power and 
perhaps lead to more meaningful interpretations. However, brain tissue is more difficult to 
obtain than for example peripheral blood, so this is still a limitation. An external data set for 
validation would be important as well. Since the patients with schizophrenia and bipolar 
disorder were grouped together as CASE, a group analysis would reveal whether the genes 
were more relevant in one disease than another, as well as which genes the subgroups had in 
common. It would also be important to check whether the methylation sites that were used as 
selection for the top genes were located in an enhancer-region. When all other components 
have been developed, an important next step would be to test the novel genes of interest in 
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wet-lab experiments to check for biological validity, for example by knocking down genes of 
interest. Some interdependencies were noted in this project, and to further analyze this it 
would be interesting to estimate correlation between the pairs and then perform Hi-C analysis, 
which is a method that indicates long range interactions between genomic regions which 
occurs due to chromosomal folding. Another aspect that could be interesting to examine is to 
develop a classifier model using the most important methylation sites and SNPs, however we 
are more interested in the information that is found from all three omics layers with the aim of 
a more holistic view of the complex biology of the disorders. 
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6  Conclusion 

In this project a multi-omics pipeline was designed, which yielded both established and novel 
genes, and possible co-prediction mechanisms between them, that may play a role in the 
complex context of psychosis. The genes CACNG8, RTN4, TERT, OSBPL8, and ANTXR1 are 
of particular interest in the context of schizophrenia and bipolar disorder, however if these are 
due to the inherent characteristics of the disorders or environmental factors such as 
antipsychotic usage or stress needs further analysis. Strong co-dependencies were found, most 
notable between CNKSR4 and KDM4C in CASE samples, however further analysis would be 
needed to conclude whether or not they are interacting. The multi-omics pipeline designed in 
this project is straightforward to implement and the approach can be used for cohorts of 
different sizes between the omics types. Finally, this lead to results with meaningful biological 
information, however more approaches need to be tested to see if each type of omics-data can 
be represented in the final model. 

To conclude, in this project multiple interesting genes and co-dependencies were found, a 
multi-omics pipeline which takes different sample sizes into consideration was developed, 
and finally a rule-based classifier was developed which had high accuracy and legible rules. 
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Appendix A 

 
Figure 1. PCA of methylation data. Left is for full data set, right is after excluding sites from X and Y chromosome. 
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Appendix B 

• affy 
• arules 
• biomaRt 
• data.table 
• edgeR 
• GEOquery 
• ggfortify 
• gmodels 
• ggpubr 
• gridExtra 
• HardyWeinberg 
• infotheo 
• modeest 
• plyr 
• psygenet2r 
• rmcfs 
• R.ROSETTA 
• sva 
• tidyverse 
• VisuNet 
• xlsx 
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Appendix C 

 

Figure 1. ID graph of top 10 nodes from MCFS. 

   

    
Figure 2. Pie charts of top 4 sites from MCFS. ”m” means methylated, ”id” indecisive, ”um” unmethylated.
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