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Abstract

In the present paper, we develop a local meshless procedure for solving a steady state two-
dimensional interface problem having discontinuous coeflicients and curved interfaces with
sharp corners. The proposed local meshless methods are based on three types of radial basis
functions (RBFs): a local meshless method based on multiquadric RBF (LMMI1P), a lo-
cal meshless method based on integrated multiquadric RBF (LMM2P) and a local meshless
method based on hybrid Gaussian-Cubic RBF (LMM3P). Stencils are designed at the interface
and interior regions to cope with discontinuities and sharp corners. Due to the localized na-
ture of the procedure and a sparse matrix representation, the local meshless methods become
computationally less expensive than global meshless methods. The methods are augmented
with linear polynomial to improve accuracy and ensure stable computation. Comparison with
some existing versions of finite element methods is also performed to show better accuracy of
the proposed meshless methods. Accuracies of the proposed local meshless methods are also
compared among themselves. Flexibility of the meshless methods with respect to complex
geometries, adapting to different shapes of the interfaces and selection of the shape parameter
is also considered.

Keywords: Local meshless method, radial basis functions, elliptic interface
model, sharp-edged interface, sparse matrix, collocation

1 Introduction

Purpose built accurate numerical methods for Poisson-Boltzmann type of PDEs with non-smooth
interfaces or interfaces with Lipschitz continuity are required due non-availability of closed form
solution. These PDEs are important from solution point of view due to their essential role in
mathematical modelling of many physical situations. Such models contain geometric singular-
ities in the form of cusps and self-intersecting surfaces, thus creating accuracy issues for many
numerical methods. Geometric singularities lead to so-called solution singularities. In some sit-
uations, electric field is singular in the vicinity of geometric singularities as observed at tips of
electrodes and at sharp edges of planar conductors [1]. Numerical solution of elliptic PDEs with
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discontinuous coefficients, representing non-smooth interfaces, are challenging problems and their
applications can be found in many areas of science and engineering [2], such as wave-guides anal-
ysis [3], plasma-surface interaction [4], turbulent-flow [5], friction modelling and electromagnetic
wave scattering and propagation [6,7].

In the present work, we consider a two-dimensional steady state interface problem, where
the interfaces have sharp corners and the coefficients may be discontinuous. The model under
consideration to be solved numerically is of the form

V- (p1Vv1) + kivy = f1, in Qy, (1a
V - (82Vv2) + kova = fo, in Qo, (
vy =h, on IQ\T,

U2 — V1 =41, on Fa

(
(
p2Vug -ng — f1Vor -mp = g2, on T, (
(
where v1 = vi(x,y) and vy = va(z,y), g1 = g1(x,y) and g2 = g2(z,y), n; and ny are the outward
normals of the domains 21 and s respectively, such that 2 = Q7 Uy and I' = 1 N Qs. Such
type of models has wide applications in fluid mechanics, material science, electromagnetic wave
propagation and biological sciences [8]. The additional interface conditions (1d) and (le) need
to be enforced in order to accurately solve the given elliptic interface problem. Appropriate
numerical treatment of the interface conditions is essential, otherwise, the errors would grow
substantially, causing an invalid solution [9].

Some technical contributions towards the numerical solution of parabolic and elliptic PDEs
related to diffusive transport processes in the interface embedded domains have been reported
in [8,10-19] and the references therein. Methodologies reported in these papers are the different
variants of either FEM or FDM with a purpose built treatment for the interfaces during the design
of the algorithm in the form of an interface fitted mesh, cut finite elements or immersed finite
element methods. Despite huge successes offered by these methods and allied remedial measures,
the classical numerical methods still encounter difficulties while dealing with discontinuities or
sharp interface corners, due non-coincidence of the interfaces with the original computational
mesh edges. Re-meshing procedures, which is one of the remedies, are costly and non-trivial for
two- and three-dimensional PDEs.

As a matter of fact, the gradient is not well defined near the tips of sharp interface corners
and some earlier interface methods might not work in this context [2]. Finite element methods
can become costly memory-wise due to the requirement of local mesh refinement in the vicinity
of sharp corners [20]. Also, local mesh refinement does not produce good accuracy when the
solution is highly oscillatory as witnessed in electromagnetic wave scattering and propagation [21],
vibration analysis of engineering structures, and shock-vortex interactions in compressible fluid
flows. It is truly difficult to design high order converging interface schemes for arbitrarily complex
interface geometries [1]. A finite element formulation reported in [22] was designed for solving
elliptic PDEs with sharp-edged interfaces, while attaining about 0.8th order convergence on non-
body fitted grids.

These challenges have motivated us to explore the rich dynamics of the meshless methods
as an alternate numerical method in the context of PDEs with interface conditions. Recently,
great attention has been paid to different types of (localized) meshless approximations used for
numerical solution of PDEs and integral equations due to some inherent advantages. The prime
distinction among these is the ability of meshless methods to adapt the stencils to approximate



local behaviour and tackle difficulties caused by the interface conditions. This can be achieved by
the meshless methods without re-meshing coupled with flexibility with respect to the geometry
and ease of extension to higher dimensions. Unlike the conventional methods, meshless methods
can cope with scattered data and irregular geometries should the need arise. Meshless methods
based on differential quadrature [23] (also known as RBF-FD methods) with global integrated
RBF's and ordinary RBFs have recently been used in [24-27] for numerical solution of steady and
unsteady interface PDEs in irregular domain settings (see also [28]).

In the construction of strong form meshless approximations, RBF's can be used both globally
and locally. Localized meshless approximations using RBFs is preferred due to computational
advantages such as almost banded /sparse matrix representation and less sensitivity to the shape
parameter. Unlike the global meshless formulation, the stencils weights in the local meshless
strong formulation are determined by inversion of small well-conditioned matrices, there is the
involvement of a large differential quadrature matrix when the undelying PDE is elliptic type.
Another benefit of the localized methods is the flexibility of the stencil selection and the nodal
point selection to improve accuracy of the method. For instance, nodes can be used in the local
support domain on the upwind side to obtain a physically viable solution in the case of some
boundary layer problems and convection-dominated PDEs [23,29-31].

Unlike the local meshless methods based on RBFs, the shape parameter deeply affects the
accuracy of the global meshless RBF-based methods. Sensitivity of the local RBF methods to
the shape parameter is comparatively lower than the sensitivity to the shape parameter of the
global counterpart, and hence more caution is needed while employing global RBF's for numerical
approximation of PDEs. Generally, we do not have both good accuracy and well-conditioning
simultaneously in the RBF approximation methods [32]. This situation arises partly because of
the lack of theoretical frameworks for adjusting the shape parameter value with respect to accu-
racy and stability of the numerical method while using shape parameter-dependent RBFs. Many
researchers have proposed different algorithms for finding relatively optimal shape parameter val-
ues. For more details the reader is referred to [33-40] and the references therein. Alternatively, a
stable evaluation method can be used, that eliminates sensitivity to the shape parameter [41-45].
Common for these stable methods is that the stability comes with an increase in computational
cost.

It has been found in previously reported work that performance of integrated RBF's [24,27,33]
is better than that of conventional RBFs in terms of accuracy, computational stability, and
sensitivity to the shape parameter. Due to use of the integrated RBF-based meshless methods,
an inherent disadvantage of ill-conditioning of the global meshless methods is minimized up to
some extent, but cannot be eliminated completely due to the large size of the coefficient matrix.

Recently, a hybrid Gaussian-cubic RBF was proposed [46] to reduce the ill-conditioning prob-
lem in RBF approximation and obtain better convergence in the case of single phase PDEs. The
basic idea behind such a hybridization is to obtain an RBF which utilizes merits of the two differ-
ent types of RBFs, while compensating for the limitations of each, and keeping the formulation
of a standard RBF method.

In this paper, we propose a comparatively stable local differential quadrature meshless pro-
cedure using a subdomain having 55 points, instead of the whole domain. We have utilize both
integrated RBF [24,27,33] and hybrid RBF [46] in the local setting. The RBFs are augmented
with a linear polynomial on both uniform and scattered nodes. The local meshless differential
quadrature procedure is employed on given stencils at the interface, interior and outer boundary
regions. The meshless method with different RBFs is tested on challenging problems having
geometric singularity, oscillatory behaviour in the domains and interfaces having sharp corners.



Accuracies of the meshless methods are tested and compared for different test problems. To the
best of our knowledge, such a study has not been carried out before.

2 Numerical method

In this section we describe the types of RBFs used for approximation, the stencil design at the
interface, the node generation, the overall construction of the meshless method on the overlapping
small stencils and the different types of interfaces.

2.1 Radial basis functions

In the RBF approximation process, the basis function ¢(r) used in the approximation is dependent
on some given norm of the form r = |& — ;|| for some nodal point x;. Generally, RBFs can
be categorized into three main classes. Firstly, compactly supported and finitely smooth RBFs.
Secondly, finitely smooth global RBFs, and thirdly infinitely differentiable global RBFs with a
free shape parameter such as the multiquadric (MQ) RBF. The MQ RBF has been very popular
in applications due to its comparatively robust behaviour in relation to the shape parameter.

The MQ RBF is defined as
¢1(r) = V1 + (er)? (2)

where 7 = || - ||2 is the Euclidean norm, and ¢ is the shape parameter, which controls the shape
of the function. Similarly, the six times integrated MQ RBF with respect to r is given below [33]

pa(r) = WQM + (er)2 {40(er) — 1518(er)* + 1779(er)* — 128}
+ 105¢r sinh~* (er) {8(er)* — 20(er)® + 5} ), (3)

where € is the shape parameter.

A detailed discussion about the integrated MQ RBF (3) and other integrated forms of RBF's
can be found in [33]. Meshless methods based on the RBF (3) are generally poorly conditioned
for small values of the shape parameter ¢ but for smooth functions, most accurate as well. As
reported in [24, 33|, accuracy-wise performance of the integrated RBF (3) is better than the
conventional RBF (2) over a wide range of shape parameters values. Though the integrated
MQ RBF (3) is comparatively less sensitive to the shape parameter than MQ RBF (2), the ill-
conditioning cannot be completely decoupled from the approximation procedure due to large size
global matrix.

We use the localized versions of both the integrated MQ RBF (3) and the conventional MQ
RBF (2) for the construction of the proposed meshless procedure. This alteration in the method
pays dividends in terms of a well conditioned matrix, and reasonable accuracy and efficiency,
versus the global RBF methods and FEM. We also use the localized version of the recently
reported hybrid Gaussian-Cubic RBF [46] for the numerical solution of the interface PDEs in
localized setting.

The hybrid RBF has shown promising convergence properties for the numerical solution of
PDE models having no interface conditions (single phase phenomenon) in the recent reported
work [46]. We localize the hybrid RBF and appended a linear polynomial. As a result, the hybrid
RBF performs comparatively better in the context of interface problems. The hybrid RBF in the
form of Gaussian and cubic RBFs is given as

¢3(r) = exp(—(er)?) + 71’ (4)
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Figure 1: Surface plots of the Multiquadric (2), integrated Multiquadric (3) and Hybrid (4) RBF,
respectively. (For interpretation of the colours in the figure(s), the reader is referred to the web
version of this article.)
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Figure 2: The domain (2, its subregions 2; and €, the domain boundary 92 and the interface I.

The hybrid RBF has two parameters € and -, which control accuracy and stability of the
meshless method. Surface plots of Multiquadric, integrated Multiquadric and hybrid RBFs are
given in Fig. 1, which reveal the radial symmetry of the basis functions.

2.2 The local meshless method

The local meshless differential quadrature procedure, also known as the RBF-FD method is im-
plemented on local stencils defined over uniform and scattered nodal points. For two-dimensional
steady state interface PDEs, we sub-divide the set of nodes x; = (x;,v;), ¢ = 1,..., N in the
computational domain into the following subsets (see Fig. 2):

51 = {wl € 89}7
52 = {xl € Ql}?
£ — {w € T, ®)
54 = {mz € QQ}.

The nodal points N,,, m = 1,2, 3,4, follow the natural ordering of the sets §,,, such that N; +
No + N3 + Ny = N. We further assume that all these subsets are non-empty. In the proposed



meshless procedure, we select a set of nearest points for each given centre x;, j = 1,..., N, with
respect to the Euclidean norm, after arranging the nodes in ascending order with respect to their
distance from the centre.

The basic step of RBF-based differential quadrature interpolation is to approximate deriva-
tives of the unknown functions v; at a node point x; € &, using function values in the neighbouring
points belonging to the local stencil defined around x; (see Fig. 3). We introduce a local ordering

such that xy/, ¥ = 1,...,n, belong to the stencil around x; of size n. Also let a = (a1, ), and
(a1 +ag)
introduce the notation UZ-( o = g?v“lw Then
n
o () ~ 3 ADvi(aw) + G+ G + Gy, (6)
k'=1

with the constraints "

S = 3 Ao = 3 e =0

k'=1 k'=1 k'=1

where )\;2‘,), (1, (2 and (3 are coefficients to determine. We do this by requiring the approxima-
tion (6) to be exact at x; for each of the radial basis functions centred at the stencil node points.
This leads to the following set of equations

¢(a '17] Z )\]k’ ¢z (ZBk/) + Cl + CZJI‘k:’ + Cdyk:’ 7;/ = ]-a RN [ (7)
k'=1
Z Mgl = Z Nidaw = 3 N2 yw =0, (8)
k'=1 k'=1 k'=1

where ¢;(x;) = ¢(||z; — zj||2). We can write this as the following linear system for the stencil
weights:

AN = ), )
where the matrix
Al; P;
Aj - |:P’]2 0]:| )
j
Al;j has elements ayp = ¢y (zpr), U/, k' =1,...,n,
1 1 1 ... 1
P?: r1 T2 X3 ... Tnp|,
Yy Y2 Ys ... Yn

and the vector A\ = (AP, A ¢ o, )T, and 9\ = (91, 6%, 0,0,0)T. Note that
the local indexing associated with the stencil is used here. A hnear system of the type above
needs to be solved for each derivative operator and each node point. The matrices A; are non-
singular for some choices of RBFs including the MQ RBF, as long as the involved node points
are distinct. We can therefore safely express the weights as

Al = Artgl), (10)
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Figure 3: Selection of stencils in the subregions 1, s, 002 and the interface I.

We can now use these expressions to construct weights that represent the whole PDE operator
defined in equations (la)—(1b)

O = B (APY £ APD) 4 gAY gODAOD ey, 1= 1,2, (1)

where e; is the vector with one in the first position and zeros otherwise. Similarly, we can define
weights for the derivative operators in the interface conditions as

AP — g, (A(“’)n + A0y ) 1=1,2, (12)

where the unit normal vector n; = (ng, ny).

When we assemble the global matrix, we form one equation for each node point x; in the
domain. We compute the local stencil weights associated with the node point and combine
them into the desired operator. Then we need to convert the local indices ¥’ = 1,...,n to
the corresponding locations in the global vector of unknowns, and then place the weights in
the correct columns of the matrix. To illustrate the structure of the global matrix, we divide
the contributions into blocks. Let B, be the part of the assembled PDE operator with weights
from (11) with rows corresponding to centre nodes x; € £ ¢ and columns corresponding to weights
applied to function values in nodes xj, € §,.. Similarly, the matrix block C, corresponds to the
interface operator with weights from (12). If we let Ij represents the unit matrix of size k, and
let blocks with zeros be of appropriate sizes, we can write the global system of equations as

[In, O 0 0 0 1 [vi(é1)] h(&;) |

By By By 0 0 v1(&2) f1(&2)
0 0 IN3 _IN3 0 U1(€3) = 91(53) (13)
0 C3 Csz3 —Csz3 —Csy| |v2(€3) g2(&3)

| 0 0 0 Bys By | |v2 (54)_ f2 (54)_

The global coefficient matrix of the system (13) is sparse and non-symmetric, with n non-
zero elements per row for equations corresponding to interior node points, and with 2n non-zero
elements in the rows corresponding to the derivative interface conditions. This greatly reduces
the computational cost compared to the global meshless method. The system of linear equations
can be solved by a direct method or by an iterative method.



3 Numerical results and discussion

In this section, the proposed local meshless methods are tested for accuracy on a range of two-
dimensional elliptic interface problems for the interface boundaries shown in Table 1. The nota-
tion LMM1P is used for the local meshless method based on the ¢y RBF, LMM2P for the local
meshless method based on the ¢o RBF and LMM3P for the local meshless method based on the
¢3 RBF. We augmented each the respective RBF with a linear polynomial. Both uniform and
scattered nodes are considered for the test Problem 1, 2, 3, 4 and 9 for the purpose of comparisons
with the published work. In the test Problems 5, 6, 7, and 8, where there is no comparison, only
scattered nodes are used.

To generate a set of scattered node, we first select a global approximate nodal distance
h. Afterwards, we place the nodes uniformly on each segment of the outer boundary and the
interface. In this way, we make sure the placement of nodes at all corner points. The subdomains
Qy and Q9 are initially filled with nodes using node placing algorithm described in [47]. The
nodes that are closer than h/4 to the boundary or interface are pruned, and then finally a few
iterations of an electrostatic node repulsion algorithm are applied to the interior nodes in each
subdomain, while the boundary and interface nodes stay fixed. Examples of the generated node
distributions are shown in Fig. 4 (having h = 0.06). In case of the uniform rectangular nodes,
the nodal distance h is defined as 2/N,, where N, is the total number of nodes on z-axis. Since
the unit normal vectors of the nodes lying on the sharp corners are undefined, therefore, the unit
normal vectors of the adjacent immediate neighbour nodes are considered.

The right hand side of (1) and other necessary information are taken from the exact solution
given in each benchmark problem. The number of points in each local support domain is kept
fixed at n = 55. Value of the shape parameter in the method LMMZ2P is kept fixed at 6, while in
the methods LMM1P and LMM3P its value is kept fixed at 2 unless stated otherwise. Similarly,
coefficient ~ of the cubic spline in (4) is taken 1075.

For test Problem 1, sensitivity of all the methods versus the shape parameter is also inves-
tigated in the interval € € [0.5,7]. Different types of interfaces with sharp corners are shown in
Table 1 and Fig. 4 together with the layout of scattered nodes. The values of k1 = ko = 0 are
used for all the test problems except the test problem 8, where the non-zero values are mentioned.

Surface plots of the numerical solution obtained through the LMM2P are shown for each
benchmark problems. We do not include surface plots for the methods, since they are qualitatively
similar. For the error measurements, L., error norm is used. All the numerical experiments are
performed on a Laptop Intel Core 17 with 8 GB RAM.

Test Problem 1 ( [16]). We consider elliptic interface problem (1) with a Star-shaped interface.
Such type of interface has a geometric singularity. It is important to know, whether the local
meshless methods can handle complex and non-smooth interfaces on uniform or scattered nodes
accurately. For this we let [16]

/B— 1 in Ql,
| 24+sin(z+y) in Q.



Table 1: The equations describing the (non-smooth) interface curves.
Type of interface | Equation

Star [16] x = rcos(f),
y = rsin(6),
where
Rsin(0;/2 .
r= Sin(f’t/2+gs—"é9—t§<%i—1W5>’ if 0, + (20; — 2)7/5 < 0 < 0, + (20; — 1)7/5,
28 _
r= sin(Gt/2—0—s}—lgr—|f2(0i—1)7r/5)’ if 0, + (20; — 3)m/5 < 0 < 6r + (20; — 2)7/5,

R=6/7,0,=1/5, 0, :7r/7 and 0; = 1,2,3,4,5
Half lemniscate | z = 1.2cos(26) cos(f) + 1,
y=1. 2008(20) sin(f), 3m/4<6<5n/4

Astroid x = 0.65cos>(0),

y = 0.65 sin® @), 0<0<2nm
Deltoid x = 0.3(2cos(f) + cos(20)),

y = 0.3(2sin(f) —sin(260)), 0<6 <27
Hypocycloid x = 0.06(8 cos(0) + 2 cos(46)),

y = 0.06(8sin(f) — 2sin(40)), 0<60 <27
Epicycloid x = 0.05(9 cos(0) + cos(90)),

y = 0.05(9sin(f) —sin(90)), 0<6 <27

sesesste

0

Deltoid Hypocycloid Epicycloid

Figure 4: The computational domains with sample node distributions for different interface
shapes given in Table 1.



Table 2: Comparison of the local meshless methods with numerical results in [16] for Test Prob-

lem 1.
N; x Ny, LMMI1P LMM2P LMM3P  Courtesy ( [16])

20 x 20  1.74e—02 4.16e—04 1.00e—02 4.08e—03
40 x 40  1.13e—04 5.75e—06 6.17e—05 1.13e—03
80 x 80  2.0le—05 1.03e—06 1.96e—05 3.12e—04
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Figure 5: Surface plot of the numerical solution for Test Problem 1.

Analytical solution of the problem is given by

8 in Ql,
o(@y) =9 5 5 : (14)
¥+ y* +sin(z +y) in Qo.

Numerical results for test Problem 1 are displayed in Tables 2, Fig. 5 and Fig. 6. Fig. 5 shows
a jump in the numerical solution by LMM2P. N, and N, represent the number of nodes in the
z-direction and y-direction, respectively. Fig. 6 shows a comparison of the proposed meshless
methods on scattered interior nodes as well as on uniform nodes. The number of nodes on the
boundary and on the interface increases while increasing the number of interior nodes. The shape
parameter € is taken 6 in the case of LMM2P and 2 for the methods LMMI1P and LMM3P. In
Table 2, a comparison of accuracy of the methods LMM1P, LMM2P and LMM3P is made with
method [16]. Table 2 shows that the LMM2P performs marginally better due to a higher rate of
convergence, where as performance of the LMM3P is good as well.

From Fig. 6, we can conclude that accuracy of the meshless method LMM2P is better than
the other proposed methods. The numerical solution of the LMM2P converges faster to the
exact solution both on scattered and uniform nodes. The rate of convergence of the LMM2P on
scattered nodes is 3.9 and on uniform nodes it is 5.2. The numerical solutions of the LMM1P and
the LMMS3P are also in good agreement with exact solution on both types of nodal arrangements.
The order of convergence of the LMM1P on scattered nodes is 3.5 and on uniform nodes it is 4.2.
Similarly, the order of convergence of the LMM3P on scattered nodes is 1.4 and in case of uniform
nodes it is 2.9. The condition numbers k of the proposed meshless methods are comparable for
coarser nodes. However, for dense nodes, the condition number of LMMI1P is higher than the

10
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Figure 6: Errors and  as a function of h for Test Problem 1.

methods LMM2P and LMM3P.

We have included two graphs in Fig. 6 for both scattered and uniform nodes showing the
condition numbers of the resulting linear system versus the nodes of the proposed methods. The
condition numbers of the proposed algorithm increase with the increase in the nodal points. The
method LMM3 has comparatively small condition number.

Dependency of the accuracies of the proposed methods on the shape parameter €, when it is
chosen in the interval [1,5], are shown in Fig. 7. The number of scattered points used in this
experiment is 1482. The figure shows an increasing trend in the error with increasing shape
parameter values for all of the methods. The LMMZ2P exhibits comparatively better accuracy for
the given range. A theoretical frame work to find the optimum value of the shape parameter is still
lacking, though there exists some optimization procedure like the one based on the golden search
algorithm [48,49] and some other evolutionary optimization techniques, which are currently in
practice. We did not use them in order to keep the cost of the algorithm low. In contrast to
global meshless methods, shape parameter sensitivity of the proposed local meshless methods is
substantially smaller. When the shape parameter value is changed from 1 to 5, accuracy range
of the LMM1P varies in 1074 to 10~!. Similarly, accuracy wise variation of the LMMZ2P is 10~
to 1077, whereas that of the LMMS3P, accuracy varies in the range 1072 to 10™4

11



10° T T r T v T 1013
—5— LMM1P

—&—LMMIP

102

7
210

10

1 1?5 ; 2.‘5 fli 3?5 1‘1 4.‘5 5 1 1?5 ; 2.‘5 fli 3?5 4‘1 4.‘5 5
Figure 7: Shape parameter dependency investigation for Test Problem 1.

Table 3: Comparison of the local meshless methods with MIB Galerkin [50] for Test Problem 2.
Nz x Ny, LMM1P LMM2P LMM3P  Courtesy ( [50])
20 x 20 11.056 9.857 2.5124 7.25e—01
40 x 40 8.74e—02 2.67e—02 3.0le—01 1.68e—01
80 x 80  8.05e—04 1.74e—04 2.20e—03 4.43e—02

Test Problem 2 ( [50]). We consider the 2D Poisson equation in the domain [—1,1] x [—1,1],
carrying additional challenge of oscillatory behaviour in the outer sub-domain. Discontinuity in
the coefficient is given by
5 in Ql,
-1

3 in Qg.

Analytical solution of the problem is given by
74 22 4 o2 in
oy =4 T oo (15)
sin(37z) sin(37y) in Qo.

MIB Galerkin method [50] has been reported to deal with the numerical solution of the
PDEs with complicated non-smooth interfaces, having partly oscillatory behaviour. The proposed
methods LMM1P, LMM2P, and LMM3P are implemented on uniform nodes for the purpose
of comparison as shown in Table 3. The obvious advantage of the proposed methods is their
flexibility in the selection of the nodes. It is clear from Tables 3 that accuracy-wise performance
of the MIB Galerkin method [50] is lower than that of the proposed local meshless methods. The
methods LMM1P and LMM2P perform better than the other counter part methods.

Surface plot of the numerical solution produced by the method LMM2P is shown in Fig. 8.
Fig. 9 shows a comparison of all the proposed meshless methods LMM1P, LMM2P and LMM3P.
Values of the shape parameter are taken similar to the previous problem. It can be seen from
Fig. 9 that the L., error norm decreases with deceasing nodal distance h, and accuracies of the
proposed methods are comparable for scattered and uniform nodes. In the present problem, the
LMM2P has higher order of convergence than the methods LMMI1P and LMMS3P. Condition
numbers (k) of the LMM3P is better than the LMMI1P and the LMM2P on both type of nodes
as shown in Fig. 9.
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Figure 9: Errors and k as a function of h for Test Problem 2.
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Table 4: Comparison of the local meshless methods with MIB Galerkin [50] for Test Problem 3.

Ny x Ny, LMMI1P LMM2P LMM3P  Courtesy ( [50])
20 x 20 2.80e—02 3.89¢e—02 1.98e—01 7.25e—01
40 x 40 2.73e—03 8.75e—03 5.00e—02 1.68e—01
80 x 80  3.61le—03 1.52e—03 7.10e—03 4.43e—02

=3

=
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0.5 1
o v 05
o

Y]

11

Courtesy ( [50])

LMM2P

Figure 10: Surface plots of the numerical solution for Test Problem 3.

Test Problem 3 ( [50]). We consider a 2D interface Poisson equation in the computational
domain [—1,1] x [—1, 1] having an oscillatory solution in the interior sub-domain. The interface
is a circle of radius r = 2/3. The discontinuous coefficient is given by

2
i1

Analytical solution of the problem is given by

in Ql,

in QQ.

in Ql,

o, y) = {7 + sin(4nz) sin(47y) (16)

5exp(—z? — y?) in Q.

The Lo error norms of the methods LMM1P, LMM2P, LMM3P and MIB Galerkin method [50]
are shown in Tables 4. The methods LMM1P, LMM2P and LMMS3P perform better than MIB
Galerkin method for this test problem. The L., error norms of the methods LMM1P and LMM2P
are slightly better than the LMM3P. Surface plots of the numerical solutions produced by the
LMM2P are shown in Fig. 10. Fig. 11 shows the Lo, error norm and condition numbers & of the
proposed methods versus the scattered nodes. The LMM2P performs better than the methods
LMMI1P and LMMS3P, with 4.7 order of convergence. The orders of convergence of LMM1P and
LMMS3P are approximately same in the present test problem. The condition numbers  of the
proposed methods are comparable in case of coarser scattered nodes, while the condition numbers
of the LMM1P are higher as compared to the LMM2P and the LMMS3P in case of dense scattered
nodes.
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Figure 12: Errors as a function of h for Test Problem 4.

Test Problem 4. In this case, we focus on accuracy-wise performance of the proposed meshless
methods with and without interface conditions. To this end, we undertake a comparison of the
numerical results of Test Problem 1 for the following plain Poisson PDE

V- (BVv)=f, inQ,
where = 2 + sin(z + y) and the function f is obtained from the following analytical solution
v(z,y) = 2° +y° +sin(z +y).

In this test case we want to analyse effects of the interface conditions on accuracy of the
proposed meshless methods. Graphical illustrations are shown in Fig. 12 in terms of L., error
norm versus nodal distance h by taking scattered nodes. It is clear from the graphs that the
numerical solutions produced by the LMM1P and the LMMS3P in the case of elliptic PDE without
interface conditions are slightly accurate than the numerical solutions of the elliptic PDE with
interface conditions.
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Numerical solution of the LMMZ2P is comparable in both cases. The order of convergence of
the LMMZ2P is 4 in both the cases. The order of convergence of the LMM1P and the LMM3P
for PDE without interface conditions is higher than the PDE with interface conditions. Conse-
quently, presence of the interface phenomenon effects accuracy of the meshless methods due to
heterogenous behaviour across the interface.

Test Problem 5 ( [15]). Consider an elliptic interface problem (1) having half of a Lemnis-
cate shaped interface, with one sharp corner of the interface extending to the outer boundary.
Analytical solution of the problem is given by

—y% + ((z — 1) tan(9))%x
B(z,y) ’

1 if (x,y) € Oy,
Blz,y) = :
1000 if (z,y) € Qa.

v(z,y) = (17)

where 8 = 40 and

Surface plots of the numerical solution produced by the LMM2P is shown in Fig. 13. Fig. 14
shows a comparison of the proposed meshless methods. Scattered nodes are used in this case
as well. It can be seen from Fig. 14 that the L., error norm decreases its value in all the
cases. Furthermore, accuracy of the LMMZ2P is better than all the other methods. The orders of
convergence of the methods LMM1P, LMM2P and LMMS3P are shown in the same figure. In the
present case, the order of convergence of the LMM2P is better than the LMM1P and LMM3P.
Condition numbers of the LMM2P and the LMMS3P are comparable, However, for dense nodes,
the condition numbers & of the LMM1P are higher than the LMM2P and the LMM3P.

Test Problem 6 ( [15]). The elliptic interface problem (1) with an Deltoid-like interface structure
is considered. Analytical solution of the problem is given by

224y2)3/2 .
= in

(w2+y2)3/2

v(x,y) =
5 + (é — é)m, in Qo,

where g = 0.5, 1 = 1 and §s = 1000.

Fig. 13 shows the surface plots of the numerical solutions produced by the LMM2P. Fig. 14
shows a comparison of the proposed meshless methods. The LMM2P performs well in the com-
parison. The LMMI1P has the worst performance in both the cases. This could be due the
sensitivity effects of the shape parameter €. The condition numbers x of LMMIP is higher in
case of dense nodes. While, the condition numbers s of the LMM2P and LMM3P are comparable.
The LMM2P has again better order of convergence than the LMM1P and the LMM3P. Lower
accuracy can be related to inappropriate selection of the shape parameter € as shown in the case
of LMMI1P in Fig. 14.

Test Problem 7 ( [15]). The elliptic interface problem (1) with an Astroid-like interface is
considered. Analytical solution of the problem is given by

1 IL‘2 y2
v(@,y) = B(z,y) (0.52 0252 1) ’ (18)

16



102 ‘ . . . N
BER RIS : 58]
—&—LMM1P B b —S5—LMMIP . e a
—#—LMM2P = b

1073

#
_Fag

-8
10
0.02 0.03 0.04 005 006 007 0.08 0.09 01 0.02 0.03 0.04 005 006 0.07 0.08 0.09 01

Figure 14

Figure 15: Surface plot of the numerical solution for Test Problem 7.
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Figure 16: Errors and x as a function of h for Test Problem 7.

where
1+0.5(2% — 2y +y?) if (z,y) € Q,
Bz, y) = :
b if (z,y) € Qa.

Fig. 15 shows the numerical solutions of Test Problem 7 produced by the LMM2P. Fig. 16
shows a comparison of the proposed meshless methods. Scattered nodes are considered in all
the cases. A diffusion coefficient b = 1000 is used. Similar behaviour of the condition number
is observed in the previous experiments. However, the condition number of the LMM3P is
marginally better. Keeping in view the trend of Ly, error norm, the LMM2P converges to the
exact solution with the higher order convergence as compared to the other proposed methods.

Test Problem 8 ( [24]). The elliptic interface problem (1) with a Hypocycloid and Epicycloid
like interfaces is considered. Analytical solution of the problem is given by

exp(a? + y?) if (z,y) € ™
ooy = TP | (19)
0.1(z* +y*)* — 0.01log(2\/2% + y2) if (z,y) € Q.
We choose k1 = ko = 10(z + y) and
1 if (z,y) € Q!
z,Y) = 20
py) {10 if (z,y) € Q% (20

Fig. 17 shows the edges of the Hypocycloid and Epicycloid in the numerical solutions produced
by the LMMZ2P. Fig. 18 shows a comparative performance of the proposed meshless methods.
The LMMZ2P performs well in both cases. The L., error norm of the LMM2P decreases and the
order of convergence of the method is approximately 4.7 in both the cases. For coarser nodes, the
condition numbers of the proposed methods are comparable. But for dense nodes, the condition
numbers of the LMMI1P are higher than the other methods.
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Figure 18: Errors as a function of h for Test Problem 8.

Table 5: Comparison of the local meshless methods with [22] for Test Problem 9.

N, x N, LMMIP LMM2P LMM3P N, x N, Courtesy ( [22])
41 %21 413e—02 2.08¢—02 2.58¢—01 41x21  4.12e—02
81 x 41  8.93¢—03 b5.14e—03 4.54e—03 81x41  2.30e—02
110 x 81 1.65¢—03 2.01e—03 5.03e—04 161 x 81  1.28e—02
161 x 81  2.37e—03 2.12¢—03 9.43e—04 321 x 161 7.02e—03
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Test Problem 9 ( [22]). The elliptic interface problem (1) is considered with the following
parameters and analytical solution

?}(flf y) _ 87 if (.T,y) € Qla (21)
’ (2% +y?)>/0 +sin(z —y), if (z,y) € Q,

and
1’ if (‘T’y) € Ql,

2 +sin(z+y) if (z,y) € Qo.

,B(CU,Z/) - {

The interface is defined as

I, y) y—2x, ifxz+4+y>0,
’ y+05z ifx+y<O0.

As mentioned in [22] that the interface I' is only Lipschitz continuous and has a weak singular
point at (0,0). Also the solution v(z,y) has a weak singularity at (0,0), which coincides with
the interface singular point. Comparison of L., error norms of the methods LMM1P, LMM2P
and LMM3P with [22] are shown in Table 5. Computational domain of the problem is taken
(—1,3) x (—1,1). From the Table 5, it can be seen that accuracies of the methods LMMI1P,
LMM2P and LMM3P in term of L., error norms are comparable with each other and are better
than [22].

4 Conclusion

In the present work, we mainly investigated three types of local meshless differential quadrature
(also called RBF-FD) methods for solving elliptic boundary-value interface problems with closed
interfaces and corners in a square domain. We also augmented the RBFs with a linear polynomial
x+y+1 in the localized domain. Accuracies of the methods are compared with the FEM, reported
in the literature. The proposed meshless methods have dealt with a variety of complicated non-
smooth interfaces through a fairly simple meshless numerical procedure. Validity of the proposed
methods can further be extended to three-dimensional models with complex interfacial dynamics
on non-smooth interfaces. Based on the benchmark tests, we conclude the following outcomes:

e Numerical experiments show that in most cases, performance of the method LMM2P is
better than the methods LMMI1P, LMM3P. Performances of the methods LMMI1P and
LMM3P are comparable to each other.

e Local meshless methods can handle weak geometrical singularities and oscillatory solutions
in the inner and outer interface regions, accurately.

e Local meshless methods lose some accuracy in the presence of interface conditions (see
Fig. 12).

e Local meshless methods perform well both on uniform data and on scattered data. Meshless
methods perform better in terms of accuracy than some of the available methods in the
literature.

e Unlike the conventional methods, the local meshless methods can easily be implemented on
irregular interface geometries
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