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Abstract

In this paper we discuss and display the broad applications of Hermite poly-
nomials in mathematical finance. We will primarily focus on two of the
applications thereof. Firstly, we consider how Hermite polynomials can be
used to approximate the Heston stochastic volatility model [1], which can
be seen in Cheng [2]. Secondly, we examine the manner in which Necula,
Drimus, and Farkas [3] showed how these polynomials can be used to con-
struct a risk-neutral probability density which serves as a generalization of
the Black–Scholes formula [4]. To evaluate the performance of these models
we compared how well they fit to the Heston model and thereafter how they,
along with their more well known counterparts (the Black & Scholes and He-
ston models), fit to Amazon call option data using the trust region reflective
nonlinear least squares and active-set quadratic programming methods. We
analyze how the model accuracy varies using more moments in the Gram-
Charlier approximation of Heston option prices; an approximation derived
from Hermite polynomials whilst taking numerical stability into account. We
also observe how varying the degree of the Hermite polynomial in Necula et.
al.’s risk-neutral density effects the respective model’s ability to fit to option
prices in various settings. We conclude that the Gauss-Hermite risk-neutral
density introduced in Necula, Drimus, and Farkas significantly outperforms
the Gram-Charlier method in the Heston setting in addition to the Black–
Scholes model and has a distinguishable upper hand on the pure Heston
model.



Chapter 1

Introduction

1.1 Background of Hermite Polynomials
Anders Hald gives a rich description of the history behind Hermite polyno-
mials in his paper published in 2000 [5]. According to Hald the emergence of
Hermite polynomials began with Laplace in his 1810 work on the central limit
theorem. Poisson and Bessel in 1829 and 1838 respectively worked in parallel
of Laplace and made major contributions in deriving Gram-Charlier expan-
sions. Independent of Laplace Chebyshev in 1859 was inspired by Fourier’s
representation of an arbitrary function as an infinite trigonometric series and
decided to use polynomials orthogonal with respect to a weight function1 for
the sake of linear/polynomial regression. Upon choosing the weight function
e−x

2 Chebyshev discovers that Hermite polynomials served as the best means
for approximating a function. Hermite (1864) defines these polynomials as:

Definition 1. The physicist Hermite polynomial Hn(x) takes on the follow-
ing form:

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

=

(
2x− d

dx

)n
· 1,

where it can easily be verified that H0(x) = 1, H1(x) = 2x.

In the same paper Hermite discusses the properties of said polynomials
along with the infinite series they entail in approximating functions and re-
marks that they belong to a wide series of expansions that give interpolation

1The polynomials Pn(x) and Pm(x) are said to be orthogonal with respect to a weight
function ξ(x) if.f.

∫∞
−∞ Pn(x)Pm(x)ξ(x)dx = 0.
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formulas derived by the method of least squares. Gnedenko and Kolmogorov
(1954) called these polynomials Chebyshev-Hermite polynomials presumably
not knowing that they originated by Laplace which could serve as an expla-
nation as to why they are most commonly referred to as Hermite polynomials
now. Thiele and Gram were among the first known to apply these polyno-
mials to market and demographic data. Thiele in 1873 and in 1879 Gram
(Jogen Pedersen Gram of whom, along with Carl Charlier, the Gram-Charlier
expansion was named after) introduced the concept of Hermite polynomials
in finance as they believed that the normal distribution did not sufficiently
capture the properties of economic data. Thiele in 1889 proposed the density

g(x) =
1√
2π
e−x

2
∞∑
r=0

crHr(x)

r!
,

however he argues that: "In the majority of its purely mathematical appli-
cations e−πx2 is pereferable (to the Gauss distribution)[...]". However, Thiele
was far ahead of his time as Gram–Charlier expansions do not seem to have
been commonly applied into finance until after Jarrow and Rudd (1982) [6]
who used Gram-Charlier expansion to improve the Black and Scholes [4]
option pricing model 100 years later.

1.2 Financial Derivatives and Stochastic Volatil-
ity

Derivative pricing is among the most popular topics in financial mathematics.
It was brought into the spotlight in part by Black and Scholes (BS) [4] who
used no-arbitrage arguments to price European options.

Definition 2. An option provides its owner with the right but not the obli-
gation to receive a payment depending on some financial asset.

Definition 3. A European call option upon its expiration provides its owner
with the right but not the obligation to purchase an asset for a strike price
K on some agreed upon expiration date.

These two Chicago based professors convincingly illustrated that the drift
of an underlying asset has no bearing on the derivative price as that would
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otherwise allow arbitrage opportunities; a risk-free profit. One major short-
coming of the Black and Scholes model is that it assumes volatility is con-
stant; when it is evident by many volatility measures such as the VIX-index
that volatility is, in itself, random. In particular Black and Scholes assume
that the asset S(t) follows a geometric Brownian motion which is arguably
the most famous diffusion process to describe an asset price process. The
reason for this is that this model arguably, in the simplest possible manner,
captures commonly observed properties in assets: they have a compounding
effect but it is intuitive to assume that they follow some sort of stochastic
process with a drift. If S has a mean log-return µ, and log volatility σ, then
the geometric Brownian motion asset price process of S is described as:

dSt = µSt + σStdWt. (1.1)

Many ways of adjusting the volatility in the BS setting have been con-
sidered, such as the constant elasticity of variance (CEV) model popularized
by John Cox in an unpublished draft of an article in 1975 [7]. The purpose
of this model is to capture some nuances of volatility of which the BS fails:

dSt = µStdt+ σSγt · StdWt.

This model can potentially increase the volatility, σ(S) = σSγ, as the asset
price increases when γ > 0 or, as commonly observed in equity stocks, the
volatility increases as the price decreases, when γ < 0.

Although, upon observing common measures of market volatility such
as the VIX index one notices that volatility in itself does not seem so well-
behaved. This spurred the birth of stochastic volatility models. Among
the first attempts to capture this was the 1982 discrete time Autoregressive
Conditional Heteroskedasticity (ARCH) model by Robert Engle [8]. This
model uses previous error terms to describe the current error hence why it
is "Autoregressive". Denoting the error as εt, a random variable as zt which
is traditionally normally distributed with variance t, and a time dependent
standard deviation νt the ARCH(q) model is written as:{

εt = νtzt,

ν2t = α0 +
∑q

i=1 αiε
2
t−i.

Bollerslev in 1986 [9] then derived a Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model, where νt is regressed by its own previous
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realizations, that is, the GARCH(p, q) model is written as:

ν2t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiν
2
t−i.

The GARCH(1, 1) model in continuous time is written as:

dνt = κ[θ − νt]dt+ σνtdBt.

We have the components

• νt - variance of the underlying asset at time t.

• κ - mean reversion,

• θ - long term volatility,

• σ - volatility of volatility.

This model only differs from the 1993 Heston [1] variance process in the sense
that the diffusion term is the square-root of the volatility:

dνt = κ[θ − νt]dt+ σ
√
νtdBt.

The Heston model assumes that the asset follows a geometric Brown-
ian motion but with stochastic volatility ν(t) in the place of the constant
volatility, σ, in equation (1.1):

dSt = µStdt+
√
νtStdWt.

and the Wiener processes W and B have correlation ρ. Heston illustrates
that his stochastic volatility equipped with a correlation coefficient between
the aforementioned Wiener processes explains return skewness and kurtosis
which in turn effects out-of money relative to in-the-money pricing. The
reason for this is that without stochastic volatility in all finite time spans
returns are assumed to be log-normally distributed; a distribution known
to underestimate the likelihood of events far from the mean. Additionally
Heston uses his model to illustrate strike price biases in the Black–Scholes
model.
Another popular stochastic volatility model, the SABR model, was developed
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by Patrick S. Hagan, Deep Kumar, Andrew S. Lesniewski, and Diana E.
Woodward [10] in 2002. It is written as:{

dFt = σtF
β
t dWt,

dσt = ασtdZt,

where Ft is the forward rate (the interest rate of a transaction that will occur
in the future), σt is the volatility, α and β are constant and W and Z have
correlation ρ, i.e. E[dWtdZt] = ρdt. Notice that if α = 0 then the forward
rate is equal to the diffusion term of the CEV model. This is understandable
as this is the very component of an asset price which a forward contract
hedges one against.

1.3 Hermite Polynomials in Finance
Cheng [2] in their master thesis displays a method of using Gram-Charlier
(GC) expansions; a so called Gram-Charlier A series to price financial deriva-
tives under both the Heston and Black–Scholes model. This was done by
deriving an infinite series representation of a probability distribution using
only the normal distribution function, the log-moments of the underlying
random variable, and "probabilist" Hermite polynomials, Hen(x).

Definition 4. The probabilists Hermite polynomial Hen(x) is defined as
follows

Hen(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2 =

(
x− d

dx

)n
· 1.

It is easily verified that He0(x) = 1 and He1(x) = x. This means that
one only needs to compute the moments (E[Xn])∞n=0 of a random variable
X which follows a certain distribution f(x) to find the Gram-Charlier A
series representation of f(x). Because of its reliance on the derivative oper-
ator Hermite polynomials can, in many cases, make integration easier which
underpins some of the convenience of using these polynomials.

Jarrow and Rudd [6] argue that in many cases certain characteristics
about the underlying asset’s distribution may be known but the distribution
may be too complex to integrate over, making it hard to compute any of the
asset price’s moments. To alleviate this they approximate the distribution
using the first four moments of the asset similar to that done in Cheng’s
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paper pioneering the applications of Gram–Charlier (GC) expansions in fi-
nance. They then expand upon the Black–Scholes model by including these
moments in addition to the Black–Scholes formula. They test their approach
by viewing how well their model fits to jump-diffusion and constant elastic-
ity of variance asset pricing approaches. Unfortunately, Jarrow and Rudd
conduct no tests on how their model fits to option data. Corrado and Su [11]
built on their work by conducting these tests on S&P 500 option prices. They
infer the kurtosis and skewness through their implied values from option data
in the same manner as one infers implied volatility.

Definition 5. The implied volatility, σ∗, of some option price given by some
model with parameters ~p and volatility σ, Cmodel(σ; ~p), inferred from some
option price from data, CData(~p), is the value σ∗ that solves the (typically
nonlinear) equation:

σ∗ = σ : Cmodel(σ; ~p) = CData(~p).

Corrado and Su extend the above methodology of finding the implied
volatility to simultaneously find the skewness and kurtosis. The results of
Corrado and Su display that options priced under the Black–Scholes model
for various dates differed from the data on average in absolute terms of 0.42-
0.62 USD the average of these values being 0.4725 USD. Jarrow and Rudd’s
model, on average, differed from the data in the interval of 0.16-0.51 USD,
averaging over the different time periods at 0.2858. Corrado and Su then
made the point that skewness alone dropped the average difference over the
time periods down to 0.3092USD, meaning that the kurtosis term in Jarrow
and Rudd’s model played a small but not a negligible role. They then ar-
gue that including higher moments would both lead to unstable estimations
and that the even numbered moments are highly correlated. Additionally, it
seems that the higher moments will also play an inconsequential role in the
option price. These are arguments we will bear in mind when conducting
our research especially when we price options using Cheng’s GC expansion
pricing approach.

Necula, Drimus, and Farkas (NDF) build on this large body of option pric-
ing research using Hermite polynomials but they used a different type of
polynomial than Cheng; the physicist Hermite polynomial of Definition 1.

In their paper a risk-neutral density for the underlying asset is derived
using a Gauss-Hermite (GH) infinite series (i.e. with "physicist" Hermite
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polynomials) relying solely on the assumption that the log-return risk-neutral
measure is characterized by a certain mean, standard deviation, and expan-
sion coefficients. The reason for NDF deciding to use a different type of Her-
mite polynomials is that Cramer [12] shows that using high order coefficients
in the GC A series could cause worse approximations as these expansions may
fail to converge for fat-tailed distributions as it requires its related probabil-
ity density function to fall off faster than e−x

2/4. For simplicity when we
refer to Gram-Charlier A series we will use the abbreviation ’GC’ and when
we refer to Gauss-Hermite expansions we will use ’GH’. These individuals
then derive ways of inferring the coefficients of said expansion using the or-
thogonality condition of Gauss-Hermite polynomials as well as a method for
deriving them through the observed option prices. To understand Necula,
Drimus, and Farkas’ results we need the following definition.

Definition 6. The volatility adjusted moneyness, m of an option paying no
dividend with strike K, implied volatility σ∗, asset price at the birth of the
option St, expiring at time T , continuously compounded risk-free interest
rate r, and implied volatility σ∗ is defined as:

m =
ln(K/Ste

r(T−t))

σ∗
.

Necula, Drimus and Farkas test their model by examining how well it
adapts to option data. This results in them concluding that their model
performs the best in-sample and out of sample for options with volatility
adjusted moneyness in the [-7,3] range.

1.4 Problem Formulation
Our goal is to see how well NDF’s model can fit models in different scenarios
in comparison to the GC method Cheng shed light on. The reason why this
is done is to illustrate the flexibility of Hermite polynomials as well as the
different ways in which they can be applied.

1.5 Methodology
Our approach to this problem is described in numerous steps.
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• Price call options given a set of parameters ~p under the Heston model
using a closed form solution CH(Ki; ~p) for strikeKi where i ∈ {1, 2, ..., N}.

• Price options using the Gram Charlier expansion approximation of the
Heston model based on the first m moments of the asset price with the
same set of parameters as Heston Cm

GC(Ki; ~p).

• Given a set of parameters in the NDF setting, ~pNDF , calibrate the coef-
ficients ~a def

= (aj)
n
j=0 for the NDF asset return density PNDF (x;~a, ~pNDF )

that minimizes the difference between the NDF option price, CNDF (Ki;~a, ~pNDF ),
and CH(Ki; ~p).

• Equipped with ~a find ~pNDF that best fits the NDF prices to the Heston
prices.

• Compute CNDF (Ki;~a, ~pNDF ) and compare its relative difference of CH(Ki; ~p)
with the relative difference of Cm

GC(Ki; ~p) both in-sample and out-of-
sample.

• Repeat the above steps for different n and m.

We will thereafter see how these models along with their more popular coun-
terparts (Heston and Black–Scholes) perform on fitting data both in-sample
and out of sample. This will be determined through repeating the above steps
but we will fit the Heston parameters ~p and the Black–Scholes only free pa-
rameter; its volatility, σ, to the data. After repeating the above itemization
with the aforementioned steps we compare all our models.

1.6 Outline
We outline this paper in the following manner. In Part 2 we will discuss the
theory as well as all the necessary prerequisites to provide the reader with
a concrete idea of what we will be doing. The theory includes the back-
ground and definitions of Gram-Charlier series, the Heston model and the
NDF model. We will then show how these concepts link to the two key pa-
pers of this thesis : Necula, Drimus, & Farkas [3] and Cheng [2]. Thereafter
in Section 3 we briefly discuss how we implement these models numerically.
In Section 4 we discuss how well the Gram-Charlier approximation of the
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Heston model and NDF model did in approximating and fitting to the Hes-
ton model respectively. Section 5 focuses on how we fit the models to actual
Amazon option data followed by Section 6 discussing the consequential re-
sults. Finally, we conclude with a summary and proposal for further studies.

9 Nathaniel Ahy



Chapter 2

Theory

2.1 Heston Model
Heston’s model is a one-factor stochastic volatility model describing an asset’s
price dynamics. The asset price process S(t) and the volatility process

√
ν(t)

are described as follows:{
dS(t) = µS(t)dt+

√
ν(t)S(t)dW1(t)

d
√
ν(t) = α

√
ν(t)dt+ βdW2(t),

where E[dW1(t)dW2(t)] = ρdt. Since ν(t) =
√
ν(t)

2
by Itô’s lemma

dv(t) = 2
√
ν(t)d

√
ν(t) + (d

√
ν(t))2

= [β2 − 2αν(t)]dt+ 2β
√
ν(t)dW2(t)

def
= κ[θ − ν(t)]dt+ σ

√
ν(t)dW2(t),

where we made the definitions:

• mean reversion: κ = −2α

• long-term volatility: θ = β2/κ

• volatility of volatility: σ = 2β.

10
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2.1.1 The Fundamental Theorem of Finance

The goal of pricing financial derivatives is to ensure that no arbitrage op-
portunities exist. That is, we wish to remove the possibility of achieving
a risk-free profit under this model. An arbitrage free price is determined
through ensuring that the change of a combination of financial derivative(s)
and their underlying asset(s) matches the change of an equivalent initial in-
vestment into a risk-free asset. To more rigorously show what we mean we
will first discuss the risk-neutral measure.

Definition 7. An asset S paying no dividends is said to follow a risk-neutral
measure Q if its expected value discounted by the risk-neutral rate, r is its
current price. That is to say:

e−rtEQ[S(t)] = S(0).

As we compute an expected value of a stochastic process we only concern
ourselves with its drift; we only have to adjust the drift of the asset-price
process to adhere to this risk-neutral measure. Allowing S(t) to denote the
asset price process, and lettingWQ(t) be a standardWiener process under the
risk-neutral measure we get the following dynamics for the asset in Heston’s
model:

dS(t) = rS(t)dt+
√
ν(t)S(t)dWQ

1 (t),

where dWQ
1 (t) = dW1(t) + µ−r√

ν(t)
dt. Proceeding, we consider the following

entities:

• S = S(t) - Underlying asset

• C = C(S, ν, t) - Financial derivative which we intend to price

• U = U(S, ν, t) - An instrument for hedging the volatility of S.

Using the above assets we construct a deterministic portfolio, Π = C −
w1S − w2U , by eliminating the stochastic differential terms; dν and dS
through arguments similar to those in Gatheral [13].

dΠ =
(
∂C
∂t

+ 1
2
νS2 ∂2C

∂S2 + ρνσS ∂2C
∂S∂ν

+ 1
2
σ2ν ∂C

2

∂ν2

)
dt
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-w2

(
∂U
∂t

+ 1
2
νS2 ∂2U

∂S2 + ρνσS ∂2U
∂S∂ν

+ 1
2
σ2ν ∂U

2

∂ν2

)
dt

+
(
∂C
∂S
− w1 − w2

∂U
∂S

)
dS

+
(
∂C
∂ν
− w2

∂U
∂ν

)
dν.

We easily solve for w2 with w1 following immediately after:{
w2 = ∂C

∂ν
/∂U
∂ν

w1 = ∂C
∂S
− ∂U

∂S
∂C
∂ν
/∂U
∂ν
.

Since Π is a deterministic portfolio with initial cost C − w1S − w2U to
satisfy no arbitrage constraints we get that

dΠ = r(C − w1S − w2U)dt. (2.1)

Since if this equality does not hold then one could short sell one of the
portfolios, purchase the one that increases at a higher rate and enjoy a risk-
free profit without spending anything at the time of the purchase. We will
now define the first term characterizing dΠ as A and the second term as
B. We can rearrange (2.1) to associate the financial derivative C with the
volatility hedging asset U :

A− rC + rs∂C
∂S

∂C
∂S

=
B − rU + rs∂U

∂S
∂U
∂ν

.

We define what Heston refers to as the market price of volatility risk, λ, as
follows:

λ(S, ν, t)
def
=

B − rU + rs∂U
∂S

∂U
∂ν

+ κ[θ − ν].

By rearranging the equation this definition results in we now have the Heston
PDE:

1

2
νS2∂

2C

∂S2
+ ρσνS

∂2C

∂S∂ν
+

1

2
σ2ν

∂2C

∂ν2
+ rS

∂C

∂S
(2.2)

+{κ[θ − ν(t)]− λ}∂C
∂ν
− rC +

∂C

∂t
= 0. (2.3)
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Letting τ = T − t Heston solves this PDE by assuming the solution takes on
the form:

C(S, ν, t) = SP1 −Ke−rτP2, (2.4)

he proceeds by solving a system equations for P1, P2 entailed by this func-
tion form by guessing the functional form of the characteristic function
f = exp{A(T − t) + B(T − t)ν + iφx}, x = ln(S), and i2 = −1, which
reduces these equations to a system of ODEs to be solved for A and B. This
then leaves us with the values for Pj as:

Pj(x, ν, T ; ln(K)) =
1

2
+

1

π

∫ ∞
0

Re

[
e−iφ ln(K)fj(x, ν, T ;φ)

iφ

]
dφ, j ∈ {1, 2},

where 
C(τ ;φ) = rφiτ + a

σ2

[
(bj − ρσφi+ d)τ − 2 ln

[
1−gedτ
1−g

]]
D(τ ;φ) =

bj−ρσφi+d
σ2

[
1−edτ
1−gedτ

]
g =

bj−ρσφi+d
bj−ρσφi+d

d =
√

(ρσφi− bj)2 − σ2((−1)j−1φi− φ2).

We now have a solid foundation to build on for comparing NDF and the GC
approaches to option pricing under this model.

2.2 Gram-Charlier Expansions

2.2.1 Cumulants and an Explicit Formula for Comput-
ing them

A Gram-Charlier Expansion is a means of representing a probability distri-
bution in the form of an infinite series. To do this we use the probabilist’s
Hermite polynomials from Definition 4 in the introduction as well as the
following definition.

Definition 8. The nth cumulant, cn of a random variable X is

cn =
dn

dun
ln
(
E[euX ]

)∣∣∣
u=0

.
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As Utzet et. al. show in their paper [14] the moment generating function
of the log-asset price in the Heston setting Mt(u) = E[euXt ], where Xt =
ln(St), is computed as:

Mt(u) = exp{x0u}
(

e(κ−σρu)t/2

cosh(P (u)t/2) + (κ− σρu) sinh(P (u)t/2)/P (z)

)2κθ/σ2

exp

{
−ν0

(u− u2) sinh(P (u)t/2)/P (u)

cosh(P (u)t/2) + (κ− σρu) sinh(P (u)t/2)/P (u)

}
.

We can compute dn

dun
ln(Mt(u))

∣∣∣
u=0

symbolically and we have our coefficients
for our infinite series.

2.2.2 Gram–Charlier Expansions for the Heston Model

In Cheng’s master thesis [2] they use the cumulants to represent the char-
acteristic function of X in the form of a Maclaurin series. Thereafter, to
represent the distribution of X in terms of a Gram-Charlier A series they use
properties of Hermite polynomials and an inverse Fourier transform. Through
this derivation the Gram-Charlier A series of the distribution function f of
X is written as follows:

f(x) =
∞∑
n=0

qn√
c2
Hn

(
x− c1√

c2

)
φ

(
x− c1√

c2

)
, (2.5)

where q0 = 1, q1 = q2 = 0, and

qn =

bn
3
c∑

m=1

∑
k1,k2,...,km

k1+k2+...+km=n

ck1 . . . ckm
m!k1! . . . km!

√
c2
n , n ≥ 3. (2.6)

2.3 Gram-Charlier Expansion Option Pricing
Formula

In Cheng’s paper [2] they let eXt = e−rTSt where T is the time of expira-
tion and r is the risk-free interest rate. Thereafter Cheng computes the the
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expectation EQ[eaxI{x ≥ α}] using the Gram-Charlier representation of the
respective distribution from (2.5) which gives the value:

EQ[eaxI{x ≥ α}] = eac1
∞∑
n=0

qnJn

(
α− c1√

c2
, a
√
c2

)
, (2.7)

where cn is the nth cumulant of Xt; cn = lnE[Xn
t ] and

Jn(x, a) =

{
ea

2/2N(a− x), n = 0,

aJn−1(x, a) +Hn−1(x)φ(x)eax, n = {1, 2, ...}.

The above identities enable us to price a European call. We define k =
lnK− rT where K is the strike price of the underlying and T (we are letting
the initial time t = 0) is the time to expiration, then the call option price,
C, is given by:

C = E[(eXT − ek)+] = E[eXT I{XT ≥ k}]− ekE[I{XT ≥ k}].

By (2.7) we get the following theorem.

Theorem 1. A European call, CH , in the Heston setting priced with a Gram-
Charlier A series representation of the asset price density, with strike K, and
asset cumulants (ci)

∞
i=1 can be written in the form of the following infinite

series:

CH = ec1
∞∑
n=0

qnJn

(
k − c1√

c2
,
√
c2

)

− ek
[
N

(
c1 − k√

c2

)
+
∞∑
n=3

(−1)n−1qnHn−1

(
c1 − k√

c2

)
φ

(
c1 − k√

c2

)]
. (2.8)

2.4 Necula, Drimus and Farkas Risk-Neutral
Measure

As opposed to using the probabilist’s Hermite polynomials (acquired through
differentiating e−x2/2) Necula, Drimus, and Farkas (NDF) use physicist Her-
mite polynomials, Hn(x) defined in the introduction, that is:
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Hn(x) = (−1)nex
2 dn

dxn
e−x

2

=

(
2x− d

dx

)n
· 1.

The reason for this is due to Cramér [12], page 223, equation 17.6.6a showing
that probabilist’s polynomial expansions will not converge for tails that fall
off slower than e−x

2/4, whereas in NDF’s paper it is claimed that a result
from a paper written in German by Myller-Lebedeff (1907) [15] implies that
expansions using physicist Hermite polynomials, Gauss-Hermite expansions,
converge even for fat-tailed distributions. The risk-neutral density of NDF’s
paper, p(x), representing the log-return of an asset, S, with log mean return
and standard deviation µ and σ respectively is written as

p(x) =
1

σ
z

(
x− µ
σ

) ∞∑
n=0

anHn

(
x− µ
σ

)
(2.9)

where z(x) is the standard Gaussian distribution.
Through the orthogonality conditions of "physicist" Hermite polynomials

the coefficients can be found from

an =

√
π

2n−1n!

∫ ∞
−∞

z

(
x− µ
σ

)
Hn

(
x− µ
σ

)
p(x)dx. (2.10)

NDF also propose methods for deriving an from option prices through inte-
grating over a range of strike prices as well as a method using optimization,
both of which will be discussed in the next part of this paper. These methods
will be used to infer the coefficients from the option prices computed by the
formula displayed in (2.4) of the previous section.

To price a European call option we define the following parameters:

• S(t) = St - realized price of the option’s underlying asset at time t,

• r - risk-free interest rate,

• q - Dividend-yield of underlying.

With the above parameters they derive, through integrating the option pay-
off over the risk-neutral density (2.9), that the price of a European call,
c(St, K, µ, σ, τ, r, q)

def
= c can be found through the theorem below.
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Theorem 2. Assume that the log-return risk-neutral measure for a given
time horizon has the annual mean, µ, standard deviation, σ, and Gauss-
Hermite expansion coefficients an for all n ∈ N. Then the price of a European
call, c, with strike K and maturity t+ τ is given by:

c = Ste
−qτΠ1 −Ke−rτΠ2, (2.11)

where {
Π1 = exp

{(
µ− (r − q) + σ2

2

)
τ
}∑∞

n=0 anIn

Π2 =
∑∞

n=0 anJn.

The In and Jn terms satisfy recursive formulas:

In+1 = 2z(−d1)Hn(−d2) + 2σ
√
τIn + 2nIn−1, n ∈ {1, 2, ...}

Jn+1 = 2z(−d2)Hn(−d2) + 2nJn−1, n ∈ {1, 2, ...},

where J has no relation to Cheng’s formula and I0 = N(d1), I1 =
2z(−d1) + 2σ

√
τN(d1), J0 = N(d2), J1 = 2z(−d2), finally{

d1 = log(St/K)+(µ+σ2)τ
σ
√
τ

d2 = d1 − σ
√
τ .

It is also worth noting that in the case when n = 0 , i.e. we only consider
the first term of the infinite series, equation (2.11) nearly reduces to the
familiar Black–Scholes formula (see the exponential term in Π1 to notice the
difference).

2.4.1 A closed form formula for the coefficients for the
risk-neutral density

After computing the options prices from Cheng’s work [2] we have two po-
tential methods which we can rely on from NDF’s paper. Necula Drimus
and Farkas use the orthogonality conditions and apply change of variables to
(2.10) giving us the integral representation of an:

an =

√
π

2n−1n!

∫ ∞
0

Gn(St+τ )pt+τ (St+τ )dSt+τ ,
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where τ = T − t is the time to expiration and pt+τ (St+τ ) is the terminal
underlying asset price risk-neutral density. Moreover,

Gn(S) = z

(
ln(S/St)− µτ

σ
√
τ

)
Hn

(
ln(S/St)− µτ

σ
√
τ

)
def
= z(d2(S))Hn(−d2(S)),

where we define d2(S) = ln(St/S)+µτ
σ
√
τ

and since z(x) is the standard Gaussian
distribution, by symmetry z(−x) = z(x). We can apply the above identity
to a result in Bakshi et. al [16] equation (3). We can therefore compute an
using the theorem from NDF below.

Theorem 3. The risk-neutral density coefficients (ai)
∞
i=0 characterizing the

log-returns of an asset S with the continuum of European call and put prices
c(St, K, τ) and p(St, K, τ) respectively written on time t with strike K ∈ R+

are computed with the following formula

an =

√
π

2n−1n!

{
z
(
d2(Ste

(r−q)τ )
)
Hn

(
−d2(Ste(r−q)τ)

)
+ (2.12)

erτ

[∫ ∞
Ste(r−q)τ

Fn(K)c(St, K, τ)dK +

∫ Ste(r−q)τ

0

Fn(K)p(St, K, τ)dK

]}
,

where Fn(K) = G′′n(K).

The term Fn(·) is given more explicitly by:

Fn(K) =
z(d2)

K2σ2τ

[
(d22 − σ

√
τd2 − 1)Hn(−d2)+

(4nd2 − 2nσ
√
τ)Hn−1(−d2) + 4n(n− 1)Hn−2(−d2)

]
, n ∈ {2, 3, ..}.

Since Fn(K) = G′′n(K) which can be seen upon viewing equation (3) in
Bakshi et. al. (2003). By computing G′′0(K) and G′′1(K) we immediately get
the explicit values for F0 and F1.{
F0(K) = z(d2(K)) [(d2(K)d′2(K))2 − d′2(K)2 − d2(K)d′′2(K)]

F1(K) = z(d2(K)) [−d2(K)3d′2(K)2 + d2(K)d′2(K)2 + 2d2(K)d′2(K)2d′′2(K)− d′′2(K)] .
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2.4.2 Implementation of Closed Form Formula

All the ingredients of the closed form formula for our coefficients (2.12) can
be found in a straightforward manner using identities discussed earlier in this
paper. The only exceptions are the the European puts and calls p(St, K, t)
and c(St, K, t) respectively. We get the European call terms c(St, K, t) from
the Heston formula (2.4). The put-values are found using the put-call parity
stated in the following theorem.

Theorem 4. The Put-Call Parity: A European put, p(St, K, t) and call,
c(St, K, t) must satisfy the relationship

p(St, K, t) + St = c(St, K, t) +Ke−r(T−t)

.

To see why the above theorem is true consider the portfolios on the RHS
and LHS:purchase a put with strike K and the underlying asset, purchase
a call with strike K and Ker(T−t) units of the risk-free asset. Both these
portfolios have the same payoff at time expiration time T :

(K − S(T ))+ + S(T ) = (S(T )−K)+ +K.

Thus, to prevent arbitrage opportunities the put-call parity must hold. To get
numerical values we use the values, similar to Section 6.5 in Cheng [2] St =
100, t = 0, T = 1, r = 0.04, q = 0, and we consider K ∈ {40, 40.001, ..., 170}
as the put and call prices are sufficiently close to 0 in the lower and upper
bounds of this discretized interval. This allows us to reduce the bounds of the
integral from (2.12) to the bounds of our discretized interval for K providing
us with a reasonable approximation for our coefficients. Thus, our numerical
approximation of (2.12) is

an =

√
π

2n−1n!

{
z
(
d2(Ste

(r−q)τ )
)
Hn

(
−d2(Ste(r−q)τ)

)
+

erτ

 170∑
i:Ki=Ste(r−q)τ

Fn(Ki)c(St, Ki, τ)∆K +

i:Ki=Ste
(r−q)τ∑

40

Fn(Ki)p(St, Ki, τ)∆K

},
where ∆K = 0.001, Ki = 40 + 0.001i, Fn(170)c(100, 170, 0) ≈ 0, and
Fn(40)p(100, 40, 0) ≈ 0. Unfortunately, we attempted to price options fit-
ting (aj)

n
j=0 to the Heston model but achieved an in-sample mean relative
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error of -4.7 meaning that it miscalculated option prices by -470%! Naturally,
due to this undesirable outcome we will rely on other methods to find the
a-coefficients in our result section.
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Chapter 3

Option Pricing

3.1 Estimating Coefficients through quadratic
programming

An alternative method is to compute our coefficients through quadratic pro-
gramming. To do this we must first translate our problem into quadratic
programming terms:

min
a

1

2
a>La+ f>a subject to

{
A · x ≤ b

Aeq · x ≤ beq,
(3.1)

where a is our vector of coefficients and we will derive L and f . Clearly, with
the a-coefficients of the Gauss-Hermite (GH) distribution we want to mini-
mize the difference between the the corresponding call option under a certain
method, C(Kk)

1 and the N NDF European call option prices given the log-
return mean and volatility µ and σ respectively2, (CNDF (Kk); a, µ, σ)Nk=0,
having the N strikes (Kk)

N
k=0 and . This problem translates to

min
a

N∑
k=0

(CNDF (Kk; a, µ, σ)− C(Kk))
2 (3.2)

We will also use the following shorthand notations
1In this case we will be using the Heston model itself.
2These parameters are guessed initially and estimated after the a-coefficients are found.
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• St exp{(µ− (r − q)− σ2/2)τ}exp(−qτ)
def
= S̃

• Kke
−rτ def

= K̃k

• n+ 1 - the number of a-coefficients

• Iik - Ii for an NDF option with strike Kk

• Jik - Ji for an NDF option with strike Kk,

recall that I and J are the terms involved in (2.11). Applying (2.11) to (3.2)
and expanding the expression gives us the following problem,

min
a

N∑
k=0

[
S̃2

n∑
j=0

n∑
i=0

aiajIikIjk − 2S̃K̃k

n∑
j=0

n∑
i=0

aiajIikJjk (3.3)

+ K̃2
k

n∑
j=1

n∑
i=0

aiajJikJjk − 2

(
S̃

n∑
i=0

aiIik − K̃k

n∑
i=0

aiJik

)
C(Kk) + C2(Kk)

]
(3.4)

The sums above have independent indices making them interchangeable, we
use the following notation:

• Īi
def
=
∑N

k=0 Iik

• J̄i
def
=
∑N

k=0 Jik

• IiJj
def
=
∑N

k=0 IikJjk,

that is, a value ¯̀ is ` summed over its k dimension, the notation for the
remaining summations is trivial. This notation entails the following problem:

min
a

[
S̃2

n∑
j=0

n∑
i=0

aiajIiIj − 2S̃
n∑
j=0

n∑
i=0

aiajK̃IiJj (3.5)

+
n∑
j=1

n∑
i=1

aiajK̃2JiJj − 2

(
S̃

n∑
i=0

aiC(K)Ii −
n∑
i=0

aiK̃JiC(K)

)
+ C2(K)

]
(3.6)
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To formulate this problem in terms of (3.1) we make the following matrix
definitions to scale all the terms with their corresponding a-coefficients.

L = 2


S̃2I0I0 − 2S̃K̃I0J0 + K̃2J0J0 . . . S̃2I0In − 2S̃2KI0Jn + K̃2J0Jn 0

...
...

...
...

S̃2InI0 − 2S̃K̃InJ0 + K̃2JnJ0 . . . S̃2InIn − 2S̃2KInJn + K̃2JnJn 0
0 . . . . . . 0

 (3.7)

f> = −2

(
S̃I0C(K)− K̃J0C(K) . . . S̃InC(K)− K̃JnC(K) − 1

2
C2(K)

)
. (3.8)

Defining
a> = (a0 . . . an 1), (3.9)

one can easily verify that:

min
a

1

2
a>La+ f>a = min

a

N∑
k=0

(CNDF (Kj)− C(Kj))
2.

We now have our objective function in place, the only constraints that
need to be satisfied are the unitary mass constraint of the probability density:

p(x) =
1

σ
z

(
x− µ
σ

) n∑
j=0

ajHj

(
x− µ
σ

)
,

the density is everywhere positive, p(x) ≥ 0 for all x, and that the final
element of the vector a, stated in (3.9) is 1 for the sake of incorporating the
Gram-Charlier option price in our computation as can be seen when evalu-
ating f>a. The first task is simply done by verifying that Σ

bn−1
2
c

j=0 a2j
(2j)!
j!

= 1

by a formula from NDF [3]. To ensure that the density is everywhere posi-
tive we define n as the degree of the polynomial in p(x) and consider a grid
x ∈ [−3n, 3n]. Thereafter we consider the discretization −3n = x0 < x1 <
... < xM = 3n. Thus, we will verify that p(xj) ≥ 0 for all j ∈ {0, 1, ...,M}
thereby ensuring that our density is roughly everywhere positive. These three
constraints correspond to the following matrix relationships:{

A · a ≤ b,

Aeq · a = beq,
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where A is (M+1)×(n+1) with the additional term in the column space
being explained by (3.9):

A = −


1
σ
z
(
x0−µ
σ

)
H0

(
x0−µ
σ

)
. . . 1

σ
z
(
x0−µ
σ

)
Hn

(
x0−µ
σ

)
0

...
...

...
...

1
σ
z
(
xM−µ
σ

)
H0

(
xM−µ
σ

)
. . . 1

σ
z
(
xM−µ
σ

)
Hn

(
xM−µ
σ

)
0

 ,

it is important to notice the negative sign in front of the above matrix. We
also have that b is (M + 1)× 1,

b> = (0 . . . 0) .

The matrix Aeq is 2 × (n + 1). The first row of this matrix is intended for
satisfying the unitary mass constraint of the probability density by a formula
mentioned in NDF’s paper: Σ

bn−1
2
c

j=0 a2j
(2j)!
j!

= 1. The second row is intended
to ensure that the last element of a is 1 (3.9). This thereby gives us that

Aeq =



(
0!
0!

0 (2·2)!
2!

0 . . . 0 (2n)!
n!

0

0 0 0 0 . . . 0 0 1

)
, for even polynomials,

(
0!
0!

0 (2·2)!
2!

0 . . . (2n)!
n!

0 0

0 0 0 0 . . . 0 0 1

)
, for odd polynomials

and beq is 2× 1:
b>eq = (1 1) .

We are now left with the optimization problem

mina a
> 1

2
La+ f>a subject to

{
A · a ≤ b,

Aeq · a ≤ beq.
(3.10)

The above optimization problem is finally solved through the MATLAB func-
tion fmincon. We will be using the active set algorithm to solve this problem.
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3.1.1 The Active Set Algorithm

This algorithm is thoroughly discussed in literature such as Numerical Opti-
mization, Nocedal and Wright (2006) [17], however, we will include a descrip-
tion here so the paper is self-contained. This method considers a so called
’working region’ for iteration k,Wk, in which all the equality constraints and
a subset of the inequality constraints are considered as equalities. The func-
tion first checks whether there exists a solution to this subproblem otherwise
it ignores all the constraints outside the working set and optimizes with re-
spect to the parameters involved in the working set subject to the working set
constraints. We want to reframe (3.10) to a smaller sub-problem. Defining
q(a) = a> 1

2
La + f>a then for the sub-problem of taking the optimal step,

xk, when we are at point ak, can be stated as:

min
x
q(ak + x) = min

x

1

2
(ak + x)>L(ak + x) + f>(ak + x) (3.11)

= min
x

1

2
x>Lx+ f>x+ 2

1

2
(ak)>Lx+ ξk (3.12)

= min
x

1

2
x>Lx+ (f> + (ak)>L)x+ ξk, (3.13)

where ξk is the remaining ak terms. We will set g>k
def
= (f> + (ak)>L). We

now want to minimize q subject to our working region, we can ignore the ak
component leaving us with

min
x

1

2
x>Lx+ g>k x (3.14)

subject to A>i x = 0, i ∈ Wk. (3.15)

We can translate the above problem to :(
L A>

A 0

)(
−x
λ

)
=

(
g
h

)
, (3.16)

where h = Ax− b and λ is a vector of the Lagrange multipliers. Nocedal and
Wright solve the above problem by symmetric indefinite factorization; a way
of performing triangular factorization on the involved matrices and solving
the involved system of linear algebraic equations. This can be done since we
only have equality constraints; giving us the value xk.

In the case when xk 6= 0 regardless we have, by the constraint, A>i (ak+αxk) =
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A>i a
k; meaning if ak was already a feasible point then ak + αxk is too for

any α. If ak + xk satisfies all of our constraints including those outside the
working set we make the assignment ak+1 = ak+xk, which clearly reduces the
objective function since xk = 0 is already a feasible solution. Otherwise we
update as: ak+1 = ak + αkxk where αk is the maximum value in the interval
[0, 1] satisfying our constraints. Nocedal and Wright show in their book that
αi < 1 either if for some i 6∈ Wk we have not satisfied some constraint(s) or we
have reached the optimum. It is therefore, in this case, necessary to update
the working region by including some constraint(s) that is(are) prohibiting
us from taking the optimal step; a blocking constraint. This is done until we
have properly minimized q in this region. Otherwise we will keep using our
current working region.

If xk = 0 then we compute Lagrange multipliers λi satisfying∑
i∈Wk

Aiλi = g = Lxk + f.

Nocedal and Wright show in Theorem 12.1 that the above equality will along
with chosen step size α satisfy the first three Karush-Kuhn-Tucker (KKT)
conditions; which ensure that we are at a stationary and primal feasible point,
which means we have found a solution but not necessarily an optimal one.
However, we have found an optimum if λ ≥ 0; since this implies dual feasibil-
ity which is an upper bound of the optimal primal solution. Moreover, since
we can use (L+ L>)/2 instead of L to achieve the same minima arguments,
a, and it is easily verified that this matrix is a positive semi-definite then
our optimum is global by Theorem 16.4 of Nocedal and Wright. Otherwise
we remove all the wj ∈ Wk ∩ I, I being the set of inequality constraints,
such that λj < 0 and solve an alternative optimization problem. This en-
tire procedure explains how the active-set option in the fmincon algorithm
works. As previously mentioned, for a more thorough description we refer to
Nocedal and Wright (2006).
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3.2 Fitting the NDF log mean and standard
deviation to a Model

We guessed µ and σ based on previous optimization sessions3 giving us the
coefficients (aj)

n
j=0. After having found the a-coefficients we will find our

mean log-return and standard deviation: µ and σ respectively through non-
linear least squares as these terms both act on the exponents of our option
pricing models. We let ~p def

= (µ, σ) denote the vector of our parameters and
we consider the optimization problem:

min
~p

n∑
i=0

(CNDF (Ki; ~p)− CData(Ki))
2.

In the nonlinear least squares method we use, trust region-reflective least
squares, we take a function q(~p) that approximates CNDF for a small region
(trust region) and minimize it. To find q we conduct a second order Taylor
approximation of C in its current region. The problem translates to

min
s

1

2
s>Hs+ s>g subject to ||Ds||22 ≤ ∆, (3.17)

where H is the Hessian, g is the gradient D is a diagonal scaling matrix
and s is our parameter set within this current ’trust region’. To solve (3.17)
ideally we reduce the space of s values to a two dimensional space S. The
space S is spanned by s1 and s2, with s1 being the direction of the gradient
and s2 satisfying one of the two relations:{

Hs2 = −g.
s>2Hs2 < 0,

if the function we wish to optimize f satisfies f(x+ s) < f(x) where x is our
current point we update x ← x + s. Otherwise we shrink the trust region
∆ and repeat. This entire process is then repeated until the parameters’
difference between iterations falls below a pre-specified optimality tolerance.
All of this is done by the MATLAB function lsqnonlin4.

3In the context of the Amazon option prices these values were µ = r+0.01 and σ = 0.3
4A slightly more thorough description of the trust-region reflective algorithm can

be found here: https://se.mathworks.com/help/optim/ug/least-squares-model-fitting-
algorithms.htmlbroz0i4
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Model Fitting Results

4.1 Computing the Cumulants
Recall that when we say the nth cumulant we refer to the nth moment
of the log-asset price. We computed the cumulants symbolically through
both MATLAB and Mathematica online by implementing and differentiating
Mt(u) described in Section 2.2.1 where the cumulants in MATLAB led to
our GC option pricing method having a smaller relative error with regard to
the Heston model. This could in part be attributed to mathematica’s online
platform perhaps having a higher round-off error than MATLAB. Regardless,
for the remainder of this paper we will rely on our MATLAB cumulants. We
will compute our cumulants using the same parameters as those used in
Cheng’s master thesis [2] p.66:

• initial volatility - ν0 = 0.03

• mean reversion - κ = 0.15

• volatility of volatility - σ = 0.05

• correlation between variance and asset’s Wiener processes - ρ = −0.55

• time to expiration - T = 1

• annual log return of risk-free asset - r = 0.04

• initial asset price - S0 = 100
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• strike price for a European call option - K ∈ {40, 40.001, ..., 170},

where the set of K-values was based on the put and call options being virtu-
ally 0 on the respective lower and upper bound of the set. This yielded the
first eight cumulants having the values:

i ci
1 4.589456320893087
2 0.031838851938017
3 -0.001261815533270
4 0.000115992103852
5 -0.000011185767429
6 0.000001414417922
7 -0.000000200913900
8 0.000000027458226

This clearly shows that the higher moments play a less significant role in the
final option price than the lower moments, this will be made more clear in
the next section.

4.2 Model Errors
To see how compatible NDF’s and the Gram–Charlier1 option pricing models
are with the Heston model we will fit the former to the latter. We will consider
an m ∈ {4, 6, ..., 14} degree polynomial for the Gauss–Hermite risk-neutral
density2 behind NDF’s option pricing method and n ∈ {1, 2, ..., 8} coefficients
(recall the qn-terms derived in Section 2.2) for the GC option pricing formula.
We make the following definitions.

• Cm
NDF (K) - the option price in the NDF setting with an mth degree

Gauss-Hermite polynomial as the risk-neutral density (2.9).
1Recall that we abbreviate this to GC, the infinite series discussed in Section 2.2
2Recall that we abbreviate this as GH and that this density is found by physicist’s

Hermite polynomials; polynomials found by differentiating e−x
2
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• Cn
GC(K) - the Gram-Charlier option price using only n-terms from its

infinite summation.

• CH(K) - option price under Heston’s model.

We will use an adjusted relative error having a denominator greater than 0.01
to prevent numerical errors, this is justified by the fact that options in the
United States are never priced below 1 US cent. This relative error is intended
to describe how well a given risk-neutral density fits to the aforementioned
Heston option price:

R(Cm
NDF , CH) =

1

N

N∑
j=1

|Cm
NDF (Kj)− CH(Kj)|
max(CH(Kj), 0.01)

.

Similarly, to see how well the GC-model will fit to the Heston model we use
the formula:

R(Cn
GC , CH) =

1

N

N∑
j=1

|Cn
GC(Kj)− CH(Kj)|

max(CH(Kj), 0.01)
.

To get a numerical Heston option price we use the parameters from Section
4.1.

We performed a 3-fold cross validation on our NDF model; leaving out
1/3rd of our Heston option prices when finding the NDF risk-neutral density
coefficients (ai)

m
i=0 which were then used to find µ as well as σ. There-

after we computed the in-sample and out-of-sample relative errors for m ∈
{4, 6, .., 14}. This was not necessary in the GC-case since, aside from the
coefficients itemized above we don’t do any fitting; the scope of the GC-
expansion in this section is to see how well it approximates Heston’s model,
not how well it fits. Since the out-of-sample and in-sample errors differed
only to the 5th decimal place we will only consider the test error. The test
errors for the two models is displayed below.

NDF Test Error GC Test Error m n
0.495763409124678 0.108409844389963 4 3
0.0728483878146307 0.0298546397931812 6 4
0.0780088696974434 0.0350818888644778 8 5
0.0388685528271606 0.0810631455081564 10 6
0.151286360809425 0.0591659254461921 12 7
0.157431617652327 0.0762545916270493 14 8
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Naturally, for the most part the Gram-Charlier model outperformed the
NDF model as it is a cut-off infinite series version of the Heston model. The
errors in this model can primarily be attributed to the cutting off and the
numerical errors in computing the cumulants from the moment generating
function of the Heston model,Mt(u). Moreover, we notice that when m = 10
the NDF model gets the best test result. In spite of the high test errors Figure
4.1 shows that our GC and NDF model still do a visually satisfying job of
approximating the Heston option price.

Figure 4.1: Option Prices for Various models, m=14, n=8

It is worth noting, however, that our model outcome differerd from Cheng’s.
This could, perhaps be due to the fact that we only used the online Math-
ematica platform to compute our cumulants, which performed worse than
our MATLAB computations (explaining why we used MATLAB) whereas
Yin presumably used a more sophisticated version of Mathematica. The
outcome is displayed in Tables 4.1 and 4.2 below.
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Strike n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
50 51.96 51.961 51.961 51.961 51.961 51.961
80 23.714 23.712 23.707 23.693 23.698 23.695
90 15.563 15.528 15.521 15.549 15.564 15.523
100 9.0932 9.0297 9.0286 9.1051 9.1089 9.0655
110 4.6667 4.6093 4.6173 4.679 4.6619 4.6631
120 2.0889 2.0619 2.0731 2.0799 2.0593 2.093
150 0.069433 0.08431 0.084527 0.066061 0.070613 0.071263

Table 4.1: Our Gram-Charlier approximations for the Heston model using
the first n cumulants

Strike n = 3 n = 4 n = 5
50 51.96 51.961 51.961
80 23.714 23.722 23.72
90 15.563 15.551 15.547
100 9.0932 9.062 9.0612
110 4.6667 4.6424 4.6469
120 2.0889 2.0883 2.0939
150 0.0694 0.0893 0.0871

Table 4.2: Cheng’s Gram-Charlier approximations for the Heston model us-
ing the first n cumulants
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Chapter 5

Option Data

A natural next step is seeing how well these models fit to data1. We select
data of call and put options written on Amazon stock on 2/11/2018 expiring
at 21/6/2019. The following parameters are used:

• St = 1665.53 - Amazon asset price at birth of option

• τ = 231/365 - Lifespan of option2

• r = 0.027 - The risk-neutral rate3.

For Necula, Drimus, and Farkas’ formula it remains to compute the Gauss-
Hermite polynomial coefficients for the risk-neutral density through the active-
set method for quadratic programming discussed in Section 3.1 as well as the
parameters µ and σ through trust region reflective nonlinear least squares
from Section 3.2. Additionally, to draw a fair comparison between the
two approaches considered we need to fit the parameters of our GC model:
ν0, ρ, κ, θ, and σ to the data.

5.1 Fitting the GC Parameters to the Data
Recall that the GC-model of which we consider is asymptotically equivalent
to the Heston model. However, the parameters in our GC option pricing

1We use data from https://www.historicaloptiondata.com/content/historical-options-
data-file-structures.

2We are considering a full year as opposed to a trading year in this case.
3We computed this using US 1-year treasury rates at this time

https://ycharts.com/indicators/1_year_treasury_rate .
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method have a much less explicit relationship with the final option price
in comparison to the Heston model. To make things easier we will fit the
Heston model to our data and thereafter plug in these coefficients to our
GC option pricing formula. As can be seen from the Heston option pricing
formula (2.4) we cannot entirely rely on linear nor quadratic programming.
Hence we will use the nonlinear least squares method from Section 3.2 to fit
this model to our data. Using the shorthand notation for our 5 parameters
~p
def
= (ν0, κ, σ, θ, ρ) we let CH(Kj; ~p) denote the price of of the Heston call for

some strike Kj given the parameters. The objective function for fitting the
Heston model to our n data points is:

min
~p

n∑
j=0

(CH(Kj; ~p)− C(Kj))
2 .

This problem can now be handled by the trust region-reflective least squares
algorithm described in Section 3.2.

Filling in gaps of Data Since the data, in itself, does not exhibit a smooth
curve we use the cubic splines interpolation method to fill in some of its
gaps. We have n data points (Kj, C(Kj))

n
j=1 and we want to evaluate an

intermediate call option price, C, for the m points between Kj < K̃j1 < .. <
K̃jm < Kj+1. To do this we consider the system

pj(x) = aj+bj(x−Kj)+cj(x−Kj)
2+dj(x−Kj)

3, x ∈ [Kj, Kj+1], j ∈ {1, ..., n−1}.

To find the coefficients (aj, bj, cj, dj)
n−1
j=1 we need to set up a system of 4(n−1)

equations. Naturally these curves must intersect with our points:
pj(Kj) = C(Kj), j ∈ {1, ..., n− 1}
pn−1(Kn) = C(Kn)

pj(Kj+1) = pj+1(Kj+1), j ∈ {1, .., n− 2}.

To ensure smoothness and since these functions are three times differentiable
we want the first and second derivatives of each pj to match its successor,
pj+1, at each point of intersection:{

p′j(Kj+1) = p′j+1(Kj+1), j ∈ {1, ..., n− 2}
p′′j (Kj+1) = p′′j+1(Kj+1), j ∈ {1, ..., n− 2}
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Finally, we want the second derivatives at the endpoints to be 0{
p′′1(K1) = 0

p′′n−1(Kn) = 0,

giving us a system of 4(n− 1) equations with 4(n− 1) unknowns. To make
this implementation we use the MATLAB function spline and we evaluate
our p-functions for K̃ji = Kj + 0.05i, where i ∈ {1, ..., K̃j+1,i−K̃ji

0.05
− 0.05}; this

produces a much more comprehensive curve than our data alone.
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Chapter 6

Data Fitting Results

As done in the previous section we use a 3-fold cross validation to evaluate the
performance of our models. For each fold we fit all of the Heston parameters
to 2/3rds of the spline adapted data for the Black–Scholes, NDF, and GC
models since this yielded a significantly better fit for them than the raw
data. However, to achieve the smallest possible relative error in the pure
Heston (not GC) setting we used the pure data. Subsequently we compute
all our models’ respective option prices for the K-values in the test set and
evaluate the relative testing error described in the previous results section.
Additionally we will consider the cases for the GC model for the first 6 terms
as the 7th cumulant yielded a "not a number" value in MATLAB. This is due
to the fact that the moment generating functionMt(u) introduced in Section
2.2.1 couldn’t be evaluated with the parameter values we acquired from the
option data after being differentiated 7 times. Moreover we will consider the
coefficients (aj)

n−1
j=0 where n ∈ {2, 6, ..., 16}. Since the training and test errors

were roughly the same for all models we will only discuss the test errors.
Having used the tools presented in the previous section the following results
were produced.

6.1 NDF Errors
The NDF model yielded inconsistent results since fmincon failed to find
a minimum on many occasions. This paper only concerns itself when the
optima was found.
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NDF Test Error n
0.0713333716082011 2
0.0693943514826509 4
0.00909296454191811 6
0.00914694076555854 8
0.00728423120119476 10
0.00644105230738876 12
0.0064934167710657 14
0.00646823680508747 16

As is displayed in the table above NDF’s model converged for high n. At
first glance it may seem strange that the model didn’t fit best for the highest
n when considering that the test and training errors were almost the same
(meaning we did not overfit), however, fmincon doesn’t necessarily stop at
the minima; it stops when the difference between our vector of coefficients
is sufficiently small between two iterations. This explains why models with
more coefficients wouldn’t dominate for certain training errors. We display
the NDF option prices for n = 16 along with the spline fitted data and its
relative errors in Figures 6.1 and 6.2 respectively. Furthermore, we fit the
Black–Scholes and Heston model to the data using lsqnonlin to find the σ
in the BS and the numerous parameters in the Heston model that best fits
their respective models to the data. The test errors were 0.09 and 0.0098 for
Black–Scholes and Heston respectively. Due to its high accuracy the Heston
model plotted with the data looks exactly like Figure 6.1. Clearly the NDF
and Heston model drastically outperformed the Black–Scholes model, with
NDF being the noticeably most accurate model.
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Figure 6.1: NDF option prices plotted with actual option data, n = 16

Figure 6.2: NDF relative error, n = 16
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It is worth noting that Figure 6.2 shows that NDF’s model has a much
worse performance for deep out-of-money options than for other strike prices.
This is something that the Black–Scholes model is notorious for. One may
think that the reason for this is that in spite of the fact that the Gauss-
Hermite distribution which we use for our risk-neutral density isn’t normal
it is still a polynomial scaling a normal distribution; meaning that it still has
a tendency to underestimate the likelihood of rare events. Deep out of the
money options only produce a positive return when the asset price soars far
beyond its current value which is indeed unlikely, albeit not as unlikely as the
normal distribution claims it to be. Furthermore, the Black–Scholes option
prices plotted against the spline-fitted option prices and the relative error
thereof are displayed in Figures 6.3 and 6.4 respectively. The plots illustrate
that the Black–Scholes model struggles especially with out-of-money options
to an even greater extent than the NDF model. However, upon computing
the non-absolute relative error we discover that the Black–Scholes, NDF, and
Heston models all overestimated the price of out-of-money options. Only our
Gram-Charlier expansion drastically underestimated out-of-money options
because it underestimates the Heston model as well.

Figure 6.3: Black–Scholes option prices plotted with actual option data.
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Figure 6.4: Black–Scholes model relative error

6.2 GC errors
As previously mentioned we will cut off our infinite sum from equation (2.8)
at points 3, 4, 5 and 6 due to the not-a-number result occurring for the 7th
cumulant.

GC Test Errors n
0.2198345379137871 3
0.259549772655078 4
0.451540429338985 5
0.682847026715799 6

The table above illustrates that the best model in this case was when n = 3
as opposed to n = 5 in the model section. Recall the arguments made by
Corrado and Su [11] supporting the claim that the 3rd moment i.e. the
skewness yielded the greatest adjustment to their model and that higher
order moments may cause numerical errors. In this case it may mean that
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the parameters we typically acquired when tailored to our data produced
poor cumulant computations after the third cumulant. The relative errors
for this model are an order of magnitude higher than that of NDF’s model.
Figures 6.6 and 6.7 display how well the model fit along with its relative
error respectively. Again, the model performs especially poorly for deep out
of the money arguments and takes on a shape similar to that of the Black–
Scholes relative error curve, Figure 6.4. It is worth noting that the relative
error figures for the Black–Scholes, Gram-Charlier, and NDF models exhibit
a smooth curve for higher strikes. This is because we have fewer data points
for strikes above 2500, one for every 100, meaning that the error measures
how well we fit to the corresponding cubic splines. Figure 6.5 does not
exhibit this behaviour since, as mentioned in the beginning of this section,
the Heston model fit best to the raw data. Figure 6.5 shows that the Heston
model itself also struggled with the deep out of the money options although
it still outshined the GC model significantly. It may seem strange that the
GC-expansion model was outperformed even by the Black–Scholes model
however, this can be explained by the fact that the GC-model relied on the
nonlinear least square parameters derived from the Heston model. As we saw
in the model fitting results section the GC-expansion model doesn’t serve as
a particularly good approximation of the Heston model. This means that
the Heston model parameters do not necessarily do a good job in fitting the
GC-expansion option prices into the data.
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Figure 6.5: Heston model relative error

Figure 6.6: GC option prices plotted with actual option data, n = 3
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Figure 6.7: GC relative errors, n = 3

6.3 Model Complexity
The tables below illustrate the total duration it took to find the parameters
for each model and then price the options under them for all the 3 folds.
The time to price options under the Gram-Charlier Heston expansion set-
ting consists of the duration of fitting the parameters to the data through
lsqnonlin, computing the cumulants, and thereafter putting everything to-
gether to price the options. The biggest time consumer in the end for this
was computing the cumulants, which can be seen in the subsequent table;
explaining why the original Heston model was far less time consuming.

GC Time (seconds) n
11.5413138000000 3
17.6311419900000 4
39.4671034100000 5
112.610722900000 6
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Cumulant time (seconds) n
0.172281400000000 1
0.488967600000000 2
1.662102700000000 3
6.067893100000000 4
21.642804300000002 5
73.223563900000002 6

NDF time (seconds) n
0.325923466666667 2

0.9274233 4
0.4394605 6

0.812202066666667 8
0.570558 10

0.702097066666667 12
0.9264461 14

1.23152356666667 16

BS time:0.630270000000000
Heston time: 12.738389099999999

The NDF model proved to be much more efficient than the other models.
Interestingly, in spite of the fact that the Black–Scholes model only had
one parameter it was still slower than NDF. This shows how crucial it is for
lsqnonlin to start at a reasonable point since, in the NDF setting, we only use
lsqnonlin to acquire the log-mean and standard deviations: µ and σ after
having found the a-coefficients of the Gauss–Hermite risk-neutral density.
This means that for Necula, Drimus, and Farkas’ model we already begin
at an optimum of sorts prior to using non-linear least squares. Additionally,
it may seem strange that the time is not monotonically increasing as we
increase the number of parameters in the NDF-setting, although this is due
to the fact that fmincon is fortunate enough to converge quicker for certain
starting points within a certain parameter space. These results naturally
lead us to conclude that the dominant model is the NDF model for its time
efficiency and excellent accuracy.
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Chapter 7

Conclusion

7.1 Conclusion
This paper began with a brief overview of Hermite polynomials and how
they can be used to derive probability density functions. Thereafter, the
fundamental theorem of finance applied to the Heston option pricing setting
was discussed with the intention of showing the reader why it is necessary to
properly price financial derivatives: to prevent arbitrage opportunities. We il-
lustrated how Hermite polynomials can be used to approximate option prices
under the Heston model and to derive a risk-neutral density; a Gauss-Hermite
distribution which NDF showed led to a generalization of the Black–Scholes
option pricing formula. An explicit formula for deriving the coefficients be-
hind the Gauss-Hermite density from NDF’s paper was addressed but then
disregarded due to its poor performance. Subsequently we showed how the
Gram-Charlier infinite series representation of the Heston model and the
NDF model were derived, and proposed methods in quadratic programming
and non-linear least squares to fit the parameters of these models to data.
We began by fitting the Necula, Drimus, and Farkas option pricing formula
and the aforementioned Gram-Charlier expansion to the Heston model which
led us to discover that NDF’s Gauss-Hermite based model performed nearly
as well as the GC-expanded Heston model in fitting something the latter of
the two is intended to be an approximation for. The power of NDF’s model
was further advocated in the following section when it was fit to Amazon
option data. The Gram-Charlier expansion, on the other hand, performed
relatively poorly due to its second-hand usage of parameters derived for the
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sake of fitting the Heston model to the data rendering the GC model to be
outperformed by even the single-parameter Black–Scholes model. The NDF
model with more than 10 coefficients in the polynomial behind its density
was noticeably better than the model with the second best performance; He-
ston’s model which in turn outperformed the remaining two models having
nearly 1/10th of their relative errors. All these models performed at their
worse for out-of-money options. Finally, the NDF model was interestingly as
fast to find its optimal parameter set as the single parameter Black–Scholes
model possibly due to the NDF option pricing formula’s corresponding non-
linear least squares problem being more well-behaved caused by the already
fit a-coefficients. This is an important detail as the trust region reflective
nonlinear least squares method is extraordinarily time consuming.

7.2 Further Studies
Although this paper briefly discussed several other asset pricing models, there
is an ocean of viable models which were not explored. An interesting project
would be to derive the Gram-Charlier expansions of these alternatives. Fur-
thermore, we only explored European call option prices as these are the
simplest and most famous financial derivatives. Of course it is worthwhile
to view which model fits a certain type of financial derivative written on
a certain type of asset the best or, more importantly, does the best job at
predicting its value when it is exercised. Moreover, Necula, Drimus, and
Farkas’ model only concerned itself with the mean and standard deviation of
log-returns; values corresponding to the 1st and 2nd moments of the asset’s
log-price. An interesting experiment would be to consider how to incorpo-
rate further moments and to what extent these moments improve or diminish
their model’s ability to fit to data in a fashion similar to that explored in our
GC option pricing experiments.
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