
UPTEC X 20018

Examensarbete 15 hp
Juni 2020

Neural networks for imputation
of missing genotype data
An alternative to the classical statistical

methods in bioinformatics

Alfred Andersson

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Neural networks for imputation of missing genotype
data

Alfred Torsten Andersson

In this project, two different machine learning models were tested in
an attempt at imputing missing genotype data from patients on two
different panels. As the integrity of the patients had to be
protected, initial training was done on data simulated from the 1000
Genomes Project. The first model consisted of two convolutional
variational autoencoders and the latent representations of the
networks were shuffled to force the networks to find the same
patterns in the two datasets. This model was unfortunately
unsuccessful at imputing the missing data. The second model was based
on a UNet structure and was more successful at the task of
imputation. This model had one encoder for each dataset, making each
encoder specialized at finding patterns in its own data. Further
improvements are required in order for the model to be fully capable
at imputing the missing data.

ISSN: 1401-2138, UPTEC X20 018
Examinator: Fabien Burki
Ämnesgranskare: Prashant Singh
Handledare: Carl Nettelblad

Sammanfattning

Användningen av neurala nätverk som maskininlärningsmodeller har ökat markant de
senaste åren. Ett stort bidrag till detta är att området har mognat, priset på beräkningska-
pacitet har sjunkit och mängden tillgängliga data har ökat. Särskilt det senare är relevant
inom biologin då effektivare tekniker har utvecklats och kostnaden för att samla in bi-
ologiska data har gått ner. Detta har gjort det möjligt att samla in mer information om
biologiska system och undersöka dem närmare.

Varje individ har en dubbel uppsättning arvsmassa i form av 46 stycken kromosomer,
23 från vardera förälder. Kromosomerna består av långa sekvenser av DNA och dessa
sekvenser skiljer sig från person till person. Om en upssättning arvsmassa skulle lagras
i en dator skulle filstorleken vara ungefär 3GB, vilket ungefär motsvarar den mängden
data som krävs för att streama en film i HD i en timme. Lyckligtvis är all denna infor-
mation inte nödvändig då majoriteten av informationen är densamma för alla människor
och redan finns tillgänglig. Genom att endast fokusera på delarna i arvsmassan som
skiljer oss åt, så kallade markörer, kan man drastiskt dra ner storleken på genetiska data
och det blir genast lättare att lagra data och använda maskininlärningsmodeller för att
hitta komplexa biologiska mönster i data. Det blir även betydligt billigare att enbart
undersöka dessa markörer istället för hela arvsmassan.

Under mitt examensarbete har jag undersökt maskininlärningsmodeller med ändamålet
att fylla i saknade genetiska data. Examensarbetet var ett samarbete med Karolinska
Institutet i Stockholm som försåg projektet med två set patientdata från olika paneltester
och en panel undersöker en specifik uppsättning av markörer. I grova drag innehöll båda
panelerna samma antal markörer fast hälften av markörerna som ingick i den ena panelen
ingick inte i den andra. I de flesta av fallen fanns individen på båda panelerna. I de få
fall där individen endast fanns på en panel måste saknade data från den andra panelen
fyllas i med hjälp av maskininlärning så att all information fanns tillgänglig.

Att jobba med genetiska sekvenser inom maskininlärning påminner mycket om att jobba
med bilder. Gener nedärvs inte slumpmässigt utan gener som ligger nära varandra på
kromosomen har en större sannolikhet att nedärvas tillsammans. Maskininlärningsmod-
ellen kan då lära sig vilken genetisk variant som med högst sannolikhet ligger mellan
två övriga platser på kromosomen där varianterna är kända. Jämför detta med en bild på
en banan och att du får till uppgift att gissa vilken färg en pixel på bananen har. Om du
får se färgen hos de övriga pixlarna kommer du förmodligen att svara något i stil med
medelfärgen av alla närliggande pixlar. Detta svar är inte långt ifrån sanningen och
gäller oavsett om pixeln ligger på en grön, gul eller brun fläck på bananen. Tanken var
att mina modeller skulle upptäcka liknande genetiska mönster i paneldata.

Innan jag kunde använda mitt neurala nätverk måste genetiska data översättas från bok-
stäver till siffror för att datorn skulle kunna arbeta med dem. Antag att det finns två
tänkbara varianter för en markör – en vanlig och en ovanlig variant. Eftersom en indi-
vid ärver en uppsättning arvsmassa från vardera förälder kommer vi få tre olika fall. I
det första fallet ärver individen en dubbel uppsättning av den vanliga varianten och då
har markören värdet 1. I det andra fallet har individen fått en av vardera variant och
markören har värdet 0,5. I det tredje fallet har individen ärvt en dubbel uppsättning av
den ovanliga varianten och markören har värdet 0. Nätverket kommer sedan att tränas i
att komprimera och återskapa ursprungliga sifferdata. Efter varje iteration av träningen
får nätverket veta hur bra den har presterat med att återskapa data. Eftersom delar av in-
formationen förloras vid komprimeringen kommer modellen att lära sig att komprimera
så att så mycket av informationen som möjligt bevaras.

Att jobba med patientdata är känsligt, särskilt då den genetiska informationen säger my-
cket om en person och patienternas integritet måste skyddas, till exempel genetiska sjuk-
domar. Jag använde mig därför först av data från 1000 Genomes Project för att simulera
data som innehöll samma markörer som patientdata från de två olika panelerna. 1000
Genomes Project innehåller genetisk data för ett par tusen individer och vem som helst
får använda dem.

Efter jag simulerat mina data tränade jag en typ av modell som bestod av två delmodeller.
Delmodellerna skulle lära sig att komprimera data från varsin panel och sedan återskapa
dem. I de fall där en individ hade data på båda panelerna skulle delmodellerna slumpvist
byta komprimerade data med varandra och fortfarande lyckas återskapa dem som om det
vore dem själva som hade komprimerat informationen. Tanken var att det sedan skulle
gå att mata in information från den panelen man kände till i motsvarande delmodell, ta
komprimerade data från delmodellen och stoppa in den i den andra delmodellen som
skulle återskapa paneldata som saknades. Denna modell lyckades inte särskilt bra då
modellen inte ens kunde slå basfallet, vilket var att gissa att alla genetiska varianter var
den vanligaste. Faktum var att den inte ens kunde återskapa sina egna data.

Jag bytte därför strategi till en annan typ av modellstruktur. Denna modell bestod av två
olika delmodeller som komprimerade sina egna paneldata, men de hade en gemensam
del för att återskapa data. Modellen sparade också information från komprimeringen och
använde sedan denna information när den skulle återskapa data. Denna modell lyckades
betydligt bättre än den tidigare modellen. Den slog basfallet och kunde så gott som
alltid återskapa kända data. Denna modell prövades slutligen på patientdata och klarade
av basfallet men den presterade inte lika bra som den hade gjort på simulerade data.
Oavsett kunde denna modell gissa bättre än basfallet, vilket visade att det finns potential
för moderna maskininlärningsmetoder inom biologin.

Table of contents

1 INTRODUCTION .. 11

2 BACKGROUND .. 11

3 THEORY .. 12
3.1 Origin of genetic data .. 12
3.2 Working with genetic data ... 13
3.3 Neural networks ... 14
3.4 Model architecture .. 16
3.5 Injecting trainable variables ... 17
3.6 Hyperparameters ... 18

3.6.1 Initial learning rate .. 18
3.6.2 Batch size .. 18
3.6.3 Noise level... 18
3.6.4 Regularization factor .. 19
3.6.5 Dropout... 19

3.7 Genotype concordance ... 19

4 MATERIALS .. 20
4.1 Data .. 20

4.1.1 Patient data .. 20
4.1.2 Simulated data .. 21

4.2 Hardware... 22
4.3 Software .. 22
4.4 Version control ... 23

5 METHODS ... 23
5.1 Model 1 - two encoders, two decoders 23
5.2 Model 2 - two encoders, one decoder 25

6 RESULTS... 28
6.1 Model 1 ... 28
6.2 Model 2 ... 29

7 DISCUSSION .. 32

8 CONCLUSION .. 34

9 ACKNOWLEDGEMENTS ... 35

REFERENCES ... 36

Abbreviations

1KGP 1000 Genomes Project
A adenine
BCE binary crossentropy
C cytosine
CCE categorical crossentropy
chr20 chromosome 20
CVAE convolutional variational autoencoder
DNA deoxyribonucleic acid
G guanine
GSA Global Screening Array
GWAS genome-wide association studies
MEGA Multi-Ethnic Global Array
MS marker-specific (variables)
MSE mean square error
NMS new marker-specific (variables)
NN neural network
PCA principal component analysis
SNP single-nucleotide polymorphism
T thymine

1 Introduction

There are numerous applications in genome research where features in the data cause
problems when using statistical models for analysis. An example of such applications is
when there are many missing variables. This can occur when analyzing different panels
of individuals which have been genotyped using different single-nucleotide polymor-
phism (SNP) chips. Imputation of non-observed genotypes is a method which can be
used to normalize data from multiple cohorts, e.g. in genome-wide association stud-
ies (GWAS). Statistical models used for imputation, which are based on the expected
structure of the genome, will however heavily depend on the panel it is based on (Li
et al. 2009). Non-ideal features in the data, like error rates for some SNPs, will result in
undesirable patterns despite extensive attempts to perform quality control on the source
data.

The use of machine learning, especially neural network (NN) models, has increased in
recent years. This applies to many fields of science, biology and medicine to name a
few. One of the reasons for this increase is that NNs have time and time again proven
to be capable of detecting patterns in data that the classical statistical methods can not
detect as easily. This feature makes NNs a promising tool for imputation in GWAS.

2 Background

The idea for this project came from a collaborator at Karolinska Institutet in Stockholm.
They had two sets of genotype data from negative controls, which had been involved
in studying psychiatric conditions in patients. A majority of the individuals have been
genotyped on both of the panels and a minority of the individuals have only been geno-
typed on one. The task was to train different types of NNs and find a model that could
impute the genotype data that were missing, i.e. in the cases where an individual has only
been genotyped on one panel. The goal of the project was to find a model that was better
at imputation of genotype data than existing models (Halperin & Stephan 2009). This
project will hopefully contribute to increase the use of NNs in bioinformatics. Currently,
there are only a few examples where NNs have been used for imputation in GWAS, e.g.
Sun & Kardia (2008) and Chen & Shi (2019).

The work of this project was built upon research conducted in the Nettelblad group at
the Division of Scientific Computing at Uppsala University, where NNs had been used
for dimensionality reduction of genotype data as an alternative to principal component

11

analysis (PCA). Dimensionality reduction and imputation, in the context of NNs, are
similar in the sense that the models need to capture important features in the data to
succeed at their tasks. The existing scripts, which where used for training dimensionality
reduction models, were thus a good basis for imputation.

3 Theory

As this is an interdisciplinary project, it is necessary to understand both the biological
and the technical aspects of the task. It is relevant to understand the origin of the biolog-
ical data, how to represent the biological data, the principles of machine learning, what
machine learning model to use and why that model would succeed at the task. It was
also relevant to find a way to validate the correctness of the trained models.

3.1 Origin of genetic data

Most of the cells in our bodies contain molecules of DNA, which is the blueprint of
life. DNA has the instructions to create all imaginable varieties of life and consists
of different sequences of the four nucleotides adenine, cytosine, guanine, and thymine
which are referred to by the letters A, C, G, and T respectively. The genetic material
of an individual is called the genome and the human genome consists of a sequence of
three billion nucleotides (Venter et al. 2001).

Differences in the genetic sequence are responsible for the different genetic traits in a
population, e.g. blonde or brown hair color. These traits are a result of evolution. Over
time, the DNA molecules in our cells are damaged by the environment and, if the cells
can not repair the damage, the genetic sequence will change. Letters in the genetic
sequence can get substituted. This is called a mutation and it is usually neutral. In rare
cases, a mutation can give rise to a new trait which will either be beneficial or harmful to
the individual. It takes many generations for a beneficial mutation to replace the original
variant in a population. Neutral mutations can, in theory, go unnoticed forever. The way
in which genetic material is passed on is also, to some extent, random. This makes it
possible for multiple genetic variants to coexist within a population. If there exist two or
more possible letters for a specific position in the genome it is called a SNP and it is the
most common type of variation within the genome (Twyman 2009). As an individual

12

inherits two sets of chromosomes, one from each parent, it is possible for an individual
to have two different variants of the same SNP.

Sequencing all three billion bases in a genome is expensive and all parts of the genome is
not informative. Most of the sequences are the same for all humans and as there already
exists a reference human genome, it is only necessary to focus on the regions that differ.
As the SNPs alone cover a lot of these differences in an individual, they are informative
and useful in GWAS. As the set of SNPs is smaller than the full genome it is easier to store
and process. It is also cheaper to genotype SNPs than sequencing full genomes. SNPs
can be genotyped using different SNP arrays, which capture an array-specific subset of
markers in the genome. Furthermore, the closer two genomic regions are to one another,
the more likely are they to be inherited together due to genetic linkage. This implies that
if a SNP is known, it is possible to infer likely genotypes around that SNP and fill in the
blanks based on that inference.

3.2 Working with genetic data

Even though it might be appealing to store SNP data as their corresponding nucleotide
letters, it is not the most memory efficient approach. One of the possibilities is to store
the genetic information in a PLINK format (Purcell et al. 2007). PLINK files consist of
a .bed file that stores all of the raw SNP data in a binary format as 00, 01, 10, and 11. The
.bed file assumes that there are a reference and an alternate allele at each position. For
the data in this project, the reference is the common SNP variant and the alternate is the
uncommon SNP variant. Recall that an individual has two sets of chromosomes, then
the binary numbers translate to double uncommon variant (00), missing genotype (01),
one of each variant (10), and double common variant (11). The .bed file is accompanied
by a .bim and a .fam file. The .bim file contains the name and position of each SNP in the
.bed file. It also has information on which nucleotide letter the reference and alternate
variants correspond to. Finally, the .fam file contains metadata of every individual in
the .bed file, e.g. what sex an individual has and which population they belong to.

The binary numbers 00, 01, 10, and 11 in the .bed file do not translate into their cor-
responding decimal numbers 0, 1, 2, and 3. Instead, they translate into 0, NaN (not a
number), 1, and 2. The NaNs have to be replaced by actual numbers before the data
are processed by the NN, otherwise the loss will also be NaN. The NaNs are set to the
common variant 2, which leaves us with 0, 1, and 2. In this project, the data were also
normalized. Normalization is done by making sure that all values of the data are be-
tween 0 and 1. For this particular case, the three numbers above are set to 0.0, 0.5, and
1.0 respectively.

13

3.3 Neural networks

In recent years, NN models have proven to be a promising tool in machine learning.
NNs can find patterns in high-dimensional data that classical statistical models have not
been able to do. Even though the behavior of NNs are complex and have not been fully
understood yet, the principles they are built upon are not as complex.

NNs consist of an input layer, one or more hidden layers, and an output layer (Michelucci
2018). Every layer consist of nodes, which are connected to the nodes in the other layers
by adjustable weights. The input layer is where the input data enter the neural network
and the output layer is where the network makes its predictions. The hidden layers cal-
culate intermediate states of the data and these states are not necessarily interpretable
by humans. As the input passes through the NN and enters the first hidden layer, it gets
multiplied by the weights of that layer. The result then passes through an activation func-
tion before getting passed on to the following layer in the NN. The activation function of
artificial neurons was originally inspired by the on-off switch in biological neurons. The
activation function produce a signal and the stronger this signal is, the more likely is it
to propagate further into the network. There are many different activation functions and
which function to use varies between applications. The input passes through all layers
until the output layer is reached.

Training a NN is an optimization problem, which can be to either minimize or maximize
an objective function. This function is used to calculate a metric to evaluate the per-
formance of the model. If the task is to minimize the objective function, the objective
function is usually called a loss function. The task is then to minimize the loss of the
loss function as the model is training. The loss of the model is calculated after each
iteration of training and is necessary for the NN to know whether it is improving or not.
Every time the model has trained on all of the training data it has completed an epoch
and it usually requires many epochs for the model to converge to a solution where no
further improvement to the loss is made. By using back propagation (Rumelhart et al.
1986), the NN knows how the loss was calculated and uses this information to adjust
the weights in an attempt at decreasing the loss for the following iteration. After an iter-
ation of training, the gradient of the loss function w.r.t the weights are calculated. The
gradient tell the model which weights to be adjusted and how. An optimizer will then
apply this gradient and update the weights of the model. There are multiple optimizers
to choose from and each optimizer has a different way of adjusting the weights. One of
the most common and general optimizers today is the Adam optimizer (Kingma & Ba
2017). Optimization is not always an easy task. The model is constantly looking for a
minimum of the loss function and if the adjustments of the weights are too big, it will
pass the minimum. Similarly, if the adjustments are too small, it will never reach the

14

minimum (Murphy 2012). This is done for thousands of parameters which makes the
task of optimization even more challenging. The loss function also has multiple minima
and the model can get stuck in a poor minimum and never proceed to a better one.

A total of three loss functions were considered for the project. The first loss function was
mean square error (MSE), presented in Equation 1. N corresponds to the total number of
SNPs that are being predicted, yi the true value of the ith SNP, and ỹi the predicted value
of the ith SNP. MSE is a common loss function in machine learning and it is usually
used for regression.

MSE(y, ỹ) =
1

N

N∑
i=1

(yi − ỹi)
2 (1)

The second loss function was binary crossentropy (BCE), presented in Equation 2 (Math-
ieu et al. 2016) with the same variable notations as for Equation 1. BCE is logarithmic,
which makes it more sensitive on the interval [0, 1] compared to MSE.

BCE(y, ỹ) = − 1

N

N∑
i=1

yi · log(ỹi) + (1− yi) · log(1− ỹi) (2)

The third and last loss function was categorical crossentropy (CCE), presented in Equa-
tion 3 (Harikrishnan et al. 2020). Here, M corresponds to the total number of classes,
N the total number of SNPs, yi,j the true probability of the jth class of the ith SNP, and
ỹi,j the predicted probability of the jth class of the ith SNP.

CCE(y, ỹ) = − 1

N

M∑
j=1

N∑
i=1

yi,j · log(ỹi,j) (3)

As every SNP can be either 0.0, 0.5, or 1.0, there are a total of three classes per SNP,
i.e. M = 3. If the true value for a SNP is 1.0, the true class probabilities are [0, 0, 1].
Only the correct class will be assigned 1 and the remaining classes will be assigned 0.
When the NN makes a prediction, it generates one scalar for each SNP. Hardy-Weinberg
equilibrium (Edwards 2008), presented in Equation 4, is then used to convert each of
these scalars to their predicted class probabilities. Each scalar output corresponds to the
allele frequency p of the common variant and each term in the left-hand side of Equation
4 corresponds to a class probability.

15

(1− p)2 + 2p(1− p) + p2 = 1 (4)

If the NN predicts the scalar to be p = 1, then the class probabilities are [0, 0, 1] and
the loss will be minimized. If the NN guesses the scalar to be p = 0.8, then the class
probabilities are [0.04, 0.32, 0.64] and the loss will be higher. Even though 1.0 still is
the most likely class out of all three classes with a probability of 64%, it still assumes
that the class 0.0 is 4% likely and the class 0.5 to be 32%. CCE is used for single label
categorization in classification, i.e. the cases where only one answer is correct. CCE
also shares the logarithmic behavior with BCE, i.e. predictions which are further away
from the real value will produce higher losses. CCE was chosen for the project as it
seemed to be the most promising out of the three losses.

During optimization, it is possible for the model to overfit (Lawrence et al. 1997). Over-
fitting occurs when the model finds patterns which exist only in the training data. If an
overfit model then tries to process new examples, the performance will be worse. To
make sure that the model does not overfit, a subset of the samples in the data will be
saved as a validation set that will never take part in the training (James et al. 2013). By
using the validation set, it is possible to confirm whether the model finds general patterns
or not. Data is still limited in GWAS, which makes it important to choose a validation
set of the right size. If too few samples in the data are used for validation, the loss of
the validation set will not be reliable. On the other hand, if too many of the samples in
the data are used for validation there will not be a representable amount of data left for
training. In this project, 80% of the data were used for training and 20% for validation
as this was used for the models used for dimensionality reduction.

3.4 Model architecture

The architecture of a NN model is defined by the layers it consists of. Convolutional
variational autoencoders (CVAE) are a type of NNs which are symmetric and are good
at finding patterns in data (Pu et al. 2016). They compress the input data by encoding it
into a low-dimensional representation and decode it to recreate the original input. The
model will be forced to find the most important features in the data as some information
will inevitably get lost as it gets encoded. The training is unsupervised, as it only needs
to know what the input looks like to confirm whether the data have been recreated or not.
The performance is measured by calculating the loss between the input and the predicted
output. A common application for trained CVAEs in image analysis is to remove noise
from images. The CVAEs have learnt what similar images look like by finding patterns
which define those images. By finding the most relevant patterns in the images they do

16

not need to have the information that got lost by the noise to recreate the original images.
In the context of imputation, the missing data in the SNP data can be seen as the noise
in the images. CVAEs can be trained on data where all of the SNP data are present and
then be used to impute the data for the cases where parts of the data are missing.

CVAEs are memory efficient as they only use small and general convolutional filters.
Finding features in the data is a process of data compression and each step of compres-
sion consists of convolutional filters and max pooling. The convolutional filters find
features in the data and max pooling keeps the most significant values in these features
and reduces the dimensionality of the data. After these compressions, the information
reaches the dense layers in the middle of the network. Dense layers connect all of their
adjacent nodes, making the nodes fully connected. As the information passes through
the middlemost dense layer of the CVAE, also known as the latent layer, the information
is in its most compressed state. This information is then decoded in a similar way as
it was encoded by using similar operations. Convolutional filters are still used, but up-
sampling is used instead of max pooling. The first half of the CVAE is usually referred
to as the encoder and the second half as the decoder. An illustration of a simple CVAE
can be seen in Figure 1.

Figure 1: A simple convolutional variation autoencoder with one pair of convolution and max
pooling in the encoder and one corresponding pair of convolution and upsampling in the decoder.
Convolutions aremarked as blue, max pooling as red, dense as yellow and upsampling as green.

3.5 Injecting trainable variables

To add extra support of the model, it is possible to train extra variables which will be
injected into the network. These variables are trained in the same way as the other

17

weights in the network. The idea is that the trainable variables will find general patterns
in the data and the other weights in the model will try to cover the variance between
samples. Furthermore, these trained variables will also to some extent compensate for
missing data. Marker-specific (MS) and new marker-specific (NMS) variables were
tested in this project. The difference between these two sets of variables is the layer of
the network which they get injected into.

3.6 Hyperparameters

When the training starts, the weights of the model will be initialized and it will do its
best to find a solution that minimizes the loss function. Even though there will be min-
imal input from the user during training, it is still possible to increase the chances of
finding a general solution before the training starts. This is done by selecting suitable
hyperparameters for the model, which will guide the training. Hyperparameters are not
derived from training and are manually tuned. The number of relevant hyperparameters
varies between models.

3.6.1 Initial learning rate

The initial learning rate is an important hyperparameter for all models. It tells the model
how the first weight adjustments should be scaled. As mentioned earlier, the model will
struggle to find a good solution if the adjustments are too big or too small (Murphy 2012).
The learning rate can also be decreased over time by including exponential decay, which
will lower the learning rate at regular intervals.

3.6.2 Batch size

Batch size is relevant in the context of genomic studies where the data are large. If the
data are too large, it will not fit into the memory of the computer. The data have to
be split into batches to bypass this issue and the batch size tells the model how many
samples to process at once. For instance, assume that the data consist of 1477 samples
and that the batch size is 100. The model will then train on 14 batches of 100 and one
batch of 77. After all batches have been processed, an epoch is completed.

3.6.3 Noise level

Adding Gaussian noise to the latent layer is a way of preventing the model from over-
fitting. The high-dimensional input will be encoded in a low-dimensional space in the

18

latent layer, which forces the model to learn how to keep as much of the original informa-
tion as possible. By adding noise to the bottleneck of the network, it will be even harder
for the model to find patterns in the data, but the patterns which it finds will be more
general to the data as a whole. Adding Gaussian noise with a high standard deviation
will make the training process longer but the model is less likely to be overfit.

3.6.4 Regularization factor

One undesirable way for the model to adapt to the noise in the latent layer is to make the
magnitude of the output significantly larger than the standard deviation of the noise. In
other words, the weights of this layer will explode. To prevent this weight explosion, it
is possible to add a regularization term of these weights to the loss function. A common
regularization technique is L2 regularization. By setting a regularization factor, the L2-
norm of the weights multiplied by the regularization factor will be added the the loss
function. This will keep the weights reasonably small as large weights will contribute
to a significant addition to the loss.

3.6.5 Dropout

The network will not rely too heavily on specific weights if the result of those weights
are removed at random during training. This technique is called dropout and it forces
the network to use multiple weights to recognize patterns (Srivastava et al. 2014). If the
dropout rate of a layer is 0.1, then 10% of the nodes in that layer will be ignored and the
remaining 90% will be used further on in the NN. Which nodes to remove and to keep
are chosen at random each iteration. Over a long period of time, any set of 90% of the
nodes will be able to represent the data in a way that minimizes the loss.

3.7 Genotype concordance

Validating if a trained model succeeds at the task is a crucial step in machine learning.
The loss function measures the performance of the model but it is hard to tell how accu-
rate the model is if the loss value is, for example, 0.56. An analytical tool which assumes
exact genotype values instead of probability distributions is required. In other words, if
a SNP is 5% likely to be 0.0, 15% likely to be 0.5, and 80% likely to be 1.0, then this
tool will assume that the SNP is 1.0 and check against the real SNP value whether the
prediction is correct or not.

One way of measuring the performance this way is calculating the genotype concor-

19

dance. This statistic measures the performance of correctly labeled predictions on a
scale from 0 to 1. When validating our models, all SNP data will be available. SNPs
from the dataset that is assumed to be missing are removed and to be imputed. Only
the SNPs of the other dataset remain. Imputation is done and as a reference exists with
SNP data for both datasets, it is possible to measure the performance of reconstructing
the known SNPs, the imputed SNPs, and the combined sets of SNPs. For each of these
three cases, a unique genotype concordance value can be calculated.

Self-concordance is the performance of reconstructing the known SNPs. Even though
the task is to impute missing data, it is still useful to use this statistic to confirm that
the model is able to capture the structure of the full data. Anti-concordance is the per-
formance of imputing the missing SNPs. These SNPs are not used as input, but they
will still be predicted and compared to the available reference to calculate the perfor-
mance. Total concordance is a weighted average of the other two concordances and
measures the overall prediction performance of the model. For example, assume that
there are a total of 3000 SNPs, where 2000 SNPs are known and 1000 SNPs are miss-
ing. If 1900 of the known SNPs are reconstructed correctly, then the self-concordance
value will be 1900/2000 = 0.95. If 800 of the missing SNPs are correctly imputed, then
the anti-concordance value will be 800/1000 = 0.80. The total concordance is then
(2000 · 0.95 + 1000 · 0.8)/(2000 + 1000) = 0.90

4 Materials

4.1 Data

4.1.1 Patient data

The genotype data for this project was provided by Karolinska Insitutet, and consisted
of two different panels. The data of the two panels were negative controls and were
collected using the Global Screening Array (GSA) and the Multi-Ethnic Global Array
(MEGA), designed by Illumina. Quality control was done by the client at Karolinska
Institutet, keeping only high quality SNPs in the data. All of the SNPs which had dif-
ferent SNP names but identical chromosomal positions were removed from the data to
exclude duplicate genomic sites. As seen in Table 1, a majority of the patient samples
had been genotyped on both panels and a minority on just one of them.

It is a resource-intensive task to train NN models on the full data, which made it nec-

20

essary to use a subset of the data. The SNPs on chromosome 20 (chr20) of the two
panels were chosen as this subset. It is common practise to choose chr20 as a subset in
GWAS, as it is a relatively small chromosome and it does not suffer from abnormalities
such as trisomy, i.e. three chromosomes instead of two within a pair of chromosomes
(Mavromatidis et al. 2010). A summary of the chr20 subsets can be seen in Table 1.

Table 1: Summary of the two sets of patient data.

data # samples # SNP.full # SNP.chr20
GSA only 51 268123 6484
MEGA only 33 208892 4876
GSA and MEGA 1336 220115 5266
total 1420 697130 16626

4.1.2 Simulated data

The patient data were sensitive, which made it much more convenient to initially work
with simulated data instead, since no security measures are needed. Simulated data have
a similar structure to the real data and it can be processed in any environment without
risking the integrity of the patients. Data from the publicly available 1000 Genomes
Project (1KGP) were used as input to mimic the structure of the patient data (The 1000
Genomes Project Consortium 2015). All of the bi-allelic SNPs in the 1KGP dataset,
which also were present in the GSA and the MEGA datasets, were used to train the initial
models. The summary of the simulated patient data is presented in Table 2. Almost all
of the data on the GSA and MEGA panels were also present in the 1KGP dataset. Please
note that the 1KGP datasets had 2504 samples compared to the patient datasets which
had 1420.
Table 2: Summary of the two full sets of simulated patient data. The last column shows how
many % of the original SNPs which also were present in the 1KGP dataset.

data # samples # SNP % of data
GSA only - 256445 95.6
MEGA only - 203950 97.6
overlap 2504 212507 96.5
total 2504 672902 96.5

21

A chr20 counterpart of the simulated data was also created to make training and testing
of the different models faster. The simulated chr20 datasets are summarized in Table 3.

Table 3: Summary of the two chromosome 20 subsets of simulated patient data. The last column
shows how many % of the original SNPs which also were present in the 1KGP dataset.

data # samples # SNP % of data
GSA only - 6480 99.9
MEGA only - 4820 98.9
overlap 2504 5262 99.9
total 2504 16562 99.6

4.2 Hardware

Resources on UPPMAX in Uppsala and HPC2N in Umeå were approved for this project.
The Kebnekaise resource on HPC2N was used for simulating the test data and the Rack-
ham and Snowy resources on UPPMAX were used for the intial testing of the model
on the simulated data. The Bianca resource on UPPMAX was used for training models
on the actual patient data, as the patient data were sensitive and needed an environment
where it could be processed without risking the integrity of the patients. Rackham and
Bianca have access to CPUs while Kebnekaise and Snowy have access to both CPUs
and GPUs.

4.3 Software

TensorFlow 2 was used to train the different models in the project. TensorFlow 2 is a
package used to train NNs in Python versions 3.5 or higher (Abadi et al. 2016). Machine
learning models require high performance as it is a demanding task by the computer to
access and tune the different parameters. In the context of high performance computing,
Python is usually criticized for being a high-level programming language, which means
it has a lower performance. Even though TensorFlow is implemented in Python, its core
is written in C++ to bypass this issue. C++ is also considered a high-level language but
it is a lower level language compared to Python.

The Nettelblad group had already developed a code base for training CVAE models on

22

SNP data. The intended application for this code was dimensionality reduction and thus
changes had to be made to the make the code suitable for imputation.

4.4 Version control

The existing code base was already collected in a GitHub repository, which made GitHub
the best choice for version control in this project. This made it easier to create copies of
the original repository and track changes and bug fixes within the Nettelblad group.

5 Methods

The main task of the project was to come up with a new NN model which was able to
learn the different features in each of the chip datasets. The initial plan was to focus on
doing minor changes to the existing model, e.g. adding more densely connected layers
to the middle of the network and increasing the number of dimensions in the middle
layers. However, this proved to be more difficult than initially thought and two different
CVAE approaches were implemented and tested.

5.1 Model 1 - two encoders, two decoders

The first of these two approaches was training two CVAEs in parallel, one for each
panel. Each CVAE was intended to encode its own input and then decode the encoded
data. In the cases where data are present on both panels, it is possible for both encoders
to process their own panel data at the same time. The input and output sizes of the two
CVAEs correspond to the number of SNPs on each panel, which not necessarily are the
same for both CVAEs. The encoded data, on the other hand, can be set to the same size
by using the dense layers in the middle of each network.

If the encoded data of both CVAEs have the same dimension after the data have been
encoded, it is possible to shuffle the encoded data between the CVAEs. If the encoded
data are swapped, the decoder of the first CVAE would still have to reconstruct the
data of the first panel even though it has the encoded data of the second panel. The same
holds for the second decoder. The two CVAEs would be forced to produce near-identical
encoded representations of the data or the loss of the loss function will be too high as the

23

decoders would use nonsense to reconstruct their input. If the encoded data are identical,
it does not matter where the original data came from. The decoder would still be able
to reconstruct the data as both encoders have captured the same patterns but in different
datasets. This model can then be used in the cases where data are missing. The data
can be encoded by its corresponding encoder and decoded by the other decoder as a way
of imputing the data of the missing panel. An illustration of the model can be seen in
Figure 2.

Initially, it took a long time to fully understand the existing code and implementing this
model structure. The original code was only compatible with processing one dataset at
a time and was only using one CVAE. Furthermore, the original models could not read
files in the PLINK format. Extensive changes to the code were required to make the
model suitable for the current application.

As soon as the model was fully functional and worked on simple test cases, different
changes were done to the model to test whether they would increase the performance
of the model or not. Changes which were tested include different initial learning rates;
batch sizes; levels of added noise in the latent layer; regularization factors of the weights
in the latent layer; levels of dropout rate for the convolutional, max pooling, upsampling,
and dense layers; number of convolutional and max pooling layers; filter sizes of the
convolutional layers; number of filters of the convolutional layers; number of dense
layers in the middle of the network; and sizes of the dense layers. These experiments
were only tested on the simulated chr20 datasets.

Figure 2: The architecture of the first model. The blue components correspond to those of the
first dataset and the red components correspond to those of the second dataset.

24

5.2 Model 2 - two encoders, one decoder

The second model structure was a bit different than the first. The second model followed
a UNet structure to improve the performance of the model. UNets save outputs from hid-
den layers in the encoder and inject them at their corresponding position in the decoder.
This made it possible for the model to keep information from intermediate states and
still find relevant features in the original input. As more of the original information is
preserved this way, the model does not have to focus on reconstructing the SNPs which
are known. Instead, the model could be trained on imputing the data that are missing.

Changes were made to the code of the first model to make it compatible with the UNet
structure. As the code already could process multiple datasets and read PLINK files, it
did not take too long to finish the second model. To make UNets work, the intermediate
outputs must have the the same shape as the layer they are injected in. This made the
structure of the first model unsuitable as a UNet, as the corresponding layers in each
autoencoder had different shapes. If the encoded data were swapped and the output of
a layer from one of the encoders were injected into the corresponding layer of the other
decoder, it would not fit. To tackle this problem, both autoencoders had to have the same
architecture with identical layer shapes.

The first way to solve this problem was to make sure that the shape of the inputs were the
same. This was done by sorting the SNPs in the input based on their genomic position.
If a SNP was missing on one of the panels but present on the other, it would be assigned
a random genotype value on the panel which was missing it. This ensured that every
input had the same shape and covered all of the SNPs in both datasets, whether they
were missing or not.

Similarly to the first model, two encoders were used. Each encoder was trained to find
patterns in one of the datasets. The encoded data of both encoders, as well as the inter-
mediate layer outputs, were processed by a shared decoder. Only one decoder was used
as two separate decoders would accomplish the same thing, i.e. reconstruct the input
with the same encoded data. This also reduced the number of weights in the model.
Before training the different encoders, the SNPs which were not present on the current
panel had to be replaced by a random genotype every iteration of the training to make
sure that the encoder would not capture nonexistent patterns. Otherwise it would not
be able to impute data later on. The loss was still calculated using all of the SNPs as
a reference to confirm that the model could reconstruct the known data and impute the
missing data. An illustration of the model can be seen in Figure 3.

25

Figure 3: The architecture of the second model. The blue components correspond to those of
the first dataset and the red components correspond to those of the second dataset. Please
note that the decoder is purple to indicate that it is shared between the two datasets.

Due to time constraints, the UNet structure was not as extensively explored as the first
model. Changes which were tested include different initial learning rates; filter sizes of
the convolutional layers; number of filters of the convolutional layers; and number of
intermediate outputs which were injected into the decoder. The model was first tested on
the simulated chr20 datasets, followed by the full simulated datasets. Lastly, the model
was tested on the patient chr20 datasets, but only the patients who had data on both
panels were used. A summary of the network architecture can be seen in Table 4 and
a summary of the final hyperparameter values can be seen in Table 5. Please note the
differences in batch size between the simulated data and the patient data. This was to
make sure that every batch were of similar size during training.

26

Table 4: Summary of the encoder and decoder components of the final model.

encoder
layers arguments

5x Conv1D1 filters: 32, kernel size: 3, padding: same, activation: elu
MaxPool1D2 pool size: 2, strides: 2, padding: same

1x Conv1D3 filters: 4, kernel size: 3, padding: same, activation: elu
1x Flatten4 -
1x Dense units: 256, activation: elu
1x Dense units: 128

decoder
layers arguments

1x Dense units: 256, activation: elu
1x Dense units: same as 4 , activation: elu
1x Reshape target shape: same as 3

1x Conv1D filters: 32, kernel size: 3, padding: same, activation: elu
5x Reshape target shape: same as corresponding 2

UpSampling2D size: (2,1)
Reshape target shape: same as corresponding 1

Conv1D filters: 32, kernel size: 3, padding: same, activation: elu
1x Conv1D filters: 1, kernel size: 1, padding: same
1x Flatten -

Table 5: Summary of the hyperparameters of the final model.

hyperparameter value
initial learning rate 1e-03
batch size (simulated data) 101
batch size (patient data) 107
noise level 0.25
regularization factor 1e-07
dropout none

27

6 Results

The two models had varying performance, both in terms of reconstructing the known
data and imputing the missing data. As mentioned in Section 3.6, the genotype con-
cordance metrics were used to measure the performance of the trained models. Total
concordance measured how good the model were at recreating all of the SNPs, self-
concordance the known SNPs, and anti-concordance the missing SNPs. For each of the
three SNP sets, a baseline genotype concordance value was also calculated. The baseline
value was used as a reference and was calculated by assuming all SNPs of that set were
the common genotype, i.e. 1.0. Exceeding the baseline value proved that the prediction
of the model could beat simple guessing.

6.1 Model 1

One of the requirements for imputing missing data was having near-identical latent rep-
resentations between the two CVAEs. When plotting the coordinates of the latent layer
from each CVAE, it was found out that the coordinates were indeed similar between the
two CVAEs. Furthermore, the superpopulations in the 1KGP dataset were also sepa-
rated from one another in clusters based on their geographic origin. This confirms that
both encoders have not only captured relevant but also similar biological patterns in the
different datasets.

Initial learning rate was the most important hyperparameter for this model, especially
as the learning rate was constant throughout training. Having an initial learning rate of
≤ 10−4 made sure that the loss of the model converged in all of the test cases. Having a
learning rate of ∼ 10−3, i.e. the same initial learning rate as the second model, gave the
model a moderate convergence rate and the converged loss was lower compared to the
cases with a lower initial learning rate. Having an initial learning rate of≥ 10−2 gave the
model a fast convergence rate in the beginning of training, but after a couple iterations
the model lost its solution and never converged. In summary, it was more beneficial in
terms of convergence to go for a higher initial learning rate but that benefit always came
with a higher risk.

Using different batch sizes did not affect the result of the converged loss value. A smaller
batch size implied a longer training time per epoch as the model would process the data
in more batches and using a larger batch size implied a shorter training time per epoch.
On the other hand, the smaller batch size converged faster than the larger batch size per
epoch. In real time, the different batch sizes had a similar convergence rate.

28

When using dropout and a higher level of noise, the model got more stable for the higher
initial learning rates. This also made the convergence rate slower and it was hard to
confirm whether the model still would converge to a significantly lower loss than before.
Nonetheless, using these changes made the model less likely to overfit as the validation
loss was never higher than the training loss. The regularization factor of the weights in
the latent layer had to be tuned to a value appropriate for the current level of noise, but
it did not affect the loss to a large extent.

Increasing the depth of the network did improve the performance of the model, but only
for the first few layers added. When increasing the number of dimensions of the dense
layers and the number of dense layers in the middle of the model, a similar trend was
observed. It got harder for the model to tune more weights and the training time got
longer. Having filter sizes > 5 and a high number of filters in the convolutional layers
did not contribute to an increase in performance.

It proved to be difficult to train the first type of models. Even though the first model was
modified in multiple aspects and extensively tested, it was hard to find a model with a
decent performance in terms of genotype concordance. In fact, neither of the changes
done to the model made the total concordance exceed its baseline value. By the end of
the project, it was found out that the MS and NMS variable injections were not working
as intended due to a bug. The bug was found by the supervisor of this project and the
bug caused the variables to never be injected nor trained. This could have contributed
to the poor performance of this model.

6.2 Model 2

The second type of model proved to be much better than the first. When training on
the simulated chr20 dataset, the second model immediately achieved better results. The
total concordance and the self-concordance metrics exceeded their respective baseline
value, which was not the case for the first model. This despite MS and NMS not work-
ing as intended. After some minor changes to the model, the anti-concordance metric
also exceeded its baseline value. This proved that this type of model could be used for
imputation. The performance of the final model which trained for 1000 epochs on the
simulated chr20 datasets can be seen in Figure 4. This is the average performance of the
simulated GSA and MEGA chr20 datasets. A more detailed summary of the converged
results can be found in Table 6. The last row in Table 6, average, corresponds to the
values of each line at epoch 1000 in Figure 4.

29

0 200 400 600 800 1000
epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

co
nc

or
da

nc
e

Genotype concordance

total concordance
self-concordance
anti-concordance

Figure 4: Performance of the final model on the simulated chr20 datasets. The solid lines rep-
resent the genotype concordance values over time. Each dotted line represents the baseline
value corresponding to the solid line of the same color.

Table 6: Summary of the converged results at epoch 1000 for the simulated chr20 datasets. BL
corresponds to the baseline value and CM to the value of the converged model. The average is
a weighted average of the GSA and MEGA datasets and the weight of each dataset is calculated
from the total number of SNPs in that dataset.

total concordance self-concordance anti-concordance
BL CM BL CM BL CM

GSA 0.7247 0.9420 0.7428 0.9960 0.6807 0.8100
MEGA 0.7247 0.9614 0.6474 0.9985 0.8450 0.9043
average 0.7247 0.9509 0.6987 0.9972 0.7565 0.8536

As the model was successful at imputing some of the missing SNPs in the simulated
chr20 datasets, the next step was to test it on the full simulated datasets. Training on the

30

full datasets is a time-consuming task, as it would take months to run the model for 1000
epochs. It was however noted that the behavior of the model for the first 30 epochs was
the same as for the chr20 run. This indicated that the model could work well on the full
datasets.

The last test was training the same model on the chr20 SNPs on the actual data panels.
The model did not perform as well as it did on the simulated data, but the three metrics
still beat their own respective baseline. Similarly to the simulated data, the performance
of the model trained on the real patient can be seen in Figure 5 and a more detailed
summary of the converged results of can be found in Table 7.

0 200 400 600 800 1000
epoch

0.5

0.6

0.7

0.8

0.9

1.0

co
nc

or
da

nc
e

Genotype concordance

total concordance
self-concordance
anti-concordance

Figure 5: Performance of the final model on the real chr20 datasets. The solid lines represent
the genotype concordance values over time. Each dotted line represents the baseline value
corresponding to the solid line of the same color.

31

Table 7: Summary of the converged results at epoch 1000 for the real chr20 datasets. BL
corresponds to the baseline value and CM to the value of the converged model. The average is
a weighted average of the GSA and MEGA datasets and the weight of each dataset is calculated
from the total number of SNPs in that dataset.

total concordance self-concordance anti-concordance
BL CM BL CM BL CM

GSA 0.7342 0.9220 0.7591 0.9995 0.6740 0.7340
MEGA 0.7387 0.9473 0.6689 1.0000 0.8479 0.8650
average 0.7364 0.9336 0.7174 0.9997 0.7545 0.7947

7 Discussion

The expectations of the first model were high in the beginning of the project. It was
initially estimated to take a couple weeks to make the model work on the simulated chr20
data, but it proved to be much more difficult. After two months of testing, the genotype
concordance of the model could still not exceed the baseline. Trying different values
for each of the hyperparameters seemed pointless, as the gain in genotype concordance
was close to insignificant. The genotype concordance always seemed to converge to a
value which was under the baseline. A member of the research group tried to test the
convergence of genotype concordance by training a different model on their own dataset.
Their model managed to exceed the baseline, but this required a couple thousand epochs
to achieve. This is unrealistic for this project, as the number of training iterations would
translate to a couple weeks on the chr20 data and a couple years on the full data. This
behavior is also not guaranteed for the datasets in this project.

The second model proved to be more successful than the first model. The idea of us-
ing the UNet structure came from another member in the group who was testing it on
their models. They noticed that their models managed to reach genotype concordance
values close to 1.0, i.e. a perfect reconstruction of the original data. These models were
designed for dimensionality reduction, but the UNet structure still seemed promising
for imputation. The model could keep the original information of the known SNPs by
injecting the intermediate outputs of the encoder into the layers of the decoder. The
model could then focus on finding the features to impute the missing SNPs. As can be
seen in Tables 6 and 7, the converged self-concordances values are close to 1.0. This

32

means that the model can almost fully reconstruct the known SNPs of the simulated and
the patient datasets. The anti-concordance values are a bit lower, but they still exceed
their baseline. In Figures 4 and 5 it seems like the anti-concordance values still have
not properly converged yet. On the other hand, it does not seem like there would be any
significant gains from running the model for longer, as the model is close to converged
already. The second model is still far from perfect at imputing missing data, but further
changes to the model could potentially improve the performance.

It is also worth noting the differences between Figures 4 and 5. The concordances are os-
cillating more in Figure 4, which could be explained by the higher variation in the 1KGP
data. What the model finds suitable for the current batch of data will not necessarily be
optimal for the other batches if the data in the randomized batches are significantly dif-
ferent. In Figure 4 there are also major drops in concordance at epochs 730 and 850.
This is most likely caused by the model leaving the minimum it had found. The model
then finds its way back to the same minimum or a different minimum with a solution as
good as the last one.

Another noticeable difference between the simulated and the patient datasets are the
anti-concordances. Comparing Tables 6 and 7, the anti-concordance baselines are al-
most at the same level. The converged anti-concordance values, on the other hand, are
noticeably different between the datasets. The simulated data make it to 0.8536 while
the patient data make it to 0.7947. It would be interesting to investigate whether this
was caused by the variation or the number of available samples within each dataset, as
access to more samples tend to improve the performance of NNs. A possible experiment
for the future could be to vary the number of samples in the simulated datasets. Similar
experiments could be keeping all samples but varying the number of SNPs and check-
ing whether lower-dimensional inputs perform better than than the full high-dimensional
inputs.

The success of the UNet structure of the second model proves that too much information
was lost by the first model. Even though both models have similar network architectures
and are using the same operations, the information from the intermediate outputs of the
UNet structure made a significant difference in terms of performance. As increasing the
number of layers make training slower and might not necessarily improve the model,
more prudent solutions are required.

A change which could improve the performance is using a learning rate with exponential
decay. As the learning rate would decrease over time, it would be easier for the model
to land in a minimum of the loss function. All of the tested models were assumed to
be using exponential decay until the end of the project when it was observed that the
learning rate was constant. Fixing this was easy but, as the project had already reached

33

its end, there was not time left to try it out. If one were to do further testing with these
models, exponential decay could potentially improve the performance of both models.

In future testing it could also be useful to look at the impact of the different intermediate
outputs which get injected in the decoder. It could be possible that the model relies
too heavily on the first intermediate outputs. This could cause the model to mainly
focus on recreating the known SNPs instead of being able to find patterns to impute
the unknown SNPs. If too much of the early information is kept, the model will be too
good at keeping that information, including the missing SNPs with randomized genotype
values. A good compromise is obtained when the model has enough information from
the intermediate outputs to represent the general features of the data and the decoded
data has the information to fill in the remaining gaps.

Lastly, fixing the bug which disabled the MS and NMS variables could also improve
the performance of the models. The second model was not as affected by the bug as the
first model and one possible explanation could be the intermediate outputs in the second
model which preserved more of the original information. By fixing this bug, the first
model is more likely to be improved than the second, but the second model could also
benefit from this fix.

Comparing the results of this project to those of Sun & Kardia (2008) and Chen & Shi
(2019), the models in this project were not as successful. The model of Chen & Shi
(2019) was also using a convolutional autoencoder, but they were only using one dataset.
Furthermore, they used only one encoder and one decoder. Our models were more com-
plex as they consisted of more components. Increasing the complexity of a model does
not necessarily lead to an increase in performance, but for this project it was believed
that the introduced changes would prove useful. It is also difficult to compare the per-
formances between the projects as the structure of the data plays an important role. NNs
have not been used to a large extent in biology and there are most likely many improve-
ments and discoveries left to be made.

8 Conclusion

Training NNs for imputation proved to be more difficult than initially expected. A lot
of time was spent on improving the first model but neither of the changes made the
predictions better than simply guessing the most common genotype. In the end, a differ-
ent model was developed. This UNet model managed to beat the simple guessing and
performed better on the simulated data than on the patient data.

34

This project has proved that there is potential for NNs in genome analysis, but there
are still room for improvement. Due to time constraints, this project only scratched
the surface of what could be achieved with NNs in GWAS. Hopefully, this project has
contributed to the field of machine learning in bioinformatics and better models with
improved performances will be developed in the future.

It has been a useful learning experience to work with the different models. Even though
it was hard to find a decent model which could impute the missing SNPs, a lot of different
approaches were examined in an attempt to solve the problem. This experience will not
just be useful for working with NNs, but machine learning in general.

9 Acknowledgements

My deep gratitude goes first to my supervisor Carl Nettelblad and my co-supervisor
Kristiina Ausmees at the Department of Information Technology at Uppsala University
for supervising for me throughout this project. Without their useful feedback and com-
ments, this project would never have been realized. I would also like to thank Kristiina
Ausmees for providing me with her TensorFlow code base. This made it possible for
me to get a head start in my project.

I would like to express my gratitude to Behrang Mahjani at Karolinska Institutet in Stock-
holm for providing me with the patient data which were used in the project. By providing
me with real data and a real problem, I got even more inspired to do my best.

My sincere thanks goes to my examiner Fabien Burki, my coordinator Lena Henriksson,
my subject reader Prashant Singh, and my opponent Stella Belin for helping me with
the project plan, the final presentation, this report, and providing me with additional
feedback on my work.

Last of all, I would like to thank all of my many friends, my colleagues, and my family.
There are too many names to name, but thanks to all of their support I managed to stay
motivated throughout the five years of my program.

35

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A,
Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y,
Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, et al. 2016. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467
[cs] ArXiv: 1603.04467.

Chen J, Shi X. 2019. Sparse Convolutional Denoising Autoencoders for Genotype Im-
putation. Genes 10: 652. Number: 9 Publisher: Multidisciplinary Digital Publishing
Institute.

Edwards AWF. 2008. G. H. Hardy (1908) and Hardy–Weinberg Equilibrium. Genetics
179: 1143–1150.

Halperin E, Stephan DA. 2009. SNP imputation in association studies. Nature Biotech-
nology 27: 349–351. Number: 4 Publisher: Nature Publishing Group.

Harikrishnan A, Sethi S, Pandey R. 2020. Handwritten Digit Recognition with Feed-
Forward Multi-Layer Perceptron and Convolutional Neural Network Architectures.
2020 2nd International Conference on Innovative Mechanisms for Industry Applica-
tions (ICIMIA). 398–402.

James G, Witten D, Hastie T, Tibshirani R. 2013. An Introduction to Statistical Learning,
volume 103 of Springer Texts in Statistics. Springer New York, New York, NY.

Kingma DP, Ba J. 2017. Adam: A Method for Stochastic Optimization. arXiv:1412.6980
[cs] ArXiv: 1412.6980.

Lawrence S, Giles CL, Tsoi AC. 1997. Lessons in Neural Network Training: Overfitting
May be Harder than Expected. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence, AAAI-97. AAAI Press, 540–545.

Li Y, Willer C, Sanna S, Abecasis G. 2009. Genotype Imputation. Annual Review of
Genomics and Human Genetics 10: 387–406. Publisher: Annual Reviews.

Mathieu M, Couprie C, LeCun Y. 2016. Deep multi-scale video prediction beyond mean
square error. arXiv:1511.05440 [cs, stat] ArXiv: 1511.05440.

Mavromatidis G, Dinas K, Delkos D, Vosnakis C, Mamopoulos A, Rousso D.
2010. Case of prenatally diagnosed non-mosaic trisomy 20 with minor abnormal-
ities. Journal of Obstetrics and Gynaecology Research 36: 866–868. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1447-0756.2010.01188.x.

36

Michelucci U. 2018. Applied Deep Learning: A Case-Based Approach to Understanding
Deep Neural Networks. Apress, Berkeley, CA.

Murphy KP. 2012. Machine Learning: A Probabilistic Perspective. MIT Press. Google-
Books-ID: NZP6AQAAQBAJ.

Pu Y, Gan Z, Henao R, Yuan X, Li C, Stevens A, Carin L. 2016. Variational Autoencoder
for Deep Learning of Images, Labels and Captions. Lee DD, Sugiyama M, Luxburg
UV, Guyon I, Garnett R, editors, Advances in Neural Information Processing Systems
29, Curran Associates, Inc., 2352–2360.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P,
de Bakker P, Daly M, Sham P. 2007. PLINK: A Tool Set for Whole-Genome Associ-
ation and Population-Based Linkage Analyses. American Journal of Human Genetics
81: 559–575.

Rumelhart DE, Hinton GE, Williams RJ. 1986. Learning representations by back-
propagating errors. Nature 323: 533–536. Number: 6088 Publisher: Nature Pub-
lishing Group.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout:
A Simple Way to Prevent Neural Networks from Overfitting 30.

Sun YV, Kardia SLR. 2008. Imputing missing genotypic data of single-nucleotide poly-
morphisms using neural networks. European Journal of Human Genetics 16: 487–
495. Number: 4 Publisher: Nature Publishing Group.

The 1000 Genomes Project Consortium. 2015. A global reference for human genetic
variation. Nature 526: 68–74.

Twyman RM. 2009. Single-Nucleotide Polymorphism (SNP) Analysis. Squire LR,
editor, Encyclopedia of Neuroscience, Academic Press, Oxford, 871–875.

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M,
Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman
JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, et al. 2001. The sequence
of the human genome. Science (New York, N.Y.) 291: 1304–1351.

37

