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Dorde Kalezic Safety-guaranteed mission planner for autonomous vehicles

Abstract

Driverless vehicles are becoming more and more popular in the area of construction
equipment as they promise to ensure safety and industrial productivity by iteratively
and automatically completing repetitive tasks. These vehicles are always travelling
and working in an environment full of uncertainties, such as unforeseen static ob-
stacles. In this thesis, our goal is to develop a method for correctness-guaranteed
mission-plan synthesis for autonomous vehicles that meet specified requirements and
apply the path-finding algorithm, i.e., Theta*, and a model-checking technique to
ensure the correctness of the mission plan. The proposed approach is implemented
in a tool called TAMAA (Timed-Automata-Based Planner for Multiple Autonomous
Agents), which facilitates the use of formal modeling and verification techniques for
mission-plan synthesis by a means of a user-friendly GUI. The tool is evaluated
in various scenarios to demonstrate that it is able to synthesize mission plans that
satisfy different kinds of requirements.
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1. Introduction

Autonomous vehicles, such as driverless cars or equipment, are intended to reduce
collisions and energy consumption, and increase industrial productivity by accom-
plishing repetitive tasks in specific environments [1]. These vehicles are safety- and
mission-critical, which usually travel and work in an environment full of uncertain-
ties, e.g. unforeseen obstacles, moving pedestrians, and other vehicles.

Mission planning for autonomous vehicles includes determining a path for avoid-
ing static obstacles and going to the destination, and scheduling the vehicles’ tasks
with respect to some precedent constraints and timing requirements, e.g., finishing
particular tasks, such as charging, arriving at the milestone, or unloading certain
goods, within 15 minutes [2]. Requirements of the mission plans for autonomous ve-
hicles are usually specified in a high-level, natural language [3]. These requirements
usually specify autonomous vehicles to travel from point A to point B, execute the
task at these points, finish specified tasks within the designated time, move to the
charging unit if necessary, and avoid static obstacles.

In order to develop correctness-guaranteed mission plans for autonomous vehi-
cles, which meet specified requirements, path-planning algorithms and formal veri-
fication techniques can be applied [2, 4]. Path-planning algorithms generate paths
between positions in the environment and are essential to provide routes for au-
tonomous vehicles. Formal verification is used to establish whether the design of
a system possesses some properties, e.g., it should never reach a situation, where
no progress can be made (a deadlock scenario) [5]. The properties are usually ex-
tracted from the system’s specification, including functional and extra-functional
requirements.

Model-checking, as a branch of formal verification techniques, is employed in this
thesis. It involves unambiguous modelling of the system under design and traversing
the state space of the system model to check if it satisfies some properties, e.g., reach-
ability, liveness, etc. [5]. Additionally, computer-aided model checking provides an
automatic means of verification and generates witnessing traces of property satisfac-
tion or violation. Therefore, model checking can be used to synthesize strategies that
satisfy a set of properties automatically. Hence, in this thesis, we employ a formal
verification technique, i.e., model checking, to generate correctness-guaranteed mis-
sion plans that guide the autonomous vehicles to accomplish tasks within a defined
environment.

However, recent studies have not entirely solved the problem by providing an ap-
proach or tool that combines advanced path-finding algorithms with formal methods
to guarantee the correctness of the mission plan [6, 7]. Therefore, the primary motive
is combining path-planning algorithms and formal methods, such as Theta* algo-
rithm and model-checking technique, and providing correctness-guaranteed mission
plans for autonomous vehicles.

To summary, the contributions of this thesis are:

• Design and implementation of TAMAA. TAMAA (Timed-Automata-
Based Planner for multiple Autonomous vehicles) is implemented to synthe-
size mission plans that are satisfying specified user requirements. Therefore
the main benefits of implementing TAMAA planner is to bridge formal mod-
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elling and verification technique and users’ designing mission for autonomous
vehicles. Implementing TAMAA minimizes users involvement in the inner
workings of the planner and allow them to focus on creating important vehi-
cle missions and requirements. User will work in the graphical user interface,
i.e., MMT (Mission-Management Tool) that communicates with TAMAA, to
synthesize mission plans for their target autonomous vehicles.

• An effective combination of Theta* algorithm with a Quad-tree
structure. The goal of implementing TAMAA is to guarantee the efficiency
and correctness of the synthesized mission plans. By applying the path-finding
algorithm, Theta*, we obtain routes that guide the autonomous vehicle to
transit from its an initial position to each specified milestone and avoid cer-
tain static obstacles. A navigation area, specified by the user, for the mission
plans is represented as a geographical map with its coordinate system. Having
a geographic coordinate system provides accurate locations of milestones and
vehicles. The confined navigation area results in a considerable number of ge-
ographic coordinates that the path-finding algorithm needs to consider. This
large number of coordinates can affect the performance of the path-finding
algorithm used to obtain the vehicle route. To simplify the model of the
navigation area, we can decompose it by using a quad-tree structure. This
implementation discretizes the area into smaller regions, containing only an
obstacle or milestone. In that case, the employed path-finding algorithm only
explores the region containing milestones and obstacles.

• Evaluation of the tool in various scenarios that are extracted from
an industrial use case: an autonomous quarry.

To evaluate the implemented tool, we present various scenarios that are ex-
tracted from the industry use case. This evaluation shows that the tool suc-
cessfully bridges the gap between the complex formal models and verification
and the industrial application.
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2. Problem Formulation

In this study, the objective is to obtain mission plans for a group of autonomous
vehicles that works in a closed environment containing some static obstacles and
milestones. The autonomous vehicles travel within this environment and executing
different tasks at different milestones. During this process, vehicles have to avoid
static obstacles, execute tasks in the right orders and at the corresponding milestones
and keep a certain level of productivity. Furthermore, vehicles also need to react to
some events, such as low battery level that triggers an event for travelling to the
designated charging point within a specified time limit

The main problem is to develop a method that automatically generates mis-
sion plans that satisfy the requirements mentioned in the previous paragraph. By
combining advanced path-planning algorithms, such as Theta* algorithm, and the
formal verification techniques, such as model-checking technique, we can ensure the
correctness of the planned path and provide task scheduling for autonomous vehicles
that guarantee to satisfy specified requirements. The mentioned requirements can
specify autonomous vehicles to:

• Complete all task repeatedly until the final goal is accomplished (e.g. all items
need to be delivered to the desired destination).

• Accomplish each task at a particular milestone (e.g. task X can be performed
at milestone A).

• Execute tasks in the correct order.

• Finish each task within a designated time (e.g. task needs to be finished in
30min).

The main challenge is to develop a method for automatically obtaining mission
plans for an autonomous vehicle, by providing a connection between the rigorous
algorithms with the user- friendly interface, which involves the object-oriented design
and cross-language program development.

To summary, the research goal is formulated as follows:

Overall goal. To design a method and implement a tool to facilitate the au-
tomatic mission planning of autonomous vehicles, which satisfy a set of functional
and extra-functional requirements.

To achieve this overall goal, we divide it into sub-goals that are stated as follow-
ing:

• Subgoal 1. Design and implement a model generation algorithms to automat-
ically generate TA models for mission plan synthesis.

• Subgoal 2. Optimize the Theta* algorithm with Quad-tree in order to improve
the way of discretizing the environment.

• Subgoal 3. Combine the Theta* algorithm with the model checking technique
to synthesize mission plans automatically.
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• Subgoal 4. Implement a mid-ware to connect the GUI called MMT and the
model checker UPPAAL so that designers can configure the vehicles, tasks,
and environment via MMT easily and the mission plans that are synthesized
by verifying the TA models in UPPAAL can be depicted in MMT.

• Subgoal 5. Evaluate the implemented tool in experimental scenarios.
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3. Research Method and Process

In this part of our work, we introduce the methods and processes that are used
for conducting our research that address the research goals presented in the problem
formulation section.

The main purpose of our research is to develop a “proof of concept”, to demon-
strate functionalities and verify certain concepts and theories that were found in
related work and proposed in our research goals. Our research process, presented in
the Figure 1, is initiated by industry problems that have not been solved, neither by
academic studies nor industries. Our goals for this thesis, presented in a problem
formulation section, are based and formulated on these industrial problems. To ad-
dress our research goals, we start by investigating approaches of mission planning for
autonomous vehicles that have been studied by industry or academia. By surveying
and analysing related work, we gather information about modern advancements and
best practices related to our research topic.

Figure 1: Research Process

Next step of the research process is to propose an adequate approach for ad-
dressing our goal and design the necessary algorithms and functionalities which are
applied in the implementation step of the research process. The final step is the
evaluation of the proposed approach by applying it to an industrial use case.

If results from our evaluation match the expected results for a given research
goal, we can indicate that the goal is achieved. On the other hand, if the results
are not as expected, we will propose an improved approach and solution, based on
prior knowledge. After obtaining positive evaluation results, we can move on to the
new research goal, otherwise, if the result can’t be reached or not as expected, we
would return to the stage of studying literature and propose a new solution.
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4. Background

4.1. Formal Verification

One of the main problems in designing sophisticated software or hardware system
is the amount of time and effort spent on system verification. System verification
process represents a set of actions used to assess its correctness, whether the system
complies with requirement specifications. Formal methods can provide a solution
to this problem, as they can integrate verification in the process of system design.
Formal methods represent a mathematically precise set of techniques used for sys-
tem specification, development and verification, presented in Figure 2 [5]. Formal
verification is the process that employs mathematical reasoning to check whether a
design satisfies specified requirements [5]. One of the formal verification techniques,
i.e., model checking, is based on models that describe system behaviour. Each model
is checked by using algorithms to explore the state space of the model. [5].

Formal verification technique that we are interested in using is a model-checking
technique. The model checking process is performed as an exhaustive search through
all states and checking if the states satisfy some properties. [8].

Figure 2: Formal methods

4.2. Model-Checking Using TCTL

Model-checking is a method of verifying concurrent systems in which a state-
graph model of the system behaviour is compared with a temporal logic formula [9].
In our work, we are focused on Timed Computation Tree Logic (TCTL) to express
timing requirements in temporal logic as we intend using UPPAAL model checker.
UPPAAL model checker supports verification of queries written in a predefined
subset of TCTL. A syntax of TCTL formula consists of states, describing individual
states, and paths used to assess paths or traces of the model. There are two types
of path quantifiers, universal (”A”) meaning for all paths and existential (”E”),
denoting the existence of the path. For our usage focus is on the specific temporal
operator, Eventually (”< >”). Temporal operator ”Eventually” represents that the
formula becomes valid in some state along the path. The model checker in UPPAAL,
in this thesis, is used to verify properties in the form of :

• Reachability(E< >p). There exists a path where property p is satisfied by
at least one state of the path.
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UPPAAL model checker generates diagnostic trace automatically to prove that
propriety satisfy, or not, systems description, as presented in Figure 2.

Figure 3: TA of a lamp and light switch

4.3. Timed-Automata and UPPAAL

UPPAAL is an integrated tool environment for modelling, validation and ver-
ification of real-time systems [10]. Main three parts of UPPAAL are modelling
language, a simulator and model checker [11]. The modelling language is used to
describe system behaviour as a network of timed automata, that are finite state
machines extended with real-valued clocks. The UPPAAL simulator is used for
examination of the system during early modelling and provide a primary mean of
fault detection before verification by the UPPAAL model-checker [10]. The model-
checking technique is used for checking whether the model of a system meets given
system specifications. UPPAAL model checker generates diagnostic traces automat-
ically to prove that properties are satisfied or violated.

The modelling formalism of UPPAAL is an extension of timed automata (TA)
[12], which are finite automata that introduce clock variables to express the elapse
of time. When the system starts, the clock variables are initialized with zero and
increases synchronously with the same rate. Using timed automata, we can model
and analyze the timing behaviour of computer systems, such as real-time systems
or networks.

To better present the UPPAAL TA, we can consider an example of a lamp
behaviour model. The lamp TA presented in Figure 3 has three locations Off, Low
and Bright, and the edges that connect them.

As shown in Figure 3, the clock variable y is used to measure the time, and it
resets on the incoming edge of location Low. On the transition between location
Low and Bright, the guard, i.e., y < 5, is set to specify that the transition is only
enabled if the value of y is lower than 5. On the other hand, if the value of y is
greater than or equal to 5, the signal of pressing can be triggered, which means
the transition between location Low and Off occurs. This transition is synchronized
with another TA via a channel called press, which represents the signal of pressing.
This whole process presents behaviours of a lamp example as a formal model, that
can be verified by model checker and prove if the system meets given specifications.

7
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Figure 4: Paths considered by Theta*

4.4. Theta* Algorithm

To generate an initial path for autonomous vehicles, we need a path-finding
algorithm. In this thesis, we employ a Theta* algorithm to create paths from the
starting position to the destinations, with fewer turns, for a group of autonomous
agents. Theta* is variants of A* that propagate information along grid edges, to
achieve a short run-time, without constraining paths to just grid edges [13].

The A* algorithm explores the map and calculates the cost of nodes by the
function f(s)=g(s)+h(s) where s is the next node on the path, g(s) is the length of
the shortest path from the start node to node s found so far, and h(s) is the estimated
cost of the cheapest route from s to the goal [13]. The Theta* algorithm is identical
to A* algorithm, except Theta* parent node doesn’t need to be a neighbouring node,
as long as there is a line-of-sight between the two nodes [13]. A node has line-of-sight
to another node, only if the straight line between those nodes doesn’t pass through
the interior of blocked cells. The example of Theta* is presented in Figure 4, where
Path 1 represents A* paths and Path 2 allows Theta* to construct any-angle paths.

8
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5. Related Work

5.1. Mission Planning Method for Autonomous Systems

One of the main problems of mission planning for autonomous vehicles is execut-
ing all necessary tasks at an appropriate time and defining the correct path plan for
exploring the environment, e.g. moving to the designated milestones. By surveying
the literature, we can find a growing interest in formal modelling and verification of
autonomous systems for mission planning.

In their work, Belta et al [3], presented a hierarchical approach based on a three-
level process, for solving the motion of the autonomous system that is moving in a
certain environment and avoiding obstacles. Three-levels stated in their work are
discretizing the environment where the autonomous agent can move and present it
as a graph, find an optimal path for movement and follow the obtained path to the
desired goal. Authors, in their work, propose a method for the verification of mobile
robots using Linear Temporal Logic (LTL), that is used to specify the requirements
and check the correctness of the mission plan.

Bhatia et al., in their work [14, 15], proposed a multi-layered synergistic approach
for solving autonomous agent motion planning also involving a complex work-space
environment, and high-level temporal goals. This approach is consisting of two key
issues. The first issue is the construction of discrete abstraction for the system, and
the second is an efficient exploration in the high-level search layer.

Dimarogonas et al., in the work [16] proposed using timed temporal logic, Met-
ric Interval Temporal logic (MITL), for providing time constraints in the mission
task specification. Each task that specified using MITL is first translated in Time
Automation (TA) and interpreted in Zone Automation (ZA) which in their case
represents time-abstract. For motion planning in their work, they introduced RRT*
(Rapid-exploring Random Tree algorithm) used for motion planning that reduces
the number of faults under finite-LTL specification. The ZA is used by the RRT*
algorithm to find paths free from obstacles. In the work [17], Dimarogonas et al., ex-
tend their research and use the proposed method found in [16], for motion planning
of multiple-agents.

The approach that we present in this thesis is focused on combining advanced
path-finding algorithms such as Theta* with formal verification, such as model
checking technique to provide more efficient motion planning for an autonomous
vehicle, verify its correctness and develop a method for automatically obtain mission
plans. We also introduce a tool for mission management that allows easy configu-
ration of mission and its environments. In the related work, we can find usage of
LTL and MITL for requirement specification. In our thesis, we are exploring the
use of Timed Computation Tree Logic (TCTL) as we can express various types of
requirements and especially timing requirements.
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5.2. Path-Planning Algorithms and Environment Decompo-
sition

Path-finding algorithms are used mainly to determine the shortest route between
two points in space. In the scope of this thesis, it is used for vehicle movement,
collision detection, and avoidance [18]. Collision avoidance represents the curtail
feature in our implementation of a path-finding algorithm, as well as finding the
shortest way to the specified milestone. As we are focused on a predetermined
environment, path-finding algorithms, depending on the spatial information, can
retrieve a set of coordinates for an autonomous vehicle to use for movement in the
environment.

Path planning for autonomous vehicles is divided into local and global, as stated
in work [19]. Global path planning represents the route that vehicle needs to take
from the start point to the endpoint, which takes prior environment information
where autonomous vehicles are deployed. On the other hand, local path planning
dynamically changes the predetermine path depending on the current surroundings
of the vehicle [20]. Both global and local path planning can rely on each other to give
the best results [19]. In this thesis, we are focusing on global path planning approach.
Using the MMT tool, we obtain information about mission environment and use
path-finding algorithms such as Theta*, to generate a shorts route to milestones
and avoided certain obstacles.

By surveying the literature, we can find multiple implementations of path-finding
algorithms, that will iteratively search the environment until the destination point
is reached. For a global path planning, any angle pathfinding algorithms, such
as A* are more suitable, as they provide advantages such as higher success rate,
versatility and computational speed [19]. There were several noted any-angle path-
finding algorithms used for navigation of autonomous agents, that are based on A*
path-finding algorithm [13, 21]. A* path-finding algorithm explores the map and
aims to minimize the cost for the taken path by function [13].

f(s) = g(s) + h(s) (1)

Where (s) represents the next node on the path, g(s) shortest path from the start
node to node s found so far, and h(s) represents the estimated cost from s to the
goal [13]

In their work [21], Yang J. et al. proposed an improved implementation of A*
algorithm by introducing post-smoothing method. In their work, they stated that
A* algorithm on grids could only plan a path with a turning point of 45 degrees.
Having this turning point can present the problem as the obtained path may not be
the shortest from the starting point to the destination. By using the post-smoothing
method in conjunction with A* path-finding algorithm, authors introduced the line
of a sight detection. Line of sight creates a straight line from one point in space to
another only if it doesn’t pass through blocked cell in the grid. Post-smoothing A*
implementation will result in the shorter path, then by just relaying on simple A*
implementation on the grid surface.

Theta* path-finding algorithm, introduced in work [13], is described as a more
efficient and reliable path-finding algorithm. Theta* is also a variant of A* that

10
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adds a line of sight detection. As long as a straight line is possible between the
two nodes, the parent node doesn’t need to be a neighbouring node, such as the
case of A* algorithm. Both Theta* and A* with post-smoothing uses this detection
method for finding a shorter path, but Theta* has a slight edge in finding shorter
routes with better execution time as presented in the work [13].

11
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6. Method: Timed-Automata-Based Planner for

Multiple Autonomous Agents

Obtaining correct mission plans for autonomous vehicles requires generating path
plan that includes visiting each milestone in a designated area, avoid static obsta-
cles, and successfully execute the particular task at each milestone to satisfy user
requirements. Mission plan requirements for the autonomous vehicle are usually
specified in a high-level, natural language, such as:

• Complete all task repeatedly until the final goal is accomplished.

• Accomplish each task at a particular destination.

• Execute task at a particular order.

• Finish each task within a designated time.

Figure 5: Process of mission plan synthesis in TAMAA [2]

With a given challenge the goal is to synthesize mission plans for the autonomous
vehicles in a given environment, with predefined static obstacles, and milestones that
are going to be visited with a set of user requirements that needs to be met. For
achieving the given goal, are implementing the proposed method called TAMAA
(Timed-Automata-based Planner for Multiple Autonomous Vehicles) that is a high-
level planner which aims to synthesize mission plans for autonomous agents auto-
matically [2]. In Figure 7, we present the steps of the approach:

1. The first step is to formalize the requirements into CTL/ TCTL quires. These
queries allow us to translate high-level language in more computer-readable
query language and describe autonomous vehicle required task execution pro-
cess.

2. The second step is to describe the environment and task for the vehicle using a
graphical user interface MMT (Mission Management Tool). Graphical user in-
terface MMT is used to create an environment where autonomous vehicles are
deployed, position milestones and obstacles which autonomous vehicle needs
to visit and avoid.

3. The third step is to automatically generate UPPAAL TA models that describe
vehicles behaviour, such as movement and task execution.

12
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4. After generating all necessary models, the fourth step is using UPPAAL model
checker, to verify model from the third step against the requirements from the
first step, and generate execution traces.

5. The final step is to parse traces that UPPAAL generates and obtain mission
plans.

In this whole process, the goal is to simplify user interaction and automatically
obtain mission plans. Role of the user is only involved in the first two steps, to con-
figure desired environments and input the requirements. In the next subsections,
detailed description of TAMAA implementation is described, where we use a dif-
ferent type of frameworks, tools and algorithms to automatically synthesis mission
plans.

6.1. TAMAA Architecture

TAMAA (Timed-Automata-Based Planner for Multiple Autonomous Agents)
aims to synthesize mission plans for autonomous vehicles automatically. It con-
tains three sub-modules necessary for passing the data from graphical user inter-
face (MMT), generating paths for the autonomous vehicles, Timed Automata (TA)
model generation and model-checking in a state-of-the-art tool called UPPAAL. UP-
PAAL model-checker is returning execution traces that are parsed and sent back to
the user in MMT tool.

MMT (Mission Management Tool) allows user to graphically create missions for
autonomous vehicles. Users can create navigation areas, specify milestones positions,
where for each milestone specify tasks, select number of autonomous vehicles that
are deployed and set certain forbidden areas. TAMAA, mission planning tool, is
connected to the MMT as a planer service. The mission data is send from MMT to
TAMAA, which runs a path-finding algorithm, such as Theta*, to find the optimal
route for vehicles and generates UPPAAL TA. Created TA models are passed to
UPPAAL model-checker, that as result, return traces to be parsed and analyzed.
Results of model-checker, in the end, are presented in MMT and to the user.

Figure 6: TAMAA Architecture

TAMAA tool is composed of a separate component that intends to work together.
This architecture is essential for implementing the tool as each module can be ex-
tended or changed depending on end-user needs without affecting other modules

13
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in the system. Modules that TAMAA uses, presented in the Figure 7, are mod-
ule for receiving MMT environment, pathfinding and environment decomposition, a
module for automatic TA model generation and a module for communication with
UPPAAL model checker. Each module is responsible for sending the data from the
MMT tool to UPPAAL model-checker and vice versa.

6.2. Mission Management Tool Communication Framework

One of the important implementation goals of TAMAA is to minimize user in-
volvement in the whole process of automatically obtaining mission plans. User
involvement should only be to specify requirements for the autonomous vehicle and
define its environment trough graphical user interface MMT (Mission Management
Tool) that is connected to our TAMAA Planer. By using MMT users can visu-
ally describe mission environments in which autonomous vehicles are deployed, i.e.
navigation area, vehicle position, static obstacles, and milestones. These elements
create the visible image of the mission environment where the autonomous vehicle
are going to operate.

In the MMT Tool environment, the user is presented with a geographical map
and set of tools used for drawing on the map. With the presented tools provided
by MMT, users can start by creating a navigation area containing all deployed
autonomous vehicles and a set of milestones, with specific tasks. All vehicles that
are present in MMT have their initial location and current statuses, such as battery
level and equipment. For each set milestone, the user can specify a particular task
that the autonomous vehicle needs to accomplish. One important feature is placing
forbidden areas, that represents static obstacles, which vehicles need to avoid. These
areas are used in our path-planing, describing the areas that autonomous vehicle
need to avid.

Figure 7: Thrift framework diagram

Complete mission environment needs to consist all specified data, as stated in
the previous paragraph, for obtaining correct mission plans. Therefore, MMT is
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sending all environment information to TAMAA for automatic mission plan synthe-
sising. By using an external framework for cross-language communication, Apache
Thrift, we can set communication protocol between TAMAA and MMT. Both tools
are developed using different programming language and technologies, where this
framework is used to link them [22], Figure 7.

Figure 8: Thrift Framework implementation

TAMAA planner is running as a background service that listens on a desig-
nated port, where MMT sends and receives environment data and execution traces.
When communication is established, we can successfully transit information using
TAMAA module for MMT communication. For sending information between MMT
and TAMAA, Thrift framework generates source code libraries for a designated pro-
gramming language, that allows us to manipulate with received data, as presented
in Figure 7. This helps TAMAA to receive data and create native language objects
that are used later on for path-finding algorithms and model generation, as well as
sending mission plan back to MMT for user visualization.

Data from MMT is directly passed to TAMAA trough thrift middleware compo-
nent, as depicted in Figure 8. The component contains two modules that transfer
the data from MMT to other components in TAMAA. Planner service handler com-
ponent is using background ThriftServerTransport service that allows to establish
and maintain the connection between MMT and TAMAA, via a designated port.
Once a user initiate connection with TAMAA, it can send all environment data,
that is transferred to the Environment parser module. Environment Parser module
contains Thrift generated source code libraries that parse received data. On the
other hand, when Thrift middleware component, receives execution traces from UP-
PAAL, they are directly send to MMT using the same libraries for parsing data to
original environment data language.

6.3. Theta* Path-Finding Algorithm Using Quad-Tree

When the data from the MMT are received, we are collecting all spatial informa-
tion about the mission, such as the navigation area, the position of milestones and
vehicles, forbidden areas. This spatial information about the mission is essential for
creating path-plan for autonomous vehicles.
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Environment information received from MMT is presented with geographical
coordinates. Decomposition of received spatial information is the first step that is
necessary for the path-finding algorithm, Theta*, to find the shortest route from
start to the final coordinate. As we are using geographical coordinates, that may
indicate that each position of the grid map is described with longitude and latitude
values. Having a geographical coordinate system is not ideal, as the navigation area
of the mission may have a considerable number of geographical coordinates that are
visited but not be in our scope of interest. Thus, we are consuming more computing
resources and make path-finding improbable.

To solve this problem presented in the prior paragraph, we are using a quad-tree
data structure that divides our navigation area into smaller regions, quadrants. This
decomposition is used as assistance to explore only part of the map that contains the
necessary information, such as milestone location and obstacles, thus minimize the
number of geographical coordinates that are visited. After decomposing our map
into smaller regions and sub-regions, we can employ Theta* to find the shortest
route to the designated milestone.

6.3..1 Quad-Tree Data Structure

Quad-tree is a data structure allows partitioning of space that is simple and effi-
cient to navigate and search. This data structure is represented as a tree structure,
which has at most four children and multiple levels. Each level of the quad-tree
describes a further refinement of the given space. The core idea is recursively de-
composing the area until we have all the necessary information stored in separate
regions or nodes.

It is possible to model both two-dimensional and three-dimensional surfaces using
point-region quad-trees [23]. Point-Region quad-tree starts with the root node that
represents the entire two-dimensional space. By dividing space into four separate
quadrants, where each represents a corresponding node in a quad-tree. Furthermore,
each root sub-node is also subdivided into four quadrants. This process is recursive
until we reach a single unit of interesting spatial information denoted as a leaf node.
The amount of subdivision of a space depends on the amount of interesting spatial
information. In Figure 9, a collection of a data point in two-dimensional space
is presented, that is divided into quadrants until the leaf node consists of only a
single point is present. This process of two-dimensional space division into four
areas is called splitting. Four-quadrant regions that are the product of splitting in a
quad-tree can be observed as four inter-cardinal directions, North-West, North-East,
South-West and South-East, Figure 9b. Therefore, four sub-nodes in quad-tree are
easy to navigate and search.

-tree are easy to navigate and search.

6.3..2 Quad-Tree Graph with Obstacles

Our focus is to implement a point-region quad-tree with obstacles in the area.
Quad-tree differs from binary-tree, in which nodes are created when user inputs
data, as quad-tree needs to initialise all nodes with data at the beginning with
all necessary data. This doesn’t pose as a problem, as we are obtaining already
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(a) Two-dimensional space with
data points

(b) Quad-tree for the data points in two-
dimensional space

Figure 9: Quad-tree representation

predefined environment from MMT with graphical surface and all-important spacial
information at the start.

Figure 10: Visual representation of quad-tree on grid

Two-dimensional space is often described by using a Cartesian grid, that specifies
each point uniquely in a plane by a set of numerical coordinate. In this thesis, we
try to present the space as close to the Cartesian grid. All spacial information that
is in two-dimensional space, such as obstacles and milestones, is described with two
geographical coordinates, bottom-down and top-right. These coordinates represent
the position of one quadrant they occupy, Figure 10.

The goal is, by using quad-tree, to present the grid surface. The first step is to
create and populate all three nodes with spatial information. Each node in quad-
tree signifies either a leaf node or split node. Leaf nodes contain necessary spatial
information, while the split nodes are further divided into sub-nodes.

The second step is to determine each quad-node (quadrant) state, that could
denote as blocked or free. Blocked nodes represent locations with obstacles. Op-
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Algorithm 1: Pseudo code for splitting surface

Input: QuadNode parent; Identifies parent node
Input: Point topRight, bottomLeft; Node position in the surface
Input: Status status; Node stauts (Obstructed, Free or Split
Input: int resolution; maximum size of quadrant splitting
Input: Array[Obstacle] obstacles; All surface obstacles

1 for obstacle : obstacles do
2 if obstacle.intresect(topRight, bottomLeft) then
3 if obstacle.block(topRight bottomLeft) or QuadNode.width <=

resolution or QuadNode.hight <= resolution then
4 status = OBSTRUCTED;
5 else
6 subdevide(obstacles, resolution);
7 end

8 end

9 end

posite to blocked nodes are free nodes. Depending on a position of obstacles and
milestones on the map, we are recursively dividing the space into sub-nodes until
each node have only one obstacle, free space or milestone. Each sub-node of the
divided parent-node (quadrant) represent the geographical position of the quadrant
in the MMT, Figure 11.

Figure 11: Quad-tree that contains: Obstacle nodes (Red square), Free nodes (White
square) and Split nodes (circles)

Quad-tree algorithm represents a process of dividing a surface S into four simi-
larly sized quadrants Q. For each quadrant Q, if there is an obstacle in the quadrant
Q, mark it as obstructed. On the other hand, if that obstacle size occupies more
space in quadrant Q, we split the quadrant again, Algorithm 1. This whole pro-
cess is recursive until all quadrants in the two-dimensional surface contain a single
obstacle or free node.
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6.3..3 Theta* Path-Planning using Quad-Tree Data Structure

One of the main properties of decomposing the surface using quad-tree is to
instantly find obstacles and avoid obstructions. Problems of using path-finding al-
gorithms, such as A* or Theta*, on the grids is that we need to explore a large
number of points for finding the optimal path. This problem may be more apparent
if we have a geographical surface and want to find an optimal way to single coordi-
nate in the map. In this example, if the desired geographical surface is large, we are
exploring through a considerable number of geographical coordinates. To optimize
search for this scenario and obtain the optimal path, we are employing quad-trees
on the surface first. With quad-trees, we can identify only necessary regions of the
surface, and search for obstructions. Furthermore, we can apply path-finding algo-
rithms, to find an optimal route within defined regions and minimize the computing
of route search.

In this thesis, we are interested to employ Theta* algorithm for obtaining an
optimal route for autonomous vehicles. Theta* is variants of A* that propagate
information along grid edges, to achieve a short run-time, without constraining
paths to just grid edges [13]. The A* represents a base for Theta* path-finding
algorithm, the only addition is that parent node doesn’t need to be a neighbouring
node, as long as there is a line-of-sight between the two nodes. A node has line-of-
sight to another only if the straight line between those nodes doesn’t pass through
the interior of blocked nodes. The example of Theta* is presented in Figure 4, where
Path 1 represents A* paths and Path 2 allows Theta* to construct any-angle paths.

For finding a path between two coordinates in the grid, we need to initialize its
starting and ending point in the map. In a quad-tree structure, each leaf quad-
node is associated with surface coordinate points. To determent what node has a
corresponding coordinate point we employ a quad-tree search function, Algorithm 2.
This function is returning the exact leaf node from the quadtree with the designated
coordinate.

By finding starting and ending coordinates we can use Theta*. Theta*, as an
improvement to the A*, can obtain two paths to the next visible node. We can either
update to the next adjacent node and continue the same processes for the first path,
as considered in A*. While the second path is possible when we can draw a straight
line from the parent node to the furthest reached neighbouring node, without being
obstructed, 4.

To better understand the workings of the algorithms, in Figure 12, we are pre-
senting an example. The first step is generating a grid surface with some obstacle
and employ a quad-tree algorithm, Figure 12a. To implement the Theta*, need in-
formation such as starting quad-node and ending quad-node. By employing a path
algorithm we are visiting each free state quad-node and move towards the quad-node
that contains our endpoint. In Figure 12b, all green nodes, presented as quadrants,
describe the shortest way to reach the end node in the quad-tree, that are found by
Theta* algorithm.

Using both quad-tree and Theta*, we can optimise the search for the shortest
path on-grid surface with a large number of coordinate points by just finding regions
with a unit of interesting information and additionally we can avoid all obstacles
in the area. This combination of algorithms can be applied on the two-dimensional
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Algorithm 2: Pseudo code for finding a certain point in quad-tree

Input: Point locationToFind; Node position in the surface
1 while node is not leafNode do
2 if locationToFind.x < MeanX then
3 if locationToFind.y < MeanY then
4 node = getSouthwest();
5 else
6 node = getNorthwest();
7 end

8 else
9 if locationToFind.y <MeanY then

10 node = getSoutheast();
11 else
12 node = getNortheast();
13 end

14 end

15 end

(a) Two-dimensional space with
data points

(b) Theta* path finding on quad-
tree

Figure 12: Surface grid with obstacles with start (Green) and end (Red) point

geographic coordinate system but it can work on three-dimensional geographical
coordinate system.

6.4. TAMAA Model Generation

One of the main features of implementing TAMAA planer is generating TA mod-
els for mission plans from real environment data, such as navigation area where the
autonomous vehicle are deployed. All information gathered from MMT is used to
create TA models that represent missions behaviour. Generated models are writ-
ten in the .xml file format that is readable by UPPAAL model checker to obtain
necessary execution traces. Algorithms described in work [2], represent the building
blocks of implementing the module for automatic TA model generation. The only
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implementation difference is supplying the necessary data to the algorithms, such as
new decomposition of the environment using quad-trees and path-finding algorithm,
Theta* to generate a TA model for vehicle movement.

Figure 13: Model generation implementation

In Figure 13, we present the inner working of model generation. Parsed data
from Thrift middleware component is passed to the Model Generation component,
where two actions are invoked. The first action that is invoked is Task TA model
generation, that as input takes, all data related to the Task, such as milestone
locations, a vehicle that executes the tasks and order in which task are going to be
completed. The Second invoked action is Movement TA model generation that is
obtaining data from path-planer.

6.4..1 Generating TA Model for Autonomous Vehicle Movement

The user in the MMT tool preconfigures the environment in which the au-
tonomous vehicles are deployed. Spatial data that are obtained from MMT is es-
sential to generate TA models for the movement of an autonomous vehicle. To be
able to create the movement TA model, the first step is decomposing the environ-
ment and abstract the information such as geographical positions of milestones and
static obstacles. Next, we need to employ the path-finding algorithm and find the
route from the initial vehicle position to all milestones and store the travelling time
between them. By using the proposed quad-tree data structure, we can recursively
decompose the area until we have all the necessary information stored in separate
regions. Furthermore, by using the Theta* algorithm, we can generate the shortest
path for the autonomous vehicle to visit all millstones. Having decomposed envi-
ronment and path-finding algorithm in place we can extract travelling time between
each milestone that is important for generating movement TA.

Navigation area that obtained from MMT is given with geographical coordinates,
that represents boundaries of vehicle movement. As we are observing our environ-
ment as a geographical coordinate system, we are presented with a large number of
geographical coordinates inside our navigation area. This large number of locations
can affect the performance of the path-finding algorithm used to obtain the vehicle

21



Dorde Kalezic Safety-guaranteed mission planner for autonomous vehicles

route. By using quad-trees, we can discretize the navigation area in separate re-
gions. Furthermore, each region is also divided into sub-regions recursively until we
reach a single unit of interesting spatial information [23]. In the case of interesting
spatial information for vehicle movement, we need to consider, milestones and ob-
stacle locations. Obstacles represent the positions in the environment that vehicle
needs to avoid, while the milestone presents vehicles destinations. Using quad-tree
for presenting our environment, improved our path-planning as we only search for
the regions that contain needed spatial information. As described in section 5.3.3,
we employ a Theta* path-finding algorithm to get the shortest path to milestones
and avoid static obstacles.

In paper [2], an algorithm that generates TA models for vehicle movement is used
in our implementation. By using the route that is computed by Theta* algorithm,
and decomposed environment, we can supply the model generation algorithm and
acquire the TA model of autonomous vehicle movement.

6.4..2 TAMMA and UPPAAL Communication

After generating TA models, the next step of our implementation is to invoke
the UPPAAL model checker to verify our model and produce execution traces that
if satisfactory, or not, send mission plans back to MMT tool. The main challenge
is to use UPPAAL model-checker as a service that works in the background and
automatically verify model, generate and parse execution traces. To be able to
keep UPPAAL as a service and not use its graphical user interface, we would use a
set of commands that invoke model-checker in background, to verify and generate
traces. If the traces can be generated, UPPAAL creates trace files written in low-
level language that needs to be parsed in a language that is more appropriate for
TAMAA and sends back to MMT

The main problem that occurs while checking the models using UPPAAL model-
checker is execution time, that relates to the number of states in the model that
needs to be checked. As we stated in our background, UPPAAL model-checking uses
a state-graph model of the system behaviour that is compared with a temporal logic
formula. In our work, we are focused on Timed Computation Tree Logic (TCTL) to
express timing requirements in temporal logic. The main property that is verified
through UPPAAL in this thesis is reachability to explore all the states in the path.
If we have to explore a considerable number of states, we may use most of our
computational resources and not receive the mission plans. To solve this problem
we are using a client-server architecture. The server can have more computing power
than a client machine and can help to shorten the time of verification and respond
quickly to the user. Having cross-platform architecture makes implementation more
complicated as we need to use a different operating system to be able to verify
models and obtain parsed traces. Client-side uses MMT tool and TAMMA planner
to generate TA models, and server-side receives only generated models and execute
appropriate commands, that as a result should return parsed traces back to the
client.

In the Figure 14, we present client-server architecture. Our server-side con-
tains UPPAAL and UPPAAL tracer library. Both can execute necessary commands
trough Linux command line interface, used on our server-side. Client-side is com-
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Figure 14: Client-server communication

municating with our server trough UPPAAL communication module that is sending
or receiving files containing TA models or parsed UPPAAL traces depending on
the process. Server-side is only receiving the XML file that holds our generated
TA models and automatically invoke commands to verify the model and parse the
execution traces.

UPPAAL uses verify command, that is responsible for checking the models and
generating execution traces and trace structure template. After the command exe-
cutes successfully, UPPAAL tracer library is triggered to execute tracer command
and parse the generated traces in the more suitable object oriented structure. The
last step is sending the parsed files back to the client to be interpreted visually as a
mission plan in MMT tool.
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7. Evaluation

In this section, we present scenarios of autonomous vehicles to show the appli-
cability of the tool implementation in realistic scenarios. Due to time constraints,
we could not cover all necessary scenarios and test the tool in various situations.
The evaluation is conducted on a Mac OS computer with Intel Core i5 processor
with 16 GB of RAM. To simulate our server-client architecture, we are using virtual
Windows and Linux OS machines. Windows virtual machine client, used 4GB of
virtual RAM and Linux OS virtual machine, server, using 6GB of virtual RAM.
Both systems used resources power as needed from the host machine.

7.1. Scalability Evaluation

In this subsection, we are evaluating the scalability of our implementation with
several vehicles and milestones. Because of time constraints, the evaluation process
is not covering all use cases. A scenario that is evaluated is used to test the workings
of our tool and check if there is some exceeded computational time and bottleneck
in our client-server implementation between UPPAAL verifier and TAMAA. The
used scenario for this evaluation comprises one vehicle that is visiting 4 milestones
in a small navigation area with 2 obstacles. Property that we verify is reachability,
for exploring the path and finding is our vehicle visiting all designated milestones.
Result of this evaluation is providing that all milestones are reachable and the com-
putational time necessary for verifying the model and obtaining the traces from the
UPPAAL are done in less than a second. This is expected, as the evaluation scenario
is not complex. On the other hand, traces are sent to the TAMAA from our server
with no bottlenecks. These results are also expected as the environment in which
the scenario is tested, working on one host machine that bridges two virtual Linux
and Windows OS machines.

7.2. MMT and TAMAA Communication Evaluation

In this subsection, we present path-planner for finding the shortest route from
vehicle location to the milestone. Additionally, we also present the working of MMT
and TAMAA communication trough Thrift Framework. In this scenario, we create a
simple navigation area with one static obstacle that is between vehicle and milestone.
Using the MMT program and provided set of tools, we can create a mission envi-
ronment for autonomous vehicles.In the Figure 15, we present our scenario, where
the green outline presents the navigation area, red square present the forbidden area
that is between vehicle and milestone that needs to be reached.

In this scenario, we first evaluate the communication between MMT and TAMAA.
If the TAMAA planer is ready to communicate with the MMT, as presented in Fig-
ure 16, state of the planner is active and show in MMT, if the planner is not active
user can’t send a mission to the planner until the planner isn’t invoked. When the
planner and MMT communication is established, we can send the mission to the
TAMAA and invoke model generation with our path-finding algorithm. Path-finding
algorithm implementation starts with quad-tree to decompose the map and find all
necessary obstacles and milestones, then use Theta* algorithm to find the shortest
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Figure 15: MMT tool - mision creation

path and avoid the forbidden area. As a result, we can return the computed path
and present it trough MMT for users. In Figure 17 we present the drawn shortest
path in MMT where we avoid the obstacle and reach the milestone. This is not
complex scenario that we evaluated, we only have have one vehicle, milestone and
static obstacle. From selecting the planer and receiving the computed path, and
using presented computation resources and environment, the computational time
was rather fast.

Figure 16: MMT tool - selecting mission planner
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(a)

(b)

Figure 17: MMT Tool - displaying the vehicle route
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8. Discussion and Future Work

In this section, we discuss our results and achieve goals, as well as certain short-
comings and future work.

Our overall research goal of this thesis was to design a method and implement a
tool to facilitate the automatic mission planning of autonomous vehicles. To achieve
this goal, the first step is designing and implementing a model generation algorithm.
For this step we refer to the work [?] and implement the proposed algorithms for ve-
hicle movement and task execution model generation. Some algorithms are adjusted
to our needs, e.g. when generating movement TA, instead of using the Cartesian
grid to decompose map, we change it with our implementation of Quad-Tree./par

The second step is to optimize path-planning for autonomous vehicles. In this
step, we present the usage of Theta* algorithm to find optimal paths and quad-tree
for map decomposition. The approach of using Theta* path-finding on a Quad-Tree
data structure couldn’t be found in related works nor surveyed literature. This
optimization is helpful when we have a large area for navigation.

The third step is to combine path-planning with the model checking technique.
The goal of finding the best path for the vehicle is to aid in generating movement
TA model for autonomous vehicles.

The fourth step is to implement a mid-ware to connect graphical user interface,
MMT, and the model checker UPPAAL. By implementing TAMMAA we success-
fully avoided users involvement in the process of formal verification for the proposed
mission. Users only need to use MMT tool to create a mission and specify require-
ments, when the mission is created and send to the planner, MMT displays the
results visually for the user. Due to the time constraints, this feature is not imple-
mented, but we do obtain mission plans from TAMAA just not visually presenting
them. As this feature is necessary for the user, we created a good starting point for
the feature work.

The last step for achieving the overall goal is to evaluate our tool in various
experimental scenarios. Having prior stated constraints, we only evaluated simple
scenarios, which were used to assess the workings of the tool. It is necessary to test
or implementation with higher number of vehicles and milestones in the mission and
evaluate the computational time of UPPAAL verifier for returning execution traces.
Also, this work needs more complex evaluation of our optimized path-planning ap-
proach in a larger navigation environment, and a higher number of obstacles and
milestone. This proposed evaluation can also be done as a part of the feature work.

We can propose two upgrades to our current implementation as a part of the fea-
ture work. Our current tool decomposes navigation area as two-dimensional space
by Quad-Tree and used for Theta* to find optimal routes. Quad-tree data structure
can also decompose environment in three-dimensional space. This implementation
ensures obtaining more accurate geographical location that needs to be visited or
avoided. The next, implementation upgrade is adding dynamic obstacle avoidance.
In our work, we introduced global path planning, where we have a predefined envi-
ronment. By introducing local path planning, we will be able to dynamically changes
the predetermined path depending on the current surroundings of the vehicle and
have better collision detection for our vehicles.
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9. Conclusion

In this thesis, we aim to design a method and implement a tool to facilitate
the automatic mission planning of autonomous vehicles, which satisfy a set of func-
tional and some extra-functional requirements. To achieve this goal, we design and
implement model generation algorithms that automatically generate TA models for
mission plans synthesis. Implementing the tool TAMAA, we can make an automatic
generation of TA models for vehicle movement and task execution. Furthermore,
we optimize the Theta* path-finding algorithm with a Quad-tree data structure to
improve the way of map environment decomposing. By combining, path-finding
algorithm, such as Theta* with the model checking technique, we were able to syn-
thesize mission plans.

The challenge for implementing the mission planner for autonomous vehicles is to
provide a connection between the rigorous algorithms with a user-friendly approach.
In the process of obtaining mission plans for the end-user, we are connecting imple-
mented tool TAMAA to graphical user interface called MMT. Using MMT, users
were only intended to create missions for autonomous vehicles. On the other hand,
our tool is also connected to the model checker UPPAAL, which will verify auto-
matically generated TA models and return the execution traces. Obtain traces are
parsed and presented to the user through MMT. This whole process is intended to
be applicable on multiple use cases, and provide user-friendly interaction
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