
Ensemble approach to code smell
identification

Evaluating ensemble machine learning techniques to
identify code smells within a software system

TOPIC AREA: Computer Science
AUTHOR: Alfred Johansson
Jönköping 2019-06-14

Introduction

This exam work has been carried out at the School of Engineering in
Jönköping in the subject area computer science. The work is part of a
two-year univeristy diploma programme of the Master of Science
programme.The authors take full responsibility for opinions, conclusions
and findings presented.

Examiner: Beril Sirmacek
Supervisor: Rob Day
Scope: 30 Credits
Date: 2020-06-02

2

Introduction

Abstract

The need for automated methods for identifying refactoring items is
prelevent in many software projects today. Symptoms of refactoring
needs is the concept of code smells within a software system. Recent
studies have used single model machine learning to combat this issue.
This study aims to test the possibility of improving machine learning code
smell detection using ensemble methods. Therefore identifying the
strongest ensemble model in the context of code smells and the relative
sensitivity of the strongest perfoming ensemble identified. The ensemble
models performance was studied by performing experiments using
WekaNose to create datasets of code smells and Weka to train and test
the models on the dataset. The datasets created was based on Qualitas
Corpus curated java project. Each tested ensemble method was then
compared to all the other ensembles, using f-measure, accuracy and AUC
ROC scores. The tested ensemble methods were stacking, voting, bagging
and boosting. The models to implement the ensemble methods with were
models that previous studies had identified as strongest performer for
code smell identification. The models where Jrip, J48, Naive Bayes and
SMO.

The findings showed, that compared to previous studies, bagging J48
improved results by 0.5%. And that the nominally implemented baggin of
J48 in Weka follows best practices and the model where impacted
negatively. However, due to the complexity of stacking and voting
ensembles further work is needed regarding stacking and voting
ensemble models in the context of code smell identification.

Keywords

Ensemble machine learning, code smell, technical debt, code smell
identification, automated code smell identification.

3

Introduction

Contents

1 Introduction...6
1.2 BACKGROUND..6

1.3 PURPOSE AND RESEARCH QUESTIONS..7

1.4 DELIMITATIONS...8

1.5 RELATED RESEARCH..8

1 Theoretical background....................................10
2.1 INTRODUCTION THEORETICAL BACKGROUND..10

2.1.1 List of Abbreviations...10
2.1.2 Metric Threshold for Code Smells..11
2.1.3 Code Smells – Statistical Thresholds..11
2.1.4 Code Smells – Semantic Thresholds...12

2.2 CODE SMELLS..13

2.2.1 God Class..13
2.2.2 Feature Envy..14
2.2.3 Brain Method..14
2.2.4 Shotgun Surgery...15

2.3 MACHINE LEARNING SINGLE MODEL TECHNIQUES..15

2.3.1 Single Model Code Smell Identification...16
2.3.2 J48..16
2.3.3 JRip...16
2.3.4 Naive Bayes..16
2.3.5 SMO - Sequential Minimal Optimization..17

2.4 MACHINE LEARNING ENSEMBLE TECHNIQUES..17

2.4.1 Random Forest...17
2.4.2 Voting Ensemble...18
2.4.3 Stacking Ensemble...18
2.4.4 Boosting..19
2.4.5 Bagging..19

2.5 EVALUATION METRICS – EVALUATING ENSEMBLE PERFORMANCE...20

2.5.1 Precision...20
2.5.2 Recall..20
2.5.3 F-Measure...20
2.5.4 Accuracy...20
2.5.4 AUC ROC..20

2.6 VALIDATION OF ENSEMBLE RESULTS..21

2.6.1 Cross-validation K-fold..21
2.6.2 Leave-one-out Cross-validation...21

2.7 TOOLS FOR EXPERIMENT CONFIGURATION AND EVALUATION...21

2.7.1 Qualitas Corpus Dataset...22
2.7.2 Weka...22

4

Introduction

2.7.3 WekaNose...22

2 Method and implementation.............................24
3.1 EXPERIMENTAL COMPUTER SCIENCE..24

3.2 EXPERIMENT DESIGN RESEARCH QUESTION ONE...24

...25
3.2.1 Creating the Datasets...25
3.2.3 Models Considered in Implementation...29
3.2.2 Experiment Setup...29
3.2.4 Establishing Frame of Reference...29
3.2.5 Recording of Results...30

3.3 EXPERIMENT DESIGN RESEARCH QUESTION TWO..30

3.3.1 One-At-a-Time Sensitivity Analysis...31
3.4 EXPERIMENT ENVIRONMENT...31

3 Results and Findings..32
4.1 RESULT FROM DATASET CREATION..32

4.2 RESULT FOR ESTABLISHING FRAME OF REFERENCE...32

4.3 RQ 1 – RESULTS..33

4.3.1 Stacking Ensemble...33
4.3.2 Voting Ensemble...36
4.3.3 Bagging Ensemble..38
4.3.4 Boosting Ensemble...40
4.3.4 Ensemble Methods Compared..42

4.4 RQ2 - RESULTS..44

4 Discussion and Conclusion................................47
5.1 DISCUSSION OF METHOD...47

5.2 DISCUSSION OF FINDINGS..48

5.2.1 Frame of Reference..48
5.2.2 Research Question One..48
5.2.3 Research Question Two..49
5.2.4 Future Work...49

5.3 THREATS TO VALIDITY...50

5.4 GENERALIZABILITY..50

5.5 CONCLUSION..50

5 References...52

6 Appendix...56
8.1 APPENDIX A – RELATIVE SOURCE AND LIBRARY PATHS FOR WEKANOSE..................................56

8.2 APPENDIX B – CONFIGURATIONS FOR SENSITIVITY ANALYSIS OF BAGGING J48 MODELS...........59

5

Introduction

1 Introduction

1.2 Background

A commonly used metaphor for describing the compromises between
delivery time and software quality is technical debt. Technical debt,
coined by Cunningham W, is used to explain the growth and existence of
flaws and issues within a software system [6][2]. Technical debt is often
used as an indicator for companies and organisations that a software
system needs refactoring [7][1]. Trough the software development life
cycle of a system the technical debt will grow and accumulate. To deal
with technical debt within a system refactoring is a common and effective
method [15]. To be able to perform efficient refactoring the items that
needs refactoring must be identified. The identification of these items
then becomes an issue for the developers. Several studies have suggested
methods using code metrics and rule-based tools to identify items that
needs refactoring [3][5]. Another suggested method suggested by several
studies is the use of code smells to identify refactoring items [8][15].
Code smells are considered symptoms of poor implementation or design
within a software system [1][7]. Code smells comes in different variations
that represents different types of code issues and therefore technical
debt [14]. The use of a subset of these code smells have been studied for
use in automated identification of items within software systems that
need refactoring [15][3].

In many modern development environments today a lot of the building
process and quality assurance of the software is deployed to cloud
solutions in several different ways. One common task to deploy on a cloud
solution is the continues integration testing and validation of the
software. Detecting architectural and design flaws within the continues
integration process is difficult [32]. By implementing an automated tool
for identifying code smells to indicate possible design and
implementation issues the architectural issues can be included in the
validation within the continues integration deployment. However, from
conventional methods for the automated identification of code smells and
refactoring items the overlap between refactoring items found by tools
and humans is very small [8]. Because of this to efficiently find items for
refactoring both human identification, which is expensive and requires
special competence and automated identification of refactoring items is
needed to ensure coverage.

Recent studies have been focusing on using machine learning in
combination with code metrics to identify code smells and in turn
refactoring items. Using machine learning to identify code smells has
proven to be a possible avenue for automation [15]. There have been
studies showing that the identification of code smells using machine
learning is possible [15][2]. The findings from previous studies shows that
using machine learning to identify code smells is more accurate and
effective than identification performed by developers [12][13]. The
existing research have focused on testing different types of machine
learning algorithms to identify in moste cases one or two code smells [10]
[11]. These identifications have been done using single model algorithms,
such as decision trees, neural-networks and support vector machines. The

6

Introduction

models identified have each had some specialisation where it performed
better then another but lacked in identification of other code smells.

The results found by previous studies using machine learningshow good
accuracy and efficiency still have room for improvement [10][11][12].
Improving the performance of machine learning implementations can be
difficult and time consuming. A common method of improving upon the
machine learning implemented solutions is the usage of ensemble
methods [34]. Ensemble methods refers to the implementation of several
machine learning algorithms and combining them into one combined
method. This method often performs stronger and more accurate than a
single machine learning model on the same issue. However, ensembles
comes at a cost of configuration and computational power. Because of the
promising findings from previous studies regarding machine learning for
identifying code smells [10][11]. The next step to implement ensemble
models fitted to the problem domain could possibly achieve more
accurate and usefull tools for code smell identification [10][34]. Ensemble
models have also been suggested by to independent systematic literature
reviews on the topic of machine learning or code smell identification as a
promising and important research area to increase the performance of
automated tools for code smell identification [10][11].

1.3 Purpose and research questions

The need for automated tools and algorithms to accurately identify code
smell can increase process efficiency for troubleshooting and maintaining
code. The automated identification of code smells as indicators of
technical debt and refactoring needs could also lead to easier and more
efficient implementation of software. Machine learning has been shown
to be a potential implementation of code smell detection. However, the
use of ensemble machine learning models has not been thoroughly
investigated. Because of the possible increase in performance with
ensemble models and the lack of studies on the topic lends the topic
interesting for study.

Research question one:

Which ensemble method provides the best fitting model for
identifying code smell in a java project?

To compare against previously found single model machine learning
methods for identifying code smells.

Research question two:

Given an ensemble from research question one how sensitive
is the outcome of the ensemble to parameter change for
identifying a code smell?

By finding sensitive parameters it might be possible to find improvement
possibilities of the method.

7

Introduction

1.4 Delimitations

This thesis will not investigate other types or parts of technical debt
within software systems than the set of code smells defined. The tools
that the machine learning method will be evaluated against will be a
selection subset of tested tools from previous academic work. The thesis
will only consider and use open source projects for reference and data
subset for the machine learning training and testing. As well as the
evaluation of machine learning compared to existing tools. The ensembles
created will be based on the findings of previous studies and will be
limited to a set of three iterations. This research will not do any further
evaluation of single model algorithms but refer to previous studies. The
metrics used to define code smells within java projects will not be
evaluated or investigated for efficiency, the metrics used will be defined
by previous studies.

1.5 Related Research
Quality assurance as a topic of research has been widely studied in many
aspects. Due to the importance of good quality source code for
maintenance and the agile development process[4]. To ensure better
quality of code different methods and concepts have been invented and
tested. However, many of the methods have the roots in the concept of
technical debt and its effects on code and development [1][4]. An aspect
of technical debt that has been studied is the concept of code smells to
narrow the definition of software quality issues further [4][14]. Where
each code smell represents one aspect of poor code.

The first and most common approach to identifying code smell has been
human code smell identification. Where one or several developers look
through the code and notes down potential issues within the code [3][5]
[33]. By doing so there is a strong benefit if two or more developers do it
together since it allows for developers to share experience and
knowledge during the process [33]. However, it is very time consuming
and because of that expensive [3]. The process becomes even more
expensive if the benefit of knowledge sharing is achieved since more
developers are involved.

The second most common approach has been rule based automated tools.
Rule based tools have achieved somewhat of success within the problem
area [3]. Rulebased tools have the benefit of not requiring a developer to
spend time on the process in theory. Findings from studies of rulebased
tools show a different reality though. Rule based tools tend to find a
different subset of code smells or technical debt items than a developer
doing code smell identification. Because of this if a development team
would be using a rule based solution they would still need to perform
both human and tool identification to cover their code [3]. However, rule
based solutions are cheap to run and easy to implement [3].

The third method is machine learning implementations for code smell
identification. For example, have decision tree algorithms been studied
and evaluated finding good results for the approach [21]. Other studies
have focused on performing experiments and comparative evaluation of

8

Introduction

different machine learning approaches [12][19][20]. The common
findings for machine learning approaches to identifying code smells is
that it is effective. Machine learning approaches also has the benefit of
identifying a greater union of the code smells of what a human and a rule-
based tool would find [3]. Both rule based and machine learning
approaches is automated and can therefore also be used in the continues
integration pipeline that is commonly deployed in modern development
teams. Within this idea of continues integration machine learning
solutions have shown good performance [32].

A common method of improving machine learning implementations is
using ensemble methods [34]. No implementations or studies have been
identified that solely studies ensemble machine learning techniques for
identifying code smells. This has been verified by two separate systematic
literature reviews, SLR, as well, one in 2019 and one in 2020 [10][11]. As
a point for further work identified in both SLR’s research into ensemble
approaches to code smell identification is suggested. Within the SLR’s
they suggest approaches to performing research and experiments that
would increase validity and reliability. Such as doing LOOCV and using
grid-search to identify optimal parameter space. From the SLR’s only one
study performed grid-search algorithm which would provide a replicable
and efficient tool for configurating the algorithms. The studies reviewed
in the SLR’s did the configuration manually instead and could have
benefited from using the grid-search algorithm [10][11].

9

Theoretical background

1 Theoretical background

2.1 Introduction theoretical background

In this section the theoretical framework needed to understand and
perform the study will be outlined and explained. Code smells are
symptoms of poor code and code design. Because of this is often tied to
malfunctioning or inefficient code [4][14]. Therefore identifying the code
smells will often lead to finding the error, cause of a malfunction or bug
within a system. M. Fowler suggests that looking for code smells is an
efficient method of active refactoring. By refactoring code smells,
refactoring can be done as a prevention or optimization of a system [14].

Identifying said code smells is time consuming and depends greatly on
the experience of the person looking for them [3]. Because of this
automated methods have been suggested and used. The current state of
such automated methods is rule based tools. There is a discrepancy
between what the tool finds and what an experienced developer finds as
code smells. The overlapping of identified code smells is small [3][13]. To
improve the identified refactoring items using code smells machine
learning methods have been suggested as they perform well on issues
where sets of rules can be defined [2][10][11][12].

Machine learning methods have been investigated extensively the last
five years as a tool for identifying code smell. The studies have showed
that machine learning is a viable and effective way of identifying code
smells [10][12][22]. However, a common method of improving machine
learning methods across a varied dataset is to use ensemble methods.
The use of ensemble methods has not been researched to the same extent
if at all as single method machine learning approaches have. It is
therefore suggested as future work by two independent systematic
literature reviews to investigate this area [10][12]. Common code smells
to study in cooperation with machine learning algorithms have been god
class, long method, feature envy and spaghetti code [10]. This study will
focus on the four code smells of god class, feature envy, brain method
and shotgun surgery. These four code smells have been selected because
of a combination of their independent impact on a system as well as the
existence of well-defined metrics to identify them [24][25].

For creating the dataset to be used to train and test the ensemble
algorithms for detecting the various code smells a metrics-based tool,
WekaNose, will be used to create the labeled dataset. The metrics to be
used for detecting the code smells will be based on previous research.
The thresholds for each metric defining a code smell will also be used as
found in previous studies on java project. The first set of thresholds,
statistical thresholds found by calculating the thresholds from 74 java
projects [24]. This will ensure that the ensemble algorithms defined and
train in this study will be generalisable on other java projects than the
specific ones used within this study.

2.1.1 List of Abbreviations

10

Theoretical background

AMW Average Method Weight
ATFD Access to Foreign Data
CC Changing Classes
CM Changing Methods
CYCLO Average Cyclomatic Number
FANOUT Number of Called Classes
FDP Foreing Data Providers
LAA Locality of Attribute Access.
LOC Lines of Code
LOCNAMM Lines of Code Without Accessor or Mutator Methods
MAXNESTING Maximum Nesting level
NMO Number of Methods Overridden
NOA Number of Attributes
NOAM Number of Accessor Methods
NOC Number of Classes
NOM Number of Methods
NOMNAMM Number of Not Accessor or Mutator Methods
NOPA Number of Public Attributes
TCC Tight Class Cohesion
WMC Weighted Method Count
WMCNAMM Weighted Methods Count of Not Accessor or Mutator Methods
WOC Weight of Class

Table 2.1: Abbreviations related to code metrics.

AUC Area Under Curve
LOOCV Leave One Out Cross Validation
ROC AUC Receiver Operator Characteristics Area Under Curve

Table 2.2: Abbreviations related to machine learning.

2.1.2 Metric Threshold for Code Smells
To be able to distinguish and determine if a detected object is of a certain
code smell it has to be classified using some metrics from the source
code. Such metrics can then be used to set a definition of a code smell
within a system. For example, in a rudimentary sense we could define a
brain method code smell as a method that has 100 LOC. In a real system
such definition would not be generalizable to other systems or even other
classes. Therefor it is essential that threshold levels are defined for each
metric that constitutes a code smell.

M. Lanza and R. Marinescu defines such metrics in their book for each of
the code smells that will be investigated in this study [24]. In their book
M. Lanza and R. Marinescu also provides a set of threshold levels for
their metrics, statistical and semantical.

2.1.3 Code Smells – Statistical Thresholds
The threshold levels set for each of these defined by Lanza and
Marinescu [24]. They performed a statistical survey of 45 java projects
and derived the thresholds based on those 45 software systems. The
projects varied from 20 000 lines of code up to 2 000 000 lines of code.
Both from opensource projects as well as industrial systems.

11

Theoretical background

Based on the findings they calculated an average and standard deviation
for the systems. The standard deviation was then used to calculate the
low, high and very high values. This was done for each metric to be used
[24]. The result of these calculations for java software projects can be
seen in Table 2.5.

Low=avg−stdev
High=avg+stdev

Very High=(avg+stdev)∗1.5
Figure 2.1: Definition
of how the columns for
table 2.3 is calculated.

Statistical Thresholds
Metric Low Average High Very High
CYCLO/LOC 0.16 0.2 0.24 0.36
LOC/Method 7 10 13 19.5
NOM/Class 4 7 10 15
WMC 5 14 31 47
AMW 1.1 2 3.1 4.7
LOC/Class 28 70 130 195

Table 2.3: Statistical Thresholds for metrics derived from statistical
analysis of 45 java projects [24].

2.1.4 Code Smells – Semantic Thresholds
The semantic metrics are defined not from statistics but are inferred from
what the authors consider common knowledge. The used thresholds are
normalized to be as easily understandable as possible in the context of
setting up filtering statements for the code smells. The inferred
thresholds for semantics can be viewed in Table 2.4 and Table 2.5.

Semantic Thresholds Fractions
Numeric Value Semantic Label
0.25 ONE QUARTER
0.33 ONE THIRD
0.5 HALF
0.66 TWO THIRDS
0.75 THREE QUARTERS

Table 2.4: Semantic Thresholds for metrics fractions to define code
smells [24].

12

Theoretical background

Semantic Thresholds Filter
Numeric Value Semantic Label
0 NONE
1 ONE/SHALLOW
2 – 5 TWO, THREE/FEW/SEVERAL
7-8 Short Memory Cap

Table 2.5: Semantic Thresholds for metrics naming is arbitrary to
the function, The thresholds have been based on a rudimentary
concept that number 0-7 are part of human short-term memory
[24].

2.2 Code smells
Code smell is a factor when deciding on when and where to refactor in a
software system [7][14][15]. Code smell emerges during software
development as a part of the technical debt that comes from the trade-off
with short delivery times and software quality [6][7]. There are several
types of code smell [14].

2.2.1 God Class
God class is refering to a class that has grown too large and tries to do
too much, comparable to Fowlers large class code smell [14][24]. This
type of class is considered an anti-pattern because when it is present
duplicated code and long method code smells will not be far behind [14].
A common practice in object-oriented software architecture is divide and
conquer. Each class and method solve its own specific problem but not
more. God class is in direct opposition of this practice. God classes also
lowers the reusability and understandability of the system [24].

To battle god class code smell it is suggested to divide the class up into
more specific methods or classes that target a specific process or state of
the software. This can be done by for example extracting the variables
from the class and dividing them up into categories and designing classes
around those categories instead [14].

To detect god classes using metrics three main concepts can be used
[24].

1. If the class accesses the data of other classes often.
2. If the class is large and complex.
3. If there is low cohesion between the methods belonging to the

class.
Using metrics to detect code smells will be used to create the dataset for
training the ensemble algorithms.
God Class
Metric Comparator Threshold
ATFD > FEW
WMC >= VERY HIGH
TCC < ONE THIRD

Table 2.6: God Class metrics definition [24].

If a class fits the metrics given in Table 2.6 then it will be considered a
god class in the training dataset.

13

Theoretical background

2.2.2 Feature Envy
Feature envy code smells describes the symptoms of a method that
accesses attributes and data of other classes than of its own attributes
and data. This could be either through accessor methods or directly. A
common occurrence of this is when a method calls another classes or
methods getter functions often. This in turn means that the method
communicates more with other classes or methods than internally [14]
[24].
The easiest and most common fix for this type of code smell is to move
the function to be with the data. By doing so the cohesion of the system is
enhance since the classes and methods will be more specified for a
specific issue. And the coupling becomes looser between methods and the
system becomes more modular [14].

To detect feature envy three main concepts can be used [24]:
1. Does the method use more than a few attributes of other classes?
2. Does it use more attributes of other classes than of its own?
3. Does the attribute used belong to very few other classes, is it a

small selection of outside classes?
Feature Envy
Metric Comparator Threshold
ATFD > FEW
LAA < ONE THIRD
FDP <= FEW

Table 2.7: Feature Envy metrics definition [24].

If a method fits the metrics given in Table 2.7 then it will be considered a
case of feature envy in the training dataset.

2.2.3 Brain Method
Brain method is similar to the god class code smell. It centralizes the
functionality of a class within one method [24]. In object-oriented
software a method should be specialized on a specific task or issue to
maximize modularity and maintainability. Which will manifest in tight
cohesion and loose coupling. Given a brain method the risk is that it will
be difficult to understand and maintain [24].

The detection of the brain method code smell derived from three separate
code smells, long methods, excessive branching and many variables [24].
Long functions tend to be difficult to understand for new persons on a
project. Difficult to maintain and to reuse [14]. Usually a long function
performs more than one function which is undesirable in object-oriented
programming [14][24]. This multi-functionality of long functions tends to
make the functions more error prone and recurring in refactoring [24]. To
combat long methods a common concept is to extract functions from
within the long function. To derive new smaller and more specialized
functions from the functions performed by the long function [14][24].
Excessive branching occurs when a function uses if-else, and switch
statement. The use of such statements are considered to be symptoms of
bad object-oriented design [24]. Many variables used code smell is when
a function uses many local variables as well as instance variables.

From the identification of these three code smells as the sub-smells of the
brain method code smell the detection method derived is following [24].

14

Theoretical background

 Is a function very large?
 Does the function have many branches?
 Does the function nest deep?
 Does the function use many variables?

Brain Method
Metric Comparator Threshold
LOC > HIGH(Class/2)
CYCLO >= HIGH
MAXNESTING >= SEVERAL
NOAV > MANY

Table 2.8: Brain Method metrics definition [24].

If a method fits the metrics given in Table 2.8 then it will be considered a
brain method.

2.2.4 Shotgun Surgery
Shot gun surgery is the concept that changing one method or class forces
changes to be made in coupled classes and methods [14]. This would
mean that if method x and y were coupled and changes were made to
method x, we would also need to change y for the software to work [24].
This is referred to as dependencies in this scenario. Because of this it can
be easy to miss necessary changes in methods depending on another one
and because of that becoming difficult to maintain.

Shotgun surgery code smell can be prevented and refactored in several
ways. One such would be to move methods closer to the data. By doing so
the methods that would be affected by a change would be closer to each
other in the context of the code.

To detect shotgun surgery two main metrics are proposed [24].
1. If an operation is used by many other operations.
2. If the method is called by many different classes.

Shotgun Surgery
Metric Comparator Threshold
CM > Short Memory Cap
CC > MANY

Table 2.9: Shotgun Surgery metrics definition [24].

If a method fits the metrics given in Table 2.9 then it will consider a case
of shotgun surgery in the training dataset.

2.3 Machine Learning Single Model Techniques
There exist many different machine learning algorithms specialised at
different tasks and problem domains. Several of which has been used to
try identifying code smell in software [2]. However, the investigation into
the impact of different and multiple predictors have not been investigated
[2].

When designing machine learning algorithms and tools the pre-
processing of the data is of high importance since the processed data will
be supplying the predictors used for the machine learning algorithm to
make predictions and train on.

15

Theoretical background

Machine learning algorithms become efficient to classify and predict
certain problems because of the large dataset that the algorithm can
train and test on. This is one key factor to why machine learning
algorithms can become more efficient than conventional algorithms
design by developers. The time to develop the algorithm might be shorter
and better return of investment for a developer.

Previously rule based tools have been used to automatically identify code
smells in software systems [2]. These tools have been able to identify a
subset of code smells within systems. However, the union between tool
identified code smell and human identified code small have been small
[3]. Because of the rule based nature of code smells machine learning
algorithms has proved to be an efficient method of automating code smell
identification [2][5]. The three most common single model machine
learning methods used to identify code smells have been decision tree,
support vector machines, SVM, sequential minimal optimization, SMO
and Naive Bayes [10].

2.3.1 Single Model Code Smell Identification
Single model machine learning methods have been able to efficiently
identify code smells. From the three most commonly tested single model
machine learning algorithm none was among the top two in either
systematic literature review. The most effective was JRip, J48, SMO and
Naive and random forest models [10][11]. Important to note is that the
random forest model is not a single model method but an ensemble of
single models. Ensemble techniques is a common method of improving
machine learning methods [23]. Ensemble methods were also
recommended by two systematic literature reviews as further work [10]
[11].

2.3.2 J48
J48 is a decision tree based machine learning model, with focus on
information theory. It acts similarly to decision tree models with splitting
branches. In the J48 models the splitting of a tree is splitt on the attribute
that has the highest information gain.

2.3.3 JRip
JRip is a machine learning model that uses repeated pruning to achieve
error reduction of the classifications. JRip adds on conditions to a rule
incrementaly until the rule is perfect, having an accuracy of 100%. After a
rule set is identified the JRip method prunes the rules into two variants of
each rule. This process is then repeated until there are no more left over
positives within the training set.

2.3.4 Naive Bayes
Naive Bayes is a machine learning model based on Bayes theorem. Naive
Bayes assumes that all the attributes of a class or object is unrelated and
independent of eachother. Based on each attribute of a class Naive Bayes
calculates a probability of an outcome and uses that probability to classify
new instances according to Bayes theorem.

16

Theoretical background

2.3.5 SMO - Sequential Minimal Optimization
SMO is a machine learning method that implements a SVM, Support
Vector Machine, model with a more efficient implementation. SVMs
define a set of hyper planes based on training on a dataset. These
hyperplanes are then used as references for the vectors calculated for
each instance in a dataset. The dot product in relation to the hyperplane
is used to classify an instance by determining how close to the hyperplane
it is. The hyperplane is also used to seperate the instances as a border
between the possible classifications.

2.4 Machine Learning Ensemble Techniques
While single model machine learning algorithms can achieve high
performances in many areas, they can struggle with more complex data
that is imbalanced, high-dimensional or noisy in its nature [16]. The issue
derives from the fact that it is difficult for the single model algorithms to
capture the full extent or context of the more complex data. To combat
this the concept of ensemble models have been used. An ensemble is a
set of several single model algorithms either based on the same model or
different ones. The set of models then make their own predictions or
classifications based on their training. The ensemble then combines the
predictions into a singular one for the entire model [16]. The method of
combination can vary depending on the ensemble and in turn affect the
predicted outcome. The ensemble can also vary depending on the data it
is trained on and how the models within the ensemble is trained. During
this research the ensemble will be a heterogeneous ensemble, meaning
that it is build-up of different classifiers, but they are all trained on the
same dataset.

Several challenges exist for single model machine learning algorithms
that ensemble techniques can solve. Class imbalance within datasets is a
common issue. Class imbalance arises when a class within a dataset has
significantly more examples than the other classes in the dataset. This
can result in the algorithm favouring the class with more examples. A
consequence of this is that the algorithm will then not perform as
expected on another dataset where the class balance might be different.
Ensemble techniques can prevent this by training the constituent models
on a balanced subset of the dataset [23].

Another challenge for machine learning algorithms is the abundance of
properties to train upon. When there are a lot of properties the dataset
has high dimensionality and will become complex for the algorithm to
find generalizable models for predictions. A solution to the issue of high
dimensionality is for example attribute bagging [23].

2.4.1 Random Forest
Random forest models is an algorithm based on a metaphorical forest of
decision tree models. However, the decision trees within the forest will
drop random branches or leaves of the models to find different patterns
and produce a variety of rules. The combined output of these trees within
the forest is then used as the output from the model. This combination of
several single model algorithms makes random forest model an ensemble.
The random forest model has achieved high scores in the detection of
code smells [10][11]. As an ensemble the random forest model is

17

Theoretical background

considered a voting ensemble for determining the result from the total
model as shown in Figure 2.2. During previous studies it was found that
the random forest model was among the best of identifying code smells in
java projects [10][11].

2.4.2 Voting Ensemble
Voting ensembles uses the outputs of the models within the ensemble to
make a vote on their classification. This voting result is then used as the
classification for the ensemble.

Within voting ensembles there are several approaches, majority voting
and weighted voting. Majority voting is the simplest one where the
classification of the ensemble is the option that received a majority of the
votes. If there is no majority the ensemble could make a assertive
classification. Weighted voting is where better models within the
ensembles have more votes or heavier votes. The weighting of the models
is up to the researcher.

2.4.3 Stacking Ensemble
Stacking ensembles are where machine learning models' predictions are
used as the dataset for another machine learning algorithm. In other
terms a machine learning algorithm will train on the output of several
other machine learning algorithms to make a prediction of its own. The
models used in the stacking will be trained on the dataset at hand
independently. And afterwards the outputs of those models will be
combined with another algorithm, the combiner. To make up the output
of the stacking ensemble as shown in Figure 2.3.

18

Figure 2.2: The architecure of a random forest ensemble. The
green means positive and red negative. The outcome of this
would therefore be a positive for the classification.

Theoretical background

Figure 2.3: Implementation of a stacking ensemble.

2.4.4 Boosting
Boosting is another common ensemble technique used to enhance weak
models and reduce their error proneness. Boosting is considered to be an
ensemble to decrease the bias of a machine learning algorithm. This is
done by trying to train models sequentially, the next model in an area
where the previouse model lacked. However, research has shown that
boosting can lower the performance compared to individual models [10]
[11]. This is speculated to be caused by overfitting of the algorithms.

2.4.5 Bagging
Combines several weak models independently trained in parallel. By
doing this the goal is to achieve an ensemble model that is stronger and
then the individual weak models composing it. Bagging several weak
learners creates a model with less variance since several models will be
trained on the same problem.

19

Theoretical background

2.5 Evaluation Metrics – Evaluating Ensemble Performance
To be able to evaluate and compare the results of different ensemble
techniques a set of metrics will be used. Theses metrics are defined to
measure the performance of a machine learning model, independently if
it is an ensemble model or single model. The set of metrics, precision,
recall, f-measure, accuracy and AUC ROC are used to ensure as good
comparability between models as possible. All ensemble models
performance will be evaluated as a combination of these metrics.

2.5.1 Precision
Precision measures the number of true positive predictions made in all of
positive instances. Precision becomes the accuracy with which the
positive predictions made are actually positive.

PT=True Positive
PF=FalsePositive

Precision=PT /(PT+PF)

2.5.2 Recall
Recall measures the ratio of all the positives found amongst all of the
possible positives. Therefore, recall provides a metric for missed positives
that the model could have found and provide input on possible
improvements.

PT=True Positive
N F=False Negative
Recall=PT / (PT+N F)

2.5.3 F-Measure
F-measure is a harmonic mean of precision and recall. Since it is possible
to have a very good precision score and a terrible recall score, or the
reverse. Neither the precision score nor the recall score can tell the
whole story of the achieved performance for the model. To give a metric
for evaluation that is more telling of the whole model and performance a
F-measure is calculated.

P=Precision
R=Recall

F−measure=(2 ∗P∗R) / (P+R)

2.5.4 Accuracy
Accuracy is the fraction of percent of the classifications from a model that
is correct. From all the predictions made how many where correct.
Accuracy does not provide a strong picture or evaluation on itself. With
combination of other metrics accuracy does become interesting as an
additional performance indicator.

2.5.4 AUC ROC
Area under receiver operator characteristics curve, ROC AUC, has been
found to be a good threshold-independent metric for evaluating model
performance. The AUC if calculated as a decimal value between 0 – 1.
The AUC is computed on the area under the curve that plots the true

20

Theoretical background

positive rate compared to the false positive rate for a given model. In
terms of performance an AUC value of 0 is the worst and a value of 1 best
[17]. Compared to precision and recall AUC ROC is a threshold-
independent metric while the previous are threshold-dependent. In recent
studies it has been shown that threshold-dependent metrics e.g. precision
and recall, are more prone to bias [18]. Because of this AUC ROC is an
important compliment to the precision and recall metrics to ensure less
biased evaluation.

2.6 Validation of Ensemble Results
Validation of machine learning model outputs is to ensure that the result
is consistent and reproducible. Because of the nature of machine learning
training in relation to the dataset there is a risk that the findings may
vary depending on the training and testing sets population. To validate
the results and give them trustworthiness a set of validation methods can
be used. The most common one is cross-validation k-fold which loops over
the dataset and trains the models on unique training and testing sets k
times. The second one which is more computationally heavy but stronger
is leave one out cross-validation.

2.6.1 Cross-validation K-fold
K-fold cross-validation is a commonly used method of validating a model
for its performance. And is widely used within the research community to
assess and validate models trained for research [10][11]. K-fold cross-
validation works by dividing up the dataset into K random subsets of
data. Then trains the model with K – 1 subsets of the data and afterwards
validates the model with subset K. This is repeated until every subset is
used as training and testing. This way of validating a model is sufficient
as an initial validation of the model, however it is not exact or unbiased
enough to be the final validation of an important model [10][11][17]. This
is because there is a small factor of bias that is possible from the
validation [10][17].

2.6.2 Leave-one-out Cross-validation
An improved version of the k-fold cross-validation is the leave-one-out
cross-validation, LOOCV. LOOCV improves over the cross validation by
adding another fold on top of the k-fold. E.g. if the cross-validation would
be 10-fold, dividing the dataset into 10 subsets and testing and training
for each. The LOOCV would perform the 10-fold 10 times to ensure that
the randomisation of the initial subsets is not a factor in the performance
of the model [17].

Because of the added fold with LOOCV it is substantially slower and
demands more computational power. Therefore, it is suiTable to perform
K-fold cross-validation initially to validate models. However, when the
final validation is to be done it more rigorous to use LOOCV for validation
to ensure that the validation is as unbiased as possible [17].

2.7 Tools for experiment configuration and evaluation
To be able to perform and create the ensemble methods and reliably
evaluate and validate them a set of tools is needed. Any machine learning
algorithm needs to be trained on some data that represents the intended
population to use it on. This dataset needs to be labelled and accessible.
To setup and run the machine learning algorithms a framework is

21

Theoretical background

needed, graphical or not. And to calculate the evaluation metrics a
unified framework is necessary.

2.7.1 Qualitas Corpus Dataset
Qualitas Corpus is a dataset containing curated open-source java
projects. The purpose of Qualitas Corpus is to ensure that there is a
common and usable dataset for empirical studies on software artefacts.
The dataset is maintained and curated by Ewan Tempero, The University
of Auckland. The purpose of the dataset is to ensure a common and
repeatable source of data for research regarding code and software
systems. The dataset contains 112 java systems that are curated with
metrics. These metrics include cohesion, lines of code, etc.

2.7.2 Weka
Weka is a open-source machine learning software that can be used as a
graphical interface, through terminal or java API. Weka was the most
used tool found in two systematic literature reviews [10][11]. Weka works
as a tool-bench where the interaction between data and machine learning
algorithms is assisted. There are also tools for data pre-processing. Weka
has the tools to implement the cross-validation and leave one out cross-
validation. It can also for each model calculate the evaluation metrics,
precision, recall, f-measure, accuracy and AUC ROC. By having this in a
unified and opensource tool the reproducibility of the study is increased,
and transparency of process ensured.

2.7.3 WekaNose
WekaNose is an open-source tool developed to ensure that the definition
of code smells within different heterogenous datasets will use the same
metrics and therefore be comparable over studies. WekaNose uses a
given dataset of executable java code and according to a definition of a
code smell given by the researcher creates a testing set to be used for
machine learning algorithms. WekaNose is used as a plugin to the
machine learning workbench Weka.

The definition of a code smell is provided by the researcher. The
definition should be based on software metrics available in the dataset.
The dataset of code smells from WekaNose is used as a test oracle for the
machine learning algorithms. The process for creating a dataset with
WekaNose is shown in Figure 2.4. The dataset is created by gathering a
set of items that is close to the definition set by the researcher. After the
dataset is gathered from the analysed projects the researcher must go
through the data and label items either “TRUE” or “FALSE” depending
on if the item is of a code smell or not. First after this step is performed
the dataset can be used for training machine learning models.

22

Theoretical background

Figure 2.4: The process of creating a dataset for
machine learning using WekaNose.

23

Method and implementation

2 Method and implementation
In this section the design of the experiments and the process of preparing
the experiments is described.

3.1 Experimental Computer Science
Experiments in computer science is an approach to research that is called
for by multiple instances and articles. There is a considered lack of
experiments within the field of computer science compared to other
domains of research [9][30][31]. There are two identified major benefits
of doing experimental computer science. Through testing of algorithms or
programs experiments help creating databases of knowledge, tools and
methods of similar studies. Secondly experiments can lead to unexpected
results resulting in an effective way of eliminating methods and
hypotheses based on the experiment results [30]. To enable good
experimental computer science four qualities of a good experiment has
been defined, reproducability, extensability, applicability and revisability
[29]. Reproducability ensures that the study can be reproduced
independently by another research team or institution. Extensability
means to make the results comparable to other studies and research.
Applicability is the quality of using realistic parameters and that the
experiment should be easy to configure. Revisability, that if an
experiment does not give the expected outcome, the experiment should
help explaining why.

3.2 Experiment Design Research Question One
The code smells to be used for the research will be defined by the
researcher in the WekaNose tool based on the existing metrics in
Qualitas Corpus. WekaNose will then by following these definitions create
a dataset. The dataset derived by WekaNose will then be used as training
set as well as test oracle.

After the datasets has been created the ensembles will be trained on the
derived metrics from Qualitas Corpus software systems codes to identify
the targeted code smells. Initial training and validation of an ensemble
technique will be done by k-fold cross-validation, CV. CV will be used as
the initial validation method to lower the computational cost. When an
ensemble method has proven good performance with CV LOOCV will be
performed. LOOCV will be used to ensure as low bias as possible for the
final results of the ensembles. The ensemble will be tested against the
dataset of code smells generated by WekaNose. The outcome of the
LOOCV validation will then be used to calculate the evaluation metrics,
precision, recall, f-measure, accuracy and AUC ROC. The calculated
performance metrics will be used as the score for an ensemble and
provide the metrics that will be compared with the other ensembles.

This process will be repeated for each of the designated ensemble
techniques before comparative evaluation between them are done. The
outcome for RQ1 will be the ensemble method with the best score from
the evaluation metrics, as seen in Figure 3.2.

24

Method and implementation

Figure 3.1: The process of experimentation for research question
one.

3.2.1 Creating the Datasets
The datasets created and labelled in this process will be used for
research question two as well. To create the datasets to be used for each
code smell there is a set of steps that need to be performed for each of
them. First the naming of the dataset, the number of items to be included
in the dataset and the type of object investigated, method or class, as
shown in Figure 3.2.

25

Method and implementation

Figure 3.2: The first step to creating a dataset for training models to
identify the god class code smell. The red text has been added to
highlight information.
After setting the initial parameters of the dataset the libraries used to
gather the source code to be analysed must be loaded and processed.
This process is a labor intensive process that requires the researcher to
identify which libraries from the code base that can be used and what
parts of it that can be used. Not all projects within the Qualitas Corpus
dataset of opensource projects could be used due to compatibility issues.
To load a project, path to the source of the project had to be defined as
well as the path to the libraries need to execute it. This is shown in
Figure 3.3.

26

Method and implementation

Figure 3.3: Showing the interface for loading each of the java
projects. The red text has been added to highlight information.

The loading time of a project has a wide range from five seconds to 70
seconds. In total for each of the code smells 57 projects were loaded. Due
to an incompatibility issue with some of the projects within the Qualitas
Corpus dataset and the process of WekaNose there was a need for
identifying compatible projects. For each of the projects within Qualitas

27

Method and implementation

Corpus the manual process of testing each layer of folder structure had to
be done. This was done three independent times with the outcomes
recorded in an excel file. This excel file was then used as reference to
ensure that the same projects were loaded in the same manner each time
a dataset was created. The projects and their relative path can be seen in
appendix A. When all the projects have been successfully loaded the next
step is to supply WekaNose with the advisors and definitions of code
smell to look for within the loaded projects, this is shown in Figure 3.4.

The advisors are used by WekaNose to analyse the code of the loaded
projects and gathering items from the projects that either fit the
definition provided or are close. As with the case of the TCC advisor, the
actual value we are looking for is objects with a TCC lower than 1/3
however due to limitations in WekaNose the advisor cannot be set lower
than one. WekaNose will output a csv file with items that fit the advisors
and are close to the advisors on both ends. This ensures that there will be
items that does not fulfil any of the advisors for the code smell as well as
items that fulfil all of them or a set of them.

After the dataset have been outputted by WekaNose the data is
unlabelled. The labelling has to be done manually by the researcher
according to the definition of the code smell at hand. The process was
automated to a certain degree by using if statements within librecalc. The

28

Figure 3.4: An example of the interface with advisors used to
gather the dataset items for god class code smell.

Method and implementation

if statement followed the definition set in the associated Table of
definition for each code smell.

To achieve balance between positive and negative items in the datasets
created for the code smells positive or negative items were removed until
a partitioning of 1/3 positive and 2/3 negative was achieved. This is a
common approach to balance unbalanced datasets [27].

3.2.3 Models Considered in Implementation.
The models that will be used in the implementations will be based upon
which models have achieved the best result as single models in previous
studies [10][11][26]. The best performing model in several of the previous
studies have been JRip models. Because of this the JRip model will be
used in the experiments for research question one. The second-best
model has been random forest in several studies. However due to the fact
that it is a model of the voting ensemble method it will not be considered
in this part as a single model. Another contender has been the J48 model,
a type of decision tree model. Because of the good performance for J48 in
previous studies it will be used in the experiments. Naive Bayes and SMO
have shown strong performance for certain code smell in previous studies
[10][26]. Because the code smells are included in the ones use in this
study they will also be considered for the experiments. The machine
learning models selected here will be used to build up the basis for the
stacking and voting ensembles. As well as the combiner methods for the
stacking ensemble. Theses code smells will also each be tested with
bagging and boosting methods of ensembles.

3.2.2 Experiment Setup
Each experiment will be performed for all the four selected code smells.
These code smells will be represented in four distinct manually labelled
datasets. Each row in the datasets represents one case of a possible code
smell from a set of open sources java projects. Each data item has 30
code metrics that the machine learning algorithms can consider. The
reason for this experimental approach is because it is called for within
the community of data science as well as provides direct results towards
an issue [9]. It has been shown that in code smell detection more metrics
provides better models. The datasets have been resampled to have a ratio
of 1/3 positive and 2/3 negative items to the total number of items. This is
a common ratio considered for good training material for the models [27].

The models, ensemble and single models are trained and evaluated one at
a time using Weka’s experiment mode. However within in one session
there will at times be more than one iteration of the ensemble. Weka has
the capability to run all the models in the same session. Doing so takes
significantly longer and would lower the possible amount of iterations to
be done.

3.2.4 Establishing Frame of Reference
To ensure the reproducibility and the quality of the dataset and general
setup of the experiment a test according to previous studies will be
performed. The results achieved by two previous studies with the
machine learning models random forest and Jrip were 91.29% and
97.44% respectively [10][19][26]. These two studies were also performed
on the Qualitas Corpus dataset and would therefore be ideal for
comparison and validation. By performing test runs with random forest

29

Method and implementation

and Jrip models on the created dataset the expected outcome would be
close to the results by the previous studies [10][26]. The frame of
reference will use the same validation methodology and datasets as the
other experiments performed within this study to provide insight into the
validity of the process and setup.

3.2.5 Recording of Results
The results from the classifications and experiments are gathered as
experiment data within Weka. From Weka the data is transferred to a
librecalc document for further processing. All the measurements from
Weka are done with a t-test with a significance of 0.05. Within openoffice
calc the data for each dataset, ensemble model and code smell is grouped
up and processed into an average for that specific model. This processed
data is later used to compare different models to each other. To compare
the data charts are created to visualise the results.

3.3 Experiment Design Research Question Two
The code smells to be used for the research will be defined by the
researcher in the WekaNose tool based on the existing metrics in
Qualitas Corpus. WekaNose will then by following these definitions create
a dataset. The dataset derived by WekaNose will then be used as training
set as well as test oracle.

After the datasets has been created the ensembles will be trained on the
derived metrics from Qualitas Corpus software systems codes to identify
the targeted code smells. The parameters of the ensemble will be
modified iteratively. The purpose of this is to identify parameter
sensitivity if any exists within in the ensemble. Initial training and
validation of an ensemble technique will be done by k-fold cross-
validation, CV. CV will be used as the initial validation method to lower
the computational cost. When a ensemble method has proven good
performance with CV LOOCV will be performed. LOOCV will be used to
ensure as low bias as possible for the final results of the ensembles. The
ensemble will be tested against the dataset of code smells generated by
WekaNose. The outcome of the LOOCV validation will then be used to
calculate the evaluation metrics, precision, recall, f-measure and ROC
AUC. The calculated performance metrics will be used as the score for an
ensemble and provide the metrics that will be compared with another
ensemble.

If the difference between two or several ensemble techniques from RQ1
is small, then the two closest ensembles will be targets for a sensitivity
analysis according to the description above. This is to ensure and
investigate if one of the ensembles have an advantage over the other
considering parameter dependents, as seen in Figure 3.2.

30

Method and implementation

3.3.1 One-At-a-Time Sensitivity Analysis
To be able to provide an as unbiased evaluation of parameter change to
the model one-at-a-time, OAT, sensitivity analysis will be performed. OAT
is a common approach when the outcome of system or model is thought
to be impacted by one or more factors [28]. The process of OAT is to have
all factors for a model at their nominal values. Change one factor and
leave the others in their nominal values. Record the result. Reset the
changed factor to its nominal value. The next cycle is then to change the
value of another factor and record the result. By doing this it is possible
to identify factors that have high influence on the system and propose
changes according to those findings [28]. The sensitivity analysis will be
done on the AUC ROC score for the model to use as comparative
measurement.

3.4 Experiment Environment
The experiments where performed on a desktop pc with a NVidia GTX
970 GPU, Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 16GB of ram.
Operating system was arch Linux rolling release on kernel 5.6.5-arch3-1.

31

Figure 3.5: The process of experimentation for research question
one.

Results and Findings

3 Results and Findings

In this section the data gathered is described with the experiments
performed and the outcome of the experiments.

4.1 Result From Dataset Creation
From the process of creating datasets one dataset was created for each
code smell. The datasets where from the same projects however the
distribution of code smells per java project varied. When the labelling
process was completed for the data items gathered there was a
significant difference between the ratio of occurring code smells. For
example, in the case of the god class code smell as well as the shotgun
surgery there was over 200 positive data items, 228 and 245 respectively.
While for feature envy and brain method there were 78 and 73. After the
datasets were balanced according to the 1/3 positive and 2/3 negative
ratio commonly used the metrics shown in Table 4.1 were achieved [27].

Nr of projects Positive Items Negative Items Total Items Ratio
God Class 57 228 456 684 0.33
Feature Envy 57 78 156 234 0.33
Brain Method 57 73 146 219 0.33
Shotgun
Surgery 57 245 490 735 0.33

Table 4.1: Data item metrics for the created datasets to be used for
the experiments.

4.2 Result for Establishing Frame of Reference
Here the results of the attempted reproduction of two experiments from
previous studies on single model machine learning is presented. The
achieved f-measures from this study for the comparison and
establishment of the validity of the setup is displayed in Table 4.2.

JRip Pruned JRip Unpruned Random Forest

F-Measure Std. Dev. F-Measure Std. Dev.
F-
Measure Std. Dev.

Brain Method 0.890 0.150 0.930 0.130 0.910 0.110
Feature Envy 0.960 0.090 0.970 0.080 0.890 0.120
God Class 0.980 0.070 0.980 0.080 0.960 0.170
Shotgun
Surgery 1.000 0.000 1.000 0.000 0.960 0.040

F-Measure Avg.0.958 0.970 0.930
Std. Deviation
Avg. 0.078 0.073 0.110

Table 4.2: Single model result from establishing frame of reference
run performed in this study.

32

Results and Findings

The results achieved with the setup prepared for this study the results
are similar and close to the frame of reference results from the two
selected previous studies with their best models. The difference and
similarities considering the F-Measure is shown in Figure 4.1. The results
from this experiment compared to the previous studies used as reference
are close and within the standard deviation of each metric.

4.3 RQ 1 – Results
Here the data gathered from the training of the ensemble models is
presented.

4.3.1 Stacking Ensemble
Here the results of the stacking ensembles for research question one is
presented. The results for each combiner method are very close to the
other combiner method that have most in common. In this case Jrip and
J48 share similarities and Naive Bayes and SMO share some similarities.
However, the distinction becomes clearer when considering the accuracy
and AUC ROC scores.

Average of Evaluation Metrics
F-Measure Precision Recall Accuracy AUC ROC

Jrip 0.975 0.988 0.953 95.638 0.960
J48 0.975 0.988 0.953 95.753 0.963
Naive Bayes 0.978 0.993 0.950 95.908 0.980
SMO 0.978 0.993 0.950 95.895 0.965

Table 4.3: The average metrics for the stacking ensembles.

The results in Table 4.3 are used to produce comparative bar charts
between the different combiner methods. Using these Figures to

33

Jrip Random Forest Jrip pruned
0

0.2

0.4

0.6

0.8

1

1.2

0.97 0.93 0.960.97
0.91

Frame of Reference

new

previous

Machine Learning Model

F
-M

e
a

su
re

Figure 4.1: The results for the frame of reference experiment.

Results and Findings

highlight differences and similarities in scores for the evaluation. These
Figures also provide the basis for selecting a strongest method from the
stacking ensemble experiments. The F-Measure that is shown comparing
the combiner methods for the stacking ensemble show distinct
similarities, in Figure 4.2, between the models that share similar
approaches to classification. Given that the single models that constitutes
the stacking ensemble are the same for each combiner method there is an
expectation that differences should only be based on the combiner
methods used. In the case of the F-Measure the similarities between the
combiner methods is instead made clear. JRip is a rule-based model, J48
is a tree-based model. Which share a lot of similarities in the approaches
that they produce. The Naive Bayes and SMO also shares similarities, but
not to the extent that JRip and J48 does.

In Figure 4.3 showing the accuracy of the methods, there is a small
difference between the methods. The difference between the methods is
relatively small and does not necessarily provide a clear strongest
method.

34

Figure 4.2: F-Measure for stacking ensembles with JRip, J48, Naive
Bayes.

Results and Findings

Figure 4.4 shows the AUC ROC scores in relation to the other methods of
stacking combiners. For the stacking ensemble this is the metrics that
provides a clear distinction between models. With the combination of the
scores for F-Measure, accuracy and AUC ROC the Naive Bayes as
combiner model must be considered the strongest method from these
results.

35

Figure 4.3: Accuracy for stacking ensembles with JRip, J48, Naive
Bayes.

Results and Findings

4.3.2 Voting Ensemble
Here the results and data gathered for the voting ensembles are
presented. The results here are showing the comparisons and the results
gathered from the experiments that was performed. The summary of the
experiment data is shown in Table 4.4.
Average for Voting Ensemble

F-Measure Precision Recall Accuracy AUC ROC
Average of
Probabilities 0.933 0.938 0.965 92.460 0.975
Majorit Voting 0.948 0.933 0.963 92.860 0.915
Product of
Probabilities 0.955 0.935 0.978 81.880 0.860

Table 4.4: The average evaluation metrics for the voting ensemble.

Shown in Figure 4.5 the F-Measure of the voting method of product of
probabilities has the highest F-Measure score.

36

Figure 4.4: AUC ROC for stacking ensembles with JRip, J48, Naive
Bayes.

Results and Findings

For the accuracy metrics average of probability and majority voting
shows, in Figure 4.6, a significant better score compared to the product
of probabilities which had a high F-Measure. F-Measure score weighs
higher than the accuracy for these experiments, but the methods
considered strongest will be based on the combination of all three
metrics.

37

Figure 4.5: F-Measure for voting ensembles with JRip, J48, Naive
Bayes.

Figure 4.6: Accuracy for voting ensembles with JRip, J48, Naive
Bayes.

Results and Findings

For the final metric the comparison in Figure 4.7 the AUC ROC score is
significantly higher for the method of average of probabilities than the
second highest or the lowest. Given the combination of the score in the
three metrics average of probabilities will be considered the strongest of
the voting ensemble model.

4.3.3 Bagging Ensemble
Here the results and data gathered for the bagging ensembles are
presented. Table 4.5 shows the average for each of the metrics for all the
four datasets and code smells.
Average for Bagging Ensemble

F-Measure Precision Recall Accuracy AUC ROC
Jrip 0.963 0.975 0.953 95.333 0.983
J48 0.970 0.990 0.688 96.155 0.985
Naive Bayes 0.718 0.803 0.693 82.193 0.850
SMO 0.845 0.823 0.880 86.235 0.865

Table 4.5: The average of the evaluation metrics for bagging
methods.

The F-measure score shown in Figure 4.8 displays a varied result with the
models that share the most similarities also have closer scores.
Considering the F-measure score the Naive Bayes and SMO models falls
significantly behind due to the relatively large gap between them and
JRip and J48.

38

Figure 4.7: AUC ROC for voting ensembles with JRip, J48, Naive
Bayes.

Results and Findings

For the accuracy the gap between Naive Bayes, SMO and Jrip, J48 is still
significant, shown in Figure 4.9. JRip and J48 both show strong results.

Considering the last metric shown in Figure 4.10 Naive Bayes and SMO
can both be disregarded for the strongest method. However, the score
between JRip and J48 have been close through all of the metrics. And any

39

Figure 4.8: F-Measure for bagging ensembles JRip, J48, Naive
Bayes, SMO.

Figure 4.9: Accuracy for bagging ensembles JRip, J48, Naive Bayes,
SMO.

Results and Findings

difference between them has been relatively minimal considering the
difference with both Naive Bayes and SMO. However, J48 have had the
highest score for all three metrics used for comparing the methods. Due
to this consistency of having the highest score J48 will be considered the
strongest model for bagging.

4.3.4 Boosting Ensemble
Here the results and data gathered for the boosting ensembles are
presented. Table 4.6 shows the averages for each model used for
boosting. The averages are based on the results from each of the four
datasets and code smells.

Average for Boosting Ensemble
F-Measure Precision Recall Accuracy AUC ROC

JRip 0.957 0.975 0.960 95.838 0.983
J48 0.970 0.978 0.960 95.758 0.985
Naive Bayes 0.830 0.858 0.813 81.495 0.875
SMO 0.848 0.840 0.863 82.438 0.795

Table 4.6: The average of the evaluation metrics for each of the
boosting models.

The F-measure score for the boosting models shows similarities to the
bagging method. Shown in Figure 4.11 the Naive Bayes model performs
poorly compared to the rest of the models. The rest of the models score
strongly.

40

Figure 4.10: AUC ROC for bagging ensembles JRip, J48, Naive
Bayes, SMO.

Results and Findings

The accuracy achieved by the models shown in Figure 4.12 shows that
similarly to boosting booth Naive Bayes and SMO performs relatively
poorly compared to Jrip and J48 models.

Figure 4.12: Accuracy for bagging ensembles JRip, J48, Naive
Bayes, SMO.

Final metric for the boosting ensemble method, AUC ROC, is shown
comparing the models in Figure 4.13. The Naive Bayes and SMO models
performs poorly compared to JRip and J48. Similarly, as with bagging

41

Figure 4.11: F-Measure for bagging ensembles JRip, J48, Naive
Bayes, SMO.

Results and Findings

JRip and J48 show similar scores and rate closely in all three metrics. In
bagging J48 showed stronger performance for all three metrics.
However, for boosting as shown the scores vary. JRip performs better in
the accuracy metric. J48 performs significantly better for the F-measure
and minimally better for AUC ROC score. Considering all three metrics
J48 is considered the stronger performer of JRip and J48 models. This
because of the better score in F-measure and close performance in
accuracy as well as the higher score for AUC ROC.

4.3.4 Ensemble Methods Compared
Here the tested ensemble models and methods will be presented in
comparison to each other. The general results are presented in Table 4.7.
Comparison Best from Each Method

F-Measure Precision Recall Accuracy AUC ROC
Stacking – Naive Bayes 0.978 0.993 0.950 95.908 0.980
Voting – Average of
Probabilities 0.933 0.938 0.965 92.460 0.975
Bagging – J48 0.970 0.990 0.688 96.155 0.985
Boosting – J48 0.970 0.978 0.960 95.758 0.985

Table 4.7: Comparison between the strongest performers of each
ensemble method.

From the testing the f-measure does not show a distinct best ensemble
method. It rather shows that the voting ensemble has a lower score than
the rest of the methods, shown in Figure 4.14.

42

Figure 4.13: AUC ROC for bagging ensembles JRip, J48, Naive
Bayes, SMO.

Results and Findings

Figure 4.15 shows that the voting ensemble still underperforms in the
metric of accuracy as well. Another distinction is also shown that bagging
method has a higher accuracy than all the other methods.

Regarding the AUC ROC score bagging and boosting shows a better
result than both stacking ensembles and voting ensembles as shown in
Figure 4.16.

43

Figure 4.14: Chart showing the best performers of each ensemble
method comparing the F-Measure of each.

Figure 4.15: Chart showing the best performers of each ensemble
method comparing the accuracy of each.

Results and Findings

The differences between the ensemble methods are in several of the
metrics very small and within the standard deviation of the results. Each
metric is tested with a t-test of a significance of 0.05. With this as
certainty the best performer according to the three metrics will be used
for research question two.

4.4 RQ2 - Results

In Table 4.8 the settings used for the nominal J48 bagging model used as
reference is shown. Each of the experiments run for the sensitivity
analysis implements change to one factor from the nominal values. The
settings for each of the models used for the sensitivity analysis are shown
in appendix B.

Nominal
BatchSize 100
BinarySplits FALSE
CollapseTree TRUE
ConfidenceFactor 0.25
numFolds 3
ReducedErrorPruning FALSE
SubTreeRaising TRUE
unpruned FALSE

Table 4.8: The settings for the nominal model for J48 reference for
sensitivity analysis.

Table 4.8 lists the achieved results from the OAT factor testing. The Table
displays the averages from all the code smells tried for each of the factor

44

Figure 4.16: Chart showing the best performers of each ensemble
method comparing the AUC ROC of each.

Results and Findings

changes. Several of the factors only have an on/off property. For example,
binary splits are either true or false.

Average For Boosting
F-Measure Accuracy AUC ROC

Nominal 0.980 96.218 0.983
BinarySplits 0.980 96.240 0.988
CollapseTree 0.980 96.218 0.983
ReducedErrorPruning 0.980 95.993 0.988
SubTreeRaising 0.980 96.235 0.983
unpruned 0.963 96.293 0.985
BatchSize 10 0.980 93.765 0.975
BatchSize 200 0.980 96.218 0.983
NumFolds 10 0.980 96.218 0.983
ConfidenceFactor 0.1 0.980 96.198 0.983
ConfidenceFactor 0.4 0.980 96.235 0.983
ConfidenceFactor 0.85 0.980 96.225 0.985

Table 4.8: Showing the average results for each metric from the
four datasets and code smells.

Visualising the differences within the achieved results for each of the
three metrics, F-measure, accuracy and AUC ROC score provides an easy
to understand correlation between a change and a result. This is shown in
Figure 4.17. From the Figure we can identify three changes in the result
of the bagging J48 model. Most significant factor change is the batch size
change from 100 as the nominal value to ten for the experiment. The
change is shown in both accuracy and AUC ROC score. However, there is
also a noticeable change in the F-measure when changing from a pruned
tree to an unpruned. These results would indicate that the most
influential factors for the J48 bagging is batch size and pruning.

45

Results and Findings

46

Nom
ina

l

Bina
ry

Spli
ts

Coll
ap

se
Tre

e

Red
uc

ed
Erro

rP
ru

nin
g

Sub
Tre

eR
ais

ing

un
pr

un
ed

Bat
ch

Size
 1

0

Bat
ch

Size
 2

00

Num
Fold

s
10

Con
fid

en
ce

Fac
to

r 0
.1

Con
fid

en
ce

Fac
to

r 0
.4

Con
fid

en
ce

Fac
to

r 0
.8

5
0.910
0.930
0.950
0.970
0.990

Average Metrics after Factor Change

Sensitivity analysis of bagging J48 ensemble

F-Measure

Accuracy

AUC ROC

Changed Factor

S
co

re

Figure 4.17: Impact of factor change to metrics. Accuracy have
been normalised to 0-1 range.

Discussion and Conclusion

4 Discussion and Conclusion

5.1 Discussion of Method
One critical aspect to any of the testing or experiments done in this study
is the setup for training the machine learning models. Given the many
variables and configurations available, it is necessary to validate the
setups used. To ensure that this study is comparable and reproducible a
frame of reference test was performed. The base lines for the frame of
reference test came from two studies using the same Qualitas Corpus
dataset and were deemed among the top studies by two independent
literature reviews. By doing this frame of reference test it is possible to
judge whether the setup is reliable or similar to other studies within the
field.

Throughout the study, there is a great reliance on tools, Weka, WekaNose
for: creating datasets, training models and analysing data. Therefore, it
was important that this study used tools and datasets that have been used
and recommended previously. This is the reason behind using both Weka
and the Qualitas Corpus dataset. However, the use of WekaNose is
problematic because it has not been used to the same extent as Weka or
Qualitas Corpus.

Identifying and inputting the java projects from Qualitas Corpus dataset
could potentially introduce researcher bias and error. This is because the
process requires the researcher to identify the source and library for
executing the java project. Considering the opensource nature of the
projects the structure of the code bases varies a lot and creates issues.
The main issue is the manner in which of java projects are included in
WekaNose. If these paths of the included java projects are not
documented, this could lead to poor reproducibility.

Another potential issue of the value of the findings from this study is
regarding the ensembles. The models used for each ensemble were the
best performing models from previous research. In the context of
stacking ensembles the best performers from previous research would be
the stacked models and alternate as combiner models. For voting
ensembles the best performers from previous research each cast a vote
under several different voting methods. The process of conducting the
experiments might benefit the bagging and boosting methods of
ensembles since they have less complexity and available configurations
than stacking and voting ensembles. Because of this there is likely better
and worse stacking and voting models available that have not been
investigated in this study.

Regarding the four qualities of good experimental computer science as
mentioned in the method section of this study, reproducability,
extensability, applicability and revisability. The reproducability has been
ensured through the documentation of the experiment process and
method implemented in this study. The reproducability is also increased
by using common tools, Weka, WekaNose and Qualitas Corpus which is
not bound to any dependency of the induvidual researcher. By performing

47

Discussion and Conclusion

the frame of reference experiement the goal was to ensure high
extensability, comparability to other studies, as well as further ensuring
the reproducability. The applicability was ensured by having a limited set
of ensemble models to test as well as using standard implementations of
them. The Qualitas Corpus dataset used to create the dataset for the
training is based on open-source java projects which ensures that the
dataset is a realistic and actual case of code smells and code metrics. For
the revisability there was not necessarily an expected outcome over the
hypotheses that ensemble models would outperform single model
methods. Given the evaluation metrics gathered from the experiments the
revisability was ensured from being able to identify where weak spots of
algorithms existed or strong points where.

5.2 Discussion of Findings

5.2.1 Frame of Reference
To validate the setup of dataset, code smell definitions and machine
learning models used in this study. A frame of reference experiment was
performed to compare best found single models from previous studies
with the same type of models trained on the setup used for this study.
The models tested where JRip pruned and unpruned as well as random
forest. The results found where very close for both random forest and
JRip pruned. This gave confidence to the setup and dataset created for
this study. Given the good result from this frame of reference test it
increases the likelihood that this study is reproducible. Both studies
referenced for this experiment used the same dataset, Qualitas Corpus,
as this study but somewhat deviating definitions of code smells.

5.2.2 Research Question One

Research question one:

Which ensemble method provides the best fitting model for
identifying code smell in a java project?

Based on the data gathered from experiment one for research question
one there was not necessarily a clear strongest ensemble model. The
result showed that both bagging methods using JRip and J48 provided
strong models. However, the stacking ensemble performed strongly as
well. Because of the simple models for bagging and boosting the achieved
performance from them could be because they are by default close to
optimised within Weka. While a stacking or voting ensemble requires
more configuring and identification of optimal models to include in the
ensembles. The findings that the J48 bagging ensemble performed
strongest among the tested ensembles is both surprising and not
surprising. Given that the theoretical possibilities of a stacking or voting
ensemble could be tailored to fit any machine learning application it is
somewhat surprising that bagging and boosting outperformed both. On
the otherhand it is less surprising that J48 bagging performed so well.
Since previous studies have shown that JRip and J48 have performed
strongly for code smells identification these results could confirm this.

If solely considering the stacking ensemble there was a clear stronger
combiner method, Naive Bayes. This would be interesting to investigate
further since this could indicate that a strong stacking ensemble is

48

Discussion and Conclusion

possible given a different constitution of models for the combiner to train
on. Testing stacking to this extent would consume a lot of time and work
since the model is expensive to train and the possible variations is so
vast.

Given the comparison performed between the best models from each
ensemble method J48 bagging is considered the strongest out of the
models tested in this study. The bagging method in the configuration
from experiment for research question one does not significantly
outperform existing single model methods from previous studies or from
the frame of reference experiment for this study.

5.2.3 Research Question Two

Research question two:

Given an ensemble from research question one how sensitive
is the outcome of the ensemble to parameter change for
identifying a code smell?

The findings from the OAT sensitivity analysis shows that some best
practice efforts are already in place when considering default settings for
machine learning models at least within the Weka environment. No factor
change produced any significant positive impact for either of the three
metrics. While two changes instead showed a negative impact on the
performance. However, the findings from this sensitivity analysis cannot
conclude that there no possible combination of factors to improve the
results. This is due to a limitation of the OAT sensitivity analysis. OAT
sensitivity analysis cannot show correlation between two or more factors
since only one is changed at a time. Due to this we cannot extrapolate the
findings more than that considering the findings in experiment for
research question the nominal J48 implementation is the strongest for
code smell detection using bagging ensemble.

A consideration that has to be accounted for when regarding the results
for research question two is that bagging ensemble might be limited in
the possible optimization that can be done for a given model. When
comparing to the complexity of a stacking or voting ensemble that can be
built up from several layers of machine learning models the bagging
ensemble is rather simple. This simplicity is also one of baggings major
benefits as well. It is inexpensive to train and build. And at the same time
easy to understand and implement.

5.2.4 Future Work
For stacking and voting ensembles it would be very interesting to
investigate further how the models that make up the ensembles affect the
outcome and if there is a combination of models that would provide a
stronger learner than the ones used in this study. Considering the degree
off customizability available in both stacking and voting ensembles there
is possibly great insights to be found investigating this further.

Another important factor to the creation of a dataset for these models and
for the training of the models is the metrics. Previous studies have
claimed and showed that more metrics gives better models. Although, in
the field of machine learning more attributes to train on might also lead
to complexity and overfitting. Because of this it would be worth

49

Discussion and Conclusion

investigating further which metrics are important and how important
they are for identifying code smells.

5.3 Threats to validity
Given that a main author and co-author, Fontana, is part of several of the
references within in this study, references [12][19][20][25]. There is a
valid point in questioning the reliability of using resources from the same
author. However, Fontana is not the main author of all the papers and not
main researchers either. The papers that Fontana is part of are smaller
parts of a bigger research effort and is therefore considered to be
steppingstones in the same research work.

Another validity concern would be the use of an automated tool to create
the dataset of code smells to train the machine learning models on. Due
to time constraints and the necessity of having a broad dataset a tool was
necessary. Considering this an open-source tool with all the
documentation available online as well as the source code was deemed a
appropriate tool. WekaNose fulfils these requirements and therefore
provides transparency to the process and provides reproducibility.

5.4 Generalizability
The generalizability of this study remains within the domain of code smell
identification. However, the findings will be generalizable within other
coding languages and environments that are object-oriented and have the
potential of code smell. The principle findings regarding whether the
code smell identification using ensemble methods over single model
machine learning is better or worse should also apply as mentioned to
other coding languages.

There might be an issue of overfitting for the ensemble models. This is
due to the nature of using big datasets with many attributes. When using
rich datasets, the models can become specialized to only identify the
exact items represented in the dataset. This means that when the models
then are tested or used on other systems that does not fit the narrow
specialization of the model then the models might fail or become
unusable.

5.5 Conclusion
For research question one the findings show that the best performing
ensemble was bagging J48 trees. However the performance achieved with
this method is more expensive to train and the improvements is 0.5% in f-
measure. Given the expected increased performance of ensemble
methods this is somewhat surprising. However, stacking ensembles
showed good results. The issue with stacking ensembles is that they
require extensive configuration and testing to evaluate further.

Furthermore, research question two regarding the sensitivity of a method
showed some sensitivity for certain variables. The findings did rather
confirm that in the Weka environment best practices are already in use
for bagging and J48 models. Given changes to parameters the only found
impact was negative and did not provide with a stronger model than the
nominal one.

50

Discussion and Conclusion

For further work there is a large knowledge gap regarding stacking and
voting ensembles for code smell detection. In this study the models where
composed of the best models from previouse studies. However, there is a
significant possibility that the stacking and voting ensembles requires
fine tuning regarding which models are used as the basis. And there is a
likelyhood that there might be better combinations of models than the
ones tested here. Therefore, it is suggested that further work is
performed evaluating stacking and voting ensembles individually.

51

References

5 References
[1]M. Tufano et al., "When and Why Your Code Starts to Smell Bad (and

Whether the Smells Go Away)", IEEE Transactions on Software
Engineering, vol. 43, no. 11, pp. 1063-1088, 2017. Available:
10.1109/tse.2017.2653105.

[2]D. Di Nucci, F. Palomba, D. Tamburri, A. Serebrenik and A. De Lucia,
"Detecting code smells using machine learning techniques: Are we
there yet?", 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering, vol. 2018, pp. 612-621,
2018. [Accessed 2 February 2020].

[3]R. Spínola, N. Zazworka, A. Vetro, F. Shull and C. Seaman,
"Understanding automated and human-based technical debt
identification approaches-a two-phase study", Journal of the
Brazilian Computer Society, vol. 25, no. 1, pp. 1-21, 2019.
Available: 10.1186/s13173-019-0087-5.

[4]N. Zazworka, M. Shaw, F. Shull and C. Seaman, "Investigating the
impact of design debt on software quality", Proceeding of the 2nd
working on Managing technical debt - MTD '11, pp. 17-23, 2011.
Available: 10.1145/1985362.1985366 [Accessed 2 February 2020].

[5]N. Zazworka et al., "Comparing four approaches for technical debt
identification", Software Quality Journal, vol. 22, no. 3, pp. 403-426,
2013. Available: 10.1007/s11219-013-9200-8 [Accessed 2 February
2020].

[6]A. Paepcke, J. Archibald and M. Wilkes, OOPSLA '92. New York, N.Y.:
ACM Press, 1992, pp. 29-30.

[7]P. Kruchten, R. Nord and I. Ozkaya, "Technical Debt: From Metaphor
to Theory and Practice", IEEE Software, vol. 29, no. 6, pp. 18-21,
2012. Available: 10.1109/ms.2012.167.

[8]E. van Emden and L. Moonen, "Java quality assurance by detecting
code smells", Ninth Working Conference on Reverse Engineering,
2002. Proceedings., vol. 2002, pp. 97-106. Available:
10.1109/wcre.2002.1173068 [Accessed 2 February 2020].

[9]D. Feitelson, "Introduction", Communications of the ACM, vol. 50, no.
11, p. 24, 2007. Available: 10.1145/1297797.1297817 [Accessed 2
February 2020].

52

References

[10]M. Azeem, F. Palomba, L. Shi and Q. Wang, "Machine learning
techniques for code smell detection: A systematic literature review
and meta-analysis", Information and Software Technology, vol. 108,
pp. 115-138, 2019. Available: 10.1016/j.infsof.2018.12.009
[Accessed 2 February 2020].

[11]A. Al-Shaaby, H. Aljamaan and M. Alshayeb, "Bad Smell Detection
Using Machine Learning Techniques: A Systematic Literature
Review", Arabian Journal for Science and Engineering, 2020.
Available: 10.1007/s13369-019-04311-w [Accessed 2 February
2020].

[12]F. Arcelli Fontana, M. Mäntylä, M. Zanoni and A. Marino, "Comparing
and experimenting machine learning techniques for code smell
detection", Empirical Software Engineering, vol. 21, no. 3, pp.
1143-1191, 2015. Available: 10.1007/s10664-015-9378-4 [Accessed
2 February 2020].

[13]F. Pecorelli, F. Palomba, D. Di Nucci and A. De Lucia, "Comparing
Heuristic and Machine Learning Approaches for Metric-Based Code
Smell Detection", 2019 IEEE/ACM 27th International Conference
on Program Comprehension (ICPC), vol. 2019, pp. 93-114, 2019.
Available: 10.1109/icpc.2019.00023 [Accessed 2 February 2020].

[14]M. Fowler, Refactoring, 2nd ed. Boston: Addison-Wesley, 2019, pp.
71-84.

[15]W. Tracz, "Refactoring for Software Design Smells", ACM SIGSOFT
Software Engineering Notes, vol. 40, no. 6, pp. 36-36, 2015.
Available: 10.1145/2830719.2830739 [Accessed 2 February 2020].

[16]X. Dong, Z. Yu, W. Cao, Y. Shi and Q. Ma, "A survey on ensemble
learning", Frontiers of Computer Science, vol. 14, no. 2, pp. 241-
258, 2019. Available: 10.1007/s11704-019-8208-z [Accessed 3
February 2020].

[17]C. Tantithamthavorn, S. McIntosh, A. Hassan and K. Matsumoto, "An
Empirical Comparison of Model Validation Techniques for Defect
Prediction Models", IEEE Transactions on Software Engineering,
vol. 43, no. 1, pp. 1-18, 2017. Available: 10.1109/tse.2016.2584050
[Accessed 3 February 2020].

[18]T. Hall, S. Beecham, D. Bowes, D. Gray and S. Counsell, "Developing
Fault-Prediction Models: What the Research Can Show Industry",
IEEE Software, vol. 28, no. 6, pp. 96-99, 2011. Available:
10.1109/ms.2011.138 [Accessed 3 February 2020].

53

References

[19]F. Fontana, M. Zanoni, A. Marino and M. Mantyla, "Code Smell
Detection: Towards a Machine Learning-Based Approach", 2013
IEEE International Conference on Software Maintenance, vol. 25,
no. 1, pp. 49-95, 2013. Available: 10.1109/icsm.2013.56 [Accessed
27 February 2020].

[20]F. Arcelli Fontana and M. Zanoni, "Code smell severity classification
using machine learning techniques", Knowledge-Based Systems,
vol. 128, pp. 43-58, 2017. Available: 10.1016/j.knosys.2017.04.014
[Accessed 27 February 2020].

[21]L. Amorim, E. Costa, N. Antunes, B. Fonseca and M. Ribeiro,
"Experience report: Evaluating the effectiveness of decision trees
for detecting code smells", 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), pp. 261-
269, 2015. Available: 10.1109/issre.2015.7381819 [Accessed 27
February 2020].

[22]J. Schumacher, N. Zazworka, F. Shull, C. Seaman and M. Shaw,
"Building empirical support for automated code smell detection",
Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement - ESEM '10,
2010. Available: 10.1145/1852786.1852797 [Accessed 27 February
2020].

[23]O. Sagi and L. Rokach, "Ensemble learning: A survey", Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 8, no. 4, 2018. Available: 10.1002/widm.1249 [Accessed 27
February 2020].

[24]M. Lanza and R. Marinescu, Object-oriented metrics in practice, 1st
ed. Berlin: Springer, 2011.

[25]F. Fontana, V. Ferme, M. Zanoni and R. Roveda, "Towards a
prioritization of code debt: A code smell Intensity Index", 2015
IEEE 7th International Workshop on Managing Technical Debt
(MTD), pp. 16-24, 2015. Available: 10.1109/mtd.2015.7332620
[Accessed 1 March 2020].

[26]F. Arcelli Fontana, M. Mäntylä, M. Zanoni and A. Marino, "Comparing
and experimenting machine learning techniques for code smell
detection", Empirical Software Engineering, vol. 21, no. 3, pp.
1143-1191, 2015. Available: 10.1007/s10664-015-9378-4 [Accessed
22 April 2020].

[27]Y. Gueheneuc, H. Sahraoui and F. Zaidi, "Fingerprinting design
patterns", 11th Working Conference on Reverse Engineering.
Available: 10.1109/wcre.2004.21 [Accessed 23 April 2020].

54

References

[28]K. Khalid, M. Ali, N. Abd Rahman and M. Mispan, "Application on
One-at-a-Time Sensitivity Analysis of Semi-Distributed Hydrological
Model in Tropical Watershed", International Journal of Engineering
and Technology, vol. 8, no. 2, pp. 132-136, 2016. Available:
10.7763/ijet.2016.v6.872 [Accessed 26 April 2020].

[29]F. Desprez et al., Supporting Experimental Computer Science, 1st ed.
RESEARCH CENTRE GRENOBLE – RHÔNE-ALPES, 2012.

[30]W. Tichy, "Should computer scientists experiment more?", Computer,
vol. 31, no. 5, pp. 32-40, 1998. Available: 10.1109/2.675631
[Accessed 22 March 2020].

[31]P. Denning, "ACM President's Letter: What is experimental computer
science?", Communications of the ACM, vol. 23, no. 10, pp. 543-
544, 1980. Available: 10.1145/359015.359016 [Accessed 30 May
2020].

[32]C. Mendoza, K. Garces, R. Casallas and J. Bocanegra, "Detecting
Architectural Issues During the Continuous Integration Pipeline",
2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C),
2019. Available: 10.1109/models-c.2019.00090 [Accessed 13 June
2020].

[33]R. Oliveira, R. de Mello, E. Fernandes, A. Garcia and C. Lucena,
"Collaborative or individual identification of code smells? On the
effectiveness of novice and professional developers", Information
and Software Technology, vol. 120, p. 106242, 2020. Available:
10.1016/j.infsof.2019.106242 [Accessed 13 June 2020].

[34]T. Dietterich, "Ensemble methods in machine learning", 1st
International Workshop on Multiple Classifier Systems, MCS 2000,
vol. 1857, no., pp. 1-15, 2000. [Accessed 13 June 2020].

55

Appendix

6 Appendix

8.1 Appendix A – Relative Source and Library paths for WekaNose
Project is the name of the opensource java project that was loaded.
Source is the relative path to the source of the java project on the local
Linux system that the testing and creation of the dataset was done on. Lib
is the relative path to the libraries needed in the project to be able to load
it.

Project – The project name in the Qualitas Corpus dataset.
Source – The relative path from the home folder of a linux
system to the directory with source for the project.
Lib – The relative path from the home folder of a linux system to
the directory of the library needed to execute the java source
code for the project.

Project Source Lib

aol

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/aoi/aoi-2.8.1/src/AoIsrc281/ArtOfIllusion/src/
artofillusion/animation

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/aoi/
aoi-2.8.1

argouml

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/argouml/argouml-0.34/src/argouml/src

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
argouml/argouml-0.34/

c_jdbc

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/c_jdbc/c_jdbc-2.0.2/src/c-jdbc-2.0.2-src/src/org/
objectweb/cjdbc/common

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
c_jdbc/c_jdbc-2.0.2/

castor

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/castor/castor-1.3.1/src/castor-1.3.1/core/src/
main/java/org/castor/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/castor/
castor-1.3.1/

checkstyle

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/checkstyle/checkstyle-5.1/src/checkstyle-src-
5.1/src/checkstyle/com/puppycrawl/tools/checkstyle/api

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
checkstyle/checkstyle-5.1/

cobertura

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/cobertura/cobertura-1.9.4.1/src/cobertura-
1.9.4.1/src/net/sourceforge/cobertura/javancss

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
cobertura/cobertura-1.9.4.1/

collections

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/collections/collections-3.2.1/src/commons-
collections-3.2.1-src/src/java/org/apache/commons/
collections/collection

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
collections/collections-3.2.1/

Colt

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/colt/colt-1.2.0/src/colt/src/cern/colt

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/colt/
colt-1.2.0/

columba

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/columba/columba-1.0/src/columba-1.0-src/src/
columba/core/org/columba/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
columba/columba-1.0/

Compiere

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/compiere/compiere-330/src/release_330/base/
src/org/compiere

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
compiere/compiere-330/

emma

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/emma/emma-2.0.5312/src/emma-2.0.5312/core/
java12/com/vladium/emma/data

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/emma/
emma-2.0.5312/

exoportal

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/exoportal/exoportal-v1.0.2/src/exo/commons/
src/java/org/exoplatform

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
exoportal/exoportal-v1.0.2/

findbugs

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/findbugs/findbugs-1.3.9/src/findbugs-1.3.9/src/
java/edu/umd/cs/findbugs

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
findbugs/findbugs-1.3.9/

fitjava

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/fitjava/fitjava-1.1/src/source/imp/java/src/fit

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
fitjava/fitjava-1.1/

freecol /home/alpeace/QC_Dataset/QualitasCorpus-20130901r/ /home/alpeace/QC_Dataset/

56

Appendix

Systems/freecol/freecol-0.10.7/src/freecol/src/net/sf/
freecol

QualitasCorpus-20130901r/Systems/
freecol/freecol-0.10.7/

freecs

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/freecs/freecs-1.3.20100406/src/freecs-
1.3.20100406/src/freecs

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/freecs/
freecs-1.3.20100406/

freemind

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/freemind/freemind-0.9.0/src/freemind

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
freemind/freemind-0.9.0

ganttproject

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/ganttproject/ganttproject-2.0.9/src/ganttproject-
2.0.9-src/ganttproject/src/net/sourceforge/ganttproject/
action

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
ganttproject/ganttproject-2.0.9/

Hibernate

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/hibernate/hibernate-4.2.2/src/hibernate-release-
4.2.2.Final/project/hibernate-core/src/main/java/org/
hibernate/engine

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
hibernate/hibernate-4.2.2/

htmlunit

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/htmlunit/htmlunit-2.8/src/htmlunit-2.8/src/
main/java/com/gargoylesoftware/htmlunit

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
htmlunit/htmlunit-2.8/

informa

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/informa/informa-0.7.0-alpha2/src/informa-
0.7.0-alpha2/src/de/nava/informa

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
informa/informa-0.7.0-alpha2/

jag

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jag/jag-6.1/src/jag-6.1/src/com/finalist/jag

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jag/
jag-6.1/

jasml

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jasml/jasml-0.10/src/src/com/jasml

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jasml/
jasml-0.10/

jasperreports

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jasperreports/jasperreports-3.7.3/src/
jasperreports-3.7.4/src/net/sf/jasperreports

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jasperreports/jasperreports-3.7.3/

javacc

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/javacc/javacc-5.0/src/javacc/src

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
javacc/javacc-5.0/

jchempaint

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jchempaint/jchempaint-3.0.1/src/
org.openscience.cdk.jchempaint30/src/main/org/
openscience/jchempaint

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jchempaint/jchempaint-3.0.1/

jedit

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jedit/jedit-4.3.2/src/jEdit/org/gjt/sp/jedit

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jedit/
jedit-4.3.2/

jena

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jena/jena-2.6.3/src/jena

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jena/
jena-2.6.3/

jfreechart

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jfreechart/jfreechart-1.0.13/src/jfreechart-
1.0.13/source/org/jfree/chart

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jfreechart/jfreechart-1.0.13/

jgraph

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jgraph/jgraph-5.13.0.0/src/src/org/jgraph

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jgraph/jgraph-5.13.0.0/

jgraphpad

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jgraphpad/jgraphpad-5.10.0.2/src/jgraphpad-
5.10.0.2-src/src/org/jgraph/pad

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jgraphpad/jgraphpad-5.10.0.2/

jgrapht

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jgrapht/jgrapht-0.8.1/src/jgrapht-0.8.1/src/org/
jgrapht

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jgrapht/jgrapht-0.8.1/

jgroups

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jgroups/jgroups-2.10.0/src/JGroups-
2.10.0.GA.src/src/org/jgroups

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jgroups/jgroups-2.10.0/

jmeter

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jmeter/jmeter-2.9/src/apache-jmeter-2.9/src/
core/org/apache/jmeter

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jmeter/jmeter-2.9/

jmoney

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jmoney/jmoney-0.4.4/src/source/net/sf/jmoney

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jmoney/jmoney-0.4.4/

joggplayer /home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/joggplayer/joggplayer-1.1.4s/src/src/com/jcraft

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/

57

Appendix

joggplayer/joggplayer-1.1.4s/

jpf

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jpf/jpf-1.5.1/src/source/org/java/plugin

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jpf/
jpf-1.5.1/

jrat

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jrat/jrat-0.6/src/shiftone-jrat-0.6/src/org/
shiftone/jrat/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jrat/
jrat-0.6/

jspwiki

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jspwiki/jspwiki-2.8.4/src/src

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jspwiki/jspwiki-2.8.4/

jstock

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jstock/jstock-1.0.7c/src/jstock/src/org/yccheok/
jstock

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jstock/
jstock-1.0.7c/

jung

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jung/jung-2.0.1/src/jung-api-2.0.1/edu/uci/ics/
jung

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jung/
jung-2.0.1/

junit

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/junit/junit-4.11/src/junit

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/junit/
junit-4.11/

lucene

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/lucene/lucene-4.3.0/src/lucene-4.3.0/core/src/
java/org/apache/lucene

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
lucene/lucene-4.3.0/

marauroa

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/marauroa/marauroa-3.8.1/src/marauroa-3.8.1/
src/marauroa/common

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
marauroa/marauroa-3.8.1/

megamek

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/megamek/megamek-0.35.18/src/src/megamek/
common

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
megamek/megamek-0.35.18/

mvnforum

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/mvnforum/mvnforum-1.2.2-ga/src/mvnforum-
1.2.2-mvnad-1.0.1-src-20100817/mvnforum/src/com/
mvnforum

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
mvnforum/mvnforum-1.2.2-ga/

openjms

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/openjms/openjms-0.7.7-beta-1/src/openjms-
0.7.7-beta-1/modules/jms

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
openjms/openjms-0.7.7-beta-1

poi

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/poi/poi-3.6/src/poi-3.6/src/java/org/apache/poi

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/poi/
poi-3.6/

pooka

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/pooka/pooka-3.0-080505/src/net/suberic/pooka

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/pooka/
pooka-3.0-080505/

quartz

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/quartz/quartz-1.8.3/src/quartz-1.8.3/quartz/src/
main/java/org/quartz/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
quartz/quartz-1.8.3/

roller

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/roller/roller-4.0.1/src/apache-roller-src-4.0.1/
components/core/src/java/org/apache/roller

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/roller/
roller-4.0.1/

rssowl

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/rssowl/rssowl-2.0.5/src/org.rssowl.core/src/org/
rssowl/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
rssowl/rssowl-2.0.5/

sablecc

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/sablecc/sablecc-3.2/src/sablecc-3.2/src/org/
sablecc/sablecc

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
sablecc/sablecc-3.2/

squirrel_sql

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/squirrel_sql/squirrel_sql-3.1.2/src/src/net/
sourceforge/squirrel_sql/plugins/graph

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
squirrel_sql/squirrel_sql-3.1.2/

sunflow

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/sunflow/sunflow-0.07.2/src/sunflow/src/org/
sunflow/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
sunflow/sunflow-0.07.2/

trove

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/trove/trove-2.1.0/src/trove-2.1.0/src/gnu/trove

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/trove/
trove-2.1.0/src/trove-2.1.0/

weka

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/weka/weka-3.7.9/src/src

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/weka/
weka-3.7.9/

58

8.2 Appendix B – Configurations for sensitivity analysis of Bagging J48 Models
The settings for the bagging J48 models to test sensitivity to parameter change. Yellow infill marks the parameter that is
changed compared to the nominal configuration.

Bagging Configuration for J48 Sensitivity Analysis

Factor Nominal
Binary
Splits

Collapse
Tree

Reduce
Error
Pruning

Sub Tree
Raising Unpruned

Batch Size
10

Batch Size
200

Num
Folds 10 0 0 0

BatchSize 100 100 100 100 100 100 10 200 100 100 100 100
BinarySplits 0 1 0 0 0 0 0 0 0 0 0 0
CollapseTree 1 1 0 1 1 1 1 1 1 1 1 1
ConfidenceFactor 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.1 0.4 0.85
numFolds 3 3 3 3 3 3 3 3 10 10 10 10
ReducedErrorPrunin
g 0 0 0 1 0 0 0 0 0 0 0 0
SubTreeRaising 1 1 1 1 0 1 1 1 1 1 1 1
unpruned 0 0 0 0 0 1 1 1 1 1 1 1

	1 Introduction
	1.2 Background
	1.3 Purpose and research questions
	1.4 Delimitations
	1.5 Related Research

	1 Theoretical background
	2.1 Introduction theoretical background
	2.1.1 List of Abbreviations
	2.1.2 Metric Threshold for Code Smells
	2.1.3 Code Smells – Statistical Thresholds
	2.1.4 Code Smells – Semantic Thresholds

	2.2 Code smells
	2.2.1 God Class
	2.2.2 Feature Envy
	2.2.3 Brain Method
	2.2.4 Shotgun Surgery

	2.3 Machine Learning Single Model Techniques
	2.3.1 Single Model Code Smell Identification
	2.3.2 J48
	2.3.3 JRip
	2.3.4 Naive Bayes
	2.3.5 SMO - Sequential Minimal Optimization

	2.4 Machine Learning Ensemble Techniques
	2.4.1 Random Forest
	2.4.2 Voting Ensemble
	2.4.3 Stacking Ensemble
	2.4.4 Boosting
	2.4.5 Bagging

	2.5 Evaluation Metrics – Evaluating Ensemble Performance
	2.5.1 Precision
	2.5.2 Recall
	2.5.3 F-Measure
	2.5.4 Accuracy
	2.5.4 AUC ROC

	2.6 Validation of Ensemble Results
	2.6.1 Cross-validation K-fold
	2.6.2 Leave-one-out Cross-validation

	2.7 Tools for experiment configuration and evaluation
	2.7.1 Qualitas Corpus Dataset
	2.7.2 Weka
	2.7.3 WekaNose

	2 Method and implementation
	3.1 Experimental Computer Science
	3.2 Experiment Design Research Question One
	
	3.2.1 Creating the Datasets
	3.2.3 Models Considered in Implementation.
	3.2.2 Experiment Setup
	3.2.4 Establishing Frame of Reference
	3.2.5 Recording of Results

	3.3 Experiment Design Research Question Two
	3.3.1 One-At-a-Time Sensitivity Analysis

	3.4 Experiment Environment

	3 Results and Findings
	4.1 Result From Dataset Creation
	4.2 Result for Establishing Frame of Reference
	4.3 RQ 1 – Results
	4.3.1 Stacking Ensemble
	4.3.2 Voting Ensemble
	4.3.3 Bagging Ensemble
	4.3.4 Boosting Ensemble
	4.3.4 Ensemble Methods Compared

	4.4 RQ2 - Results

	4 Discussion and Conclusion
	5.1 Discussion of Method
	5.2 Discussion of Findings
	5.2.1 Frame of Reference
	5.2.2 Research Question One
	5.2.3 Research Question Two
	5.2.4 Future Work

	5.3 Threats to validity
	5.4 Generalizability
	5.5 Conclusion

	5 References
	6 Appendix
	8.1 Appendix A – Relative Source and Library paths for WekaNose
	8.2 Appendix B – Configurations for sensitivity analysis of Bagging J48 Models

