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Introduction

Abstract

The  need  for  automated  methods  for identifying  refactoring  items  is
prelevent  in  many  software  projects  today.  Symptoms  of  refactoring
needs is the concept of code smells within a  software system. Recent
studies have used single model machine learning to combat this issue.
This study aims to test the possibility of improving machine learning code
smell  detection  using  ensemble  methods.  Therefore  identifying  the
strongest ensemble model in the context of code smells and the relative
sensitivity of the strongest perfoming ensemble identified. The ensemble
models  performance was  studied  by  performing  experiments  using
WekaNose to create datasets of code smells and Weka to train and test
the models on the dataset. The datasets created was based on  Qualitas
Corpus  curated  java  project.  Each tested  ensemble  method  was  then
compared to all the other ensembles, using f-measure, accuracy and AUC
ROC scores. The tested ensemble methods were stacking, voting, bagging
and boosting. The models to implement the ensemble methods with were
models  that previous studies had identified as strongest  performer for
code smell identification. The models where Jrip, J48, Naive Bayes and
SMO. 

The  findings  showed,  that  compared  to  previous  studies,  bagging  J48
improved results by 0.5%. And that the nominally implemented baggin of
J48  in  Weka follows  best  practices  and  the  model  where  impacted
negatively.  However,  due  to the  complexity  of  stacking  and  voting
ensembles  further  work  is  needed  regarding  stacking  and  voting
ensemble models in the context of code smell identification.

Keywords

Ensemble  machine  learning,  code  smell,  technical  debt,  code  smell
identification, automated code smell identification.
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Introduction

1 Introduction

1.2 Background

A  commonly  used  metaphor  for  describing  the  compromises  between
delivery  time  and  software  quality  is  technical  debt.  Technical  debt,
coined by Cunningham W, is used to explain the growth and existence of
flaws and issues within a software system [6][2]. Technical debt is often
used  as  an indicator  for  companies  and organisations  that  a  software
system needs refactoring [7][1].  Trough the software development  life
cycle of a system the technical debt will grow and accumulate. To deal
with technical debt within a system refactoring is a common and effective
method [15]. To be able to perform efficient refactoring the items that
needs refactoring must  be identified.  The identification of  these items
then becomes an issue for the developers. Several studies have suggested
methods using code metrics and rule-based tools to identify items that
needs refactoring [3][5]. Another suggested method suggested by several
studies  is  the use of  code smells  to  identify  refactoring items [8][15].
Code smells are considered symptoms of poor implementation or design
within a software system [1][7]. Code smells comes in different variations
that  represents  different  types  of  code  issues  and  therefore  technical
debt [14]. The use of a subset of these code smells have been studied for
use  in  automated  identification  of  items  within  software  systems  that
need refactoring [15][3].

In many modern development environments today a lot of the building
process  and  quality  assurance  of  the  software  is  deployed  to  cloud
solutions in several different ways. One common task to deploy on a cloud
solution  is  the  continues  integration  testing  and  validation  of  the
software. Detecting architectural and design flaws within the continues
integration process is difficult [32]. By implementing an automated tool
for  identifying  code  smells  to  indicate  possible  design  and
implementation  issues  the  architectural  issues  can  be  included  in  the
validation within the continues integration deployment.  However, from
conventional methods for the automated identification of code smells and
refactoring items the overlap between refactoring items found by tools
and humans is very small [8]. Because of this to efficiently find items for
refactoring both human identification, which is expensive and requires
special competence and automated identification of refactoring items is
needed to ensure coverage.

Recent  studies  have  been  focusing  on  using  machine  learning  in
combination  with  code  metrics  to  identify  code  smells  and  in  turn
refactoring items.  Using machine learning to  identify  code smells has
proven to be a possible avenue for automation [15].  There have been
studies  showing  that  the  identification  of  code  smells  using  machine
learning is possible [15][2]. The findings from previous studies shows that
using  machine  learning  to  identify  code  smells  is  more  accurate  and
effective  than  identification  performed  by  developers  [12][13].   The
existing  research  have  focused  on  testing  different  types  of  machine
learning algorithms to identify in moste cases one or two code smells [10]
[11]. These identifications have been done using single model algorithms,
such as decision trees, neural-networks and support vector machines. The
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models identified have each had some specialisation where it performed
better then another but lacked in identification of other code smells.

The results found by previous studies using machine learningshow good
accuracy  and  efficiency  still  have  room for  improvement  [10][11][12].
Improving the performance of machine learning implementations can be
difficult and time consuming. A common method of improving upon the
machine  learning  implemented  solutions  is  the  usage  of  ensemble
methods [34]. Ensemble methods refers to the implementation of several
machine  learning  algorithms  and  combining  them  into  one  combined
method. This method often performs stronger and more accurate than a
single machine learning model on the same issue. However, ensembles
comes at a cost of configuration and computational power. Because of the
promising findings from previous studies regarding machine learning for
identifying code smells [10][11]. The next step to implement ensemble
models  fitted  to  the  problem  domain  could  possibly  achieve  more
accurate and usefull tools for code smell identification [10][34]. Ensemble
models have also been suggested by to independent systematic literature
reviews on the topic of machine learning or code smell identification as a
promising and important research area to increase the performance of
automated tools for code smell identification  [10][11]. 

1.3 Purpose and research questions

The need for automated tools and algorithms to accurately identify code
smell can increase process efficiency for troubleshooting and maintaining
code.  The  automated  identification  of  code  smells  as  indicators  of
technical debt and refactoring needs could also lead to easier and more
efficient implementation of software. Machine learning has been shown
to be a potential implementation of code smell detection. However, the
use  of  ensemble  machine  learning  models  has  not  been  thoroughly
investigated.  Because  of  the  possible  increase  in  performance  with
ensemble  models  and the lack of  studies  on the topic  lends the topic
interesting for study.

Research question one:

Which ensemble method provides the best fitting model for 
identifying code smell in a java project?

To compare against previously found single model machine learning 
methods for identifying code smells.

Research question two:

Given an ensemble from research question one how sensitive
is the outcome of the ensemble to parameter change for 
identifying a code smell?

By finding sensitive parameters it might be possible to find improvement 
possibilities of the method.
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1.4 Delimitations

This  thesis  will  not  investigate  other  types  or  parts  of  technical  debt
within software systems than the set of code smells defined. The tools
that  the machine  learning method will  be evaluated against  will  be  a
selection subset of tested tools from previous academic work. The thesis
will only consider and use open source projects for reference and data
subset  for  the  machine  learning  training  and  testing.  As  well  as  the
evaluation of machine learning compared to existing tools. The ensembles
created will  be  based  on the  findings  of  previous  studies  and will  be
limited to a set of three iterations. This research will not do any further
evaluation of single model algorithms but refer to previous studies. The
metrics  used  to  define  code  smells  within  java  projects  will  not  be
evaluated or investigated for efficiency, the metrics used will be defined
by previous studies.

1.5 Related Research
Quality assurance as a topic of research has been widely studied in many
aspects.  Due  to  the  importance  of  good  quality  source  code  for
maintenance  and  the  agile  development  process[4].  To  ensure  better
quality of code different methods and concepts have been invented and
tested. However, many of the methods have the roots in the concept of
technical debt and its effects on code and development [1][4]. An aspect
of technical debt that has been studied is the concept of code smells to
narrow the definition of software quality issues further [4][14].  Where
each code smell represents one aspect of poor code. 

The first and most common approach to identifying code smell has been
human code smell identification. Where one or several developers look
through the code and notes down potential issues  within the code [3][5]
[33]. By doing so there is a strong benefit if two or more developers do it
together  since  it  allows  for  developers  to  share  experience  and
knowledge during the process [33]. However, it is very time consuming
and  because  of  that  expensive  [3].  The  process  becomes  even  more
expensive  if  the  benefit  of  knowledge  sharing is  achieved since  more
developers are involved. 

The second most common approach has been rule based automated tools.
Rule based tools have achieved somewhat of success within the problem
area [3]. Rulebased tools have the benefit of not requiring a developer to
spend time on the process in theory. Findings from studies of rulebased
tools  show a different  reality  though.  Rule based tools  tend to  find a
different subset of code smells or technical debt items than a developer
doing code smell  identification. Because of this if  a development team
would be using a rule based solution they would still  need to perform
both human and tool identification to cover their code [3]. However, rule
based solutions are cheap to run and easy to implement [3].

The third  method is  machine learning implementations  for  code smell
identification.  For example, have decision tree algorithms been studied
and evaluated finding good results for the approach [21]. Other studies
have focused on performing experiments and comparative evaluation of
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different  machine  learning  approaches  [12][19][20].  The  common
findings for machine learning approaches to identifying code smells  is
that it is effective. Machine learning approaches also has the benefit of
identifying a greater union of the code smells of what a human and a rule-
based  tool  would  find  [3]. Both  rule  based  and  machine  learning
approaches is automated and can therefore also be used in the continues
integration pipeline that is commonly deployed in modern development
teams.  Within  this  idea  of  continues  integration  machine  learning
solutions have shown good performance [32].

A  common  method  of  improving  machine  learning  implementations  is
using ensemble methods [34]. No implementations or studies have been
identified that solely studies ensemble machine learning techniques for
identifying code smells. This has been verified by two separate systematic
literature reviews, SLR, as well, one in 2019 and one in 2020 [10][11]. As
a point for further work identified in both SLR’s research into ensemble
approaches to code smell  identification is suggested.  Within the SLR’s
they suggest  approaches to performing research and experiments that
would increase validity and reliability. Such as doing LOOCV and using
grid-search to identify optimal parameter space. From the SLR’s only one
study performed grid-search algorithm which would provide a replicable
and efficient tool for configurating the algorithms. The studies reviewed
in  the  SLR’s  did  the  configuration  manually  instead  and  could  have
benefited from using the grid-search algorithm [10][11].
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1 Theoretical background

2.1 Introduction theoretical background

In  this  section  the  theoretical  framework  needed  to  understand  and
perform  the  study  will  be  outlined  and  explained.  Code  smells  are
symptoms of poor code and code design. Because of this is often tied to
malfunctioning or inefficient code [4][14]. Therefore identifying the code
smells will often lead to finding the error, cause of a malfunction or bug
within a system. M. Fowler suggests that looking for code smells is an
efficient  method  of  active  refactoring.  By  refactoring  code  smells,
refactoring can be done as a prevention or optimization of a system [14]. 

Identifying said code smells is time consuming and depends greatly on
the  experience  of  the  person  looking  for  them  [3].  Because  of  this
automated methods have been suggested and used. The current state of
such  automated  methods  is  rule  based  tools.  There  is  a  discrepancy
between what the tool finds and what an experienced developer finds as
code smells. The overlapping of identified code smells is small [3][13]. To
improve  the  identified  refactoring  items  using  code  smells  machine
learning methods have been suggested as they perform well on issues
where sets of rules can be defined [2][10][11][12]. 

Machine learning methods have been investigated  extensively  the last
five years as a tool for identifying code smell. The studies have showed
that machine learning is a viable and effective way of identifying code
smells [10][12][22]. However, a common method of improving machine
learning methods across a varied dataset is to use ensemble methods.
The use of ensemble methods has not been researched to the same extent
if  at  all  as  single  method  machine  learning  approaches  have.  It  is
therefore  suggested  as  future  work  by  two  independent  systematic
literature reviews to investigate this area [10][12]. Common code smells
to study in cooperation with machine learning algorithms have been god
class, long method, feature envy and spaghetti code [10]. This study will
focus on the four code smells of god class, feature envy, brain method
and shotgun surgery. These four code smells have been selected because
of a combination of their independent impact on a system as well as the
existence of well-defined metrics to identify them [24][25]. 

For  creating  the  dataset  to  be  used  to  train  and  test  the  ensemble
algorithms for  detecting the various  code smells  a metrics-based tool,
WekaNose, will be used to create the labeled dataset. The metrics to be
used for detecting the code smells will be based on previous research.
The thresholds for each metric defining a code smell will also be used as
found in  previous  studies  on  java  project.  The  first  set  of  thresholds,
statistical  thresholds  found by calculating the thresholds from 74 java
projects [24]. This will ensure that the ensemble algorithms defined and
train in this study will be generalisable on other java projects than the
specific ones used within this study.

2.1.1 List of Abbreviations
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AMW Average Method Weight
ATFD Access to Foreign Data
CC Changing Classes
CM Changing Methods
CYCLO Average Cyclomatic Number
FANOUT Number of Called Classes
FDP Foreing Data Providers
LAA Locality of Attribute Access.
LOC Lines of Code
LOCNAMM Lines of Code Without Accessor or Mutator Methods
MAXNESTING Maximum Nesting level
NMO Number of Methods Overridden
NOA Number of Attributes
NOAM Number of Accessor Methods
NOC Number of Classes
NOM Number of Methods
NOMNAMM Number of Not Accessor or Mutator Methods
NOPA Number of Public Attributes
TCC Tight Class Cohesion
WMC Weighted Method Count
WMCNAMM Weighted Methods Count of Not Accessor or Mutator Methods
WOC Weight of Class

Table 2.1: Abbreviations related to code metrics.

AUC Area Under Curve
LOOCV Leave One Out Cross Validation
ROC AUC Receiver Operator Characteristics Area Under Curve

Table 2.2: Abbreviations related to machine learning.

2.1.2 Metric Threshold for Code Smells
To be able to distinguish and determine if a detected object is of a certain
code smell  it  has to be classified using some metrics from the source
code. Such metrics can then be used to set a definition of a code smell
within a system. For example, in a rudimentary sense we could define a
brain method code smell as a method that has 100 LOC. In a real system
such definition would not be generalizable to other systems or even other
classes. Therefor it is essential that threshold levels are defined for each
metric that constitutes a code smell.

M. Lanza and R. Marinescu defines such metrics in their book for each of 
the code smells that will be investigated in this study [24]. In their book 
M. Lanza and R. Marinescu also provides a set of threshold levels for 
their metrics, statistical and semantical.

2.1.3 Code Smells – Statistical Thresholds
The  threshold  levels  set  for  each  of  these  defined  by  Lanza  and
Marinescu [24]. They performed a statistical survey of 45 java projects
and  derived  the  thresholds  based  on  those  45  software  systems.  The
projects varied from 20 000 lines of code up to 2 000 000 lines of code.
Both from opensource projects as well as industrial systems.
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Based on the findings they calculated an average and standard deviation
for the systems. The standard deviation was then used to calculate the
low, high and very high values. This was done for each metric to be used
[24]. The result of these calculations for java software projects can be
seen in Table 2.5.

Low=avg−stdev
High=avg+stdev

Very High=(avg+stdev)∗1.5
Figure 2.1:  Definition
of how the columns for
table 2.3 is calculated.

Statistical Thresholds
Metric Low Average High Very High
CYCLO/LOC 0.16 0.2 0.24 0.36
LOC/Method 7 10 13 19.5
NOM/Class 4 7 10 15
WMC 5 14 31 47
AMW 1.1 2 3.1 4.7
LOC/Class 28 70 130 195

Table 2.3: Statistical Thresholds for metrics derived from statistical
analysis of 45 java projects [24].

2.1.4 Code Smells – Semantic Thresholds
The semantic metrics are defined not from statistics but are inferred from
what the authors consider common knowledge. The used thresholds are
normalized to be as easily understandable as possible in the context of
setting  up  filtering  statements  for  the  code  smells.  The  inferred
thresholds for semantics can be viewed in Table 2.4 and Table 2.5.

Semantic Thresholds Fractions
Numeric Value Semantic Label
0.25 ONE QUARTER
0.33 ONE THIRD
0.5 HALF
0.66 TWO THIRDS
0.75 THREE QUARTERS

Table 2.4: Semantic Thresholds for metrics fractions to define code
smells [24].
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Semantic Thresholds Filter
Numeric Value Semantic Label
0 NONE
1 ONE/SHALLOW
2 – 5 TWO, THREE/FEW/SEVERAL
7-8 Short Memory Cap

Table 2.5: Semantic Thresholds for metrics naming is arbitrary to 
the function, The thresholds have been based on a rudimentary 
concept that number 0-7 are part of human short-term memory 
[24].

2.2 Code smells
Code smell is a factor when deciding on when and where to refactor in a
software  system  [7][14][15].  Code  smell  emerges  during  software
development as a part of the technical debt that comes from the trade-off
with short delivery times and software quality [6][7]. There are several
types of code smell [14].

2.2.1 God Class
God class is refering to a class that has grown too large and tries to do
too much, comparable to Fowlers large class code smell [14][24]. This
type of  class is  considered an anti-pattern because when it  is  present
duplicated code and long method code smells will not be far behind [14].
A common practice in object-oriented software architecture is divide and
conquer. Each class and method solve its own specific problem but not
more. God class is in direct opposition of this practice. God classes also
lowers the reusability and understandability of the system [24].

To battle god class code smell it is suggested to divide the class up into
more specific methods or classes that target a specific process or state of
the software. This can be done by for example extracting the variables
from the class and dividing them up into categories and designing classes
around those categories instead [14].

To detect god classes using metrics three main concepts can be used
[24]. 

1. If the class accesses the data of other classes often.
2. If the class is large and complex.
3. If  there  is  low cohesion  between  the  methods  belonging  to  the

class.
Using metrics to detect code smells will be used to create the dataset for
training the ensemble algorithms.
God Class
Metric Comparator Threshold
ATFD > FEW
WMC >= VERY HIGH
TCC < ONE THIRD

Table 2.6: God Class metrics definition [24].

If a class fits the metrics given in Table 2.6 then it will be considered a
god class in the training dataset.
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2.2.2 Feature Envy
Feature  envy  code  smells  describes  the  symptoms  of  a  method  that
accesses attributes and data of other classes than of its own attributes
and data. This could be either through accessor methods or directly. A
common occurrence of this is  when a method calls another classes or
methods  getter  functions  often.  This  in  turn  means  that  the  method
communicates more with other classes or methods than internally [14]
[24].
The easiest and most common fix for this type of code smell is to move
the function to be with the data. By doing so the cohesion of the system is
enhance  since  the  classes  and  methods  will  be  more  specified  for  a
specific issue. And the coupling becomes looser between methods and the
system becomes more modular [14]. 

To detect feature envy three main concepts can be used [24]:
1. Does the method use more than a few attributes of other classes?
2. Does it use more attributes of other classes than of its own?
3. Does the attribute used belong to very few other classes, is it a

small selection of outside classes?
Feature Envy
Metric Comparator Threshold
ATFD > FEW
LAA < ONE THIRD
FDP <= FEW

Table 2.7: Feature Envy metrics definition [24]. 

If a method fits the metrics given in Table 2.7 then it will be considered a
case of feature envy in the training dataset.

2.2.3 Brain Method
Brain method is  similar to the god class code smell.  It  centralizes the
functionality  of  a  class  within  one  method  [24].  In  object-oriented
software a method should be specialized on a specific task or issue to
maximize  modularity  and  maintainability.  Which  will  manifest  in  tight
cohesion and loose coupling. Given a brain method the risk is that it will
be difficult to understand and maintain [24].

The detection of the brain method code smell derived from three separate
code smells, long methods, excessive branching and many variables [24].
Long  functions tend to be difficult to understand for new persons on a
project. Difficult to maintain and to reuse [14]. Usually a long function
performs more than one function which is undesirable in object-oriented
programming [14][24]. This multi-functionality of long functions tends to
make the functions more error prone and recurring in refactoring [24]. To
combat  long  methods  a  common concept  is  to  extract  functions  from
within  the long function.  To  derive  new smaller  and more  specialized
functions  from the  functions  performed by  the  long  function  [14][24].
Excessive  branching  occurs  when  a  function  uses  if-else,  and  switch
statement. The use of such statements are considered to be symptoms of
bad object-oriented design [24]. Many variables used code smell is when
a function uses many local variables as well as instance variables.

From the identification of these three code smells as the sub-smells of the
brain method code smell the detection method derived is following [24].
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 Is a function very large?
 Does the function have many branches?
 Does the function nest deep?
 Does the function use many variables?

Brain Method
Metric Comparator Threshold
LOC > HIGH(Class/2)
CYCLO >= HIGH
MAXNESTING >= SEVERAL
NOAV > MANY

Table 2.8: Brain Method metrics definition [24]. 

If a method fits the metrics given in Table 2.8 then it will be considered a
brain method.

2.2.4 Shotgun Surgery
Shot gun surgery is the concept that changing one method or class forces
changes to be made in  coupled classes  and methods [14].  This  would
mean that if method x and y were coupled and changes were made to
method x, we would also need to change y for the software to work [24].
This is referred to as dependencies in this scenario. Because of this it can
be easy to miss necessary changes in methods depending on another one
and because of that becoming difficult to maintain. 

Shotgun surgery code smell can be prevented and refactored in several
ways. One such would be to move methods closer to the data. By doing so
the methods that would be affected by a change would be closer to each
other in the context of the code. 

To detect shotgun surgery two main metrics are proposed [24].
1. If an operation is used by many other operations. 
2. If the method is called by many different classes.

Shotgun Surgery
Metric Comparator Threshold
CM > Short Memory Cap
CC > MANY

Table 2.9: Shotgun Surgery metrics definition [24]. 

If a method fits the metrics given in Table 2.9 then it will consider a case
of shotgun surgery in the training dataset.

2.3 Machine Learning Single Model Techniques
There  exist  many different  machine  learning algorithms specialised  at
different tasks and problem domains. Several of which has been used to
try identifying code smell in software [2]. However, the investigation into
the impact of different and multiple predictors have not been investigated
[2]. 

When  designing  machine  learning  algorithms  and  tools  the  pre-
processing of the data is of high importance since the processed data will
be supplying the predictors used for the machine learning algorithm to
make predictions and train on.
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Machine  learning  algorithms  become  efficient  to  classify  and  predict
certain  problems  because  of  the  large  dataset  that  the  algorithm can
train  and  test  on.  This  is  one  key  factor  to  why  machine  learning
algorithms  can  become  more  efficient  than  conventional  algorithms
design by developers. The time to develop the algorithm might be shorter
and better return of investment for a developer.

Previously rule based tools have been used to automatically identify code
smells in software systems [2]. These tools have been able to identify a
subset of code smells within systems. However, the union between tool
identified code smell and human identified code small have been small
[3]. Because of the rule based nature of code smells machine learning
algorithms has proved to be an efficient method of automating code smell
identification  [2][5].  The  three  most  common  single  model  machine
learning methods used to identify code smells have been decision tree,
support  vector  machines,  SVM,  sequential  minimal  optimization,  SMO
and Naive Bayes [10].  

2.3.1 Single Model Code Smell Identification
Single  model  machine  learning  methods  have  been  able  to  efficiently
identify code smells. From the three most commonly tested single model
machine  learning  algorithm  none  was  among  the  top  two  in  either
systematic literature review. The most effective was JRip, J48, SMO and
Naive and random forest models [10][11]. Important to note is that the
random forest model is not a single model method but an ensemble of
single models.  Ensemble  techniques is a common method of improving
machine  learning  methods  [23].  Ensemble  methods  were  also
recommended by two systematic literature reviews as further work [10]
[11].

2.3.2 J48
J48  is  a  decision  tree  based  machine  learning  model,  with  focus  on
information theory. It acts similarly to decision tree models with splitting
branches. In the J48 models the splitting of a tree is splitt on the attribute
that has the highest information gain.

2.3.3 JRip
JRip is a machine learning model that uses repeated pruning to achieve
error reduction of the classifications. JRip adds on conditions to a rule
incrementaly until the rule is perfect, having an accuracy of 100%. After a
rule set is identified the JRip method prunes the rules into two variants of
each rule. This process is then repeated until there are no more left over
positives within the training set.

2.3.4 Naive Bayes
Naive Bayes is a machine learning model based on Bayes theorem. Naive
Bayes assumes that all the attributes of a class or object is unrelated and
independent of eachother. Based  on each attribute of a class Naive Bayes
calculates a probability of an outcome and uses that probability to classify
new instances according to Bayes theorem. 
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2.3.5 SMO - Sequential Minimal Optimization
SMO is  a  machine  learning  method  that  implements  a  SVM,  Support
Vector  Machine,  model  with  a  more  efficient  implementation.  SVMs
define  a  set  of  hyper  planes  based  on  training  on  a  dataset.  These
hyperplanes are then used as  references for the vectors calculated for
each instance in a dataset. The dot product in relation to the hyperplane
is used to classify an instance by determining how close to the hyperplane
it is. The hyperplane is also used to seperate the instances as a border
between the possible classifications.

2.4 Machine Learning Ensemble Techniques
While  single  model  machine  learning  algorithms  can  achieve  high
performances in many areas, they can struggle with more complex data
that is imbalanced, high-dimensional or noisy in its nature [16]. The issue
derives from the fact that it is difficult for the single model algorithms to
capture the full extent or context of the more complex data. To combat
this the concept of ensemble models have been used. An ensemble is a
set of several single model algorithms either based on the same model or
different  ones.  The set  of  models  then make their  own predictions  or
classifications based on their training. The ensemble then combines the
predictions into a singular one for the entire model [16].  The method of
combination can vary depending on the ensemble and in turn affect the
predicted outcome. The ensemble can also vary depending on the data it
is trained on and how the models within the ensemble is trained. During
this research the ensemble will be a heterogeneous ensemble, meaning
that it is build-up of different classifiers, but they are all trained on the
same dataset.

Several  challenges exist  for  single  model  machine learning algorithms
that ensemble techniques can solve. Class imbalance within datasets is a
common issue. Class imbalance arises when a class within a dataset has
significantly more examples than the other classes in the dataset.  This
can result in the algorithm favouring the class with more examples.  A
consequence  of  this  is  that  the  algorithm  will  then  not  perform  as
expected on another dataset where the class balance might be different.
Ensemble techniques can prevent this by training the constituent models
on a balanced subset of the dataset [23]. 

Another challenge for machine learning algorithms is the abundance of
properties to train upon. When there are a lot of properties the dataset
has high dimensionality  and will  become complex for the algorithm to
find generalizable models for predictions. A solution to the issue of high
dimensionality is for example attribute bagging [23].

2.4.1 Random Forest
Random forest models is an algorithm based on a metaphorical forest of
decision tree models. However, the decision trees within the forest will
drop random branches or leaves of the models to find different patterns
and produce a variety of rules. The combined output of these trees within
the forest is then used as the output from the model. This combination of
several single model algorithms makes random forest model an ensemble.
The random forest model has achieved high scores in the detection of
code  smells  [10][11].  As  an  ensemble  the  random  forest  model  is
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considered a voting ensemble for determining the result from the total
model as shown in Figure 2.2.  During previous studies it was found that
the random forest model was among the best of identifying code smells in
java projects [10][11].

2.4.2 Voting Ensemble
Voting ensembles uses the outputs of the models within the ensemble to
make a vote on their classification. This voting result is then used as the
classification for the ensemble. 

Within voting ensembles there are several approaches, majority voting
and  weighted  voting.  Majority  voting  is  the  simplest  one  where  the
classification of the ensemble is the option that received a majority of the
votes.  If  there  is  no  majority  the  ensemble  could  make  a  assertive
classification.  Weighted  voting  is  where  better  models  within  the
ensembles have more votes or heavier votes. The weighting of the models
is up to the researcher.

2.4.3 Stacking Ensemble
Stacking ensembles are where machine learning models' predictions are
used  as  the  dataset  for  another  machine  learning  algorithm.  In  other
terms a machine learning algorithm will train on the output of several
other machine learning algorithms to make a prediction of its own. The
models  used  in  the  stacking  will  be  trained  on  the  dataset  at  hand
independently.  And  afterwards  the  outputs  of  those  models  will  be
combined with another algorithm, the combiner. To make up the output
of the stacking ensemble as shown in Figure 2.3. 
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Figure 2.2: The architecure of a random forest ensemble. The
green means positive and red negative. The outcome of this
would therefore be a positive for the classification.
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Figure 2.3: Implementation of a stacking ensemble.

2.4.4 Boosting
Boosting is another common ensemble technique used to enhance weak
models and reduce their error proneness. Boosting is considered to be an
ensemble to decrease the bias of a machine learning algorithm. This is
done by trying to train models sequentially,  the next model in an area
where the previouse model  lacked.  However,  research has shown that
boosting  can lower the performance compared to individual models [10]
[11]. This is speculated to be caused by overfitting of the algorithms.

2.4.5 Bagging
Combines  several  weak  models  independently  trained  in  parallel.  By
doing this the goal is to achieve an ensemble model that is stronger and
then  the  individual  weak  models  composing  it.  Bagging  several  weak
learners creates a model with less variance since several models will be
trained on the same problem.
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2.5 Evaluation Metrics – Evaluating Ensemble Performance
To be able  to  evaluate and compare the results  of  different ensemble
techniques a set of metrics will be used. Theses metrics are defined to
measure the performance of a machine learning model, independently if
it is an ensemble model or single model. The set of metrics, precision,
recall,  f-measure, accuracy and AUC ROC are used to ensure as good
comparability  between  models  as  possible.  All  ensemble  models
performance will be evaluated as a combination of these metrics.

2.5.1 Precision
Precision measures the number of true positive predictions made in all of
positive  instances.  Precision  becomes  the  accuracy  with  which  the
positive predictions made are actually positive.

PT=True Positive
PF=FalsePositive

Precision=PT /(PT+PF )

2.5.2 Recall
Recall  measures the ratio of all the positives found amongst all  of  the
possible positives. Therefore, recall provides a metric for missed positives
that  the  model  could  have  found  and  provide  input  on  possible
improvements.

PT=True Positive
N F=False Negative
Recall=PT / (PT+N F )

2.5.3 F-Measure
F-measure is a harmonic mean of precision and recall. Since it is possible
to have a very good precision score and a terrible recall  score, or the
reverse.  Neither  the  precision  score  nor  the  recall  score  can  tell  the
whole story of the achieved performance for the model. To give a metric
for evaluation that is more telling of the whole model and performance a
F-measure is calculated. 

P=Precision
R=Recall

F−measure=(2 ∗P∗R ) / (P+R )

2.5.4 Accuracy
Accuracy is the fraction of percent of the classifications from a model that
is  correct.  From  all  the  predictions  made  how  many  where  correct.
Accuracy does not provide a strong picture or evaluation on itself. With
combination  of  other  metrics  accuracy  does  become interesting  as  an
additional performance indicator.

2.5.4 AUC ROC
Area under receiver operator characteristics curve, ROC AUC, has been
found to be a good threshold-independent metric for evaluating model
performance. The AUC if calculated as a decimal value between 0 – 1.
The AUC is computed on the area under the curve that plots the true
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positive rate compared to the false positive rate for a given model.  In
terms of performance an AUC value of 0 is the worst and a value of 1 best
[17].  Compared  to  precision  and  recall  AUC  ROC  is  a  threshold-
independent metric while the previous are threshold-dependent. In recent
studies it has been shown that threshold-dependent metrics e.g. precision
and recall, are more prone to bias [18]. Because of this AUC ROC is an
important compliment to the precision and recall metrics to ensure less
biased evaluation. 

2.6 Validation of Ensemble Results
Validation of machine learning model outputs is to ensure that the result
is consistent and reproducible. Because of the nature of machine learning
training in relation to the dataset there is a risk that the findings may
vary depending on the training and testing sets population. To validate
the results and give them trustworthiness a set of validation methods can
be used. The most common one is cross-validation k-fold which loops over
the dataset and trains the models on unique training and testing sets k
times. The second one which is more computationally heavy but stronger
is leave one out cross-validation.

2.6.1 Cross-validation K-fold
K-fold cross-validation is a commonly used method of validating a model
for its performance. And is widely used within the research community to
assess  and validate models  trained for research [10][11].  K-fold cross-
validation  works by dividing  up the dataset  into  K random subsets  of
data. Then trains the model with K – 1 subsets of the data and afterwards
validates the model with subset K. This is repeated until every subset is
used as training and testing. This way of validating a model is sufficient
as an initial validation of the model, however it is not exact or unbiased
enough to be the final validation of an important model [10][11][17]. This
is  because  there  is  a  small  factor  of  bias  that  is  possible  from  the
validation [10][17].

2.6.2 Leave-one-out Cross-validation
An improved version of  the k-fold cross-validation is  the leave-one-out
cross-validation, LOOCV. LOOCV improves over the cross validation by
adding another fold on top of the k-fold. E.g. if the cross-validation would
be 10-fold, dividing the dataset into 10 subsets and testing and training
for each. The LOOCV would perform the 10-fold 10 times to ensure that
the randomisation of the initial subsets is not a factor in the performance
of the model [17]. 

Because  of  the  added  fold  with  LOOCV it  is  substantially  slower  and
demands more computational power. Therefore, it is suiTable to perform
K-fold  cross-validation  initially  to  validate  models.  However,  when the
final validation is to be done it more rigorous to use LOOCV for validation
to ensure that the validation is as unbiased as possible [17].

2.7 Tools for experiment configuration and evaluation
To be  able  to  perform and create the  ensemble  methods and reliably
evaluate and validate them a set of tools is needed. Any machine learning
algorithm needs to be trained on some data that represents the intended
population to use it on. This dataset needs to be labelled and accessible.
To  setup  and  run  the  machine  learning  algorithms  a  framework  is
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needed,  graphical  or  not.  And  to  calculate  the  evaluation  metrics  a
unified framework is necessary.

2.7.1 Qualitas Corpus Dataset
Qualitas  Corpus is  a  dataset  containing  curated  open-source  java
projects.  The purpose  of  Qualitas  Corpus is  to  ensure that  there  is  a
common and usable dataset for empirical studies on software artefacts.
The dataset is maintained and curated by Ewan Tempero, The University
of  Auckland.  The  purpose  of  the  dataset  is  to  ensure  a  common  and
repeatable   source  of  data  for  research  regarding  code  and  software
systems.  The dataset  contains 112 java systems that are curated with
metrics. These metrics include cohesion, lines of code, etc.

2.7.2 Weka
Weka is a open-source machine learning software that can be used as a
graphical  interface,  through terminal  or  java API.  Weka was the most
used tool found in two systematic literature reviews [10][11]. Weka works
as a tool-bench where the interaction between data and machine learning
algorithms is assisted. There are also tools for data pre-processing. Weka
has the tools to implement the cross-validation and leave one out cross-
validation. It  can also for each model calculate the evaluation metrics,
precision, recall, f-measure, accuracy and AUC ROC. By having this in a
unified and opensource tool the reproducibility of the study is increased,
and transparency of process ensured.

2.7.3 WekaNose
WekaNose is an open-source tool developed to ensure that the definition
of code smells within different heterogenous datasets will use the same
metrics  and  therefore  be  comparable  over  studies.  WekaNose uses  a
given dataset of executable java code and according to a definition of a
code smell given by the researcher creates a  testing set to be used for
machine  learning  algorithms.  WekaNose is  used  as  a  plugin  to  the
machine learning workbench Weka.

The  definition  of  a  code  smell  is  provided  by  the  researcher.  The
definition should be based on software metrics available in the dataset.
The dataset of code smells from WekaNose is used as a test oracle for the
machine learning algorithms.  The process for creating a dataset with
WekaNose is shown in Figure 2.4. The dataset is created by gathering a
set of items that is close to the definition set by the researcher. After the
dataset is gathered from the analysed projects the researcher must go
through the data and label items either “TRUE” or “FALSE” depending
on if the item is of a code smell or not. First after this step is performed
the dataset can be used for training machine learning models.
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Figure 2.4: The process of creating a dataset for
machine learning using WekaNose.
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2 Method and implementation
In this section the design of the experiments and the process of preparing
the experiments is described.

3.1 Experimental Computer Science
Experiments in computer science is an approach to research that is called
for  by  multiple  instances  and  articles.  There  is  a  considered  lack  of
experiments  within  the  field  of  computer  science  compared  to  other
domains of research [9][30][31]. There are two identified major benefits
of doing experimental computer science. Through testing of algorithms or
programs experiments help creating databases of knowledge, tools and
methods of similar studies. Secondly experiments can lead to unexpected
results  resulting  in  an  effective  way  of  eliminating  methods  and
hypotheses  based  on  the  experiment  results  [30].  To  enable  good
experimental computer science four qualities of a good experiment has
been defined, reproducability, extensability, applicability and revisability
[29].  Reproducability  ensures  that  the  study  can  be  reproduced
independently  by  another  research  team  or  institution.  Extensability
means to make the results  comparable to  other  studies  and research.
Applicability  is  the  quality  of  using  realistic  parameters  and  that  the
experiment  should  be  easy  to  configure.  Revisability,  that  if  an
experiment does not give the expected outcome, the experiment should
help explaining why.

3.2 Experiment Design Research Question One
The  code  smells  to  be  used  for  the  research  will  be  defined  by  the
researcher  in  the  WekaNose tool  based  on  the  existing  metrics  in
Qualitas Corpus. WekaNose will then by following these definitions create
a dataset. The dataset derived by WekaNose will then be used as training
set as well as test oracle.

After the datasets has been created the ensembles will be trained on the
derived metrics from  Qualitas Corpus software systems codes to identify
the targeted code smells. Initial training and validation of an ensemble
technique will be done by k-fold cross-validation, CV. CV will be used as
the initial validation method to lower the computational cost. When an
ensemble method has proven good performance with CV LOOCV will be
performed. LOOCV will be used to ensure as low bias as possible for the
final results of the ensembles. The ensemble will be tested against the
dataset  of  code  smells  generated  by  WekaNose.  The  outcome  of  the
LOOCV validation will then be used to calculate the evaluation metrics,
precision,  recall,  f-measure,  accuracy  and  AUC  ROC.  The  calculated
performance  metrics  will  be  used  as  the  score  for  an  ensemble  and
provide the metrics that will be compared with the other ensembles.

This  process  will  be  repeated  for  each  of  the  designated  ensemble
techniques before comparative evaluation between them are done. The
outcome for RQ1 will be the ensemble method with the best score from
the evaluation metrics, as seen in Figure 3.2.
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Figure 3.1: The process of experimentation for research question
one.

3.2.1 Creating the Datasets
The  datasets  created  and  labelled  in  this  process will  be  used  for
research question two as well. To create the datasets to be used for each
code smell there is a set of steps that need to be performed for each of
them. First the naming of the dataset, the number of items to be included
in the dataset and the type of object investigated,  method or class, as
shown in Figure 3.2.
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Figure 3.2: The first step to creating a dataset for training models to
identify the god class code smell.  The red text has been added to
highlight information.
After setting the initial parameters of the dataset the libraries used to
gather the source code to be analysed must be loaded and processed.
This process is a labor intensive process that requires the researcher to
identify which libraries from the code base that can be used and what
parts of it that can be used. Not all projects within the Qualitas Corpus
dataset of opensource projects could be used due to compatibility issues.
To load a project, path to the source of the project had to be defined as
well  as  the path to the libraries  need to execute it.  This  is  shown in
Figure 3.3.
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Figure 3.3:  Showing  the  interface  for  loading  each  of  the  java
projects. The red text has been added to highlight information.

The loading time of a project has a wide range from five seconds to 70
seconds. In total for each of the code smells 57 projects were loaded. Due
to an incompatibility issue with some of the projects within the Qualitas
Corpus dataset  and  the  process  of  WekaNose there  was  a  need  for
identifying compatible projects. For each of the projects within Qualitas
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Corpus the manual process of testing each layer of folder structure had to
be  done.  This  was  done  three  independent  times  with  the  outcomes
recorded in an excel file. This excel file was then used as reference to
ensure that the same projects were loaded in the same manner each time
a dataset was created. The projects and their relative path can be seen in
appendix A. When all the projects have been successfully loaded the next
step is  to  supply  WekaNose with the advisors  and definitions  of  code
smell to look for within the loaded projects, this is shown in Figure 3.4. 

The advisors are used by  WekaNose to analyse the code of the loaded
projects  and  gathering  items  from  the  projects  that  either  fit  the
definition provided or are close. As with the case of the TCC advisor, the
actual  value we are looking for  is  objects  with  a TCC lower than 1/3
however due to limitations in WekaNose the advisor cannot be set lower
than one. WekaNose will output a csv file with items that fit the advisors
and are close to the advisors on both ends. This ensures that there will be
items that does not fulfil any of the advisors for the code smell as well as
items that fulfil all of them or a set of them. 

After  the  dataset  have  been  outputted  by  WekaNose the  data  is
unlabelled.  The  labelling  has  to  be  done  manually  by  the  researcher
according to the definition of the code smell at hand. The process was
automated to a certain degree by using if statements within librecalc. The
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gather the dataset items for god class code smell.
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if  statement  followed  the  definition  set  in  the  associated  Table  of
definition for each code smell.

To achieve balance between positive and negative items in the datasets
created for the code smells positive or negative items were removed until
a partitioning of 1/3 positive and 2/3 negative was achieved.  This is a
common approach to balance unbalanced datasets [27].

3.2.3 Models Considered in Implementation.
The models that will be used in the implementations will be based upon
which models have achieved the best result as single models in previous
studies [10][11][26]. The best performing model in several of the previous
studies have been JRip models.  Because of this the JRip model will  be
used  in  the  experiments  for  research  question  one.  The  second-best
model has been random forest in several studies. However due to the fact
that it is a model of the voting ensemble method it will not be considered
in this part as a single model. Another contender has been the J48 model,
a type of decision tree model. Because of the good performance for J48 in
previous studies it will be used in the experiments. Naive Bayes and SMO
have shown strong performance for certain code smell in previous studies
[10][26]. Because the code smells are included in the ones use in this
study  they  will  also  be  considered  for  the  experiments.  The  machine
learning models selected here will be used to build up the basis for the
stacking and voting ensembles. As well as the combiner methods for the
stacking  ensemble.  Theses  code  smells  will  also  each  be  tested  with
bagging and boosting methods of ensembles.

3.2.2 Experiment Setup
Each experiment will be performed for all the four selected code smells.
These code smells will be represented in four distinct manually labelled
datasets. Each row in the datasets represents one case of a possible code
smell from a set of open sources java projects. Each data item has 30
code  metrics  that  the  machine  learning  algorithms  can  consider.  The
reason for this experimental approach is because it is  called for within
the community of data science as well as provides direct results towards
an issue [9]. It has been shown that in code smell detection more metrics
provides better models. The datasets have been resampled to have a ratio
of 1/3 positive and 2/3 negative items to the total number of items. This is
a common ratio considered for good training material for the models [27].
 
The models, ensemble and single models are trained and evaluated one at
a time using  Weka’s experiment mode.  However within in one session
there will at times be more than one iteration of the ensemble. Weka has
the capability to run all the models in the same session. Doing so takes
significantly longer and would lower the possible amount of iterations to
be done.

3.2.4 Establishing Frame of Reference
To ensure the reproducibility and the quality of the dataset and general
setup  of  the  experiment  a  test  according  to  previous  studies  will  be
performed.  The  results  achieved  by  two  previous  studies  with  the
machine  learning  models  random  forest  and  Jrip  were  91.29%  and
97.44% respectively [10][19][26]. These two studies were also performed
on  the  Qualitas  Corpus dataset  and  would  therefore  be  ideal  for
comparison and validation. By performing test runs with random forest
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and Jrip models on the created dataset the expected outcome would be
close  to  the  results  by  the  previous  studies  [10][26].  The  frame  of
reference will use the same validation methodology and datasets as the
other experiments performed within this study to provide insight into the
validity of the process and setup.

3.2.5 Recording of Results
The  results  from the  classifications  and  experiments  are  gathered  as
experiment data within  Weka. From  Weka the data is transferred to a
librecalc  document  for  further  processing.  All  the  measurements  from
Weka are done with a t-test with a significance of 0.05. Within openoffice
calc the data for each dataset, ensemble model and code smell is grouped
up and processed into an average for that specific model. This processed
data is later used to compare different models to each other. To compare
the data charts are created to visualise the results.

3.3 Experiment Design Research Question Two
The  code  smells  to  be  used  for  the  research  will  be  defined  by  the
researcher  in  the  WekaNose tool  based  on  the  existing  metrics  in
Qualitas Corpus. WekaNose will then by following these definitions create
a dataset. The dataset derived by WekaNose will then be used as training
set as well as test oracle.

After the datasets has been created the ensembles will be trained on the
derived metrics from  Qualitas Corpus software systems codes to identify
the  targeted  code  smells.  The  parameters  of  the  ensemble  will  be
modified  iteratively.  The  purpose  of  this  is  to  identify  parameter
sensitivity  if  any  exists  within  in  the  ensemble.  Initial  training  and
validation  of  an  ensemble  technique  will  be  done  by  k-fold  cross-
validation, CV. CV will be used as the initial validation method to lower
the  computational  cost.  When  a  ensemble  method  has  proven  good
performance with CV LOOCV will be performed. LOOCV will be used to
ensure as low bias as possible for the final results of the ensembles. The
ensemble will be tested against the dataset of code smells generated by
WekaNose. The outcome of the LOOCV validation will then be used to
calculate  the evaluation metrics,  precision,  recall,  f-measure and ROC
AUC. The calculated performance metrics will be used as the score for an
ensemble and provide the metrics that will  be compared with another
ensemble.

If the difference between two or several ensemble techniques from RQ1
is small, then the two closest ensembles will be targets for a sensitivity
analysis  according  to  the  description  above.  This  is  to  ensure  and
investigate  if  one of  the ensembles  have an advantage over  the other
considering parameter dependents, as seen in Figure 3.2.
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3.3.1 One-At-a-Time Sensitivity Analysis
To be able to provide an as unbiased evaluation of parameter change to
the model one-at-a-time, OAT, sensitivity analysis will be performed. OAT
is a common approach when the outcome of system or model is thought
to be impacted by one or more factors [28]. The process of OAT is to have
all factors for a model at their nominal values. Change one factor and
leave the others in their  nominal  values.  Record the result.  Reset  the
changed factor to its nominal value. The next cycle is then to change the
value of another factor and record the result. By doing this it is possible
to identify factors that have high influence on the system and propose
changes according to those findings [28]. The sensitivity analysis will be
done  on  the  AUC  ROC  score  for  the  model  to  use  as  comparative
measurement.

3.4 Experiment Environment
The experiments where performed on a desktop pc with a NVidia GTX
970  GPU,  Intel(R)  Core(TM)  i7-6700  CPU  @  3.40GHz,  16GB  of  ram.
Operating system was arch Linux rolling release on kernel 5.6.5-arch3-1.
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3 Results and Findings

In  this  section  the  data  gathered  is  described  with  the  experiments
performed and the outcome of the experiments.

4.1 Result From Dataset Creation
From the process of creating datasets one dataset was created for each
code  smell.  The  datasets  where  from the  same  projects  however  the
distribution of code smells  per java project varied.  When the labelling
process  was  completed  for  the  data  items  gathered  there  was  a
significant  difference between  the  ratio  of  occurring code smells.  For
example, in the case of the god class code smell as well as the shotgun
surgery there was over 200 positive data items, 228 and 245 respectively.
While for feature envy and brain method there were 78 and 73. After the
datasets were balanced according to the 1/3 positive and 2/3 negative
ratio commonly used the metrics shown in Table 4.1 were achieved [27].

Nr of projects Positive Items Negative Items Total Items Ratio
God Class 57 228 456 684 0.33
Feature Envy 57 78 156 234 0.33
Brain Method 57 73 146 219 0.33
Shotgun 
Surgery 57 245 490 735 0.33

Table 4.1: Data item metrics for the created datasets to be used for
the experiments.

4.2 Result for Establishing Frame of Reference
Here the results of the attempted reproduction of two experiments from
previous  studies  on  single  model  machine  learning  is  presented.  The
achieved  f-measures  from  this  study  for  the  comparison  and
establishment of the validity of the setup is displayed in Table 4.2.

JRip Pruned JRip Unpruned Random Forest

F-Measure Std. Dev. F-Measure Std. Dev.
F-
Measure Std. Dev.

Brain Method 0.890 0.150 0.930 0.130 0.910 0.110
Feature Envy 0.960 0.090 0.970 0.080 0.890 0.120
God Class 0.980 0.070 0.980 0.080 0.960 0.170
Shotgun 
Surgery 1.000 0.000 1.000 0.000 0.960 0.040

F-Measure Avg.0.958 0.970 0.930
Std. Deviation 
Avg. 0.078 0.073 0.110

Table 4.2: Single model result from establishing frame of reference
run performed in this study.
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The results achieved with the setup prepared for this study the results
are  similar  and  close  to  the  frame of  reference results  from the  two
selected  previous  studies  with  their  best  models.  The  difference  and
similarities considering the F-Measure is shown in Figure 4.1. The results
from this experiment compared to the previous studies used as reference
are close and within the standard deviation of each metric. 

4.3 RQ 1 – Results
Here  the  data  gathered  from the  training  of  the  ensemble  models  is
presented.

4.3.1 Stacking Ensemble
Here the results of the stacking ensembles for research question one is
presented. The results for each combiner method are very close to the
other combiner method that have most in common. In this case Jrip and
J48 share similarities and Naive Bayes and SMO share some similarities.
However, the distinction becomes clearer when considering the accuracy
and AUC ROC scores.

Average of Evaluation Metrics
F-Measure Precision Recall Accuracy AUC ROC

Jrip 0.975 0.988 0.953 95.638 0.960
J48 0.975 0.988 0.953 95.753 0.963
Naive Bayes 0.978 0.993 0.950 95.908 0.980
SMO 0.978 0.993 0.950 95.895 0.965

Table 4.3: The average metrics for the stacking ensembles.

The  results  in  Table  4.3  are  used  to  produce  comparative  bar  charts
between  the  different  combiner  methods.  Using  these  Figures  to
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Figure 4.1: The results for the frame of reference experiment.
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highlight differences and similarities in scores for the evaluation. These
Figures also provide the basis for selecting a strongest method from the
stacking ensemble experiments. The F-Measure that is shown comparing
the  combiner  methods  for  the  stacking  ensemble  show  distinct
similarities,  in  Figure  4.2,  between  the  models  that  share  similar
approaches to classification. Given that the single models that constitutes
the stacking ensemble are the same for each combiner method there is an
expectation  that  differences  should  only  be  based  on  the  combiner
methods used. In the case of the F-Measure the similarities between the
combiner methods is instead made clear. JRip is a rule-based model, J48
is a tree-based model. Which share a lot of similarities in the approaches
that they produce. The Naive Bayes and SMO also shares similarities, but
not to the extent that JRip and J48 does.

In  Figure  4.3  showing  the  accuracy  of  the  methods,  there  is  a  small
difference between the methods. The difference between the methods is
relatively  small  and  does  not  necessarily  provide  a  clear  strongest
method.
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Figure 4.2: F-Measure for stacking ensembles with JRip, J48, Naive
Bayes. 
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Figure 4.4 shows the AUC ROC scores in relation to the other methods of
stacking combiners. For the stacking ensemble this is the metrics that
provides a clear distinction between models. With the combination of the
scores  for  F-Measure,  accuracy  and  AUC  ROC  the  Naive  Bayes  as
combiner  model  must  be considered the strongest  method from these
results.
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Figure 4.3: Accuracy for stacking ensembles with JRip, J48, Naive
Bayes. 
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4.3.2 Voting Ensemble
Here  the  results  and  data  gathered  for  the  voting  ensembles  are
presented. The results here are showing the comparisons and the results
gathered from the experiments that was performed. The summary of the
experiment data is shown in Table 4.4.
Average for Voting Ensemble

F-Measure Precision Recall Accuracy AUC ROC
Average of 
Probabilities 0.933 0.938 0.965 92.460 0.975
Majorit Voting 0.948 0.933 0.963 92.860 0.915
Product of 
Probabilities 0.955 0.935 0.978 81.880 0.860

Table 4.4: The average evaluation metrics for the voting ensemble.

Shown in Figure 4.5 the F-Measure of the voting method of product of
probabilities has the highest F-Measure score. 
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Figure 4.4: AUC ROC for stacking ensembles with JRip, J48, Naive
Bayes. 
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For  the  accuracy  metrics  average  of  probability  and  majority  voting
shows, in Figure 4.6, a significant better score compared to the product
of  probabilities  which had a high F-Measure.  F-Measure score weighs
higher  than  the  accuracy  for  these  experiments,  but  the  methods
considered  strongest  will  be  based  on  the  combination  of  all  three
metrics.
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Figure 4.5:  F-Measure for voting ensembles with JRip, J48, Naive
Bayes.

Figure 4.6:  Accuracy for voting ensembles  with JRip,  J48,  Naive
Bayes. 



Results and Findings

For the final metric the comparison in Figure 4.7 the AUC ROC score is
significantly higher for the method of average of probabilities than the
second highest or the lowest. Given the combination of the score in the
three metrics average of probabilities will be considered the strongest of
the voting ensemble model.

4.3.3 Bagging Ensemble
Here  the  results  and  data  gathered  for  the  bagging ensembles  are
presented. Table 4.5 shows the average for each of the metrics for all the
four datasets and code smells. 
Average for Bagging Ensemble

F-Measure Precision Recall Accuracy AUC ROC
Jrip 0.963 0.975 0.953 95.333 0.983
J48 0.970 0.990 0.688 96.155 0.985
Naive Bayes 0.718 0.803 0.693 82.193 0.850
SMO 0.845 0.823 0.880 86.235 0.865

Table  4.5:  The  average  of  the  evaluation  metrics  for  bagging
methods.

The F-measure score shown in Figure 4.8 displays a varied result with the
models  that  share  the  most  similarities  also  have  closer  scores.
Considering the F-measure score the Naive Bayes and SMO models falls
significantly  behind due to the relatively  large gap between them and
JRip and J48.
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Figure 4.7: AUC ROC for voting ensembles with JRip, J48, Naive
Bayes.
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For the accuracy the gap between Naive Bayes, SMO and Jrip, J48 is still
significant, shown in Figure 4.9. JRip and J48 both show strong results.

Considering the last metric shown in Figure 4.10 Naive Bayes and SMO
can both be disregarded for the strongest method. However, the score
between JRip and J48 have been close through all of the metrics. And any
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Figure 4.8:  F-Measure  for  bagging  ensembles  JRip,  J48,  Naive
Bayes, SMO.

Figure 4.9: Accuracy for bagging ensembles JRip, J48, Naive Bayes,
SMO.
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difference  between  them  has  been  relatively  minimal  considering  the
difference with both Naive Bayes and SMO. However, J48 have had the
highest score for all three metrics used for comparing the methods. Due
to this consistency of having the highest score J48 will be considered the
strongest model for bagging.

4.3.4 Boosting Ensemble
Here  the  results  and  data  gathered  for  the  boosting ensembles  are
presented.  Table  4.6  shows  the  averages  for  each  model  used  for
boosting. The averages are based on the results from each of the four
datasets and code smells. 

Average for Boosting Ensemble
F-Measure Precision Recall Accuracy AUC ROC

JRip 0.957 0.975 0.960 95.838 0.983
J48 0.970 0.978 0.960 95.758 0.985
Naive Bayes 0.830 0.858 0.813 81.495 0.875
SMO 0.848 0.840 0.863 82.438 0.795

Table 4.6: The average of the evaluation metrics for each of the
boosting models.

The F-measure score for the boosting models shows similarities to the
bagging method. Shown in Figure 4.11 the Naive Bayes model performs
poorly compared to the rest of the models. The rest of the models score
strongly.
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Figure 4.10:  AUC  ROC  for  bagging  ensembles  JRip,  J48,  Naive
Bayes, SMO.
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The accuracy achieved by the models shown in Figure 4.12 shows that
similarly  to  boosting  booth  Naive  Bayes  and  SMO performs  relatively
poorly compared to Jrip and J48 models.

Figure 4.12:  Accuracy  for bagging  ensembles  JRip,  J48,  Naive
Bayes, SMO.

Final  metric  for  the  boosting  ensemble  method,  AUC  ROC,  is  shown
comparing the models in Figure 4.13. The Naive Bayes and SMO models
performs poorly  compared to JRip and J48.  Similarly,  as with bagging
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Figure 4.11:  F-Measure  for bagging  ensembles  JRip,  J48,  Naive
Bayes, SMO.
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JRip and J48 show similar scores and rate closely in all three metrics. In
bagging  J48  showed  stronger  performance  for  all  three  metrics.
However, for boosting as shown the scores vary. JRip performs better in
the accuracy metric. J48 performs significantly better for the F-measure
and minimally better for AUC ROC score. Considering all three metrics
J48 is considered the stronger performer of JRip and J48 models.  This
because  of  the  better  score  in  F-measure  and  close  performance  in
accuracy as well as the higher score for AUC ROC.

4.3.4 Ensemble Methods Compared
Here  the  tested  ensemble  models  and  methods  will  be  presented  in
comparison to each other. The general results are presented in Table 4.7.
Comparison Best from Each Method

F-Measure Precision Recall Accuracy AUC ROC
Stacking – Naive Bayes 0.978 0.993 0.950 95.908 0.980
Voting – Average of 
Probabilities 0.933 0.938 0.965 92.460 0.975
Bagging – J48 0.970 0.990 0.688 96.155 0.985
Boosting – J48 0.970 0.978 0.960 95.758 0.985

Table 4.7: Comparison between the strongest performers of each
ensemble method.

From the testing the f-measure does not show a distinct best ensemble
method. It rather shows that the voting ensemble has a lower score than
the rest of the methods, shown in Figure 4.14.
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Figure 4.13:  AUC  ROC  for bagging  ensembles  JRip,  J48,  Naive
Bayes, SMO.
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Figure 4.15 shows that the voting ensemble still  underperforms in the
metric of accuracy as well. Another distinction is also shown that bagging
method has a higher accuracy than all the other methods. 

Regarding  the  AUC ROC score  bagging  and  boosting  shows  a  better
result than both stacking ensembles and voting ensembles as shown in
Figure 4.16.
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Figure 4.14: Chart showing the best performers of each ensemble
method comparing the F-Measure of each.

Figure 4.15: Chart showing the best performers of each ensemble
method comparing the accuracy of each.
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The  differences  between  the  ensemble  methods  are  in  several  of  the
metrics very small and within the standard deviation of the results. Each
metric  is  tested  with  a  t-test  of  a  significance  of  0.05.  With  this  as
certainty the best performer according to the three metrics will be used
for research question two. 

4.4 RQ2 - Results

In Table 4.8 the settings used for the nominal J48 bagging model used as
reference  is  shown.  Each  of  the  experiments  run  for  the  sensitivity
analysis implements change to one factor from the nominal values. The
settings for each of the models used for the sensitivity analysis are shown
in appendix B.

Nominal
BatchSize 100
BinarySplits FALSE
CollapseTree TRUE
ConfidenceFactor 0.25
numFolds 3
ReducedErrorPruning FALSE
SubTreeRaising TRUE
unpruned FALSE

Table 4.8: The settings for the nominal model for J48 reference for
sensitivity analysis.

Table 4.8 lists the achieved results from the OAT factor testing. The Table
displays the averages from all the code smells tried for each of the factor
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Figure 4.16: Chart showing the best performers of each ensemble
method comparing the AUC ROC of each.
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changes. Several of the factors only have an on/off property. For example,
binary splits are either true or false.

Average For Boosting
F-Measure Accuracy AUC ROC

Nominal 0.980 96.218 0.983
BinarySplits 0.980 96.240 0.988
CollapseTree 0.980 96.218 0.983
ReducedErrorPruning 0.980 95.993 0.988
SubTreeRaising 0.980 96.235 0.983
unpruned 0.963 96.293 0.985
BatchSize 10 0.980 93.765 0.975
BatchSize 200 0.980 96.218 0.983
NumFolds 10 0.980 96.218 0.983
ConfidenceFactor 0.1 0.980 96.198 0.983
ConfidenceFactor 0.4 0.980 96.235 0.983
ConfidenceFactor 0.85 0.980 96.225 0.985

Table 4.8: Showing the average results for each metric from the
four datasets and code smells.

Visualising the differences within the achieved results  for  each of  the
three metrics, F-measure, accuracy and AUC ROC score provides an easy
to understand correlation between a change and a result. This is shown in
Figure 4.17. From the Figure we can identify three changes in the result
of the bagging J48 model. Most significant factor change is the batch size
change from 100 as the nominal value to ten for the experiment.  The
change is shown in both accuracy and AUC ROC score. However, there is
also a noticeable change in the F-measure when changing from a pruned
tree  to  an  unpruned.  These  results  would  indicate  that  the  most
influential factors for the J48 bagging is batch size and pruning.
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4 Discussion and Conclusion

5.1 Discussion of Method
One critical aspect to any of the testing or experiments done in this study
is the setup for training the machine learning models.  Given the many
variables  and  configurations  available,  it  is  necessary  to  validate  the
setups used. To ensure that this study is comparable and reproducible a
frame of reference test was performed. The base lines for the frame of
reference test  came from two studies using the same  Qualitas Corpus
dataset  and were  deemed among the top  studies  by  two independent
literature reviews. By doing this frame of reference test it is possible to
judge whether the setup is reliable or similar to other studies within the
field.

Throughout the study, there is a great reliance on tools, Weka, WekaNose
for: creating datasets, training models and analysing data. Therefore, it
was important that this study used tools and datasets that have been used
and recommended previously. This is the reason behind using both Weka
and  the  Qualitas  Corpus dataset.  However,  the  use  of  WekaNose is
problematic because it has not been used to the same extent as Weka or
Qualitas Corpus. 

Identifying and inputting the java projects from Qualitas Corpus dataset
could potentially introduce researcher bias and error. This is because the
process  requires  the  researcher  to  identify  the source  and library for
executing  the  java  project.  Considering  the  opensource  nature  of  the
projects the structure of the code bases varies a lot and creates issues.
The main issue  is the manner in which  of java projects are included in
WekaNose.  If  these  paths  of  the  included  java  projects  are  not
documented, this could lead to poor reproducibility.

Another potential  issue of  the value of  the findings from this  study is
regarding the ensembles. The models used for each ensemble were the
best  performing  models  from  previous  research.   In  the  context  of
stacking ensembles the best performers from previous research would be
the  stacked  models  and  alternate  as  combiner  models.  For  voting
ensembles the best performers from previous research each cast a vote
under several different voting methods.  The process of conducting the
experiments  might  benefit  the  bagging  and  boosting  methods  of
ensembles since they have less complexity and available configurations
than stacking and voting ensembles. Because of this there is likely better
and  worse  stacking  and  voting  models  available  that  have  not  been
investigated in this study. 

Regarding the four qualities of good experimental computer science as
mentioned  in  the  method  section  of  this  study,  reproducability,
extensability, applicability and revisability. The reproducability has been
ensured  through  the  documentation  of  the  experiment  process  and
method implemented in this study. The reproducability is also increased
by using common tools, Weka, WekaNose and Qualitas Corpus which is
not bound to any dependency of the induvidual researcher. By performing
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the  frame  of  reference  experiement  the  goal  was  to  ensure  high
extensability, comparability to other studies, as well as further ensuring
the reproducability. The applicability was ensured by having a limited set
of ensemble models to test as well as using standard implementations of
them.  The Qualitas Corpus dataset  used to create the dataset  for  the
training is  based on open-source java projects  which ensures that the
dataset is a realistic and actual case of code smells and code metrics. For
the revisability there was not necessarily an expected outcome over the
hypotheses  that  ensemble  models  would  outperform  single  model
methods. Given the evaluation metrics gathered from the experiments the
revisability was ensured from being able to identify where weak spots of
algorithms existed or strong points where.

5.2 Discussion of Findings

5.2.1 Frame of Reference
To  validate  the  setup  of  dataset,  code  smell  definitions  and  machine
learning models used in  this study. A frame of reference experiment was
performed to compare best found single models  from previous studies
with the same type of models trained on the setup used for this study.
The models tested where JRip pruned and unpruned as well as random
forest.  The results found where very close for both random forest and
JRip pruned. This gave confidence  to the setup and dataset created for
this  study.  Given the  good  result  from this  frame of  reference test  it
increases  the  likelihood  that  this  study  is  reproducible.  Both  studies
referenced for this experiment used the same dataset,  Qualitas Corpus,
as this study but somewhat deviating definitions of code smells.

5.2.2 Research Question One

Research question one:

Which ensemble method provides the best fitting model for 
identifying code smell in a java project?

Based on the data gathered from experiment one for research question
one there  was not  necessarily  a  clear  strongest  ensemble  model.  The
result showed that both bagging methods using JRip and J48 provided
strong models.  However, the stacking ensemble performed strongly as
well. Because of the simple models for bagging and boosting the achieved
performance from them could be because they are by default  close to
optimised  within  Weka.  While  a  stacking or  voting  ensemble  requires
more configuring and identification of optimal models to include in the
ensembles.  The  findings  that  the  J48  bagging  ensemble  performed
strongest  among  the  tested  ensembles  is  both  surprising  and  not
surprising. Given that the theoretical possibilities of a stacking or voting
ensemble could be tailored to fit any machine learning application it is
somewhat surprising that bagging and boosting outperformed both. On
the otherhand it is less surprising that J48 bagging performed so well.
Since  previous  studies  have shown that  JRip  and J48  have  performed
strongly for code smells identification these results could confirm this. 

If solely considering the stacking ensemble there was a clear stronger
combiner method, Naive Bayes. This would be interesting to investigate
further  since  this  could  indicate  that  a  strong  stacking  ensemble  is
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possible given a different constitution of models for the combiner to train
on. Testing stacking to this extent would consume a lot of time and work
since the model  is expensive to train and the possible  variations is so
vast. 

Given  the  comparison  performed between  the  best  models  from each
ensemble  method  J48  bagging  is  considered  the  strongest  out  of  the
models  tested  in  this  study.  The bagging  method  in  the  configuration
from  experiment  for  research  question  one  does  not  significantly
outperform existing single model methods from previous studies or from
the frame of reference experiment for this study. 

5.2.3 Research Question Two

Research question two:

Given an ensemble from research question one how sensitive
is the outcome of the ensemble to parameter change for 
identifying a code smell?

The  findings  from the  OAT  sensitivity  analysis  shows  that  some  best
practice efforts are already in place when considering default settings for
machine learning models at least within the Weka environment. No factor
change produced any significant positive  impact for either of the three
metrics.  While  two changes  instead showed a  negative  impact  on  the
performance. However, the findings from this sensitivity analysis cannot
conclude that there no possible  combination of factors to improve the
results. This is due to a limitation of the OAT sensitivity analysis. OAT
sensitivity analysis cannot show correlation between two or more factors
since only one is changed at a time. Due to this we cannot extrapolate the
findings  more  than  that  considering  the  findings  in  experiment  for
research question the nominal J48 implementation is the strongest  for
code smell detection using bagging ensemble.

A consideration that has to be accounted for when regarding the results
for research question two is that bagging ensemble might be limited in
the  possible  optimization  that  can  be  done  for  a  given  model.  When
comparing to the complexity of a stacking or voting ensemble that can be
built  up  from several  layers  of  machine  learning  models  the  bagging
ensemble is rather simple. This simplicity is also one of baggings major
benefits as well. It is inexpensive to train and build. And at the same time
easy to understand and implement.

5.2.4 Future Work
For  stacking  and  voting  ensembles  it  would  be  very  interesting  to
investigate further how the models that make up the ensembles affect the
outcome and if there is a combination of models that would provide a
stronger learner than the ones used in this study. Considering the degree
off customizability available in both stacking and voting ensembles there
is possibly great insights to be found investigating this further.

Another important factor to the creation of a dataset for these models and
for  the  training  of  the  models  is  the  metrics.  Previous  studies  have
claimed and showed that more metrics gives better models. Although, in
the field of machine learning more attributes to train on might also lead
to  complexity  and  overfitting.  Because  of  this  it  would  be  worth
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investigating  further  which  metrics  are  important  and  how important
they are for identifying code smells. 

5.3 Threats to validity
Given that a main author and co-author, Fontana, is part of several of the
references within in this study,  references [12][19][20][25].  There is a
valid point in questioning the reliability of using resources from the same
author. However, Fontana is not the main author of all the papers and not
main researchers either. The papers that Fontana is part of are smaller
parts  of  a  bigger  research  effort  and  is  therefore  considered  to  be
steppingstones in the same research work. 

Another validity concern would be the use of an automated tool to create
the dataset of code smells to train the machine learning models on. Due
to time constraints and the necessity of having a broad dataset a tool was
necessary.  Considering  this  an  open-source  tool  with  all  the
documentation available online as well as the source code was deemed a
appropriate  tool.  WekaNose fulfils  these  requirements  and  therefore
provides transparency to the process and provides reproducibility.

5.4 Generalizability
The generalizability of this study remains within the domain of code smell
identification.  However, the findings will  be generalizable within other
coding languages and environments that are object-oriented and have the
potential  of  code  smell.  The  principle  findings  regarding  whether  the
code  smell  identification  using  ensemble  methods  over  single  model
machine learning is better or worse should also apply as mentioned to
other coding languages. 

There might be an issue of overfitting for the ensemble models. This is
due to the nature of using big datasets with many attributes. When using
rich  datasets,  the  models  can  become specialized  to  only  identify  the
exact items represented in the dataset. This means that when the models
then are tested or used on other systems that does not fit the narrow
specialization  of  the  model  then  the  models  might  fail  or  become
unusable.

5.5 Conclusion
For research question one the findings show that the best  performing
ensemble was bagging J48 trees. However the performance achieved with
this method is more expensive to train and the improvements is 0.5% in f-
measure.  Given  the  expected  increased  performance  of  ensemble
methods  this  is  somewhat  surprising.  However,  stacking  ensembles
showed  good  results.  The  issue  with  stacking  ensembles  is  that  they
require extensive configuration and testing to evaluate further. 

Furthermore, research question two regarding the sensitivity of a method
showed some sensitivity  for  certain  variables.  The findings  did  rather
confirm that in the  Weka environment best practices are already in use
for bagging and J48 models. Given changes to parameters the only found
impact was negative and did not provide with a stronger model than the
nominal one.
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For further work there is a large knowledge gap regarding stacking and
voting ensembles for code smell detection. In this study the models where
composed of the best models from previouse studies. However, there is a
significant  possibility  that  the  stacking and voting ensembles  requires
fine tuning regarding which models are used as the basis. And there is a
likelyhood that there might be better combinations of models than the
ones  tested  here.  Therefore,  it  is  suggested  that  further  work  is
performed evaluating stacking and voting ensembles individually.
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6 Appendix

8.1 Appendix A – Relative Source and Library paths for WekaNose
Project  is  the  name  of  the  opensource  java  project  that  was  loaded.
Source is the relative path to the source of the java project on the local
Linux system that the testing and creation of the dataset was done on. Lib
is the relative path to the libraries needed in the project to be able to load
it.

Project – The project name in the Qualitas Corpus dataset.
Source – The  relative  path  from  the  home  folder  of  a  linux
system to the directory with source for the project.
Lib – The relative path from the home folder of a linux system to
the directory of the library needed to execute the java source
code for the project.

Project Source Lib

aol

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/aoi/aoi-2.8.1/src/AoIsrc281/ArtOfIllusion/src/
artofillusion/animation

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/aoi/
aoi-2.8.1

argouml

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/argouml/argouml-0.34/src/argouml/src

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
argouml/argouml-0.34/

c_jdbc

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/c_jdbc/c_jdbc-2.0.2/src/c-jdbc-2.0.2-src/src/org/
objectweb/cjdbc/common

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
c_jdbc/c_jdbc-2.0.2/

castor

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/castor/castor-1.3.1/src/castor-1.3.1/core/src/
main/java/org/castor/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/castor/
castor-1.3.1/

checkstyle

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/checkstyle/checkstyle-5.1/src/checkstyle-src-
5.1/src/checkstyle/com/puppycrawl/tools/checkstyle/api

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
checkstyle/checkstyle-5.1/

cobertura

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/cobertura/cobertura-1.9.4.1/src/cobertura-
1.9.4.1/src/net/sourceforge/cobertura/javancss

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
cobertura/cobertura-1.9.4.1/

collections

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/collections/collections-3.2.1/src/commons-
collections-3.2.1-src/src/java/org/apache/commons/
collections/collection

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
collections/collections-3.2.1/

Colt

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/colt/colt-1.2.0/src/colt/src/cern/colt

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/colt/
colt-1.2.0/

columba

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/columba/columba-1.0/src/columba-1.0-src/src/
columba/core/org/columba/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
columba/columba-1.0/

Compiere

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/compiere/compiere-330/src/release_330/base/
src/org/compiere

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
compiere/compiere-330/

emma

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/emma/emma-2.0.5312/src/emma-2.0.5312/core/
java12/com/vladium/emma/data

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/emma/
emma-2.0.5312/

exoportal

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/exoportal/exoportal-v1.0.2/src/exo/commons/
src/java/org/exoplatform

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
exoportal/exoportal-v1.0.2/

findbugs

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/findbugs/findbugs-1.3.9/src/findbugs-1.3.9/src/
java/edu/umd/cs/findbugs

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
findbugs/findbugs-1.3.9/

fitjava

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/fitjava/fitjava-1.1/src/source/imp/java/src/fit

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
fitjava/fitjava-1.1/

freecol /home/alpeace/QC_Dataset/QualitasCorpus-20130901r/ /home/alpeace/QC_Dataset/
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Systems/freecol/freecol-0.10.7/src/freecol/src/net/sf/
freecol

QualitasCorpus-20130901r/Systems/
freecol/freecol-0.10.7/

freecs

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/freecs/freecs-1.3.20100406/src/freecs-
1.3.20100406/src/freecs

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/freecs/
freecs-1.3.20100406/

freemind

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/freemind/freemind-0.9.0/src/freemind

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
freemind/freemind-0.9.0

ganttproject

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/ganttproject/ganttproject-2.0.9/src/ganttproject-
2.0.9-src/ganttproject/src/net/sourceforge/ganttproject/
action

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
ganttproject/ganttproject-2.0.9/

Hibernate

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/hibernate/hibernate-4.2.2/src/hibernate-release-
4.2.2.Final/project/hibernate-core/src/main/java/org/
hibernate/engine

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
hibernate/hibernate-4.2.2/

htmlunit

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/htmlunit/htmlunit-2.8/src/htmlunit-2.8/src/
main/java/com/gargoylesoftware/htmlunit

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
htmlunit/htmlunit-2.8/

informa

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/informa/informa-0.7.0-alpha2/src/informa-
0.7.0-alpha2/src/de/nava/informa

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
informa/informa-0.7.0-alpha2/

jag

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jag/jag-6.1/src/jag-6.1/src/com/finalist/jag

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jag/
jag-6.1/

jasml

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jasml/jasml-0.10/src/src/com/jasml

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jasml/
jasml-0.10/

jasperreports

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jasperreports/jasperreports-3.7.3/src/
jasperreports-3.7.4/src/net/sf/jasperreports

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jasperreports/jasperreports-3.7.3/

javacc

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/javacc/javacc-5.0/src/javacc/src

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
javacc/javacc-5.0/

jchempaint

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jchempaint/jchempaint-3.0.1/src/
org.openscience.cdk.jchempaint30/src/main/org/
openscience/jchempaint

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jchempaint/jchempaint-3.0.1/

jedit

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jedit/jedit-4.3.2/src/jEdit/org/gjt/sp/jedit

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jedit/
jedit-4.3.2/

jena

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jena/jena-2.6.3/src/jena

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jena/
jena-2.6.3/

jfreechart

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jfreechart/jfreechart-1.0.13/src/jfreechart-
1.0.13/source/org/jfree/chart

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jfreechart/jfreechart-1.0.13/

jgraph

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jgraph/jgraph-5.13.0.0/src/src/org/jgraph

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jgraph/jgraph-5.13.0.0/

jgraphpad

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jgraphpad/jgraphpad-5.10.0.2/src/jgraphpad-
5.10.0.2-src/src/org/jgraph/pad

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jgraphpad/jgraphpad-5.10.0.2/

jgrapht

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jgrapht/jgrapht-0.8.1/src/jgrapht-0.8.1/src/org/
jgrapht

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jgrapht/jgrapht-0.8.1/

jgroups

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jgroups/jgroups-2.10.0/src/JGroups-
2.10.0.GA.src/src/org/jgroups

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jgroups/jgroups-2.10.0/

jmeter

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jmeter/jmeter-2.9/src/apache-jmeter-2.9/src/
core/org/apache/jmeter

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jmeter/jmeter-2.9/

jmoney

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jmoney/jmoney-0.4.4/src/source/net/sf/jmoney

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jmoney/jmoney-0.4.4/

joggplayer /home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/joggplayer/joggplayer-1.1.4s/src/src/com/jcraft

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
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joggplayer/joggplayer-1.1.4s/

jpf

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jpf/jpf-1.5.1/src/source/org/java/plugin

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jpf/
jpf-1.5.1/

jrat

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jrat/jrat-0.6/src/shiftone-jrat-0.6/src/org/
shiftone/jrat/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jrat/
jrat-0.6/

jspwiki

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jspwiki/jspwiki-2.8.4/src/src

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
jspwiki/jspwiki-2.8.4/

jstock

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jstock/jstock-1.0.7c/src/jstock/src/org/yccheok/
jstock

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jstock/
jstock-1.0.7c/

jung

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/jung/jung-2.0.1/src/jung-api-2.0.1/edu/uci/ics/
jung

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/jung/
jung-2.0.1/

junit

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/junit/junit-4.11/src/junit

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/junit/
junit-4.11/

lucene

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/lucene/lucene-4.3.0/src/lucene-4.3.0/core/src/
java/org/apache/lucene

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
lucene/lucene-4.3.0/

marauroa

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/marauroa/marauroa-3.8.1/src/marauroa-3.8.1/
src/marauroa/common

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
marauroa/marauroa-3.8.1/

megamek

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/megamek/megamek-0.35.18/src/src/megamek/
common

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
megamek/megamek-0.35.18/

mvnforum

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/mvnforum/mvnforum-1.2.2-ga/src/mvnforum-
1.2.2-mvnad-1.0.1-src-20100817/mvnforum/src/com/
mvnforum

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
mvnforum/mvnforum-1.2.2-ga/

openjms

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/openjms/openjms-0.7.7-beta-1/src/openjms-
0.7.7-beta-1/modules/jms

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
openjms/openjms-0.7.7-beta-1

poi

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/poi/poi-3.6/src/poi-3.6/src/java/org/apache/poi

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/poi/
poi-3.6/

pooka

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/pooka/pooka-3.0-080505/src/net/suberic/pooka

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/pooka/
pooka-3.0-080505/

quartz

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/quartz/quartz-1.8.3/src/quartz-1.8.3/quartz/src/
main/java/org/quartz/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
quartz/quartz-1.8.3/

roller

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/roller/roller-4.0.1/src/apache-roller-src-4.0.1/
components/core/src/java/org/apache/roller

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/roller/
roller-4.0.1/

rssowl

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/rssowl/rssowl-2.0.5/src/org.rssowl.core/src/org/
rssowl/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
rssowl/rssowl-2.0.5/

sablecc

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/sablecc/sablecc-3.2/src/sablecc-3.2/src/org/
sablecc/sablecc

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
sablecc/sablecc-3.2/

squirrel_sql

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/squirrel_sql/squirrel_sql-3.1.2/src/src/net/
sourceforge/squirrel_sql/plugins/graph

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
squirrel_sql/squirrel_sql-3.1.2/

sunflow

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/sunflow/sunflow-0.07.2/src/sunflow/src/org/
sunflow/core

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/
sunflow/sunflow-0.07.2/

trove

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/trove/trove-2.1.0/src/trove-2.1.0/src/gnu/trove

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/trove/
trove-2.1.0/src/trove-2.1.0/

weka

/home/alpeace/QC_Dataset/QualitasCorpus-20130901r/
Systems/weka/weka-3.7.9/src/src

/home/alpeace/QC_Dataset/
QualitasCorpus-20130901r/Systems/weka/
weka-3.7.9/
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8.2 Appendix B – Configurations for sensitivity analysis of Bagging J48 Models
The settings for the bagging J48 models  to test  sensitivity  to parameter change.  Yellow infill  marks the parameter that is
changed compared to the nominal configuration.

Bagging Configuration for J48 Sensitivity Analysis

Factor Nominal
Binary 
Splits

Collapse 
Tree

Reduce 
Error 
Pruning

Sub Tree 
Raising Unpruned

Batch Size 
10

Batch Size 
200

Num 
Folds 10 0 0 0

BatchSize 100 100 100 100 100 100 10 200 100 100 100 100
BinarySplits 0 1 0 0 0 0 0 0 0 0 0 0
CollapseTree 1 1 0 1 1 1 1 1 1 1 1 1
ConfidenceFactor 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.1 0.4 0.85
numFolds 3 3 3 3 3 3 3 3 10 10 10 10
ReducedErrorPrunin
g 0 0 0 1 0 0 0 0 0 0 0 0
SubTreeRaising 1 1 1 1 0 1 1 1 1 1 1 1
unpruned 0 0 0 0 0 1 1 1 1 1 1 1
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