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Abstract

The availability of planetary-scale geospatial datasets that can support the

study of water-related disasters in the Anthropocene is rapidly growing. We

review 124 global and free datasets allowing spatial (and temporal) analyses of

floods, droughts and their interactions with human societies. Our collection of

datasets is available in a descriptive list for download at https://zenodo.org/

record/3368882. The purpose of providing an overview of datasets across

a wide range of hydrological and socioeconomic variables is to highlight

research opportunities across scientific disciplines for the study of the water-

society interplay. Our collection of datasets confirms that the availability of

geospatial data capturing hydrological hazards and exposure is far more

mature than those capturing vulnerability aspects. We do not only highlight

the unprecedented opportunities associated with these global datasets for the

study of water-related disasters in the Anthropocene, but also discuss the chal-

lenges associated with their exploitation. These challenges include: (a) time

varying datasets advised not to be used in time series analyses; (b) fine spatial

resolution datasets advised not to be used in local scale studies; (c), datasets

built by a wide variety of data sources prohibiting systematic uncertainty

assessments; and (d) datasets built by covariate variables preventing interac-

tion studies.
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1 | INTRODUCTION

Why does water-related disaster risk remain high in many parts of the world? A short answer is that human exposure is
increasing at a faster rate than the decrease of vulnerability (United Nations Office for Disaster Risk Reduction
[UNISDR], 2015). But behind this statement lie deep and complex dynamics, connecting natural and societal factors in
a tight web. The need to disentangle these explanatory interconnections is as nontrivial as it is important: floods and
droughts are the environmental hazards that have affected the largest number of people during the last two decades,
over 2 and 1.5 billion people respectively (Centre for Research on the Epidemiology of Disasters [CRED] & UNISDR,
2018). The United Nations (UN) highlights the urgency of reducing the humanitarian and economic losses from water
disasters within the sustainable development goals, with an emphasis on protecting the poor and most vulnerable
groups of humanity (UN, 2015).

Even though regularly described as “natural” hazards, floods and droughts are fundamentally anthropogenic disas-
ters with strong societal interconnections in form of drivers, impacts and feedback mechanisms (Best, 2019; Van Loon
et al., 2016; Wens, Johnson, Zagaria, & Veldkamp, 2019). The main driver of past decades' flood damages, for instance,
is population growth and socioeconomic development in flood-prone areas (Di Baldassarre et al., 2010; UNISDR, 2015).
Human water consumption has been the primary cause of droughts in rivers, lakes and groundwater (Wada, van Beek,
Wanders, & Bierkens, 2013). Projections show further transformation and intensification of both flood and drought risk
from socioeconomic development, amplified by the impending climate crisis (UNISDR, 2015). By mid-century, we
expect over 230 million people to be living in cities where water demand exceeds water availability (Florke, Schneider, &
McDonald, 2018). By the end of the century, global flood losses are expected to increase by a factor of 20 (Winsemius
et al., 2015), although such an estimation neglects the benefits of adaption measures that are being implemented in
most regions around the world (Di Baldassarre et al., 2015; Jongman et al., 2015; Kreibich et al., 2017).

Knowing these drivers, should it not be straightforward to mitigate the disaster risk? Not necessarily. One problem
is that many contemporary water management strategies, aiming to reduce water disaster risk, can eventually increase
risk in the long term or contribute to inequality (Di Baldassarre, Kemerink, Kooy, & Brandimarte, 2014; Di Baldassarre,
Wanders, et al. (2018); Pande & Sivapalan, 2017; Zwarteveen et al., 2017). Large-scale scientific inquiries, studying one
phenomenon across many locations through time, have the benefits of detecting patterns beyond anecdotal observa-
tions, reaching generalizable results, and building hypotheses about water risk propagation (Falkenmark & Chapman,
1989; Kovács, 1984; Pande & Sivapalan, 2017). This type of large-scale studies also raises data needs that are completely
different from those of a single case study. Coincidentally, the pressing global water challenges and the corresponding
need for large-scale datasets are accompanied by an ongoing big data revolution (Vogel et al., 2015).

Our capability to monitor and access large amounts of data poses unprecedented opportunities to reveal spatiotem-
poral patterns of human interaction with hydrological processes (Mård, Di Baldassarre, & Mazzoleni, 2018; UNDRR,
2019; Vogel et al., 2015). These available large-scale datasets span from being remotely sensed and gridded to being
measured on the ground and given in point format. In between, a wide number of datasets are being released, building
on and combining with other datasets. Progress within planetary-scale datasets related to hydrology and societal devel-
opment is well covered within the literature, including reviews of: precipitation datasets (Kidd & Huffman, 2011; Sun
et al., 2018), soil moisture datasets (W. Dorigo et al., 2017; Ford & Quiring, 2019), surface water datasets (Huang, Chen,
Zhang, & Wu, 2018), flood risk models (Ward et al., 2015), land cover datasets (Pérez-Hoyos, Rembold, Kerdiles, &
Gallego, 2017), population datasets (Leyk et al., 2019; Palacios-Lopez et al., 2019; Smith et al., 2019), nighttime light
datasets (Bennett & Smith, 2017), large-sample hydrological datasets (Gupta et al., 2014), and global hydrological
models taking human activities into account (Wada et al., 2017). All these reviews, however, focus on single topics. In-
depth reviews are unarguably both valuable and needed, but we also think that widening the scope across variables and
disciplines can benefit the research community—not least due to the multidimensional and interdisciplinary nature of
disaster risk (UNDRR, 2019).

Here we review the current availability of free and planetary-scale geospatial datasets to facilitate further research
of floods, droughts and their interactions with human societies. We present a collection of 124 freely available
geospatial datasets, with the aim to illustrate research data opportunities and current data gaps. We expect that this
compiled list, entailing a wide range of variables, can facilitate interdisciplinary work and thus reveal dynamics
between societies and water disasters. We also discuss challenges of the data usability for conducting comparative stud-
ies. Specific discussion points include data resolution challenges, inequalities of geographic representation, data consis-
tency and accessibility, and dependencies between the datasets prohibiting interaction studies.
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2 | THE ROLE OF EARTH OBSERVATION DATA WITHIN WATER
DISASTER RESEARCH

The use of data from space is not new to the community of hydrology, which has been using remotely sensed data for
decades (McCabe et al., 2017). At least three factors make remotely sensed data particularly valuable for hydrological
applications. First, remote sensing enables monitoring across a wide range of spatiotemporal scales (Huang et al.,
2018). Second, in situ measurement stations, providing data on essential variables like precipitation and discharge, are
declining and are unevenly distributed worldwide (Kidd et al., 2017; Musa, Popescu, & Mynett, 2015). Third, a growing
number of remotely sensed datasets are free and widely accessible, valuable for not only global analysis but also for data
poor countries (Ehrlich et al., 2018; Famiglietti et al., 2015; Schumann, Bates, Horritt, Matgen, & Pappenberger, 2009).

Recent development in global Earth observation (EO) data relatable to disaster risk poses opportunities to reveal
interactions of natural systems and human activity (UNDRR, 2019). EO gathers information on the physical, chemical
or biological environments of the planet, through data monitoring, analysis and presentation (European Union, 2016).
This rapid development has been triggered by new monitoring technologies, new processing capabilities, and a growing
willingness to share data (UNDRR, 2019). In particular, open-access satellite data have increased the number of scien-
tific data applications (UNDRR, 2019; Zhu et al., 2019), mirrored in the increasing number of scientific publications on
hydrological extremes from a global point of view (Figure 1). The finest spatial resolutions among the open-access satel-
lite programs are currently offered by the Sentinels of ESA (down to 10 m offered by Sentinel-2) (UNDRR, 2019). Its
first satellite mission, Sentinel-1, was launched in 2014, the temporal depth is thus still limited. The moderate spatial
resolution imagery of Landsat offers the longest temporal records from remote sensing (1970s and onward), made
open-access by United States Geological Survey (USGS) in 2008 (Zhu et al., 2019).

The EO world outside of the large-scale space agency satellite systems is also rapidly progressing (Palmer & Ruhi,
2018). New and alternative remote sensing methods to conventional satellites include: ultra-high-resolution compact
satellites (e.g., CubeSats), drones, high-resolution videos from aircrafts, and “citizen science” including environmental
monitoring through smartphone applications (McCabe et al., 2017) and volunteered geographic information (Waldner
et al., 2019). Water disaster researchers, for instance, have integrated social media data in flood inundation models
(Le Coz et al., 2016; Rosser, Leibovici, & Jackson, 2017). So far, these alternative remote sensing methods typically give
products for local applications with limited spatial extent. The products from privately funded satellites are most often
not open-access but the technologic developments spread and affect other parts of the EO domain (McCabe et al.,
2017). “Citizen science” data are usually open-access but have limitations typical for nontraditional data sources: cali-
bration issues, quality control issues, and population centric data distributions (Kidd et al., 2017).

Long and stable space agency satellite programs are currently gaining new momentum from being reanalyzed to
new products, made possible by advancements in computational processing power and analytical techniques such as
machine learning. One example is the Global Surface Water Explorer using Landsat data and cloud computation to
map spatiotemporal surface water changes over the past three decades (Pekel, Cottam, Gorelick, & Belward, 2016).
Cloud computation platforms are virtual servers that provide access to data, processing power and analytical scripts,

FIGURE 1 Number of articles

(2000–2018) in Web of Science Core

Collection database (Clarivate

Analytics, 2019) containing the terms

“flood” or “drought” or “hydrological
extreme” when refined by “global.”
The five most common article

categories are Environmental

sciences, Meteorology atmospheric

sciences, Geosciences

multidisciplinary, Water resources,

and Ecology
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including Google Earth Engine (Gorelick et al., 2017), NASA Earth Exchange (Nemani, Votava, Michaelis, Melton, &
Milesi, 2011), and Open Data Cube (Killough, 2018).

This rapid EO progress consequently poses data opportunities for water disaster research. A wide range of geospatial
datasets are continuously being released, capturing both natural and anthropogenic environments. The fast exchange of
data also boosts interdisciplinary cooperation and has made it more common for researchers to search for data within
other scientific disciplines (UNDRR, 2019). Planetary-scale datasets are today particularly skilled at mapping disaster
exposure and disaster hazards (Ehrlich et al., 2018). Large-scale geospatial representations of vulnerability aspects are,
however, generally still immature and need further systematic data collection efforts (UNDRR, 2019).

3 | REVIEW METHODOLOGY

Here we review the availability of planetary-scale geospatial datasets that have the potential of supporting the study of
floods, droughts and their interactions with human societies. This review primarily targets readers from the research
domain of water-related disasters, yet we also expect that a wider group might find this review useful. We present a
descriptive table of freely accessible planetary-scale geospatial datasets related to floods, droughts and societies. The
purpose of presenting one list of datasets across a wide range of variables is to highlight research opportunities across
scientific disciplines.

3.1 | Choosing data categories

We compiled a list of relevant variables based on published conceptualizations of human–water disaster systems
(Di Baldassarre, Nohrstedt, et al., 2018; Di Baldassarre, Martinez, Kalantari, & Viglione, 2017; Van Loon et al., 2016).
Variables from every part of the human–water disaster system have been included: environmental change, socioeco-
nomic trends, frequency, magnitude and extent of natural hazards, vulnerabilities, disaster impacts, and human water
alterations.

We structured the variables into categories and sub-categories for clarity. The sub-category Flood and drought events,
for instance, includes the two variables flood inundation maps and drought events. Our review primarily focuses on
inland floods; consequently, we do not include datasets covering oceanographic conditions such as sea levels, tsunamis
or storm surge disasters. We do not include datasets explicitly covering variables from the cryosphere either.

3.2 | Searching for and selecting datasets

Publications from both data providers and data users have supported the search of data. We have used a wide range of
data sources, including peer reviewed literature, large geodata providers (e.g., NASA and ESA), institute reports, official
webpages, and other websites such as geodata blogs. For each variable, we searched for the variable name (e.g., flood
inundation map) refined with the words “global” and “data” in the Web of Science Core Collection (Clarivate Analytics,
2019). The Global Climate Observing System program lists Essential Climate Variables (World Meteorological Organi-
zation, 2016), for which we have included a majority of the variables within the Land category, including variables from
the hydrosphere, biosphere, and anthroposphere.

We have only included datasets with license policies allowing free scientific use. The license agreements, however,
vary among the individual datasets. For example, some datasets are available free of charge to the research community
only, while other datasets are classified as open data or even public domain. Required or recommended attribution also
varies among the individual datasets. We therefore strongly recommend data users to carefully consult the usage
licenses as given by the data providers, to assure that the exact permissions and restrictions are followed.

The data principles of FAIR have guided our selection of datasets, encouraging findability, accessibility, interopera-
bility and reusability (Wilkinson et al., 2016). More specifically, we have only included datasets accessible online and
have given priority to datasets accessible all at once (through download or cloud infrastructure). We have given priority
to datasets with unique identifiers and clear documentations that will remain available even when the dataset itself is
no longer available. Datasets in geographical data formats have been prioritized over tabular data formats. We have

4 of 20 LINDERSSON ET AL.



given priority to datasets meeting community standards in data formats and only included ready-to-use datasets,
excluding data from publications shared through source codes only.

We have also considered spatiotemporal characteristics when selecting the datasets (Table 1). Only datasets with
global or near-global spatial extents have been included. We have given priority to dynamic datasets, capturing tempo-
ral change, over static datasets. We have primarily chosen to include historic datasets, not focusing on future projec-
tions. The prioritized resolution intervals vary among the broad range of variables, depending on data availability and
variable characteristics (Table 1). Gridded datasets with coarser spatial resolutions than 50 km have not been included.
We have chosen to include both alternatives when two competing datasets show a trade-off between spatiotemporal
coverage and resolution. We have chosen to include datasets that increase accuracy and coverage through building on
multiple parent datasets, rather than to include each individual parent dataset.

4 | DATASET COLLECTION

Our review results in a data collection of 124 global and freely accessible geospatial datasets, all related to hydrological
extremes and societies (Figure 2). We provide an overview of these 124 datasets in a descriptive data table, available at
https://zenodo.org/record/3368882. This data table contains, for each dataset, information on: dataset title, related
product(s) offered by the dataset, brief description, spatiotemporal coverage and resolution, recommended map scale,
data type, and available file format(s). We also report whether the dataset primarily builds upon data from ground mea-
surements, remote sensing, or a mix. Reference is also given to creating institute(s), documentation and web address
for data access.

4.1 | Data categories

We have structured the dataset collection into 7 main categories and 36 subcategories (Figure 2). The category Hydro-
graphic baseline includes static datasets that outline the shape of surface waters, including: rivers, lakes, wetlands,
basins, and floodplains. Static hydrogeological baseline data such as soil properties and groundwater characteristics are
also included in the Hydrographic baseline category. The category Hydrological dynamics includes datasets on hydro-
logic variables showing temporal variability, including surface water extents, river discharge, water levels, and water
quality. Water level measurements include both surface and groundwater measurements, with data sources from satel-
lites, ground measurements, and modeling. Datasets of hydrometeorological parameters such as precipitation, tempera-
ture, soil moisture and drought indices are also included in this category. The category Hydrological extremes holds
datasets that map past disaster extents, provide statistics on disaster losses, map modeled hazards, and collect flood-
related tweets. This review only includes ready-to-use datasets and hence does not list general satellite imagery pro-
grams, even though these are important data sources for flood inundation maps. Data from the category Hydrological
dynamics can also be useful for capturing past natural conditions of extreme hydrological events.

The category Land cover and agriculture holds datasets with information on land cover, land use, vegetation, irriga-
tion, livestock, and crops. Datasets mapping wildfires are also included in this category, since the focus is land surface

TABLE 1 Criteria of inclusion and

priority, guiding the selection of

datasets to be included in the review

Strict inclusion criteria

Accessibility Online

License policy Free research usage

Spatial extent Global or near-global

Spatial resolution Finer resolution than 50 km for gridded datasets

Prioritized resolution intervals

Spatial resolution 30 m to 10 km

Temporal resolution Days to months

Note: Strict inclusion criteria indicate minimum requirements for datasets being included. Prioritized
resolution intervals indicate how we have selected between competing datasets. Prioritized resolution

intervals vary with variable, due to differences in data availability or variable characteristics.
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change. The Vulnerability category captures variables that might influence the human vulnerability to water disasters,
including: economic measures, accessibility, transboundary inland-waters, land grabbing, migration, conflicts, and
cooperation. Here we have also included large collections of human development data and water statistics, even though
these data collections generally offer poor geographic representation. The category Human presence holds datasets that
capture the distribution of populations, settlements, urban centers, anthropogenic biomes, and administrative units.
Finally, the category Water management includes data on flood protection standards, dams and reservoirs, power
plants, urban water sources and water consumption.

5 | DATASET APPLICATIONS

To illustrate opportunities and challenges of our collection, we describe a selection of recent studies exploiting one or
more of the collected datasets. This selection is unavoidably unexhaustive, but we expect that it can, along with our col-
lection, inspire and spur new research ideas for unraveling different facets of the complex interplay between droughts,
floods and human societies.

5.1 | Human influence on hydrology

Many of the datasets in our collection are vital for setup, calibration and validation of large-scale hydrological models
considering human activities. Sutanudjaja et al. (2018), for instance, used global datasets of both environmental and
human variables to setup a global hydrological-water resources model. Mao et al. (2019) utilized datasets of observed
streamflow and satellite-derived inundation extents to simulate 50 years of flood extents in major river basins across
the globe. de Graaf, Gleeson, van Beek, Sutanudjaja, and Bierkens (2019) used data on climate and human water

FIGURE 2 Categories and

subcategories of the 124 freely

accessible global datasets included in

this review. Included variables all

relate to hydrological extremes and

societies, based on published

conceptualizations of human–water
disaster systems. Number of datasets

in each category is given underneath

the title. The width of the categories

and sub-categories indicate the

number of datasets. All datasets are

described in the data table available

at https://zenodo.org/record/3368882
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demand to setup and run a global surface water-groundwater model, exploring the influence of groundwater pumping
on environmental water flows. Lack of data on human behavior has been compensated in model parametrization by
employing environmental data. Reservoir operational behavior, for instance, can be mimicked using reservoir volume
data derived from satellite altimetry (Busker et al., 2019). Combining a range of variables is also useful for building indi-
ces related to sustainability and human development, such as the human pressure on rivers index (Ceola, Laio, &
Montanari, 2019).

A great amount of research investigates changing hydrological processes in a warming world. Cuthbert et al. (2019),
for instance, analyzed groundwater system response to climate change. Lehmann, Coumou, and Frieler (2015) identi-
fied a global increase of record-breaking rainfall events. Ficklin, Abatzoglou, Robeson, Null, and Knouft (2018) found
streamflow signals of climate change at both natural and human-modified sites and Sharma et al. (2019) quantified
trends of lake ice loss. Climate change attribution is also central for drought evolution (Wang, Liu, & Guo, 2019) and
drought risk changes (Gudmundsson & Seneviratne, 2016). E. Vogel et al. (2019) analyzed the effects of climate
extremes on global crop yield, using subnational yield data and machine learning.

5.2 | Droughts and floods

Large-scale datasets have been utilized to construct catalogs or maps of past disaster events on a global scale (Spinoni
et al., 2019; Spinoni, Naumann, Carrao, Barbosa, & Vogt, 2014), continental scale (Barredo, 2007; Masih, Maskey,
Mussá, & Trambauer, 2014), and local scale (Gründemann, Werner, & Veldkamp, 2018). Masih et al. (2014) incorpo-
rated a disaster loss database, literature review and a gridded drought indicator dataset to compile a descriptive and
geospatial catalog of past drought events in Africa. Climate zones have been related to precipitation and temperature
trends (Mohammad & Goswami, 2019), drought indices sensitivity (Vicente-Serrano, Van der Schrier, Beguería,
Azorin-Molina, & Lopez-Moreno, 2015), and river topography (S.-A. Chen, Michaelides, Grieve, & Singer, 2019).

Large-sample observational datasets are vital for validating new datasets from models or remote sensing. Frasson,
Schumann, Kettner, Brakenridge, and Krajewski (2019), for example, used a global flood observatory dataset to evaluate
the capability of a new satellite mission to detect floods. Observational datasets are also valuable in combination with
model and remote sensing data to generate new knowledge. Döll, Müller Schmied, Schuh, Portmann, and Eicker (2014)
combined hydrological modeling with well observations and satellite measured gravity anomalies to quantify ground-
water depletion on a global scale. Wu et al. (2019) used a number of global datasets to identify factors that influence the
consistency between satellite observations and a global flood model, including climate zones and land cover categories.

5.3 | Data-poor areas

Research on local scale may also benefit from global geospatial datasets, especially when located in data-poor regions.
For instance, planetary-scale datasets have been used to analyze long-term meteorological changes in Pakistan
(Ahmed, Shahid, Wang, Nawaz, & Khan, 2019), India (Mohammad & Goswami, 2019), Inner Mongolia (Wang et al.,
2019), and Nigeria (Shiru, Shahid, Chung, & Alias, 2019). Similarly, global and long-term precipitation datasets have
been utilized to derive time series of drought indices for locations such as Arkansas (Craig, Feng, & Gilbertz, 2019),
Sweden (Campana et al., 2018), and Central Asia (Guo et al., 2018). Anh and Aires (2019) derived river discharge data
in the Amazon using planetary-scale datasets. Global datasets have also been used for drought prediction in East Africa
(AghaKouchak, 2015) and operational drought monitoring in Kenya (Klisch & Atzberger, 2016).

5.4 | Water management and agriculture

Many large-scale studies about water management focus on agriculture or reservoir storage. Brocca et al. (2018) used
satellite soil moisture data to estimate irrigation water use. Thebo, Drechsel, Lambin, and Nelson (2017) mapped irri-
gated croplands also influenced by urban wastewater. Jägermeyr et al. (2016) analyzed the potential of integrated crop
management to close the global food gap. Gao, Liang, and He (2019) quantified past agricultural greening trends using
satellite data. Di Baldassarre, Wanders, et al. (2018) related the global development of reservoir storage to water
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demand and Zarfl, Lumsdon, Berlekamp, Tydecks, and Tockner (2015) identified a global increasing trend in hydro-
power dam constructions.

5.5 | Human–water interactions

Large-scale datasets on population, land-use and disaster hazards have enabled global maps of human flood exposure,
either focusing on long-term trends (Ehrlich et al., 2018; B. Jongman, Ward, & Aerts, 2012) or fine resolution snapshots
(Smith et al., 2019). Some global exposure studies focus on specific objects, such as road and railway infrastructure
(Koks et al., 2019). Human behavior in proximity to rivers has also been widely covered within the literature, for
instance exploring global settlement patterns in river networks (Fang et al., 2018) and global trends of human pressure
imprints on river systems (Ceola et al., 2019). Mård et al. (2018) used nighttime lights and a global dataset on flood pro-
tection standards to analyze how flood protection shapes human resettlement after major flood events. Some research
utilizing large-scale datasets also focus on social aspects of hydrological disasters. Carr~ao, Naumann, and Barbosa
(2016) mapped global patterns of drought risk, revealing low spatial correlation between hazard occurrence and
drought risk. Sutanto, van der Weert, Wanders, Blauhut, and Van Lanen (2019) analyzed gridded drought indices and
drought impact reports with machine learning to forecast drought impacts on a European level. Albrecht (2018) com-
bined a global disaster loss database with European survey data to analyze how natural hazard-related disasters affect
social capital.

6 | DATASET USABILITY CHALLENGES FOR COMPARATIVE STUDIES

Here we underline some challenges for using these EO datasets in comparative studies. Specific discussion points
include spatiotemporal resolution and coverage, inequalities of geographic representation, omission of detailed infor-
mation at large scales, data consistency and accessibility, and dependencies between the datasets prohibiting interaction
studies.

6.1 | Spatiotemporal depth and coverage

Temporal depth is crucial for capturing dynamical phenomena like disaster risk. Almost 40% of the included datasets
are, however, static: offering snapshots rather than changes over time (Figure 3). Static datasets particularly dominate
the categories Hydrographic baseline, Water management, and the sub-categories within Land cover and agriculture and
Human presence that primarily rely on reported data sources rather than automatic monitoring (e.g., statistics on irriga-
tion, crops, livestock, and administrative units). The lack of temporal depth can be more or less problematic for the rep-
resentation of geographic reality, depending on the real variability of the represented elements. Remotely sensed
hydrographic datasets like HydroSHEDS (Lehner, Verdin, & Jarvis, 2008), for instance, are unarguably important data
resources despite the lack of temporal depth. Nonetheless, static datasets are restricted to offer snapshots of elements
that in reality are evolving over time. The majority of the datasets within Hydrographic baseline relies upon elevation
models from around the year 2000 (e.g., NASA's SRTM and USGS' HYDRO1K).

The static limitations of the baseline datasets can also propagate to dynamic datasets. The near real-time flood maps
from MODIS, for instance, use a static water mask to distinguish permanent water from flood water (Policelli et al.,
2017). This weakens the representation of seasonal water body behavior and might result in some mapped areas being
outdated (Policelli et al., 2017). Some static datasets do, however, give information on the underlying variability of the
element. One example is the dataset G3WBM (Yamazaki, Trigg, & Ikeshima, 2015), which maps water cover frequency
from multi-temporal satellite imagery. This static map thus discriminates permanently water-covered areas from the
periodic ones.

The planetary-scale datasets of this review rely on relatively young technologies (Figure 4); there is generally a tem-
poral representation bias towards the year 2000 and onward. A few datasets reach all the way back to the early 1900s,
such as CRU-TS (Harris, Jones, Osborn, & Lister, 2014) and the Historical Irrigation Dataset (Siebert et al., 2015), but
they typically report larger uncertainties for the first part of the 21st century due to data limitations. Virtual water sta-
tion measurements and remotely sensed maps of burned areas do not reach further back in time than the 1990s and the
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year 2000. In some cases, however, combining datasets can be a means of compensating for short time series. For
instance, Busker et al. (2019) analyzed volumes for 137 reservoirs and lakes by combining a long-term surface water
dataset (32 years) with a young satellite altimetry dataset (<10 years), whereby the volume time series could be esti-
mated for the full 32 years through derived hypsometry relationships.

The datasets within the category Human presence show how there is typically a trade-off between long temporal
coverage and fine temporal resolution (Figure 4); the datasets with the longest temporal records (1970s) also exhibit
coarse temporal resolutions (10 or 15 years). We have also noted that the population datasets with finest temporal reso-
lutions, for example, LandScan (Dobson, Bright, Coleman, Durfee, & Worley, 2000) and GPW (Center for International
Earth Science Information Network [CIESIN] & Columbia University, 2017b), advise against time series applications
due to changes in methods and data sources between the records. The finest temporal resolutions of datasets applicable
to time series analysis can generally be found among the variables detectable from space. This entails many of the
datasets within the category Hydrological dynamics, and datasets such as the nighttime lights used as proxies for socio-
economic development (Bennett & Smith, 2017).

We cannot see any evident trade-offs between spatial and temporal resolution among the raster datasets also having
fixed revisit times (Figure 5). We do observe typical resolution intervals for some of the categories: Land cover and pop-
ulation datasets tend to combine high spatial with low temporal resolutions, whereas the opposite applies for meteoro-
logical datasets.

6.2 | Aspects of geographic representation

The spread of data formats across the data categories confirms that EO technology is currently more skilled at capturing
disaster hazards and exposure, compared to vulnerability aspects. Datasets populating vulnerability aspects are mostly
tabular (Figure 3), supporting the statement that further systematic EO work is needed for improving the geographic
representation. This applies for datasets within the category Vulnerability, but also other datasets such as disaster loss
data within the category Hydrological extremes.

The category Hydrological dynamics holds raster and tabular datasets (Figure 3), generally the raster datasets are
detected from satellites and the tabular datasets are measurements from the ground (soil moisture, discharge, water

FIGURE 3 Temporal resolution

and data format of datasets by

category. Static datasets are

snapshots and do not capture change

over time. Irregular datasets include

datasets with irregular recurrence

time and event-based datasets.

Tabular data format includes both

tables with and without geographic

representation, such as coordinates.

Datasets lacking specification of

temporal resolution or data format,

for example due to variations

between measuring stations, are not

included in this figure. Some datasets

offer multiple temporal resolutions

and data formats, for which all

alternatives are included in this

figure
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FIGURE 4 Time period and resolution of datasets grouped by categories. Thick bars indicate datasets with annual temporal resolutions

or finer. Dots with thin lines indicate datasets representing individual year(s). Arrowheads indicate that temporal coverage extends further

back in time than displayed in this chart. Datasets without specified temporal representations, for instance static datasets based on a variety

of data sources, are not included in this figure. Full descriptions of all datasets, with respective references, are available at https://zenodo.

org/record/3368882
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levels and water quality). Some datasets, for example, CRU-TS (Harris et al., 2014) and GPCC (Schneider, Becker, Fin-
ger, Meyer-Christoffer, & Ziese, 2018), offer gridded products based on station data. CRU-TS offers both the grids and
underlying station data, while only the gridded GPCC data are available due to policy restrictions (Schneider
et al., 2018).

Many of these planetary-scale datasets do exhibit geographical representation biases, generally favoring central lati-
tudes and socioeconomically developed countries. Remotely sensed datasets tend to exhibit nonuniform coverages
across the globe, offering nonglobal coverage (Carroll et al., 2017; Lehner & Grill, 2013; Yamazaki et al., 2015) and/or
coarser resolutions toward the poles (Esch et al., 2017; Lehner, 2014). Near-polar areas are also periodically missing in
datasets from optical satellite imagery, due to low solar zenith angles (Pekel et al., 2016).

Climatology, topography and vegetation also influence the geographic representation in these remotely sensed
datasets. Hydrologically complex systems like braided rivers, deltas, and narrow gorges are typically prone to show error
in radar satellite products (Lehner, 2013). Heterogeneous terrains, such as coastlines and mountainous areas, typically
exhibit errors in climate datasets (Abatzoglou, Dobrowski, Parks, & Hegewisch, 2018; Barbarossa et al., 2018). Moun-
tainous regions tend to result in precipitation being underestimated (Beck et al., 2019). These limitations carried by
hydrographic and climatic datasets also affect global flood hazard maps (Dottori, Salamon, et al., 2016; Trigg et al.,
2016). Heavy vegetation tends to interfere with soil moisture retrievals and surface water detection (W. Dorigo et al.,
2017; Pekel et al., 2016). Tropical regions periodically exhibit cloud obscuration, affecting datasets like nighttime light
imagery (National Oceanic and Atmospheric Administration [NOAA], 2017). Fusing data from microwave, optical and
radar datasets is one example of an approach to overcome the challenges posed by the individual technologies, for
instance when mapping inland water in tropical areas under dense vegetation (Parrens et al., 2019).

Socioeconomic factors also play a role in geographic representation among the datasets building on reports or sta-
tion measurements. The decline of river discharge measurement stations has particularly affected Africa, Eastern
Europe, and the Arctic (Hannah, Demuth, van Lanen, & Looser, 2011). Precipitation measurements are particularly
scarce in inland South America, Africa, Australia, Antarctica, and the poleward regions of the Northern Hemisphere
(Kidd et al., 2017). We underline that this bias also propagates to remotely sensed or modeled datasets, since in situ
monitoring is critical for validation and improvement (Abatzoglou et al., 2018; Kidd et al., 2017; United Nations Envi-
ronment Programme, 2016). Datasets built on media reports, like databases on conflicts and cooperation (Bernauer

FIGURE 5 Temporal and spatial resolutions of raster datasets by category. Only raster datasets with specified spatial resolutions are

included in this figure. Datasets with static or irregular temporal resolutions are not included in this figure. Full descriptions of all datasets,

with respective references, are available at https://zenodo.org/record/3368882
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et al., 2012) and land grabbing (Anseeuw, Lay, Messerli, Giger, & Taylor, 2013), exhibit biases from media interest and
differences in openness among countries. Databases on disaster losses (CRED & UNISDR, 2018) exhibit systematic
underreporting from lower income countries.

6.3 | Omission of detailed information at large scales

The large spatial scales of the datasets in this review also mean that they tend to only capture large elements. This
includes being restricted to only capturing wide rivers (Lehner, 2013; Yamazaki et al., 2014), flood hazard from large
river basins (Dottori, Alfieri, et al., 2016), large land cover changes (Defourny et al., 2017), large burned areas
(Chuvieco et al., 2018; Giglio, Boschetti, Roy, Humber, & Justice, 2018), large settlement areas (Dobson et al., 2000;
Doxsey-Whitfield et al., 2015), severe disasters (CRED, 2019), large land deals (Anseeuw et al., 2013; GRAIN, 2016),
and big dams (Lehner et al., 2011). The remotely sensed datasets are logically constrained to only capture changes
larger than the pixel size.

This tendency towards large spatial elements can easily generate a mismatch in scales, for example if attempting to
use a global flood hazard map in an urban-scale study where the river flowing through the city is not even included in
the global map. This also means that the true intrinsic resolution can be lower than the stated spatial resolution (Smith
et al., 2019). Studies on past flood events are also affected, since smaller flood events are missed by both the remotely
sensed flood maps and the disaster loss reports. This data gap especially affects the study of extensive disaster risk
(defined as the risk of low-severity but high-frequency hazardous events), typically hitting low-income households and
communities (UNISDR, 2015). However, the disaster loss database DesInventar particularly targets small and medium
disaster events (UNISDR, 2015).

Many recent datasets offer fine spatial resolutions from being downscaled or modeled. We notice, however, that
many of these maps are recommended to be used in continental or global applications only—due to individual pixel
uncertainties. This applies for datasets such as the Global Estimated Net Migration Grids By Decade (Socioeconomic
Data and Applications Center [SEDAC] & CIESIN, 2015), Gridded Livestock of the World (Gilbert et al., 2018), Histori-
cal Irrigation Dataset (Siebert et al., 2015), Global Population Grid Time Series (CIESIN & Columbia University,
2017a), and SoilGrids250m (Hengl et al., 2017).

6.4 | Data consistency, accessibility, and dependency

Comparative research needs datasets that are consistent across space and time. Many of the dynamic datasets bring
inconsistencies, hindering the ability to compare cases across space and time. Many remotely sensed datasets are bur-
dened by data gaps and inhomogeneities (Carroll et al., 2017; W. Dorigo et al., 2017; NOAA, 2017; Pekel et al., 2016;
Sheffield et al., 2014), due to technical variability along the temporal records and/or natural conditions such as cloud
obscuration. Examples on approaches to compensate for temporal data gaps due to cloud contamination include: data
fusion with spatially coarser but temporally finer data (Li, Skidmore, Vrieling, & Wang, 2019), machine learning in
combination with topographic, hydrological and climatic variables (Shaeri Karimi, Saintilan, Wen, & Valavi, 2019),
recovering cloud cover contaminated images with isobaths derived from cloud-free images (Yao, Wang, Wang, &
Crétaux, 2019), and automatic correction of cloud contamination images through an algorithm based on a long-term
water occurrence dataset (Zhao & Gao, 2018). Ground measurement datasets are laden by inconsistencies between mea-
suring stations, for instance offering different time periods, measuring frequencies, and technical qualities
(W. A. Dorigo et al., 2013; Hannah et al., 2011; Harris et al., 2014; United Nations Environment Programme, 2019).
Crochemore et al. (2019) provides a methodological framework for quality checking large-sample river flow datasets.

These inconsistencies between measuring stations also bring data availability biases, access to long-term data
records being more common for socioeconomically developed countries (Hannah et al., 2011; United Nations Environ-
ment Programme, 2019). Also virtual water level station datasets exhibit inconsistencies between stations (Schwatke,
Dettmering, Bosch, & Seitz, 2015; United States Department of Agriculture, 2019). Data accessibility can also be a chal-
lenge for event-based and station measurement datasets, as the users are often not given access to the entire dataset all
at once.

Many of the datasets build upon a large number of input sources, resulting in many datasets being unable to specify
the data accuracy. Other challenges come from some datasets using all available data for creating the dataset hindering
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the opportunity to validate the dataset, for instance the Historical Irrigation Dataset (Siebert et al., 2015). Instead, it is
commonly stated how the dataset performs in comparison to other datasets, for example, HydroSHEDS (Lehner & Grill,
2013), Copernicus CCI-WB (Lamarche et al., 2017), Köppen-Geiger climate classifications (Beck et al., 2018), CRU-TS
(Harris et al., 2014), precipitation dataset of MSWEP (Beck et al., 2019), virtual water station measurements of DAHITI
(Schwatke et al., 2015), land cover classification of GlobeLand30 (Chen, Cao, Peng, & Ren, 2017), CCI-LC (Defourny
et al., 2017), wildfires mapped by FireCCI (Chuvieco et al., 2018), and SoilGrids250m (Hengl et al., 2017). This can of
course help data users to choose among alternative datasets, but the general challenge to obtain absolute accuracy
information still remains.

Finally, many of the datasets build upon other datasets, causing dependency issues that can hinder interaction stud-
ies, as visualized in Figure 6. HydroSHEDS (Lehner & Grill, 2013), land products from MODIS sensors, CRU-TS (Harris
et al., 2014), and the global lakes and wetlands database GLWD (Lehner & Döll, 2004) are some of the most frequently
used datasets by the others within this data collection. Many downscaled or modeled datasets exhibit data dependency
issues preventing interaction studies. Economic gridded datasets, for instance, use population data for gridding regional
data to cell level, which prohibits using the data in interaction studies with population data (Kummu, Taka, &

FIGURE 6 Data dependencies among datasets of different categories. Arrow direction shows which dataset is using the other as data

source. Symbol size indicates how frequently it is used by other datasets in this data collection. Only direct relationships among the datasets

are included in this figure. Indirect dependency relationships, for instance if two datasets are based on the same satellite imagery, are

therefore not shown here. Layout of network chart follows ordination, produced in software NetDraw (Borgatti, 2002). Full descriptions of

all datasets, with respective references, are available at https://zenodo.org/record/3368882
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Guillaume, 2018). This is not true for all modeled datasets, for example, the Historical Irrigation Dataset is independent
from economy and population but has some dependency towards environmental properties (Siebert et al., 2015).

7 | CONCLUSION

To support the spatial (and temporal) analyses of floods, droughts and their interactions with human societies, we cre-
ated and structured an extensive collection of freely accessible global scale geospatial datasets. Taken together, this col-
lection illustrates the versatility of research opportunities given by the current growth of free and openly accessible
datasets. The spatiotemporal characteristics do, however, vary among the wide range of variables. First of all, the under-
lying processes behind the individual variables occur at a variety of spatiotemporal scales. Floods, for instance, are typi-
cally rapid disasters, spatially bounded to flood-prone areas. Droughts, on the other hand, have a creeping way of
arriving and cover larger spatiotemporal extents (Wens et al., 2019). This difference consequently results in distinct spa-
tiotemporal data requirements and opportunities. Secondly, some variables simply lack data availability within the
desired spatiotemporal characteristics. This can in some cases be explained by the nature of the underlying processes as
well. Comparing floods and droughts, our data collection holds several global flood hazard datasets while the data avail-
ability of drought hazards and events is limited. This is also expected, knowing that the transition from hazard to disas-
ter is generally more complex for droughts compared to floods (Wens et al., 2019). The large spatiotemporal scale of
drought events, however, is an advantage since it enables using meteorological datasets for detecting past events. The
rapid and smaller events of floods, on the other hand, can more easily be missed by the global datasets.

EO is today a highly vibrant field, as new geospatial datasets are continuously being released and developed. Our
collection of datasets is a snapshot of the current availability at the time of writing. As such, we could not capture the
full availability of datasets, but rather present current data opportunities that can facilitate further water disaster
research at large scales. We have used this review as a benchmark to further discuss the usability of planetary-scale
datasets and to identify areas where improvements of geographical representations are needed.

In ending this paper, we want to underline our findings that many of the new technologies contributing to unprece-
dented opportunities also generate limitations on usability. Challenges for downscaled datasets, for instance, involve:
time varying datasets advised not to be used in time series analyses, fine spatial resolution datasets advised not to be
used in local studies, datasets built on a wide variety of data sources prohibiting systematic uncertainty assessments,
and data dependency issues preventing interaction studies. The review also confirms that the geographic representation
of disaster hazards and exposure is far more mature than the geographic representation of vulnerability aspects. To
completely grasp the social side of water disaster research, we need further EO efforts working to capture spatiotempo-
ral dynamics of vulnerability aspects. We are nonetheless optimistic that the following years will see further progress in
capturing the vulnerabilities of humanity as well, not least due to current progress in very high-resolution satellite
imagery in combination with machine learning techniques.
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