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A B S T R A C T

In the field of robotics and autonomous vehicles, the use of RGB-D
data and LiDAR sensors is a popular practice for applications such as
SLAM[14], object classification[19] and scene understanding[5]. This
thesis explores the problem of semantic segmentation using deep
multimodal fusion of LRF and depth data. Two data set consisting
of 1080 and 108 data points from two scenes is created and manu-
ally labeled in 2D space and transferred to 1D using a proposed label
transfer method utilizing hierarchical clustering. The data set is used
to train and validate the suggested method for segmentation using a
proposed dual encoder-decoder network based on SalsaNet [1] with
gradually fusion in the decoder. Applying the suggested method
yielded an improvement in the scenario of an unseen circuit when
compared to uni-modal segmentation using depth, RGB, laser, and a
naive combination of RGB-D data. A suggestion of feature extraction
in the form of PCA or stacked auto-encoders is suggested as a further
improvement for this type of fusion. The source code and data set is
made publicly available at https://github.com/Anguse/salsa_fusion
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1
I N T R O D U C T I O N

1.1 intro

Autonomous vehicles face a wide variety of problems when deciding
actions to perform in a driving scenario. These problems are often
categorized into three distinct modules; Path-planning, Controlling,
and Perception. The perceptive module observes the environment
that the car is located in to extract the most relevant information and
provide it to the path-planner. The path- planner then uses this data
to calculate a strategy for reaching a desired position. The controller’s
objective is to perform the appropriate actions to achieve the path ob-
tained by the planner. This involves saving the information about the
robot’s current pose and uncertainties as well as making the vehicle
obtain new poses requested by the planner.
In order for the two latter modules to work optimally it is required
of the perceptive unit to obtain a sufficient description of the con-
text in which the vehicle is operating. This is especially important in
the presence of dynamic obstacles with uncertain movement such as
pedestrians or other vehicles.

1.2 problem formulation

In modern time the usage of RGB-D data in autonomous vehicles
and robots has become a widely applied technique. This sensor com-
plements a regular colored image with a gray-scaled intensity map
describing the depth information of the observed scene. The tech-
nique has been widely applied in fields such as Simultaneous Lo-
cation and Mapping (SLAM)[14], Object detection[19] and Semantic
segmentation[5] to name a few. Active Stereo cameras is one such
sensor. They can perceive depth in an environment using a infrared
light(IR) pattern which is projected into the scene. The distortion of
this pattern is then computed in order to estimate the depth of the
image. This technique is very effective in ranges from 0.2-10 meters
and produces a dense point cloud of objects within this area. Limi-
tations of this technique resides in computing the depth of a planar
homogeneous, transparent or shiny surface.
Another sensor commonly used in robotics is Light detection and
ranging (LiDAR) sensors. Apart from stereo cameras, LiDAR sensors
traditionally uses time of flight (ToF) technology to measure the range
to obstructions. The sensor illuminates the measured area with laser
lights and measures the reflected light with a sensor to calculate the

1
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2 introduction

distance to the point. The perks of using this sensor is the high preci-
sion in distant objects and its performance in dark areas. It can also
make observations in greater FOV in comparison to stereo cameras.
In relation to an active stereo cameras, the point density produce by
a LiDAR is sparse.
The area of incorporating LRF data with depth is sparsely explored
territory. However, we argue that there are relevant information to be
retrieved from this combination of modalities. It is well known that
LRF sensors have a great accuracy in its range estimations, especially
in longer ranges if compared to a camera that estimates depth using
binocular disparity. Additionally, the Field-Of-View (FOV) of a LRF
is much greater when compared to a depth camera.
One might argue that 3D-LiDAR’s could produce an equivalent re-
sult in this sense which is partly valid, however the pricing of these
type of sensors with similar precision is many times the cost of a LRF-
scanner. On this basis there is reason to explore the benefits of this
combination of visual information.

1.3 scope

This thesis will focus on fusing 2D LiDAR (LRF) measurements with
stereo depth data, leveraging the accuracy and range from the LRF
along with the high point density produced by the active stereo cam-
era. The RGB data received from the camera will be used in the la-
belling process as the reference image. The resulting combined depth
information will be used to perform real-time semantic scene segmen-
tation in a racing scenario.

The reason why colored images are excluded from the network in-
put is to create a method that is independent of textures in the scene.
That is, we want the method to be applicable in a new environment
were the textures may differ from the training scenario but the geo-
centric principles and spatial information are the same.

Due to the niched area of RC-car racing, data sets with RGB-D and
LRF data is not publicly available. Therefore a data set will be created
for training of the network.

The method will be applied on a test-bed consisting of a modified
RC-car supplied with a computational unit, an active stereo camera,
and a LRF. The resulting module will be a part of a fully autonomous
system that will be used on the race car in F1tenth1, a racing compe-
tition for autonomous miniature cars.

The resulting pipeline and segmentation procedure will also be
evaluated against state-of-the-art semantic segmentation methods uti-
lizing RGB-D data.

1 https://f1tenth.org/
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1.3 scope 3

1.3.1 Novelty

The use of fused LRF measurements and RGB-D data for the purpose
of semantic segmentation.

1.3.2 Contribution

• A method for transferring depth labels to LRF scans

• A fusion strategy for segmented LRF scans and depth map

1.3.3 Questions

a) Does the LRF data provide additional information that increases
the prediction accuracy of segmentation in the scene?

b) Does the exclusion of color data provide a more robust classifier
given a scene with unknown/varying texture?
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2
L I T T E R AT U R E R E V I E W

2.1 fusion architectures

In autonomous vehicles, the use of multiple sensor modalities to
achieve a better estimate of the environment is a common princi-
ple. This concept is often applied by combining e.g. encoder values,
which is a subject to drift due to uncertainties such as tire slippage,
with GPS signals that may diverge because of bad signal receptions
in order to obtain a better position estimate. The fusion strategy in
this area is often comprised of a Kalman filter that computes the com-
bined estimate by observing the estimate of each modality together
with corresponding uncertainty. In applications such as this, the es-
timate is of a low dimensionality which makes the Kalman filter an
applicable method. In the field of scene understanding this method is
more complex due to the required high dimensionality to describe the
scene. By definition a segmented image consists of a series of labels
which when combined provide a classification for every single pixel
in the image. Dealing with an estimate for every pixel along with
its uncertainty in the same manner as in a position estimate would
therefore be a computationally expensive task.

Combining multiple modalities for the application of computer vi-
sion have three main architectures. Early fusion which is the concate-
nation of the features from multiple modalities before performing any
classification, as implemented by [18]. This procedure may not fully
exploit the complementary nature of the modalities and very often
lead to large feature spaces to be explored when performing the ac-
tual fusion. In contrast, late fusion is performed by combining the
classified result of the multiple modalities in a later stage. Each input
source is used to train its own machine learning model before per-
forming any fusion. This architecture has been employed frequently
in deep multi modal learning during the rise of ensemble classifiers
and can be found implemented in [23],[29],[11]. The third architec-
ture is referred to as intermediate fusion. This architecture incorpo-
rates fusion strategies within the network layers of the classification
model. The majority of work in deep multi modal fusion adopts this
architecture. Advantages of this flexible approach is described in [12].
In this work the author introduces a slow fusion model that fuses
representations of video streams gradually across the layers during
training. This approach is shown to achieve better results for a large-

5
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6 litterature review

scale video classification problem in comparison with early and late
fusion.

Figure 1: Fusion strategies; early fusion(a) combines modalities before clas-
sification, (b)late fusion classifies using each modality separately
before fusion. Intermediate fusion(c) incorporates multi modal fu-
sion within the network layers.

It is easy to state that intermediate fusion can be a better approach
to a deep multi modal fusion problem, however due to the flexible
nature of this architecture it is important to decide how the network
should be designed for the applied problem to achieve its benefits.
The choice of which modality to fuse and at which depth is usually
done based on intuition. The success of different approaches in this
decision is based upon the nature of the fused modalities. Addition-
ally, the decision of in what layer and how many times to perform
the fusion is also a designing parameter that needs to be considered.
This boils down to the problem of network design.

2.2 encoder-decoder

The encoder-decoder architecture is popular in the task of semantic
segmentation. The encoder part takes an input vector and gradually
comprises feature maps in each layer, encoding the original input as
the network grow deeper. The decoder does the opposite, taking the
feature map comprised by the encoder and up sampling it to give an
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2.3 rgb & depth fusion 7

approximation of the target output.
In the training phase, the encoder and decoder are trained together
using a loss function based on the delta between the prediction and
target. The optimizer will train each part of the network to achieve
the lowest delta.
By applying this method, the encoder is therefore trained to generate
a feature vector that comprises the most useful features from the im-
age so that the decoder can predict the target image as accurately as
possible. A successful implementation of this type of network is [2]
where the authors employ an encoder-decoder architecture for seman-
tic segmentation on RGB images. The network uses a up-sampling
strategy by extracting pooling indices from the corresponding en-
coder layer which removes the need for a trained up-sampling layer.

2.3 rgb & depth fusion

In [31] the authors use RGB and depth information from LiDAR point
clouds for semantic segmentation by first making classification with
each modality separately and then performing sensor fusion using a
fusion classifier. For a feature space RN, each uni modal classifier
P are evaluated on segments which are covered by a single sensor,
producing a set of labels ∆L.

Pimg : RNimg → ∆L, Ppc : RNpc → ∆L (1)

A strategy of early fusion would operate on a feature space of length
Npc+img. Comprised of data received from both modalities.

Pearlyfusion : RNpc+img → ∆L (2)

In the applied late fusion architecture, fusion classification is applied
on all overlapping segments of each modality.

Platefusion : ∆2L → ∆L (3)

By applying this strategy, the learning problem is significantly de-
duced. An advantage of early fusion is the learning of potentially
more expressive information of each modality. However, the learning
problem becomes much more demanding in terms of computation.

An example of intermediate fusion applied on a similar problem
is described in [8]. The authors discuss the popular use of HHA-
encoding[7] that is commonly applied to depth information in order
to obtain more discriminative information from the channel. This
representation consists of three channels: horizontal disparity, height
and angle between normals and the gravity based on the estimated
ground floor. HHA encoding significantly improves the accuracy of
semantic segmentation but requires high computational cost. The
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8 litterature review

authors instead argue that this representation is superficial and in-
efficient and instead proposes the encode-decoder network FuseNet
which extracts and fuses depth information with RGB gradually in
the encoder part of the network. Instead of preprocessing a single
channel depth image into three channels, FuseNet learns high dimen-
sional features from depth end-to-end as the network grows deeper.

Figure 2: Fusenet; A CNN of U-net architecture for semantic segmentation
based on RGB-D data, proposed by [8](figure from paper).

2.4 depth segmentation

In [1], the authors employ a encoder-decoder CNN, named SalsaNet
for real-time semantic notation using only 3D-LiDAR point clouds.
The network is trained and evaluated on the KITTI data set [6] which
is a publicly available data set consisting of labelled road scenes.
The network is trained to distinguish road, vehicles and background.
Since the point cloud data in this data set is unlabelled, an auto la-
beling process for LiDAR data is applied using MultiNet [26], which
is a public network pre-trained on the KITTI data set, and Mask R-
CNN[10]. Using bounding boxes of vehicles provided in the data set,
annotations can then be made in the RGB image and transferred to
point cloud domain. Further, a Bird-Eye-View(BOV) of the scene is
generated producing a 2D-map with the size of 256x64 cells each con-
taining mean and max elevation, intensity, and number of projected
points. The resulting input to the network is a 256x64x4 BEV map.
The proposed network is shown in figure 3 and is comprised of an
encoder part of stacked ResNet[9] blocks each of which is followed by
dropout and pooling layers. Each convolutional layer has a default
kernel size of 3. The number of feature channels are respectively
32,64,128,256 and 256. Up-sampling the feature map, each deconvo-
lutional layer in the decoder part is element-wise added to the corre-
sponding layer in the encoder part via skip connections. After feature
addition in the decoder, a stack of convolutional layers are introduced
to capture more precise spatial cues to be further propagated to the
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2.5 lrf & depth fusion 9

higher layers. The following layer applies 1x1 convolution to achieve
3 channels corresponding to the semantics in the scene. These are fed
to a soft-max classifier to obtain pixel-wise classification.
Evaluating this network, the authors achieve results better than state-
of-the-art methods[27],[28],[22]. The source code is made publicly
available at 1.

Figure 3: SalsaNet; an encoder-decoder CNN applied for real-time semantic
scene segmentation using point cloud data. Figure from [1]

2.5 lrf & depth fusion

In [21] the use of LRF data with disparity information perceived by
a passive stereo camera is combined in the problem of human track-
ing from a mobile robot. The proposed method is based on low-level
sensor fusion. The approach leverages the robustness of a human
detector based on depth data with the responsiveness of LRF based
detection using a Kalman filter applied in a late fusion fashion. In the
depth based detection method, the LRF scan is also incorporated by
introducing a trimming method based on the difference in depth esti-
mation between the depth perceived by the camera and laser scanner.
Given a set of stereo depth estimation v = [v1, v2, ..., vn] and corre-
sponding laser scans l = [l1, l2, ..., ln] trimming is performed by:

vi =

li, if vi > li

vi, otherwise
(4)

Therefore after this trimming achieving:

vi 6 li, i ∈ [1, 2, ...n] (5)

1 https://gitlab.com/aksoyeren/salsanet.git
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10 litterature review

The reason for applying this method is to remove false depth esti-
mations perceived by the stereo camera, instead relying on the more
accurate LRF.
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3
M E T H O D O L O G Y

3.1 overview

This thesis aims to solve the problem of semantic segmentation in
a real-time scenario utilizing stereo disparity and range scans from
a LRF. The solution was to be implemented on a miniature race car
that would have entered the competition F1Tenth[16]. Due to the cur-
rent situation of covid-19 pandemic the competition was cancelled.
However this solution will instead be used as a reference perception
method for possible entries in the future made by Halmstad Univer-
sity. In that regard, the scope of this thesis will not change in terms
of implementation.
Since the area that the implementation will be applied on is very spe-
cific, it is necessary to generate and label data collected using the
built setup in an environment similar to that of the competition cir-
cuit. However, since the actual competition environment is not avail-
able there is a need for flexibility in the implementation. One issue
is that the information of textures in the scene is unknown which
could make information of RGB nature misleading. On this basis we
chose to exclude colored images in our classification strategy. With
this said, as posed in 1.3.3 a), evaluation of the success in the decision
of excluding color should be analyzed.
Another implementation issue faced is the problem of classifying op-
ponent vehicles since only one test bed is built and available in this
proposition. This is an important issue to be resolved since infor-
mation of vehicles in the vicinity is a piece of information that is
significant in the decision making of the local path-planning and con-
trolling module.

The method of sensor fusion will be evaluated against the perfor-
mance of networks based on unimodal data of every available modal-
ity, that is:

• RGB

• Depth

• LRF

Depending on the success of the network further evaluation against
state-of-the art strategies utilizing sensor data within the constraints
of our hardware setup will be conducted. Since, to the best of our
knowledge, no existing solutions exists utilizing all three modalities
the focused area is on the two first mentioned.

11
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12 methodology

3.2 implementation

Since the solution proposed in this thesis will be applied in a larger
system with specific constraints, this information needs to be con-
sidered before designing the details of the system. The context that
will be considered when performing the implementation can be com-
prised as:

• Rules of the competition

• Hardware setup

• Circuit design

• Obstacles in the scene

• Additional modules in the autonomous system

• Security aspects

3.2.1 Competition format

The F1tenth competition is presented by the authors as part compe-
tition and part test bed for researchers around the world to apply
studies upon. The main idea is to make research on autonomous
vehicles more accessible in relation to competitions such as DARPA
grand challenge [3] which is more expensive and hazardous due to
the use of real sized vehicles.
The competition format consists of a circuit made up of arbitrary wall
segments in which cars about 1/10 the size of a regular race car, com-
pete against each other in two different main stages. A time trial for-
mat where the cars each individually occupy the course to attempt
to complete as many laps as possible in a given time(typically 3-5
minutes). In this format, both speed and consistency are rewarded
while crashing results in penalty. The second race format is head-to-
head racing. In order for a car to enter this part of the competition,
it must first demonstrate the ability to avoid obstacles placed within
the scene. These obstacles can consist of cardboard boxes or foam
that will be moved to different places in the course. If the car passes
this test it is able to enter the head-to-head racing class. In the actual
competitive part of this stage two cars will race against each other un-
der some circumstances which are not mentioned in the public rule
description.

In addition to the different competitive stages there are two separate
vehicle classes which will compete against each other. One restricted
class in which the hardware is limited according to a list of compo-
nents and an open class where the only restriction is the size of the
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3.2 implementation 13

car and the limitation of electric powered motors. The car developed
in this thesis will enter the first mentioned class.

3.2.2 Hardware setup

The main parts of the setup on which all experiments will be con-
ducted is described in the following list:

• Intel realsense D435i

• Hokuyo 10LX

• NVIDIA Jetson TX2

• VESC6 speed controller

• Orbitty carrier

• Traxxas Velineon 3500 brushless motor

Figure 4: The test bed, figure from [16]

3.2.3 Software platform

An autonomous vehicles require a framework for intercommunica-
tion between modules in the system. For example, the sharing of read
sensor data. A framework suitable for this is Robot Operating Sys-
tem (ROS). This framework utilizes a publish/subscribe architecture
where different programs (nodes) publish and/or subscribes to data
from a centralized core using topics. This framework is widely used
in the field of robotics and therefore include many useful libraries for
tasks such as localization, navigation and computer vision.
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3.2.4 Data representation

How to embed the scene information for use in the system is impor-
tant to consider. Since the path-planner needs to consider many pos-
sible paths to take in order to make the best decision, it is important
to keep this information as compressed as possible. A lightweight
interpretation would be to have the different segments expressed as a
label identifier along with the distance to the closest point of the seg-
ment and the angle from the front of the vehicle. Another approach
is to present the segments as point clouds and let the path-planner
be responsible for compressing the information as pleased. Since the
core functionality of a perception module is to supply the system
with as detailed scene information as possible, this decision will be
left for each subscribing module.

3.2.5 Security aspects

Issues concerning security in this implementation mostly consists of
the dangers in false measurements from the sensors. If the LRF fails
to obtain information of a wall for example, this would most likely
result in the car crashing. An approach of handling this is to imple-
ment an emergency stop if the LRF fails to obtain any laser scans. As
argued in 3.2.4, this is also not really a perception related issue since
the decision of actions to perform is done by the controller module.

3.3 fusion strategy

3.3.1 Consideration

The two modalities utilized in this thesis is of different nature in
terms of data coverage and representation. Although they share mea-
sured information, the information gain from the LRF provides addi-
tional information in terms of accuracy at greater range and a much
larger FOV. That said, the overlapping area perceived by the camera
is highly relatable to the LRF.
One approach to the problem could be to simply adjust the depth
points in the vicinity of the area covered by the scanner in an early
fusion fashion. This could provide a greater accuracy in terms of spa-
tial position of obstacles in the scene, however would not provide any
additional information in the question of the type of object being ob-
served. Additionally, this would put great stress on the displacement
relationship between the mounted sensors. This is fragile, especially
since the vehicle has shockers which lead to dynamic change in pitch
orientation when performing quick turns, acceleration, or breaking.
Not to mention the obvious complication of perfect data synchroniza-
tion.
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3.3 fusion strategy 15

Fusing the data after performing classification on each modality would
be a preferred choice on these terms. The problem here is the differ-
ent dimensionalities of the output from each classifier. The problem
is to notate every pixel of an image but the scanner can only observe
a small segment of this image. How can we solve the problem of
reshaping the entire prediction made from the depth input based on
this segment? This exhaustive procedure must also be able to per-
form with real-time inference.
As referred to in 2.3 the authors of [8] presents a strategy for fusing
different modalities on a network level. The approach taken here is
dependent on highly resembling input data; RGB and depth images
obtained using one camera. This assures the same dimension result-
ing in similar feature maps which can be combined to provide more
robust results. The fusion strategy of this paper is also exhaustive in
terms of element-wise multiplication in multiple layers of the network
encoder. In our belief this task would be to heavy computationally
when pursuing real-time inference.
In [15] the authors argue that with weakly correlated modalities, a
mixture is rarely beneficial until the later stages of the process. Like
earlier mentioned there is resemblance in the modalities used in this
thesis although the need for alternative representation is most likely
to result in a significant divergence at glance. The task will be to find
deeper correlations between the two representations.
On this basis the concretization of a network based fusion strategy
will be pursued.

3.3.2 Network choice

As mentioned in 2.2 the use of a encoder-decoder structured network
is very beneficial for image segmentation[2][4] which makes it a more
or less given choice for the task at hand. For real-time inference it is
also desirable that the network is of minimalistic proportions to be
able to keep up with such constraints. Due to time constraints, there
exists no room for trial and error in this phase but the network em-
ployed shall be able to conduct on both modalities ideally.
Earlier mentioned SalsaNet[1] is employed on data from a 3D LiDAR
that is comprised to a topology view grid containing spatial and rel-
ative information from points in each grid cell. Additionally it per-
forms with low inference, up to 160 Hz on a 256x64 image containing
4 channels stated by the authors. Segnet[2] is another consideration.
This network is conducted on RGB images with an inference of 20 Hz
using an image resolution of 360x480 on Nvidia Titan GPU.
Due to the appealing resemblance of application the choice is made
to employ SalsaNet as the applied network. One may argue that Seg-
Net has achieved greater overall success, however the deployment of
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this network on the inferior GPU utilized on the vehicle could lead to
an inference below 15 Hz which is undesirable.

3.3.3 Network input

As reasoned in 3.3, the network is to find deeper correlations between
the modality representations.

The data is initially comprised of a 640x480 depth image and a
vector of 169 laser point scans. In order to combine these modalities
it is necessary to find a shared representation. Since the network is
a CNN with 2D convolution this is the preferrable input space. This
means that there is a need to create a 2D representation of the laser
scan. Important to consider here is the size of dimensions. Obviously,
too large dimensionality will cause loss in the networks inference
time. It is also desired to obtain synchronization between the inputs
in terms of dimensionality.

3.3.4 Design

Using SalsaNet as the starting point of the network, the idea is to ex-
tend this implementation with an additional pipeline for processing
laser data. Then the question comes down to how the fusion step
is to be conducted. One way of doing this is to simply concatenate
the feature maps from each modality. This is a simple solution but
may yield improvement over single modality prediction. Mentioned
in [20] improvement with this type of fusion can be achieved by di-
mensionality reduction with the use of principal component analysis
(PCA) or stacked autoencoders after the concatenation has been con-
ducted. This is therefore the preferred design choice for the fusion
step. An implementation issue with this design is that the employed
tensorflow version does not support PCA layers. Due to the time con-
straints there is unfortunately not enough room to implement such a
layer or yet switch to another backend version. For this reason, the
initial design will rely on fusion by concatenation of feature maps
without any additional dimensionality reduction.
Next consideration is where the fusion is to be performed. As ar-
gued in 3.3 fusion of earlier nature is preferred when the modalities
is greatly correlated. In our case the 2D grid generated from the laser
scanner will contain significant visual differences arguing against fu-
sion at the early stages of the network. Instead a deeper fusion strat-
egy will be applied in the decoder part of the network.
The laser network will be pre-trained before incorporation into the
fusion network to perceive the most describing features in terms of
classifying the laser data. These weights will be used initially in the
fusion network but left trainable as further updating the weights can
be relevant for describing the features that are more discriminant for
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the final task of full scene segmentation. For simplicity a minimized
version of SalsaNet is used as the base for laser segmentation as well
as the full network configured with the corresponding resolution for
the input depth image.

The SalsaNet encoder is constructed with a series of ResNet[25]
blocks. Each ResNet block is followed by dropout and pooling layers
except for in the bottleneck. The decoder has a series of deconvolu-
tional layers to upsample the feature maps, each of which is elemen-
twise added with the corresponding layer in the encoder using skip
connections. After feature addition, a stack of convolutional layers
are conducted to capture more precise spatial cues. The next layer
applies a 1x1 convolution to obtain 5 channels corresponding to the
classes in section 3.4.1. The output feature map is fed to a soft-max
classifier to obtain pixel-wise classification. The full network is illus-
trated in figure 5 below.

Figure 5: Proposed fusion architecture, both laser and depth networks are
based on the network SalsaNet[1]. Fusion is conducted by the con-
catenation of feature maps from the corresponding decoder layer
from each modality.

To adjust for class imbalance in the dataset, the soft-max cross en-
tropy loss is updated with a smoothed frequency of each class. The
weight is applied as αi, resulting in the following expression:

L(y, ŷ) = −

n∑
i

αip(yi)log(p(ŷi)), αi = 1/
√
fi (6)

Where fi denotes the frequency of the class i. yi and ŷi express the
true and predicted labels.
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3.4 data collection

The first task before any segmentation can be performed is the collec-
tion of data. For this a circuit is built in the same manner as described
in the competition rules. The scene which will be explored will con-
sist of walls covering both sides of the vehicles and obstacles placed
in arbitrary locations throughout the circuit.

Figure 6: Overview of the circuit used for data collection and the resulting
map created using laser scans.

3.4.1 Classes

In the scene description there will be as mentioned, 5 types of seg-
ments;

• Walls

• Ground

• Obstacle

• Car

• Unknown

In the laser data, the unknown class notates areas where no laser
point is present. Using ray casting, it is still possible to determine
ground points by projecting a beam towards a point. The ground
can be established to be on this path due to the free space and given
that the operating area is a confined space. Further explanation of
this is presented in 3.5.2. In the depth data, unknown is considered
everything that is outside of the circuit.
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3.4.2 Data points

When the data is collected it is necessary to have both modalities syn-
chronized as we want to find correlations between the different types
of sensor data. We want to be able to label one modality and have
this label be applicable in the other. This covers both the temporal
and spatial relationship. To handle the transformation between the
mounting points we apply a displacement to the sensors in relation
to the middle point of the car.
The intel realsense d435i camera is supplied with a fish-eye lens
which makes it possible for the camera to provide a wider field of
view in the depth channel. This is the default perceptive mode of
depth on the camera, therefore we add the additional topic of depth_aligned
which corresponds to the depth when transformed to match the frame
of the colored image due to the same reason as argued above.
To synchronize the data the rosbag tools from the ROS framework is
applied. This allows for recording of topics being published in ROS
creating a bag file containing all data published during the time of
recording. This can later be used for playback within ROS in order to
visualize or process the data. The recorded topics are as follows:

• /scan - LRF scan

• /camera/color/image_raw - RGB image

• /camera/depth/image_rect_raw - Stereo depth

• /camera/aligned_depth_to_color/image_raw -
Stereo depth aligned with RGB image

During the collecting phase, a data set of 1080 data points from re-
spective modality have been collected. A data point consisting of an
image from each modality can be viewed in figure 7
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(a) RGB. (b) Aligned depth.

(c) LRF.

Figure 7: Representation of data sample from each modality.

3.4.3 Processing

Analyzing the data after recording there existed a problem with syn-
chronization between the camera and LRF scans. The recorded cam-
era data was delayed in relation to the laser scans. Applying a static
delay to the LRF of 350 milliseconds provided a satisfactory result
where the depth aligned with the laser scans. From the ROS visual-
ization tool rviz, the result can be viewed in figure 9. It should be
noted that this is a manual configuration made to achieve a better
synchronization. Although the result is aligned, it is not perfectly
harmonized.
Additionally, the data from the sensors is published using differ-
ent frequencies resulting in an unbalanced amount of measurements.
The LRF has a scan rate of 40 Hz while the frame rate of the camera
is 30 fps. To adjust for this a synchronization filter was implemented.
This filter considers several topics from within ROS and is imple-
mented to publish a new synchronized topic when all topics publish
their data within a certain time interval. This time interval was set to
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10ms. With this method we achieve the same amount of data points
from each sensor. An overview of the data processing flow can be
viewed in figure 8.

Figure 8: Data collection pipeline; data is collected from the different modal-
ities, an offset is added to laser scans and synchronization is per-
formed. The data is then extracted individually for labeling.

Figure 9: Visualization of camera depth estimation and laser scans after
added delay. White points represent depth pixels and colored
points the LRF scan.
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3.4.4 Labeling

For the labelling procedure the RGB images are utilized since they
are aligned with the depth images and are more suitable when distin-
guishing segments. This is done with the classes referred to in 3.4.1.
The labels are embedded as an image with a value corresponding to
its label. That is the segment class which the corresponding pixel be-
longs to. An example of a labelled image can be viewed in figure 10

below.

(a) Original data (b) Labeled data

Figure 10: Sample label; walls are notated in green, ground in yellow, un-
known in red and obstacle in purple.

3.5 lrf

3.5.1 Label transferring

In order to avoid additional labelling, it is desirable to be able to ap-
ply the same notations from depth/RGB to the laser scans. To achieve
this we propose the following method: Knowing the horizontal FOV
of the LRF and camera, we first isolate the overlapping laser segment
L by removing scans with angles outside this boundary. The camera
FOV is 42.5◦ or ±21.25◦, which when isolated in the laser scan can
be viewed in figure 11a. By clamping the laser scan with the angular
range of the camera we achieve a 169x2 vector consisting of the x and
y value of every point. Since the image width is 240 pixels the row is
down-sampled using nearest-neighbor interpolation and truncation
to fit the laser scan dimension.
In some scans, there are invalid points that occur due to the reflection
of the walls. These are notated by an invalid intensity value. These
are excluded in the scan as well as the label.
By retrieving the notated pixels in the row corresponding to the
height of the LRF we achieve the labels which match the laser scan.
Applying the label on the scan we achieve the result shown in figure
12a. Figures 10, 11a and 12a all belong to the same data sample.
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Figure 11: The overlapping LRF and camera FOV

Figure 12: Camera label transferred to laser scan

Simply overlapping the label on the scan gave an excellent result
when the car is in a static position or slight turn. However, when the
car is making fast turns, the synchronization proved to be inadequate.
In figure 13 the scan and the applied label can be viewed in a state
where the car is in a slow and quick turn.

To address this issue we need a way of determining the best match
from the applied label. To do this we need to separate the different
possible segments from the raw laser scan and find the overlapping
points from the applied label. We chose to apply hierarchical cluster-
ing on the raw laser scan since this is a preferred method when the
number of clusters in the data is unknown. A distance threshold of
.15 is found satisfactory in this process. An example of this can be
viewed in 14. We then correct the label by finding the cluster which
contain most of the points belonging to that label class. This is done
for the labels obstacle and car followed by filling of the remaining
segments with the wall class.
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(a) Slight turn (b) Quick turn

Figure 13: The synchronization problem is visible when performing quick
turns. The figure above shows the result from a slight turn(left)
and a quick turn(right) with walls in blue and obstacles in green.

3.5.2 Network input

Since the network input expects a 2D image as input there is need to
generate such a representation from the vectorized laser points. Do-
ing so, a confined area must be established so that scans of all ranges
can fit within the grid. The size must also be scalable with the depth
image with size 320x240. A grid size of 80x60 is established, filling
both of these criterias.
In order to create this representation ray casting is conducted by ap-
plying Bresenham’s line algorithm [17] with the coordinates of each
valid point. This method generate an occupancy grid based on the

Figure 14: Laser segments generated using hierarchical clustering with a dis-
tance threshold of .15 (left) and the adjusted result. This scenario
is from the quick turn in figure 13 above.
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position of the LRF by projecting a beam towards the observed point.
Doing so it can be established that the residing area between the point
and the LRF is unoccupied and thus creating a 2D occupancy grid
from the points. This is very useful in our case since it provides a
notation of ground areas, free of charge.

Figure 15: An occupancy grid created from the laser data using ray casting
(left) and with applied notations (right).

3.6 training setup

The data retrieved during the collection phase is unbalanced with a
lower frequency of the class obstacle and car. To adjust for this we
update the softmax cross-entropy loss function with a smoothed fre-
quency of every class as expressed in equation 6. To be able to train
the network efficiently for parameter tuning, the model is applied on
a Nvidia RTX 2080 GPU. The data is split into train, test, and vali-
dation sets using 70,15,15 splits. Data augmentation is conducted on
every data point in the form of rotation, gaussian noise, and horizon-
tal flipping. For rotation a degree of -5 to 5 is applied randomly, a
variance of 10 is used for the applied noise. In the test set, augmen-
tation is excluded for a more accurate estimation of the performance
on the final application.
The fusion network is trained along with plain SalsaNet networks
trained on depth, RGB and RGB-D data. The network for process-
ing laser data is also evaluated in the experiment to consider how
well this modality alone can classify the scene. The depth network
is considered the baseline since the interesting aspect is whether any
performance gain can be seen from introducing LRF data in relation
to utilizing only depth data.

The fusion network is trained and evaluated both with and without
a pre-trained laser module using the laser labels. In the pre-trained
model, the laser network is first trained on laser labels in order to
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conclude the most significant features from the scan readings. This
model is then applied as a starting point for the fusion network. A
batch size of 8 images is applied along with a learning rate of 0.01

which decayed by 0.06 after 20 000 iterations. The Adam optimizer
[13] is used in the learning process. The dropout probability is set
to .5 and the network is trained for 100 epochs except for the laser
network which is trained for 50 epochs. The network is evaluated on
the average of 100 predictions on the unseen test data.
The results are evaluated based on intersection over union (IoU), pre-
cision and recall of every class. Additionally the overall inference is
considered. The evaluation metrics for the class i can be expressed
as:

Pi =
| Ŷi ∩ Yi |
| Ŷi |

, IoUi =
| Ŷi ∩ Yi |
| Ŷi ∪ Yi |

, Ri =
| Ŷi ∩ Yi |
| Yi |

(7)

Where Yi denotes the ground true area of class i and Ŷi the predicted
area.
The source code in this procedure is made publicly available at 1.

1 https://github.com/Anguse/salsa_fusion
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R E S U LT S

4.1 performance

fus1 fus2 depth laser rgb rgb-d

Iou (%)

Wall 91.07 90.20 90.94 95.22 96.02 96.27

Ground 97.05 96.35 97.07 98.42 98.62 98.58

Obstacle 37.80 37.81 36.11 43.29 52.22 53.78

Car 8.41 12.63 13.28 8.70 21.15 22.50

Unknown 95.73 96.06 95.84 99.93 98.18 98.31

Average 66.02 66.58 66.65 69.11 73.24 73.89

Precision (%)

Wall 97.29 94.12 96.78 99.39 98.91 98.88

Ground 97.45 98.60 97.64 98.42 98.86 98.88

Obstacle 45.83 44.05 41.53 45.99 57.23 58.32

Car 11.05 15.64 16.70 9.52 23.91 25.98

Unknown 97.73 98.34 98.31 1.00 99.09 99.20

Average 69.77 70.15 70.19 70.66 75.60 76.25

Recall (%)

Wall 93.45 95.61 93.79 95.77 97.05 97.33

Ground 99.58 97.66 99.40 1.00 99.75 99.69

Obstacle 65.91 69.51 69.76 71.26 84.09 85.78

Car 22.68 27.83 28.03 9.61 57.23 52.54

Unknown 97.91 97.65 97.44 99.93 99.07 99.10

Average 75.91 77.65 77.68 75.31 87.44 86.89

Inference (ms) 1.19 1.19 1.07 0.20 1.18 1.19

Table 1: Quantitative results, training circuit. With (fus1) and without (fus2)
pre-training.

Analyzing the results it is obvious that the applied method did
not provide a more accurate estimation in any of the observed areas.
Looking at the IoU, the average performance of depth in relation to

27

[ June 4, 2020 at 16:20 – classicthesis version 4.0 ]



28 results

the proposed fusion strategy is actually worse than when using only
depth information. With this said, there is a rather significant gain of
almost 1.7% in the prediction of obstacles. Suprisingly, the fusion net-
work without a pre-training phase achieved better results than with
pre-trainig.
The RGB-D network dominated in most of the observed classes and
evaluation metrics. These results are not surprising due to the fact
that this contains the highest concentration of data of the measured
approaches. This is closely followed by RGB data, providing very
similar results.
The laser scan yielded top performing results on several evaluation
metrics, however, it should be noted that the LRF predictions are
based on the topology view of the scene which contains much less
information and does therefore not fulfill the objective of classifying
the entire scene.
Even though RGB data provides significant improvement when com-
pared to depth, this prediction is heavily dependent on the textures
in the scene. In our case, we are trying to construct a classifier that is
independent of scene textures.
The car class got the lowest score in all measured evaluation metrics.
This is largely due to unbalanced sample distribution in the dataset as
only 2% of the datapoints contained this class. Additionally, the car
and obstacle classes have very similar spatial features but different
textures which contributes in favor for the RGB and RGBD networks.
The inference of all networks are kept below 1.2 ms for all networks
which is very promising. This corresponds to about 83 Hz which is
more than double the rate of the LRF. This is when applied on Nvidia
RTX 2080 which is more sophisticated than the Nvidia Jetson, how-
ever this shows great promise for real-time performance of inference
greater than 15 HZ on the test bed.

4.2 new circuit

To evaluate the robustness of the networks, an additional circuit is
constructed with different textures and objects. In this course, the
obstacles are made up of red and blue cones instead of boxes. Ad-
ditionally the walls are covered with cardboard in order to introduce
new textures in this area. The ground is kept the same as in the train-
ing phase. From this scene an additional 108 data points are collected
and labelled for testing. No training is conducted on this data. The
tests are conducted in the same manner as on the training circuit.
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fus1 fus2 depth laser rgb rgb-d

Iou (%)

Wall 82.30 83.49 79.78 87.99 33.79 36.39

Ground 93.13 91.90 93.13 99.71 92.88 93.84

Obstacle 28.00 30.00 25.76 12.14 5.04 1.13

Car 23.62 27.66 22.27 0.00 0.68 0.33

Unknown 97.68 98.12 97.73 99.99 81.82 86.76

Average 64.95 66.23 63.73 59.97 42.84 43.69

Precision (%)

Wall 96.00 93.22 95.32 90.99 69.69 78.74

Ground 93.80 94.51 94.31 99.71 94.63 94.85

Obstacle 38.32 42.35 32.59 35.58 6.17 1.38

Car 28.68 32.86 26.20 0.00 2.33 0.65

Unknown 98.46 98.73 98.74 100.00 90.36 94.16

Average 71.05 72.33 69.43 65.26 52.64 53.96

Recall (%)

Wall 85.23 88.89 83.00 96.32 39.60 40.39

Ground 99.23 97.09 98.67 100.00 98.05 98.87

Obstacle 51.95 48.12 55.29 15.68 26.27 9.30

Car 44.35 45.81 43.23 0.00 1.80 2.20

Unknown 99.19 99.38 98.97 99.99 89.64 91.74

Average 75.98 75.86 75.83 62.40 51.07 48.50

Inference (ms) 1.17 1.17 1.11 0.20 1.20 1.23

Table 2: Quantitative results, unseen circuit. With (fus1) and without (fus2)
pre-training.

In this scene, we see a general improvement with the proposed fu-
sion strategy. The fusion network provides the highest average score
on all measured metrics with the network without pre-trainig per-
forming the best. Notable here is the significant difference of car
predictions. Comparing depth and fusion to their corresponding per-
formance in the scene used for training, there is a difference of 15%
in the fusion network and 9% with depth. The reason for this is be-
lieved to be the resemblance between a low box and the car from the
training scene. Since cones were used as obstacles in the new scene,
miss-classification is less likely to occur between these classes, thus
increasing performance in this class.
As expected the RGB and RGB-D methods performed poorly in this
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context since there exists novel objects with new texture patterns in
the scene. When we compare RGB and RGB-D the increase in perfor-
mance with depth introduced was significantly small which indicates
that the network relies greatly on textures since this provides more
descriptive information in the training phase.
An interesting finding is that the laser predictions on the car class in
this scene gave 0% in all metrics. This is suspicious as it suggests
that not a single pixel was correctly classified in the car class. An
explanation for this could not be found by examining the data.

4.3 predictions

In figures 16,17,18,19 predictions from each network on both circuits
can be viewed. In these visualizations, it is observable that the fusion
network in all cases has a better estimate of the position of semantics
in the scene. With that said, there is also a noisy area in all samples of
fusion predictions. This area varies in size and position from image
to image. Looking at the laser scan, this area can roughly be trans-
lated to the missed laser points in the middle of the scan. Comparing
the predictions made in the training circuit and the unseen circuit,
the noise is less significant and occurs more frequently in the upper
parts of the predicted image. This is an interesting observation as it
would suggest that the network has observed a relationship between
the depth image and laser scan in terms of displacement and orien-
tation. With that said, this finding is a visual observation and thus
hard to quantify and measure. Since the area of missing scans is quite
large this could just be coincidence and while it can be observed in
several occasions it is not obvious in all predictions.
Also notable is the amount of missing scans in the laser data on the
training set. The reason for this is believed to be the reflectiveness
of the walls in the circuit since this behaviour was greatly reduced in
the circuit with cardboard walls. This problem was not as frequent in
the depth estimations which is likely to be caused because of the dif-
ferent methods applied by the sensors when perceiving depth. The
stereo camera utilizes stereo disparity with the help of a laser pro-
jector while the LRF relies on time-of-flight technology. When a re-
flective surface is angled, the laser point bounce of the surface in a
different direction which results in the LRF not receiving the laser
point and is thus unable to obtain the depth estimate.
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(a) Laser input

(b) RGB input (c) Depth input

(d) Ground truth (e) Depth prediction

(f) RGB prediction (g) RGBD prediction

(h) Fusion prediction

Figure 16: Prediction 1 from each of the networks in the training circuit.
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(a) Laser input

(b) RGB input (c) Depth input

(d) Ground truth (e) Depth prediction

(f) RGB prediction (g) RGBD prediction

(h) Fusion prediction

Figure 17: Prediction 2 from each of the networks in the training circuit.
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(a) Laser input

(b) RGB input (c) Depth input

(d) Ground truth (e) Depth prediction

(f) RGB prediction (g) RGBD prediction

(h) Fusion prediction

Figure 18: Prediction 1 from each of the networks in the unseen circuit.
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(a) Laser input

(b) RGB input (c) Depth input

(d) Ground truth (e) Depth prediction

(f) RGB prediction (g) RGBD prediction

(h) Fusion prediction

Figure 19: Prediction 2 from each of the networks in the unseen circuit.
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4.4 label transfer

Results of the label transfer method is not easily quantizised without
hand labeling the data points which is what the method was created
to avoid. A visualization of some examples can be viewed in figure
20. From a visual perspective the method performed satisfactory. In
some cases, for example in the last figure, an obstacle label could
still appear in the background of the observed object. The reason for
this is because of faulty clustering. It is possible to adjust the thresh-
old for the clusters however this instead causes over-segmentation,
i.e. multiple segments may appear for the same object. This instead
causes problem when applying the label since the amount of points
are compared to points in the overlapping cluster.
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(a) label (b) laser input (c) laser label

(d) input (e) input (f) result

(g) input (h) input (i) result

(j) input (k) input (l) result

Figure 20: Transferred label results

[ June 4, 2020 at 16:20 – classicthesis version 4.0 ]



5
D I S C U S S I O N

5.1 fusion strategy

The proposed strategy of fusing modalities by feature concatenation
on a network level yielded an improvement of around 2.5% in IoU in
comparison to unimodal depth segmentation when introduced to an
unseen circuit. These results show that there are information gains
to retrieve from incorporating LRF scans with depth data for the task
of semantic scene segmentation. Although this is an improvement,
there is reason to believe that a more effective fusion strategy could
be conducted for improved results. In the predictions from the fusion
network, an area of noise was present in all observed samples which
is believed to be correlated to missing laser scans. A factor for this
result is believed to be because the feauture contributions from each
sensor is not evaluated enough in terms of correlated information
gain. As argued in section 3.3.4 the preferred method would have
been to apply dimensionality reduction using PCA as suggested in
[30] after concatenation is performed. Another approach to fuse the
data would be adding an additional encoder-decoder structure in ev-
ery fusion step. This also yields the desired effect of feature extrac-
tion. This would, ofcourse, drastically increase the inference time.
In [24] the authors find that constructing a multimodal fusion layer by
feature concatenation yielded poor results arguing against this form
of fusion. However, this is directed towards a fusion step which is
employed on a single shared representation layer. In our case, we are
introducing the fusion gradually and while the feature maps are in
an abstract state. The idea behind this is that it could provide a dif-
ference due to the decoder learning correlated features between the
modalities gradually. The stacked decoders performs up-sampling of
the concatenated data however never has the ability to consider the
discriminative value of the features from each modality in relation to
each-other in terms of predicting the target output.
Another issue that leads to reduced fusion performance is the lack of
laser points in the scans which was caused by the reflective walls in
the circuit. This resulted in gaps occurring in the laser scan. For this
kind of issues a generative module that can compensate for missing
data would be a useful complement. Another approach is to extract
the corresponding depth data from the stereo camera and fill in the
areas which are missing in the laser scan. The main problem with
this is the relationship between the depth images aligned with the
RGB data and the raw depth which is captured using the fish-eye
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lens. The raw depth data is relatable to the LRF scan, however when
it is aligned with the RGB image there is loss in data due to different
camera intrinsics. Therefore there is no exact way of translating from
the aligned depth to raw depth. An estimation may however be pos-
sible.
In section 3.4.1 the classes of each modality is established. In the
depth data the unknown class is considered all information outside
the confinement of the circuit. However in the laser scans, the un-
known class is regarded as areas which is unseen by the LRF. This
is not entirely equivalent as these laser points often occur within the
circuit due to the mentioned problem with loss of points. If there was
no missed scans this would be more accurate however, due to occlu-
sion, areas behind an obstacle would still be considered as noise even
if it is within the circuit. Addressing a different approach is difficult
because it requires knowledge of information behind the observed ob-
stacle. For the depth estimation this is not an issue as this modality
offers a 3D representation where the height can be leveraged to deter-
mine the unknown areas. A possible solution for the LRF modality
would be to implement a generative model which could fill in these
gaps so that the residing area could be enclosed and thus it could be
concluded that everything outside is considered unknown.

5.2 unimodal segmentation

Isolating predictions from each modality the RGB and RGB-D net-
works provided the most accurate predictions in the experiment on
the trained circuit. What is important to note here is that these ap-
proaches is based on textures in the scene which is undesirable as
the method is to perform in a circuit which differ in textures. This is
quantified in when applied on an unseen circuit as the performance
of these networks is drastically decreased. In this scene, predictions
based on depth and laser data instead excel, as expected. Noteable
is the possibility of invalid labels which may occur due to the label
transferring approach. This could effect the performance of the laser
network.

5.3 label transfer

The results of adapting labels from RGB images to the laser data
gave visually acceptable result. From an analytic perspective it is
difficult to measure the performance due to the mentioned problem
of target reference. The prediction of the network is based on the
labels so this is not a measurement in those terms. Known issues
consists of the approach of the hierarchical clustering not dividing
the clusters perfectly due to the distance threshold. This causes the
labels to, in a few cases, appearing on the background of the observed
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object. Although this issue is only present in very few of the observed
samples, for the credibility of this thesis it is important to consider.

5.4 implementation

The proposed segmentation solution has not yet been tested on the
test-bed due to the time constraints. The network has been applied
on the vehicle but only using the CPU on the Jetson board as there
were difficulties with the version match of CudaNN, a deep learn-
ing module for Cuda necessary for 2D convolutional operations. The
CPU implementation is not sufficient as this yields an inference of
about .7 seconds which is far from real-time. This also consumes the
hardware’s full computational capacity which disables other neces-
sary processes to run in parallel. To resolve this issue there was need
to flash the hardware with a new image of Jetpack which is the SDK
provided for the board. This would remove all data from the board
which would cause problems for the additional groups of students
working on the same hardware.

5.5 hardware

A huge impact on the method conducted in this thesis was the hard-
ware incompability between the stereo camera and test-bed plattform.
The Nvidia Jetson is a system utilizing 64 bit ARM architecture which
unfortunately is not officially supported by Intel realsense d435i. This
is believed to be the main reason causing issues in terms of synchro-
nization between camera and LRF. This led to additional mentioned
problems in the label transferring method.
Before the intel camera was integrated in the system, the ZED stereo
camera from Stereolabs was initially applied as visual unit. This cam-
era relies on passive stereo disparity when performing depth estima-
tions. This camera could not perform depth estimations on objects
closer than 1.5 m which caused the inability to detect the ground in a
predictable manner. This caused problems in the early stages of this
thesis as data collection was first based on this setup.
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6
C O N C L U S I O N

6.1 posed questions

• 1 - Does the LRF data provide additional information that in-
creases the prediction accuracy of segmentation in the scene?
Yes, the implementation issued in this thesis yielded an im-
provement of 2.5% when compared to unimodal segmentation
using only depth data in an unseen circuit.

• 2 - Does the exclusion of color data provide a more robust
classifier given a scene with unknown/varying texture?
No, the RGB and RGB-D networks provided a significant reduc-
tion of around 40% in IoU when applied on an unseen circuit.
This resulted in an average IoU reduction of 22% and 21% when
compared to the best performing fusion approach.

6.2 summary

This thesis has explored the problem of semantic segmentation using
deep multimodal fusion of LRF and depth data. Two data set con-
sisting of 1080 and 108 data points from different circuits have been
created and manually labeled in 2D space and transferred to 1D using
proposed label transfer method utilizing hierarchical clustering. The
1D representation of the laser data is used to create a 2D occupancy
grid representation using ray casting for constructing the network in-
put. The data sets has been used to train and validate the suggested
method for segmentation using a proposed dual encoder-decoder net-
work based on SalsaNet [1] with gradually fusion in the decoder us-
ing feature concatenation. Applying the suggested method yielded
an improvement of around 2.5% average IoU when compared to uni-
modal segmentation using only depth data. A suggestion of feature
extraction in the form of PCA or stacked auto-encoders is suggested
as a further improvement for additional evaluation of this type of fu-
sion. The suggested approach for implementation in the application
of scene segmentation in a racing environment as explored in this
thesis is utilizing the fusion network as this fulfills the objective of
full scene description with a average IoU above 66% and an inference
below 2 ms.
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6.3 future work & improvement

For future work in this field it is highly recommended to apply a gen-
erative model to account for missed laser scans as this is considered
one of the major flaws in the implementation. As mentioned in the
summary, further feature extraction is advised in the fusion step as
the feature correlation between modalities is believed to be insuffi-
ciently explored with this implementation. Other areas that would
be considered further is increasing the grid of the laser scan for the
ability to introduce fusion in additional network layers.
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A
A P P E N D I X : D I S C U S S I O N O N T H E N E T W O R K
A R C H I T E C T U R E

As argued in section 3.3 the reason for conducting the presented net-
work strategy depends on the difference of the two modalities. With
that said, an early fusion strategy could be adopted by combining the
overlapping area with a weighted utilization of modality depending
on the intensity of the observed point. Due to the known better per-
formance of LRF in longer ranges, a decision to use this modality on
depth estimations with greater intensity can be concluded. At a very
basic level, this type of approach would be the implementation of an
early fusion strategy. Why the decision is made to not use this type of
approach is because it only has the potential to, at its most significant
impact, alter the estimations of a very small area of the depth map.
What is desired is to create a network which can totally reshape the
output depending on an input from the LRF. For this reason, early
fusion is deemed insufficient and avoided in this implementation.
As mentioned in [31], late fusion is generally conducted in scenarios
where modalities differ more. An approach of a shared representa-
tion layer after classification is motivated in this scenario. The authors
of [24] find that a multi-modal fusion layer by simple concatenation
of incoming connections yielded a worse result revealing that hidden
units have strong connections to variables from individual modalities
but few units that connect across modalities. In order to account for
this a recommended strategy from [31] is applying dimensionality
reduction in the shared representation layer. Suggested methods for
this is PCA or stacked auto-encoders.
Given the applied network SalsaNet [1] utilizes an encoder-decoder
architecture, the idea behind the suggested fusion strategy is that in
the up-sampling process, the same type of dimensionality reduction
as in an auto-encoder is performed and that therefore this can be
leveraged for removing redundancies in the input space. This is also
the reason why fusion is performed in the decoder.
In addition to the presented strategy, experiments were conducted
with the same strategy of feature concatenation but at different depths
and with varying numbers of layers. Two other setups explicitly were
performing fusion in the encoder with the same number of layers
and performing fusion in both the encoder and decoder around the
bottleneck of the network with a total of three layers. Testing these
networks on the training circuit, the decoder fusion strategy proved
the best performing and thus were utilized in the final model. Tests
using the unseen circuit was never performed on the two other men-
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tioned approaches, however, an improvement in the training circuit
yielded better results in the novel circuit from tests conducted using
the fusion network.
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