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ABSTRACT
Brain activation mapping using functional MRI (fMRI)

based on blood oxygenation level-dependent (BOLD) con-
trast has been conventionally focused on probing gray mat-
ter, the BOLD contrast in white matter having been gener-
ally disregarded. Recent results have provided evidence of
the functional significance of the white matter BOLD sig-
nal, showing at the same time that its correlation structure
is highly anisotropic, and related to the diffusion tensor in
shape and orientation. This evidence suggests that conven-
tional isotropic Gaussian filters are inadequate for denoising
white matter fMRI data, since they are incapable of adapt-
ing to the complex anisotropic domain of white matter axonal
connections. In this paper we explore a graph-based descrip-
tion of the white matter developed from diffusion MRI data,
which is capable of encoding the anisotropy of the domain.
Based on this representation we design localized spatial filters
that adapt to white matter structure by leveraging graph signal
processing principles. The performance of the proposed fil-
tering technique is evaluated on semi-synthetic data, where it
shows potential for greater sensitivity and specificity in white
matter activation mapping, compared to isotropic filtering.

Index Terms— functional MRI, diffusion MRI, white
matter, adaptive filtering

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a noninva-
sive technique that allows investigation of the activity of the
brain while performing a task or at rest. Most fMRI studies
report activations in the gray matter, while reports of white
matter activations are relatively sparse [1, 2, 3, 4, 5]. The sig-
nificance of such reports is controversial [6], as the sources
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of the blood-oxygenation level dependent (BOLD) signal in
white matter are not fully understood. Despite this, significant
evidence directly linking the BOLD signal in white matter to
neural activity has recently been presented [7].

The relative scarcity of reports of white matter activations
can be partially explained by the anatomical and physiolog-
ical differences between white and gray matter [6], which
suggest the potential need for different experimental designs
and analysis methods to optimize detection power in each
tissue type. It has been shown, for example, that increased
T2-weighting improves the sensitivity to callosal activations
in an interhemispheric transfer task [8]. Therefore, we ex-
pect the development of methods geared specifically towards
white matter to be required in order to investigate the func-
tional significance of the white matter BOLD signal.

An important distinguishing feature of the BOLD signal
in white matter is that it exhibits a spatial correlation structure
grossly consistent with the directions of water diffusion, as
measured by diffusion tensor imaging (DTI) [9]. This corre-
lation structure is present during rest and becomes even more
pronounced under functional loading [10, 7]. As a conse-
quence, isotropic Gaussian filtering, commonly used to in-
crease the signal-to-noise ratio of the fMRI signal, may prove
inadequate for use on the highly anisotropic white matter do-
main.

The anisotropy of the white matter domain makes it suited
for a graph-based description. Graph signal processing meth-
ods have recently experienced significant development [11,
12], resulting in their successful application to the analysis
of the BOLD signal in gray matter [13, 14]. In this work
we propose a graph-based adaptive filtering approach for the
white matter BOLD signal which incorporates information
from diffusion MRI in order to adapt the filter design to the
white matter mircostructure. We test our proposed filtering
approach on semi-synthetic phantoms and show its increased
sensitivity and specificity for activations in white matter.



2. METHODS

2.1. Preliminaries

We consider undirected, connected, weighted graphs G =
(V, E ,A), where V is a set of vertices with |V| = Nv , E
a set of edges connecting pairs (i, j) of vertices, and A is
an adjacency matrix whose nonzero elements ai,j represent
the weight of edges (i, j) ∈ E . The diagonal degree ma-
trix, denoted D, associated to A is defined with elements
di,i =

∑
j ai,j .

The normalized Laplacian matrix of G can then be ob-
tained as L = I − D−1/2AD−1/2. As L is a real symmet-
ric matrix, it can be diagonalized, resulting in a set of Nv
real non-negative eigenvalues which define the graph spec-
trum Λ, i.e., Λ = {0 = λ1 ≤ λ2 . . . ≤ λNv

def
= λmax ≤ 2}.

The associated eigenvectors, denoted {χl}Nv

l=1, form an or-
thonormal basis spanning the `2(G) space. Here `2(G) repre-
sents the Hilbert space of all square-integrable graph signals
f : V → R defined on the vertex set V . A graph signal can
therefore be seen as a vector f ∈ `2(G) whose n-th com-
ponent represent the signal value at the n-th vertex of G. A
graph signal f can be filtered with spectral kernel K(λ) as

(Fkf) [m] =

Nv∑
l=1

k̂[l]f̂ [l]χl[m], (1)

where k̂ is the sampled version of K(λ) obtained as k̂[l] =

K(λl), l = 1, . . . , Nv and f̂ is the graph Fourier transform of
f (see [15] for an introduction to graph signal processing).

2.2. White matter graph construction

We define a white matter graph G(WM) as a graph whose ver-
tex set V(WM) consists of all the white matter voxels in a brain
volume (approximately 250k for the data used). The set of
edges E(WM) is defined such that each voxel is connected to
every voxel in a specified neighborhood, which we define as
a 5×5×5 region, resulting in at most 124 neighbors for each
white matter voxel.

We define the weight of the edge that joins a pair of voxels
(i, j) in analogy to Iturria-Medina et al. [16] and Sotiropou-
los et al. [17]. Let Oi(ω) denote the diffusion orientation
distribution function (ODF) associated to voxel vi, with its
coordinate center being the center of voxel vi. Let Ni de-
note the set of vertices in V(WM) that are adjacent to vertex
i; i.e., Ni : {k ∈ V(WM)|(i, k) ∈ E(WM)}. For any two ver-
tices i, j ∈ V(WM), let ~ri,j denote the vector pointing from the
center of vertex i to the center of vertex j, and define

p(i, ~ri,j) =

∫
Ωi,j

Oni (ω)dω, (2)

where n ∈ Z+ is a desired power factor to sharpen the ODFs
and Ωi,j denotes a solid angle of 4π/98 around ~ri,j subtended

at the center of voxel vi. It is desirable to sharpen the ODFs
since they generally manifest only slight variations between
directions of strong and weak diffusion. Using (2), the weight
between vertices i and j, denoted wi,j is defined as

wi,j =
p(i, ~ri,j)

Ci
+
p(j, ~rj,i)

Cj
, (3)

where Ck = 2 maxl∈Nk
p(k, ~rk,l). The normalization factor

ensures having wi,j ∈ [0, 1], ∀i ∈ V(WM),∀j ∈ Ni.
Using diffusion MRI, Oi(ω) is estimated at a discrete set

of directions {~rk}No

k=1 from the center of an ODF, denoted
{Oi,k}No

k=1, which can be used to approximate p(i, ~ri,j) as a
sum

p(i, ~ri,j) ≈
4π

No

∑
k∈Di,j

Oni,k, (4)

where Di,j : {k | ~rk ∈ Ωi,j}. The resulting edge weights
amount to a measure of coherence in the directions of diffu-
sion at neighboring voxels, with high weights associated with
highly coherent diffusion and vice versa.

2.3. Graph filter definition

Conventional filters defined within the Euclidean domain,
such as Gaussian filters, encompass a shift invariant impulse
response. In contrast, vertex realizations of graph filters are
shift-variant, leading to a unique spatial realization of the
filter at each graph vertex. This property, combined with the
weighting scheme in the proposed graph definition, results in
graph filters adapted to the microstructure of white matter.

Due to the lack of shift-invariance, it is convenient, and
conventional, to specify graph filters in the graph spectral do-
main. In this work, we design and leverage smoothing filters
associated with a heat kernel spectral profile, defined by

K(λ) = e−τλ, ∀λ ∈ [0, λmax], (5)

where τ is a free parameter determining the spatial ex-
tent of the filter. In particular, K(λ) ∈ L2(G), where
L2(G) denotes the Hilbert space of all square-integrable
K : [0, λmax]→ R+. Although such filters are roughly anal-
ogous in shape to the Gaussian filters typically used for fMRI
data analysis, there is no direct equivalence between them.

2.4. Graph filtering

Implementing graph filtering as in (1) requires calculation of
all the eigenvectors of the Laplacian matrix {χl}Nv

l=1, which is
practically infeasible for larger graphs such as those proposed
here. Instead, we use a fast approximation algorithm [11]. Let
P ∈ L2(G) be a polynomial approximation of kernel K(λ).
For a graph signal f , its filtering with kernel K can be found
using P as

c̃K =

Nv∑
l=1

P(λl)f̂ [l]χl = P(L)

Nv∑
l=1

f̂ [l]χl = P(L)f , (6)



Fig. 1. (a) Main orientation of ODFs manifesting white matter fiber directions at a coronal slice in the vicinity of the corpus
callosum. (b)-(d) Comparison of the contour profiles of three spatial filters, with different extents of adaptation to local anatomy,
localized at a point within the corpus callosum marked with a red dot in (a). (b) An isotropic Gaussian filter adapts neither to
local tissue morphology nor the underlying white matter structure. (c) A filter restricted to white matter adapts to the local
tissue morphology, but not to the underlying white matter structure. (d) A filter defined on the proposed graph adapts both to
the tissue morphology and the underlying white matter structure.

where c̃K ∈ `2(G) with c̃K[m] = (Fkf) [m]; in the last
equality we exploit: Lχl = λlχl ⇒ P(L)χl = P(λl)χl.

This approximation has the benefit that it does not require
the explicit calculation of the eigenvectors. Instead, a poly-
nomial of the Laplacian matrix is applied to the signal, which
can be efficiently implemented with matrix-vector multipli-
cation. Similarly to [11], we leverage a truncated Chebyshev
polynomial expansion approximation of K(λ), as it has the
benefit of approximating a minimax polynomial, minimizing
an upper bound on the approximation error.

3. DATA

The MRI data used in this work was acquired from the Hu-
man Connectome Project [18]. Structural images, parcella-
tions, and diffusion data from the “100 Unrelated Subjects”
subset of the 1200 subject release were used. Data from five
of the subjects was excluded from the analysis due to incom-
plete white matter coverage of the diffusion data. Addition-
ally, fMRI data from a motor task from one subject was used.

To evaluate the performance of the proposed graph-based
filtering method we created a set of semi-synthetic phantoms,
consisting of synthetic activation patterns generated on the ba-
sis of tractography results from real diffusion data. Tractog-
raphy was performed using generalized Q-sampling imaging
[19] in DSI Studio [20]. Synthetic activation patterns were
created from individual streamlines by diffusing an activation
along the length of the streamline, starting from a random
point.

Activation patterns from 100 streamlines were combined
to produce a single ground truth activation pattern for each
subject. An example of such an activation pattern can be seen
in Figure 2(a). Time-series phantoms for all subjects were
then created by convolving the ground truth activation pattern
with a regressor corresponding to a block fMRI paradigm.
The resulting time-series were contaminated with additive
white Gaussian noise of σ = 1.

4. RESULTS

4.1. Spatial adaptivity of graph filters

Figure 1 illustrates the differences in spatial adaptivity from
various filter definitions. Isotropic Gaussian filters adapt nei-
ther to the local tissue morphology nor the underlying white
matter microstructure. They transcend tissue boundaries,
integrating signal components associated to white matter as
well as the adjacent gray matter/CSF. Moreover, the filters
integrate signal components from multiple unrelated white
matter tracts.

By restricting the analysis to the white matter tissue, the
filters do not transcend tissue boundaries and thus only com-
bine signal components from white matter. However, the fil-
ters can not differentiate signal components from unrelated
white matter tracts.

Filters defined on the proposed white matter graphs
adapt both to the local tissue morphology and the under-
lying microstructure. Their spatial profile closely matches
the anisotropic diffusion orientation manifested by the ODFs.

4.2. Semi-synthetic phantom results

The 95 semi-synthetic time-series phantoms were filtered us-
ing both isotropic Gaussian filtering and the proposed graph
filtering approach. The resulting filtered volumes were sub-
jected to a standard GLM-based activation mapping using the
SPM toolbox. Figure 2 shows a comparison of the results
obtained by using the various filtering methods. For small fil-
ter sizes, isotropic Gaussian filtering is capable of detecting
the subtle shapes of the activations, but with reduced sensi-
tivity compared to graph filtering. More activations are de-
tected with larger filter sizes, but at the cost of diminished
specificity. In contrast, the shapes of the activations detected
through graph filtering are consistent across filter sizes.

The t-maps from all phantoms were thresholded at multi-
ple levels and compared with the available ground truth acti-
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Fig. 2. (a) Example synthetic activation pattern. Dot-shaped
activations extend linearly in the plane orthogonal to the im-
age. (b)-(e) t-maps obtained from analysis conducted using:
(b)-(c) isotropic Gaussian filtering, FWHM = 2mm and 6mm
respectively; (d)-(e) graph filtering, τ = 1.3 and 3.3 respec-
tively. All t-maps thresholded at t = 5 and overlaid on the T1
image of the corresponding subject.

vation patterns in order to produce ROC curves, which were
then averaged across subjects. Figure 3 shows the average
ROC curves for a variety of filter sizes. The best performance
was achieved with Gaussian filters of FWHM = 2mm and
graph filters of τ = 1.4. The proposed filtering approach re-
sults in increased sensitivity and specificity across all tested
filter sizes. Importantly, the performance of Gaussian filters
of FWHM > 2mm is worse than without the application of
any filtering.

4.3. Task fMRI results
As a proof of concept, results from a single HCP subject
performing a motor task are presented; see Figure 4. A sub-
stantially greater extent of activations was detected in the
corpus callosum from fMRI data filtered using the proposed
approach than from data filtered with isotropic Gaussian
smoothing. Similarly to the results obtained on phantoms, the
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Fig. 3. Average ROC curves from 95 semi-synthetic phan-
toms. The proposed graph-filtering approach shows increased
sensitivity and specificity across filter sizes.

detection performance for isotropic Gaussian filtering deteri-
orates with increasing filter sizes as a result of the increased
ratio of extraneous signal mixed with the signal of interest.
In contrast, the proposed filters show more homogeneous
performance across filter sizes, as they consistently adapt to
the shape of the underlying signal.

5. CONCLUSION
We have proposed a novel graph-based approach for filter-
ing white matter fMRI data. The design enables construct-
ing shift-variant spatial filters that adapt to the underlying
white matter structure, which enable revealing fine-grained,
anisotropic activity patterns. Results on semi-synthetic data
showed the potential of the proposed approach to enable im-
proved specificity and sensitivity in white matter activity de-
tection, compared to the use of isotropic Gaussian filtering.
Our future work will focus on testing the proposed approach
on a larger cohort of subjects, to probe white matter activa-
tions across different functional loading tasks as well as to in-
vestigate resting state BOLD signal fluctuations in white mat-
ter.

(a) (d)

(b) (e)

(c) (f)

Fig. 4. Single subject activations in the corpus callosum from
a left hand motor task using: (a)-(c) isotropic Gaussian fil-
tering, FWHM = 2mm, 4mm and 6mm respectively. (d)-(e)
graph filtering, τ = 1.4, 2.2 and 3.3 respectively. All t-maps
thresholded at 5% FDR.
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