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Abstract 

The world becomes more integrated and sophisticated, especially in the birth of advanced technologies, which 

have influenced all life aspects. Automated systems could be considered an example of those aspects, which 

have been affected by recent changes in today’s life. The competition in the market is putting increasing pressure 

on different manufacturing organizations to find the best methods that enable them to stay up to date with the 

latest technologies in the industrial field. One of the most famous dilemmas that exist in this field is designing 

an efficient and flexible material handling system. This issue draws the attention of both decision-makers in 

different companies and software developers who put considerable effort into making that desired system real. 

Inclusive research needs to be performed to obtain such a system, and the most significant part of the research 

that requires special attention is the applied methodology.  

The approach to be adapted determines the degree of stability of a particular material handling system to 

function effectively in the case studied. Several methods are available and could be implemented to design that 

effective system such as meta-heuristic algorithms, and approaches that depend on simulation software tools. 

The latter approach, which is the simulation approach, seems to get increasing attention from developers of the 

industrial system since it plays a vital role in reducing the cost and preserving available resources. Besides, it 

helps predict future changes and scenarios of the system to be analyzed.  

In this project, a discrete-event simulation model was built for the proposed layout of the main shop floor owned 

by a Swedish manufacturing company. The corporation located in the south of Sweden, and it produces a vast 

range of manufacture of goods. The chosen methodology is a combination of lean, simulation, and optimization 

approaches. It has been implemented on the proposed layout in which material is handled into production lines 

by using automated guided vehicles (AGVs) as a means of transportation. The analysis of results shows potential 

benefits, where the production process became more efficient and organized since the operational cost has been 

reduced by decreasing the number of required vehicles. Moreover, the simulation approach facilitated testing 

new ideas and designing improved scenarios without the necessity to change the current state of the factory 

layout or disturbing the regular activities. 

Keywords: Discrete-Event Simulation, Material handling system, Lean and Simulation-based Optimization, 

Vehicles scheduling. 
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1 Introduction 

Effective manufacturing systems are characterized by high flexibility and fast response to keep in touch 

with the advances in living standards. Hence the flexible manufacturing systems are unavoidable in 

terms of developing the production process and the end-users’ satisfaction. Besides, these systems 

increase machine utilization and productivity of production lines. This productivity is affected by many 

factors, which influence the efficiency of the whole system, like the operational expenses. Besides, 

ineffective vehicle scheduling and routing can cause a considerable quantity of resources waste and, 

therefore, a high operational expenditure (Lin et al., 2017). 

This issue drew great attention in the last decades because of its significance in the manufacturing 

systems design. The vehicle scheduling problem concerns assigning vehicles to a predetermined set of 

timetabled trips while satisfying some requirements, such as the number of depots that should be 

visited on each trip. The best schedule is characterized by the minimum number of vehicles used, and 

this helps in turn in decreasing the operational cost. Moreover, the type of vehicles available before 

each round should be identified based on the delivered materials to the assembly lines. In this case 

study, the material can be delivered to the lines in kits in the form of pallets or plastic boxes. Different 

material handling equipment can be used for this purpose, such as forklifts, tugged trains, or automated 

guided vehicles (AGV). However, AGV was selected to be the material handling equipment for this 

study. 

The aim of this project is, going through a case study in an industrial company to design an effective 

material handling system on the company’s main shop floor and indicate the optimal number of 

vehicles that responsible for delivering different necessary parts into assembly lines. The background, 

problem description, aim and objectives, and limitations of this project are explained in the following 

sections.   

1.1 Background  

Vehicle routing problem (VRP) refers to a class of combinatorial optimization problem which seeks 

to find the optimal routes of a set of vehicles in order to improve the whole logistics system. This 

involves either the flow of products from manufacturing plants through the transportation network to 

consumers or the inner flow in the manufacturing plants throughout different production areas (Torres 

et al., 2015). The vehicle scheduling problem refers to assigning vehicles to a predetermined set of 



       A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines 

Osama Marwan Altrabulsy                2    

timetabled trips following the optimal route that fulfills the minimal operation cost. Thus, the problem 

of vehicle scheduling and routing plays an intrinsic role in the process of designing an effective 

material handling system (MHS) (Haksever et al., 2000). Another critical factor that affects MHS 

design is the lead time (LT) that is considered one of the most significant factors, and it affects the 

whole production process because the longer the lead time is, the lower the productivity would be.  

It is so evident that the throughput says how much a company earns, and the lead time influences it, so 

it is significant to consider it. The lead time is mostly affected by an important factor which is the 

material handling system, and if this system is organized poorly, it will cause several problems such 

as unwanted movements that do not add value to the work, long waiting time that will delay the whole 

process as well as unorganized shop floor in general. A robust material handling system can lead to 

lower the company’s operating costs significantly, and it has numerous positive effects on the whole 

manufacturing system. Drira et al. (2007) stated that a good design of a material handling system could 

decrease the cost by 10-30 percent. Thus, it is a requirement to design an efficient material handling 

system during the expansion or adaption process or even under the construction phase. 

1.2 Problem description 

This study will highlight the need for designing a robust material handling system in the manufacturing 

plant of this study. The current shop floor of the manufacturing company produces a wide range of 

product types. The materials are delivered to assembly lines, and they are stored close to them in line-

side buffers. The company uses forklifts for the material delivery except for the last line, where they 

use AGV, and the transported materials are stored in specific boxes located inside some pallets. In the 

main shop floor, the company produces commodities in two different ranges; small-range having four 

dedicated lines, and mid-range that are produced on the other four lines. 

However, the current material delivery process is not efficient as expected because it causes 

considerable waste in transportation since materials are usually located in different stores. Therefore, 

operators at assembly lines should spend some time to gather all the necessary parts to form a particular 

product. On the other hand, in the push system, materials are delivered continuously. This kind of 

material delivery leads to waste in transportation because the vehicle will transport materials even if 

they are not needed at assembly lines. Moreover, the case study company assigns separated line-side 

buffers for each line with higher capacities than required, and this demands larger spaces to keep boxes 

and results in a high level of inventory. Thus, all mentioned wastes result in increasing lead time and 

causing an inefficient production process. 
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As stated above, the company’s shop floor is not as efficient as it should be, and this causes waste in 

the material delivery process. For all the reasons mentioned above, it is essential to find solutions to 

the current state situation. This thesis tackles this issue and introduces a new arrangement of the shop 

floor. Besides that, a new material handling system that adapts the kitting feeding policy also is 

considered. Then the number of required transporters is minimized to the lowest value that still can 

deliver the daily demand. Figure1, presents the proposed layout of the main shop floor. All measured 

distances are in meters. 

Figure 1. The proposed layout of the main shop floor 

As shown in the previous figure, the concept of the supermarket or material preparation area (MPA) 

was implemented. The paths that vehicles follow are also shown; the first route (green color) is for 

vehicles that deliver parts for small-range products, and the second route (blue color) is used to deliver 

parts for mid-range products. The assembly area consists of four production lines, line A and line B 

are devoted to producing goods of small-range whereas, line C and line D are for goods of mid-range.  

1.3 Thesis objectives 

The main objective of this thesis is to design a new material handling system for the proposed layout 

(Figure1) of the main shop floor for the factory through: 
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• Building a conceptual model of the proposed layout of the main shop floor.  

• Building the simulation model of the proposed layout of the main shop floor, including the 

material supply system using one of a simulation software like Facts analyzer, then analyze the 

system and design possible what-if scenarios. 

• Validate the simulation model with the company representative to have a decision later if it is 

suitable and valid externally and internally to implement it in the factory. 

• Optimize the simulation model in Facts analyzer, for instance, by indicating the decision 

variables that affect the outcomes of the whole model. 

Moreover, some other objectives of the optimization process are handled in this project like to 

minimize the required number of vehicles, decrease the capacities of line-side buffers and part buffers, 

reduce the length of conveyors, decrease the value of lead time and WIP. 

1.4 Limitations 

Discrete-event simulation (DES) is a stochastic and dynamic method that has random input variables, 

and the outputs are random as well. In other words, discrete event simulation is “the modeling of a 

system in which the state variables change only at a discrete set of points in time” (Banks et al.,2005). 

Thus, it is essential when applying this simulation approach to know when to stop modeling. The 

challenge is to realize how deep the details of a model should be to have supportive findings. This 

issue requires to have a set of assumptions during data collection and modeling processes of the system 

(Chung, 2003). A list of assumptions is defined to show the different suppositions about the collected 

data at the early stages of the project. Besides, during the model development. These assumptions are 

necessary to be considered to facilitate and simplify the comprehension of the conceptual model and 

the simulation model. It is essential to mention that the project is delimited to the internal logistics of 

the main shop floor, more specifically, to the material feeding of the lines. Appendix-1 shows a table 

containing the list of this study assumptions; for example, there is just one supermarket serving the 

four assembly lines. This means that all AGVs are going to visit it during each process of loading and 

unloading parts that form different products. Another assumption, for example, states that the traveling 

AGVs follow predetermined paths, meaning that the distances and time of each cycle are fixed -if there 

are no interruptions- since AGVs’ speed is assumed beforehand. 
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1.5 Thesis structure 

In this section, a brief explanation of the different chapters of this report is presented summarizing 

essential points of different sections. 

The current chapter of this thesis contains a description of the problem, aims and objectives, and 

limitations. Chapter 2 presents the literature review of the issues of vehicle scheduling and part feeding, 

including the previous works in this field. Additionally, subjects of discrete-event simulation and 

simulation-based optimization are covered. Chapter 3 covers the applied theoretical framework in 

detail. Moreover, the concept of multi-objective optimization and the selected algorithm for the 

optimization process are introduced. Following, the methodology of this project covered in Chapter 4, 

and it includes the research strategy, the philosophical paradigm, and the thesis methodology. This 

chapter also covers the simulation steps in detail, such as the problem formulation, model 

conceptualization, data collection, model translation, verification, and validation processes. The 

different what-if scenarios are discussed, as well. In Chapter 5, the obtained results are presented, 

analyzed, and discussed. Chapter 6 contains a discussion for the whole project and the results in 

particular. In the successive chapter, Chapter 7, the conclusions and the future work of this project are 

written. Section 8 presents different references for this project. The final chapter, Chapter 9, includes 

the various appendixes that are supplementary to this study. 
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2 Literature review 

Simulation is a technique used as a tool for analyzing, designing, and improving organizations’ 

systems. This technique has evolved, and its applications have grown considerably in the last decades 

(Uriarte et al., 2015 b). According to Ülgen and Upendram (2014), the simulation approach plays a 

vital role in designing an effective material handling system. They state that there has been an 

enormous growth of material handling technology and equipment types such as automated guided 

vehicles (AGV), electrified monorail systems (EMS), high-rise storage retrieval systems, 

computerized picking systems, computer-controlled conveyors and robots. 

Moreover, the simulation approach used in many places such as hospitals, companies, and 

manufacturing plants , and it represents the tool of change that helps the management to make the right 

decisions. The simulation approach can be classified into four phases; the conceptual phase, the 

detailed design phase, the launching phase, and the fully operational phase (Ülgen and Upendram, 

2014). Additionally, the simulation approach is applied in the industry field, and it is used to understand 

the system as well as to address intricate design, operational, and scheduling problems. 

Another prominent approach is lean manufacturing, which is considered one of the most applicable 

approaches in the field of industrial systems. The core idea is to maximize customer value while 

minimizing waste. The ultimate goal is to provide absolute value to the customer through a perfect 

value creation process that has zero waste (Jones and Roos, 2009). 

In addition to lean manufacturing, the optimization approach is used to find the extreme minima and 

maxima values of some objective functions. It has many applications, and for example, it gives the 

interaction between different parameters in the production process and gives the best arrangement of 

which the production methods can be applied, and the best values of different parameters can be 

obtained. 

The combination of the three previous approaches (simulation, lean, and optimization) gives the best 

results because it enables the user to have a variety of possible alternatives to deal with the case of 

concern. Besides, this combination is suitable for different kinds of studies, and it is widely applicable 

in the industry because it helps to overcome many issues related to technical difficulties such as low 

throughput and high lead time values. A comprehensive insight into this combination and how each 

approach interacts with the two other ones are given in the theoretical framework chapter.  
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This chapter provides a comprehensive insight into previous works that dealt with material delivery to 

the line or parts feeding. In the process of assembly lines part feeding, the focus is on material delivery 

policies. The different categories of part feeding policies (lineside stocking, kitting, Kanban-based 

policies) are reviewed. Then, the problem of vehicle scheduling and routing is explored.  Finally, the 

concepts of discrete-event simulation and simulation-based optimization are reviewed.  

2.1 Internal logistics  

Internal logistics is one of the most critical sections in manufacturing companies. It manages, arranges, 

and delivers the finished products. According to Boysen et al. (2015), in-plant logistics includes some 

processes starting with the receipt of parts, storing parts, sequencing of parts, and ending with delivery 

to the line and line-side presentation.  

In agreement with Kilic and Durmusoglu (2015), the structure of material delivery to line or part 

feeding system consists of three main components which are storage of parts, transport of parts, and 

part feeding policies. The first component is the storage of parts, and it includes four subcomponents, 

which are storage type, storage policy, storage accessories, and picking methods and policies. The 

second principal component is the transport of parts, and it composes of two subcomponents, which 

are material handling equipment selection and material handling equipment routing. Baudin (2004) 

stated that the right selection of a material handling system is essential and substantial for the efficiency 

and effectiveness of the system. Besides, the routing of the vehicles is essential during the parts feeding 

process. The last component is parts feeding policies, and the next section gives a brief explanation to 

it. 

2.1.1 Parts feeding policies 

As stated in Kilic and Durmusoglu (2015), the last main component of parts feeding is the parts feeding 

policies, and they are determined as line side stocking, kitting, Kanban-based feeding, and hybrid 

feeding. The following four sections give a brief explanation for policies of line-side stocking, kitting, 

and Kanban-based feeding. 

2.1.1.1 Lineside stocking feeding policy 

As reported by Luo et al. (2017), the first subcomponent of the parts feeding policies is a lineside 

stocking supply system in which large quantities of materials are supplied to a decentralized 

collaborative center at one time. In other words, the material is delivered to assembly lines directly 
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without storing them in a central warehouse, and this decreases the workload of operators in the 

middleman and alters the efficiency of distribution. 

Da Cunha and De Souza (2008) presented an integer programming reformulation to indicate the 

number of cycles and items assignment to containers. Their study aimed to fulfill the demand at the 

minimum operation cost.  

2.1.1.2 Kitting Feeding policy 

In this approach of material handling, the required parts of assembly operation are repackaged in pre-

stored kits before being delivered into assembly lines. According to Bozer and McGinnis (1992), the 

kit process is a particular aggregation of components that support one or more assembly operations for 

a specific order. In mixed-model assembly, each kit is prepared for a particular object which should be 

assembled. The kitting process could be classified as “stationary” and “traveling” (Bozer and 

McGinnis, 1992).  

In the stationary kitting, the kit is delivered to one workstation and remains there until it is depleted; 

while in the traveling kitting, the kit moves with the assembly object and supports several workstations. 

Kitting method has several advantages in the different aspects that related to the manufacturing process 

as follows: 

• Staff-hour consumption: Since the kitting could be presented close to the assembly lines, the 

time of fetching parts is reduced (Hanson and Medbo, 2011). Besides, kitting enables the 

assembler to have the required parts for a specific object without the need to search for them 

(Ding and Puvitharan, 1990; Johansson, 1991; Bäckstrand, 2009; Hua and Johnson, 2010). 

• Product quality and assembly support: Since the assemblers do not need to be worried about 

what the specific part to be assembled, they could focus then on the assembly process itself 

(Bäckstrand, 2009). Besides the easiness, kitting provides to the assembly process, it facilitates 

the learning process and as a result, reducing the learning time and improving the product 

quality (Hanson and Brolin, 2013). 

• Flexibility: Kitting offers more flexibility than the continuous supply method since only the 

necessary parts of one specific assembly object being presented at each workstation. Also, 

kitting supports the assembler by presenting the parts in a way that reflects the assembly 

operations (Bozer and McGinnis, 1992). 

• Inventory levels and space requirements: Kitting requires less space for different part 

numbers that have to be stored in racks beside assembly stations due to the reason that just 
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parts that support the assembly of one object have to be presented at a time (Hua and Johnson, 

2010).  

2.1.1.3 Kanban-based feeding policy  

As stated in Kilic and Durmusoglu (2015), this policy of part feeding depends on a decentralized 

storage area that serves as an intermediate point between the warehouse and the assembly lines. In the 

decentralized storage area (the supermarket), the required parts are handled to the assembly lines in 

containers, and the Kanban includes all information about the related parts that attached to each 

container (Faccio, 2014).  

There are two significant aspects of Kanban-based feeding system design, such as the Kanban number 

determination and the supermarket design. Regarding Kanban number optimization, the most common 

objectives are the maximization of average cumulative throughput and the minimization of average 

lead time and average work-in-process (WIP). There are many studies related to Kanban number 

optimization, which are studied and reviewed under Just-In-Time (JIT) systems (Kumar and 

Panneerselvam, 2007).  

A JIT milk-run part supply system is designed by Satoglu and Sahin (2013) to solve the routing and 

scheduling problems using the non-linear mixed-integer programming (MIP) model. The objectives 

were to minimize the total handled parts and the inventory costs, so the route construction algorithm 

was developed for this purpose. 

According to Emde et al. (2012a), an exact polynomial-time solution was proposed to decrease the 

levels of line-side inventory. They applied that solution to address the tow train loading problem, and 

they gave limited capacities to vehicles.  

Fathi et al. (2014) solved the problem of part feeding at mixed-model assembly lines concerning the 

Just-In-Time principle by introducing a mixed-integer linear programming model and a novel 

simulated annealing algorithm-based heuristic. The objectives of their study were to minimize the 

number of tours as well as the inventory level.  

Fathi et al. (2014b) added a new constraint to the previous study, which is the delivery time. The 

method that the authors proposed was a scheme that incorporates a local search procedure in the 

memetic ant colony optimization and is combined with a heuristic algorithm. 

De Souza et al. (2008) developed a model that indicates the appropriate quantity of each required item 

that has to be delivered during each trip of  vehicles. They used the MIP model, and then they suggested 

a procedure that adapts the greedy randomized search. 
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Faccio et al. (2013) used a decentralized storage area (supermarket) to feed assembly lines with the 

required parts. They aimed to propose a framework comprises of an integrated approach for static and 

dynamic problems that deal with Kanban and Supermarket systems to solve problems related to 

assembly lines, and the tow train sizing and management. In their case study, they stated that two 

aspects should be designed correctly: 

• The tow train size and management. 

• The level of inventory for each part related to the Kanban number at different lines.    

The main contribution to the knowledge of Faccio et al. (2013) is to provide a robust methodology that 

deals with complex supermarket/multiple mixed-model assembly line system. In that system, an 

integrated approach for the long and short-term is designed to solve the problem of fleet sizing and 

management.  

According to Emde and Boysen (2012b), the different factors that related to the supermarket concept 

can be classified into four categories:  

• Location, this determines the number and location of supermarkets that affect the parts number 

that each supermarket contains in order to deliver to the assembly lines. 

• Sizing, this determines the number of transported vehicles, tow train in particular that assigned 

to the supermarket and decide their route and exactly where to start and where to finish. 

• Scheduling, this means to assign a different schedule for each tow train for supplying parts to 

assembly lines. 

• Loading, this is primarily about deciding on the number of parts to be loaded to assembly to 

assembly lines per trip. In other words, minimize the inventory at each station and avoid the 

shortage problem at the same time, and it requires having the capacity of each wagon as a 

constraint. 

Battini et al. (2015) introduced a framework that deals with the material feeding into assembly lines. 

They divided the conceptual model into two sections; the first one aims at crucial input parameters and 

qualitative guidelines. The second part focuses on the transportation mode selection. They introduced 

a holistic classification of the in-house logistic problem: 

• Warehousing modality either centralized or decentralized by using the supermarket. 

• Transportation system; shuttle, tow train, or AGV. 

• Line-side presentation of materials either using the traveling kit or station kit or lot-wise bins. 
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They drew some conclusions related to the part-feeding problem and transportation system choice. For 

the first part, they found that applying three different sub-phases is good and gives reliable outputs. 

For the second part, they Figured out that it is strongly affected by four parameters: 

• How many meters that vehicle has traveled during each cycle. 

• The number of working stations. 

• The assembly line takt time. 

• The number of traveling kits by station per takt. 

Nourmohammdi et al. (2019) developed a mixed-integer programming (MIP) model to deal with 

the problem of integrated supermarket location and transport vehicle selection (SLTVPS). For 

large-sized problems, the writers proposed a hybrid genetic algorithm (GA) with the variable 

neighborhood search (GA-VNS). The authors compared the GA-VNS against the MIP, GA, and 

simulated annealing (SA) algorithm. The computational results of several generated test problems 

and a real case showed that the suggested GA-VNS surpass GA and SA while it gives an excellent 

estimation of the MIP solutions concerning computational time. The analysis of the final results 

shows that it is more advantageous to apply different types of transport vehicles than the identical 

vehicles of SLTVSP for this real case study. 

Eskandari et al. (2019) addressed the problem of assembly line balancing and supermarket location 

problem by developing a two levels hierarchical mathematical programming model. In the first 

level, the authors resolved the stochastic assembly line balancing problem by minimizing the 

workstation numbers. In the second level, the issue of supermarket location was solved by 

optimizing the part feeding shipment, inventory, and installation cost. The results verified that the 

proposed model is beneficial in optimizing the configuration of assembly lines considering the 

performance measures of assembly line balancing and supermarket location problems.  

2.1.2 Vehicle scheduling and routing 

As reported by Bodin and Golden (1981), vehicle scheduling is a sequence of loading and unloading 

points during each trip associated with fixed starting and ending times. They define as well the vehicle 

routing as the action of the sequencing of pickup and delivery points that vehicles should follow to 

deliver the required materials to their final destination starting and ending at the depot.  

Numerous studies that deal with vehicles scheduling and routing are available in the literature, 

Vaidyanathan et al. (1999) addressed the problem of vehicle routing to deliver materials in a JIT 

production plant. The objectives of their study were to minimize vehicle idle times and customer 
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inventories. The writers proposed a heuristic approach consists of two stages to solve such a problem. 

In the first stage, they used a nearest neighbored algorithm to find possible routes, while they used a 

three-opt heuristic to improve these routes in the second stage. 

Choi and Lee (2002) developed a dynamic feeding algorithm to solve the combined problem of 

loading, routing, and scheduling of tow trains for delivering materials to predetermined depots. The 

main objective of the previous study is to minimize the transportation time that is needed to feed lines 

with the required quantity of parts references.  

Golz et al. (2012) addressed the problem of vehicle scheduling and routing in a case study of the 

automobile industry. The principal objective was to minimize the number of drivers required to operate 

vehicles, and in order to achieve that they developed a heuristic solution procedure consists of two 

steps. Firstly, transportation orders are identified based on the part code, production sequence, 

destination, and due dates. In the second step, those orders are consigned to tours of the shuttle system.  

Kilic and Durmusoglu (2013) addressed the scheduling and routing problems with the objectives of 

minimizing transportation costs and WIP. They proposed a linear Mixed-Integer-Programming (MIP) 

model consists of two phases. In the first phase, routes are constructed, and workstations were assigned 

to them, while the second phase aimed to minimize the number of tours by increasing the times 

between sequent routes. 

Kozan (2000) proposed a genetic algorithm in order to obtain the best assignment of delivery jobs and 

the sequence of deliveries for each vehicle. The results showed that this approach was successful in 

decreasing the total transportation time, including loading and unloading times.  

A mathematical model, along with the network simplex algorithm, has been proposed by 

Fazlollahtabar and Hassanli (2018) to solve the problem of simultaneous vehicle scheduling and 

routing. The objectives of their study were to minimize the transportation cost and penalties of 

tardiness and earliness.  

Zhuliang and Zhenxin (2014) suggested a mathematical model and hybrid particle swarm optimization 

algorithm to solve the physical delivery problem in mixed-models assembly lines (MMALs) using 

AGV’s and automated storage and retrieval systems (ASRS). This study aimed to minimize the 

materials transportation costs, materials transportation time, and materials storage.  

Rao et al. (2013) inspected the routing for one vehicle to supply parts to MMALs. They embraced the 

method of variant backtracking and a hybrid metaheuristic to minimize the total inventory and 

traveling costs. However, part-dependent inventory at different stations has not been taken into account 

in their work.  
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The JIT hoist scheduling of the automotive assembly lines problem was investigated by (Boysen and 

Bock, 2011). They used the bounded dynamic programming (DP) and simulated annealing (SA) 

heuristic approach to minimize the maximum weighted inventory level at workstations. In their study, 

part-dependent inventory weight was considered in the objective function. However, the author did 

not take into consideration the optimization of parts quantity within each delivery, and this led to 

material shortages. 

The simulation approach is recommended to be used when the behavior of the system is complex, 

stochastic, and dynamic (Uriarte et al., 2015b). The discrete-event simulation is what can be used in 

case of studying part feeding systems and vehicle scheduling and routing because of the stochastic and 

dynamic nature that exists in such subjects. The next section gives a brief explanation of the discrete-

event simulation approach, and some studies dealt with the problems of part feeding and vehicle 

scheduling and routing using such an approach.  

2.2 Discrete-Event simulation 

As mentioned above, the number of papers that talk about vehicle scheduling, in particular, are 

numerous. However, they concentrate on mathematical models or heuristic algorithms. On the other 

hand, a small number of papers that talk on the topic of vehicle scheduling and follow the discrete-

event simulation approach is available. Negahban and Smith (2014) stated that only 290 papers 

published from 2002 to mid-2013 on the application of discrete-event simulation in manufacturing.  

In agreement with Banks et al. (2005), a discrete-event system simulation (DES) is “the modeling of 

systems in which the state variables change only at a discrete set of points in time.” DES is presented 

in many real-world applications that include the analysis of manufacturing systems, healthcare, 

production lines, and more.  

Lin et al. (2017) proposed a discrete-event simulation model that addresses the simultaneous 

scheduling of vehicles and machines in flexible manufacturing systems. The purpose of the model was 

to assess the performance of scheduling decisions after including some random factors like undefined 

process time, deadlock. They used a combination of GA and local search to explore the best design 

based on simulation output, and they embedded the Optimal Computing Budget Allocation (OCBA) 

with L-GA to allocate the number of replications for reducing simulation replications.  

Lacomme et al. (2005) addressed the scheduling problem by introducing a technique so-called branch-

and bound that was coupled with a discrete-event simulation model. The branch-and-bound focuses 
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on the sequencing of job-input, and this means to determine the order in which the job enters the 

manufacturing system. The discrete-event simulation model aims to evaluate this job sequence under 

machine dispatching rules and the given vehicle. The objectives of their study were to determine the 

job input sequencing and vehicle dispatching problem, and they included the dynamic behavior as well 

as the input and output buffer capacities as constraints.  

Korytkowski and Karkoszka (2016) developed a discrete-event simulation model that contains an 

operator follows the milk-run method to deliver material to ten work stations that assemble different 

parts to form the final good. Some disturbances have been introduced to the model, such as time 

variability of technological operations and delays in the supply cycle. The decision variables that 

control the model like buffer capacity, supply cycle duration, and takt time presence or absence were 

introduced. The authors concluded that the operator of milk-run with a three-run bin system reduces 

the impact of variations and workstation starvation drops by one third. Besides, their study showed 

that there is no need to leave any safety time because the system will be rapidly compensated when 

any unforeseen disturbances are causing delays to appear. 

According to (Uriarte et al., 2015b), the main drawback of the simulation approach is the amount of 

time that it takes to perform the different experiments. Moreover, the knowledge about optimum 

configurations of the system is not guaranteed. Hence, the optimization approach comes to address 

these issues, where it combined with simulation to form a practical approach so-called Simulation-

Based Optimization (SBO). The next section gives a short explanation to SBO and some available 

studies that adapted it in the branch of internal logistics systems.  

2.2.1 Simulation-based optimization for internal logistics system 

Simulation-based optimization or numerical optimization is a method in which optimization 

techniques are integrated into simulation analysis Nguyen et al. (2014). Once a system is modeled, 

computer-based simulation provides information about the system’s behavior using a method known 

as ‘parametric simulation method.’ In this method, the input of each variable is varied with keeping 

other parameters constant to observe the effect on the designed objectives. This is time-consuming and 

results in partial improvement because of the complex interactions of input variables on the results. 

Hence, numerical optimization represents a perfect solution to such a problem since it helps with 

finding the optimal solution with minimum computational time (Nguyen et al., 2014).    

Matta (2008) presented mathematical programming representations to describe the behavior of a 

discrete-event simulation-based optimization system. The author proposed three formulations to solve 
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the buffer allocation problem in flow lines with finite buffer capacities. The three formulations were 

an exact mixed-integer linear model, an approximate linear programming model, and a stochastic 

programming model. The results showed that the computational time required to solve the problem of 

the allocation could be significantly reduced by using these formulations. 

Mahfouz et al. (2011) developed a simulation-based optimization model to evaluate the lean principles 

in packaging manufacturer with regards to three performance measures, namely WIP, workforce 

utilization, and cycle time. They concluded that the demand rate seemed to have a contradicting effect 

on the three performance measures, and the minimum cycle time and WIP can be achieved when 

applying a low demand rate. 

Pichitlamken and Nelson (2002) proposed a simulation-based optimization algorithm where a discrete-

event simulation is used to measure the performance of the system. The objective of their study was to 

maximize the average output of a flow line by indicating the best buffer allocation and service rates. 

The proposed framework substantiated its effectiveness in achieving an excellent empirical 

performance while maintaining a global convergence guarantee.  

Through a case study, Syberfeldt and Lidberg (2012) developed a simulation-based optimization 

model of an engine manufacturing line. The objectives of this study were to maximize machine 

utilization and minimize bind capital. For this purpose, they used one of the metaheuristic algorithms 

so-called Cuckoo search to perform the simulation-based optimization. The results showed that the 

combinatorial nature of the optimization problem causes difficulties for the Cuckoo search algorithm 

and that algorithm best suits for continuous optimization problems. 

A review of the literature revealed that internal logistics had been a hot topic for scholars in recent 

years due to its significance in manufacturing and industrial fields. In this regard, this study tackles the 

problem of vehicle scheduling by developing a discrete-events simulation-based optimization model 

that depends on kitting as the feeding policy. 

It is worth noting that the improvement criteria considered in this study are to minimize the number of 

vehicles and inventory levels while disallowing shortage. Moreover, the vehicle capacity is considered 

as a constraint in this study. The next chapter explores the theoretical framework and explains the 

concept of multi-objective optimization using the NSGA algorithm since the model is a simulation-

based optimization one.   
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3 Theoretical framework 

In this chapter, a comprehensive description of the theoretical framework, which is Lean Simulation-

based optimization (LeanSMO), is presented. Moreover, the concept of evolutionary multi-objective 

optimization and the selected algorithm to perform the optimization process, which is the Non-

Dominated Sorting Genetic Algorithm (NSGA-III), are described. 

3.1 Lean Simulation-based Optimization Framework  

The theoretical framework for this project based on the Lean Simulation-based Optimization 

framework proposed by (Uriarte et al., 2015b). The combination of Lean, Simulation, and 

Optimization approaches is advantageous in dealing with manufacturing problems because it enables 

the user to have a variety of feasible options to deal with a particular case, and this is because of the 

effectiveness of that combination. This combination helps in overcoming the weaknesses of each 

previous approach and continuously improves the processes in a better way than applying them alone 

(Uriarte et al., 2015b). The advantages of each approach would be mentioned in separate sections in 

order to give a clear insight into the superiority of this framework. 

3.1.1 The advantages of the Lean approach 

Lean manufacturing is undoubtedly one of the most applicable approaches in the field of industrial 

systems. The core idea is to maximize customer value while minimizing waste. The ultimate goal is to 

provide absolute value to the customer through a perfect value creation process that has zero waste. 

Lean thinking has a primary effect on the system being developed and that effect represented in 

changing the focus of management from optimizing separate assets and the vertical department to 

optimizing the flow of products and services through value stream that flows horizontally across the 

department to customers (Jones and Roos, 2009). 

Moreover, lean thinking is flow focused orientation; this means that it values the flow of the different 

operations, which will lead to the final product. More broadly, the flow must go horizontally from the 

last process to the earlier one following the pull system focusing on the whole production process, not 

on each process in isolation. 

Furthermore, lean concerns on the cost, lead time, and value-added percentage. The less lead time and 

cost are for the operation process to be done, the more waste will be removed, and the more value-

added work obtained, the more waste will be eliminated in the whole system. 
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3.1.2 The advantages of Simulation 

The simulation process gives the interaction between different parameters in the production process. 

It gives the relationship of different variables and how they affect each other, and it has many 

advantages, such as (Uriarte et al., 2015b): 

• Experimentation could be conducted on the part of an industrial system or even on the whole 

system without the need to disturb the actual system. The simulation process can be done in a 

compressed time and on an expansion time by activating the slow-motion option. 

• The analysis of new machines, the physical layout could be run to determine the degree of 

profitability in case of acquiring new equipment.  

• Eases the analysis of complex systems, reducing the requirements of analytic analysis.  

• The simulation model offers the visualization feature by which the designer can demonstrate 

the new design and explain the improved alternatives of the existing system. 

• How different variables interact with each other and what are the possible reasons that make a 

system operates in a particular way as well as bottleneck detection could be obtained by running 

the simulation process. 

• Hypotheses about why and how certain phenomena occur can be tested.  

• What-if scenarios can be tested, and the best one that is appropriate to the case under study 

could be presented to the management. 

3.1.3 The advantages of Optimization 

Finally, optimization helps in improving the result that derived from the simulation model, and it is a 

very effective way since it has some intrinsic advantages such as (Uriarte et al., 2015b): 

• The information gained from the optimization process is precious for the decision-makers, 

especially when the conflicting objectives have to be analyzed. 

• The simulation process alone does not guarantee to get the optimum results, and the process of 

multiple what-if scenarios takes a long time. Thus, using the simulation in combination with 

the optimization is the best solution.  

• The optimization results will show if the simulation model is correct or not.  

In the next section, a brief explanation about how lean, simulation, and optimization can be 

interconnected with different purposes is presented (Uriarte et al., 2015b). 
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3.1.4 The interaction between lean, simulation and optimization with different 

purposes 

The aim of lean, simulation, and optimization framework is to support decision-makers when 

designing and improving their systems. The combination of the three previous approaches helps in 

getting rid of the drawbacks of each approach. There are three purposes in which lean, simulation and 

optimization are interacting with each other as follows: 

• Educational purpose: The simulation model is used to teach lean concepts to employees of 

any organization. Besides, the simulation model can be used to train personnel in different 

working procedures of the company.  

• Facilitating purpose: The simulation model can be used to ease the discussion during  Kaizen 

meetings in which the improvement process is discussed continuously by the concerned team 

responsible for that particular process. Besides, it can be an alternative for Value Streaming 

Map to help in the understanding of the process of manufacturing operations. 

• Evaluation purpose: The simulation model can be used to evaluate the entire process in 

different stages, as follows: 

• Evaluation of the current state: The current state is the starting point for any simulating project, 

and the simulation model can play a principal role in clearing the picture of the real situation 

by providing a quantitative and dynamic evaluation. 

• Evaluation of the future target condition: the simulation model can offer the opportunity to 

analyze the different possible scenarios before the need to implement them in the basic layout 

and check the alternative results. Besides, lean principles could be executed through this model, 

such as JIT, Pull or Push, CONWIP... 

• Evaluating the implementation: The simulation model also has a significant role in evaluating 

the implemented desired design by showing the results and ambitioned outcomes to check the 

success of that design. Additionally, failures to implementation can also be evaluated by 

comparing the current state with the future condition and run the optimization for having the 

optimal configuration. 

The following figure, Figure 2, illustrates the LeanSMO framework and how lean interacts with the 

simulation-based optimization (SMO) for each stage of LeanSMO.  
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Figure 2. Lean and Simulation-based Optimization framework (Uriarte et al., 2015b) 

As appreciated in figure 2, the role of lean tools and SMO are presented for every step of the LeanSMO 

framework. In the phase of target condition design and evaluation, the Kaizen workshop, for instance, 

can be selected as a lean tool to assess the results of designed simulation scenarios and improve the 

best situations by performing an optimization process. The next section explains the evaluation purpose 

of the LeanSMO framework. 

3.1.5 The evaluation purpose of LeanSMO framework 

The main aim of this section is to provide a powerful tool to enable decision-makers to analyze 

different possible scenarios by combining lean, simulation, and optimization in different ways and 

different stages (Uriarte et al., 2015b). The description of different evaluation steps can be discussed 

accordingly.  

• Evaluate current state: The primary purpose of this stage is to get an insight into the actual 

system situation. Lean tools such as Value Stream Mapping are very significant in this stage to 

enable the designer to develop the simulation model. In this step, the required data is collected 

to build the simulation model. In this case study, some data collection techniques like 

interviews and existed documents have been used to gather the necessary data about the current 

state. 

• Define target and target condition: The main aim of this stage is to define the target and 

target condition. In this stage, objectives will be set as the target condition that has to be done 

or achieved. As mentioned before, in the thesis objectives section, the main objective is to 
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introduce a new material handling system for the proposed layout of the main shop floor for 

the factory.  

• Design and evaluate target condition: The main goal of this stage is to have alternative 

system configurations that match the predefined target condition. Improvement options, design 

rules can be obtained to treat them as input for decision making. In this stage, the conceptual 

model is translated into the final simulation model that satisfies all design requirements.  

• Implementation: The fundamental purpose of this step is to execute the future scenario, which 

previously defined as a target condition. Lean principles like poka-yoke, JIT, Kanban, and 5S… 

are significant to help to evaluate the obtained results. This step is out of the scope of the thesis; 

therefore, the last step in this thesis is to design and evaluate target conditions.  

The previous steps of the evaluation purpose of the LeanSMO framework are presented in Figure 3. 

Figure 3. Steps of evaluation purpose of LeanSMO framework (Uriarte et al., 2015b) 

As appreciated in Figure 3, the first step is to recognize the current conditions to be able to indicate 

the project’s goals. Then, the phase of model designing and evaluating starts. After that, a decision 

would be made for implementation or not after assuring that the model satisfies the design 

requirements. The next sections provide a full description of evolutionary multi-objective 

optimization, the concept of dominance, the Non-dominated sorting Genetic Algorithm (NSGA-II), 

and its extension (NSGA-III). 
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3.2 Evolutionary Multi-Objective Optimization (EMOO) 

A multi-objective optimization problem (MOO) is a process of altering several objective functions, 

whether to maximize or to minimize them (Deb, 2011). The general form of (MOO) could be stated 

as follows:  

                         Minimize/Maximize    fm(x) ,                       m = 1, 2…, M; 

                                                  Subject to   gj(x)  ≥ 0,                 j = 1, 2..., J; 

                   hk(x) = 0                  k = 1, 2..., K; 

                   xi
(L) ≤ xi ≤  xi

(U),     i = 1, 2..., N; 

The interpretation of above expression is, the optimization process of function F of a defined variable 

X and M objectives could be achieved under a set of inequality and equality constraints (J, K) that must 

be satisfied and within the upper and lower variable bounds. 

The objective function could be any aim that must be achieved or satisfied in the study area, and in 

this case, the manufacturing field is the subject of interest. The most common ends in the industrial 

field are the great trade-off between throughput and WIP beside the lead time and buffer allocation. In 

multi-objective optimization, the set of compromise optimal solutions is found by considering all 

objectives to be important. Then, the user can use higher-level qualitative considerations to make a 

choice.  The main goals of multi-objective optimization could be as follows (Deb, 2011): 

• Looking for the solutions that lie on the Pareto-optimal front, which can be convex, concave, 

or fragmented. 

• Looking for solutions that are diverse enough to represent the whole Pareto-optimal front.   

The Pareto-optimal front is a set of solutions that are not dominated by the rest for the same set of 

functions (Sumper et al., 2013). Thus, Pareto optimal solutions can be seen as an optimal trade-off 

between objects because, under the concept of optimality, it is impossible to improve one objective 

without degrading the others. In the Pareto-optimality problem, four high scenarios could be 

generalized and used to solve any multi-objective cases. The following figure, Figure 4, shows those 

scenarios by displaying Pareto-optimal front, ideal, and non-ideal solutions for four possible 

combinations of the two kinds of objectives (Shahhosseini et al., 2016). 
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Figure 4. Pareto set for four combinations of two types of objectives (Shahhosseini et al., 2016)  

3.2.1 The concept of dominance 

The concept of dominance is the base principle in multi-objective optimization field, and the 

dominated solution must meet satisfied two conditions (Deb, 2011): 

• The dominated solutions are not worse than the other solutions for all objectives. Thus, all 

solutions are compared based on their objective functions.  

• The dominated solutions are better than the other solutions in at least one objective.  

3.2.1.1 The mathematical representation of the dominance concept 

For any x1, x2 ∈ S, the solution x1 dominates x2 if and only if,   

• Fi (x1) ⋫ Fi (x2) ∀ i = 1,2, 3..., M → x1 is not worse than x2 in any of the objectives. 

• ∃ j such that Fj (x1) ⊲ Fj (x2) ∀ j ∈ {1,2, 3..., M} → x1 is better than x2 in at least one of the 

objectives. 

The denotation of “x1 dominates x2” is x1 ≼ x2. For the case in which x1 is better than x2 in all 

objective functions, then it is possible to say that x1 is strictly dominated x2, and the denotation is x1 

≺ x2. If neither x1 ≼ x2 nor x2 ≼ x1, then it could be read as “x1, x2 are equivalent” or “x1, x2 are 

non-dominated concerning each other,” and the denotation is x1 ∥ x2. 
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3.2.2 Multi-Objective Optimization Using NSGA-II 

In this section, an evolutionary multi-objective optimization algorithm so-called Non-Dominated 

Sorting Genetic Algorithm “NSGA-II” is explained. Kalyanmoy Deb introduced this algorithm, and it 

proved its effectiveness in the field of multi-objective optimization and finding the optimal Pareto set 

in particular. The NSGA-II procedure is performed as follows: 

I. The algorithm starts with population initialization in which the population is initialized based 

on the range of the problem. The parent population (Pt) is initialized, which related to the input 

variables. Then population (Rt) at time t is created by joining the offspring population (Qt) and 

parent population (Pt) where the child population is produced from parent one by genetic 

operators such as crossover and mutation (Deb et al., 2002). 

II. Afterward, for the initial population (Rt), the non-dominated sort takes place in a manner that 

elitism from the previous generation is preserved (Deb et al., 2002):  

o For each individual p in main population P: 

▪ Initialize Sp = ∅; this is the set of solutions in P that p dominates. 

▪ Initialize ηp = 0; this is the number of solutions that dominate P. 

▪ For each individual q in P 

• If p dominates q then 

- Add q to the set Sp, Sp = Sp U {q}. 

• Else if q dominates p then 

- Increase the domination counter for p, ηp= ηp+1. 

▪ If ηp = 0, this means that no individuals dominate p, then it would be the first 

rank, Prank = 1. The first rank is updated, F1 = F1 U {p}. 

o The previous step is repeated for the whole individuals in the main population set P. 

o Initialize the front counter to one, i =1.  

o While Fi ≠ ∅ , do the following: 

▪ Set Q = ∅ for sorting solutions of the next rank (i + 1)th. 

▪ For each individual p in Fi front do 

• For each q in Sp  

- Decrease the domination count for individual q, ηp = ηp -1. 

-  If ηp= 0, then none of the individuals in the subsequent fronts 

dominates q.  Thus, the set Q is updated, Q = Q U q. 

▪ Increase the front counter by one. 
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▪ Set Frank = Q. 

III. The next step is to apply the Crowding Distance Comparison for the same rank, which does 

not fit entirely in the next set of the parent population (Pk+1). This step can be explained in more 

details as follows (Deb et al., 2002): 

o For each front Fi, n is the number of individuals 

▪ Initialize the distance to be zero for all the individuals, Fi(dj) = 0, where j 

corresponds to the jth individual in front Fi. 

▪ For each objective function m 

• Sort the individuals in front Fi based on objective m, i.e., I = sort (Fi, m). 

• Assign infinite distance to boundary values for each individual in Fi, i.e., 

I(d1) = ∞ and I(dn) = ∞. 

• For k = 2 to (n-1) 

𝑰(𝒅𝒌) =  𝑰(𝒅𝒌) + 
𝑰(𝑲 + 𝟏).𝒎 − 𝑰(𝑲 − 𝟏).𝒎

𝒇𝒎
𝒎𝒂𝒙 − 𝒇𝒎

𝒎𝒊𝒏
 

Equation 1. Crowding distance calculation 

Where, I(k).m is the value of the mth objective function of the kth individual in I. 

Thus, the idea behind the crowding distance process is sorting solutions of the same rank in decreasing 

order. The higher crowded the solution is, the lower the crowding distance would be, and this is against 

the second feature of NSGA-II, which indicates that the solutions should have a crowded high distance 

(more diverse). 

IV. The successive step is the best solution Selection process, and this step is performed after 

sorting all individuals based on non-dominated then crowding distance value. The selection is 

carried out using a crowded-comparison-operator or crowded tournament selection as follows 

(Deb., 2002): 

o Non-dominated rank in which individuals have their rank as Prank = i. 

o Crowding distance Fi (dj). 

▪ If P ≺ q 

▪ Prank ≺ qrank. 

• If q ≺ p 



       A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines 

Osama Marwan Altrabulsy                25    

▪ qrank ≺ Prank. 

• If p and q fall in the same rank then 

 If I (p) > I (q), then p wins the tournament.  

 If I (p) < I (q), then q wins the tournament.  

 If I (p) = I (q), then q or p are chosen randomly.  

V. The next step is Genetic Operators Applying; the two genetic operators are Simulated Binary 

Crossover (SBX) and polynomial mutation (Deb et al., 1995). 

o Simulated Binary Crossover (SBX): This kind of crossover is the best fit for the case 

study of this project because it is suitable for problems that were having discrete-

continuous search space like the current project. Moreover, Deb et al. (1995) argued 

that this type of recombination found to be particularly useful in problems having 

multiple optimal solutions with a narrow global basin. In this type, the mean value of 

children is equal to the mean value of parents, and the two resulted children are 

symmetric concerning the two parents. The steps of (SBX) could be written as follows: 

▪ Pick pairs of individuals from the top of Mk. 

▪ Generate random number r between 0 and 1. 

▪ If r ≤ 𝑝c    then 

• Assign a value of 0.5 to the crossover probability. 

• Calculate the probability distribution of the spread factor:  

𝒑(𝜷) = {

𝟎. 𝟓(𝜼𝒄 + 𝟏). 𝜷
𝜼𝒄         𝒊𝒇 𝜷 ≤ 𝟏    

𝟎. 𝟓(𝜼𝒄 + 𝟏).
𝟏

𝜷𝜼𝒄 +𝟐
  𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

 

Equation 2. The probability distribution of the spread factor  

Where, 𝜼𝒄 ≥ 0 is the distribution index,  𝛽 = |
𝐶2−𝐶2

𝑃1−𝑃2 
| represents the spread factor. 

• Choose a random number u between 0 and 1. 

• Calculate the βu as follows: 
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𝜷𝒖 =

{
 
 

 
 (𝟐𝒖)

𝟏
𝜼𝒄+𝟏

 
                 𝒊𝒇 𝒖 ≤ 𝟎. 𝟓  

[
𝟏

𝟐(𝟏 − 𝒖)
]

𝟏
𝜼𝒄+𝟏

     𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 

 

Equation 3. The spread factor of random number u 

• Create children using the following formulas: 

C1, k = 0.5[ (1-βk). P1, k + (1+βk). P2, k ]. 

C2, k = 0.5[ (1+βk). P1, k + (1-βk). P2, k ]. 

Where Ci, k is the ith child with Kth component, pi, k is the selected parent. 

▪ Else if r > 𝑝c   

• Place the two individuals directly in Rk. 

▪ Repeat all previous steps until Rk has the population size N. 

o Polynomial mutation (PM): After applying (SBX), the mutation operator can be 

performed. The polynomial mutation is the best fit with this case study due to the reason 

that it enables to mutate the whole search space of the decision variable even though 

the value to be mutated is close to one of the boundaries. As a result, the optimization 

has better chances of escaping the local optima and modify a solution when it exists on 

one of the two boundaries. The steps of (PM) could be written as follows: 

▪ Pick each from the top of Rk. 

▪ For each variable Pk having the lower and upper bounds [Pk
(L)

, Pk
(U)] do: 

• Generate random number r between 0 and 1. 

• If r ≤ 𝑝m   then      

  Let P1 be the parent. 

  Create the child using the formula of probability distribution: 

(𝜹) =  𝟎. 𝟓(𝜼𝒎 + 𝟏) (𝟏 − |𝜹|)𝜼𝒎 

Equation 4. The probability distribution of polynomial mutation 

Where:  δ =
𝐶1− 𝑃1

 𝑃𝐾
(𝐿)
−𝑃𝐾

(𝑈) 
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• Create a random number u between 0 and 1. 

• Calculate the polynomial distribution as follows: 

𝛅𝒌 = {
(𝟐𝒖)

𝟏
𝜼𝒎+𝟏 − 𝟏               𝒊𝒇 𝒖 < 𝟎. 𝟓

𝟏 − [𝟐(𝟏 − 𝒖)]
𝟏

𝜼𝒎+𝟏     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

Equation 5. The absolute difference in offspring values 

where 𝜂𝑚  ≥ 0 distribution index, 𝑢: a random number between (0,1). 

• Create a child using the following formula: 

    𝐶1 = 𝑃1  +  (𝑃𝐾
(𝐿) − 𝑃𝐾

(𝑈))𝛿𝑘        

VI. The last step is the Recombination and Selection. The children population is joined with the 

current generation population, then the selection is performed based on the non-domination, 

and this ensures the elitism. The whole previous steps should be repeated to generate 

subsequent generations. The following figure, Figure 5, shows a representation of NSGA-II 

procedure, according to (Shahhosseini et al., 2016). 

Figure 5. Schematic of the NSGA-II procedure (Shahhosseini et al., 2016) 
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3.2.3 NSGA-III 

It is an extension of NSGA-II, so all operators are almost the same. However, the selection parameter 

differs significantly from NSGA-II, wherein the best members from the last non-dominated front are 

selected regarding the supplied reference points (Ibrahim et al., 2016).  

First, the values of different objectives are normalized regarding members of St, which is the selected 

population, including the last non-dominated front Ft. Then, the population members of St and Ft are 

associated with a reference point that is closest to a population member in the objective space. After 

that, the associated population members from Pt+1 = St are counted. The procedure of NSGA-III is 

explained briefly, as follows (Ibrahim et al., 2016):  

• 𝑃0 = Initialize population () % uniform random 

• 𝑍𝛾 = Generate Reference Points ()  

• While termination criteria are not met, do 

• St = ∅, i = 1;  St: the population selected so far including the last non-dominated front 𝐹𝑙   

• 𝑅𝑡 = 𝑃𝑡 ∪ 𝑄𝑡;  𝑅𝑡: the combined population, 𝑄𝑡: offspring population, 𝑃𝑡: parent population 

• (F1, F2…) = Non-dominated-sort (𝑅𝑡) 

• Repeat 

• St = St ∪ Fi and i= i+1 

• Until |St | ≥ N; N: the population size 

• Last front to be included:   𝐹𝑙   =   𝐹𝑖 

• If |St | = N then 

• 𝑃𝑡+1= St, break 

• Else 

• 𝑃𝑡+1=𝑈𝑗=1
𝑙−1 𝐹𝑗 

• Pointes to be chosen from 𝐹𝑙  : K = N - |Pt+1| 

• Normalize objectives 

          Normalize 𝑓𝑛, 𝑆𝑡, 𝑍
𝑟 , 𝑍𝑠, 𝑍𝑎 ; 𝑍𝑟:normalized hyper-plane. 

• Associate each member s of St with a reference point: [𝜋(𝑺), 𝑑(𝑺)]= Associate St, 𝑍
𝑟% 

           𝜋(𝑺): closest reference point, d: distance between s and 𝜋(𝑺) 

• Compute niche count of reference point 𝑗 ∈  𝜌𝑗 = 𝑍𝑟 : ∑ ((𝜋(𝑺) =𝒔∈𝑆𝑡/ 𝐹𝑙  𝑗 ? 1: 0) 

• Choose K members one at a time from 𝐹𝑙   to construct P𝑡+1 Niching (K, 𝜌𝑗 , 𝜋, 𝑑, 𝑍
𝑟 , 𝐹𝑙 ,𝑃𝑡+1) 
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• End if 

• End while                                        

The main goal of the NSGA-III algorithm is to generate well-converged and well-distributed sets of 

solutions over multiple runs. As in NSGA-II, four control parameters are also introduced, and they are 

SBX probability, polynomial mutation, crossover distribution index, and mutation distribution index. 

As reported by Mytilinou and Kolios (2017), NSGA-III behaves better when the number of objectives 

is more than four parameters, and the results appear to be more uniform, and specific pairs of objectives 

are complete in terms of the distances between any points and more precious in terms of some points 

within a relatively narrow area.  
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4 Methodology 

In this section, the research strategy of this project, the philosophical paradigm, and the simulation 

method are presented. Additionally, the steps used to develop this project are described; this includes 

steps such as data collection, the conceptual model, the simulation model, and what-if scenarios. 

In Figure 6, it is possible to see how the general tasks of this project are performed. Every step has to 

be developed in order to reach the correct performance of the improvement methodology.  

Figure 6. Project implementation steps 

As shown in Figure 6, the first step in this project is the definition of the objectives. They have been 

defined based on the requested goals and tasks of the project. With these objectives, it is possible to 

get a general idea of the assignment of this project. It is crucial to take into account the necessary 

processes, resources, and staff into the simulation model. 

The next step is the construction of the conceptual model; it requires significant attention to avoid 

possible changes that come afterward. For this reason, when the conceptual model is accurately 

studied, built, and checked, it is possible to go to the next step: to build the simulation model.  

In the step of constructing the simulation model, all the required operations are represented to 

understand the system. The model has to be validated and verified to check that the simulation 

represents the system as it is, without any failure, and with all requirements needed to build up new 

scenarios.  

The next step is to perform system analysis. The model has to be revised to find all possible weaknesses 

of the real system. In this part of this project, “what-if” scenarios are defined to check the possible 
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improvements in the existing configuration of the system. In the next section, the research strategy of 

this project is presented. Then, the philosophical paradigm required for this research strategy is 

presented after then. 

4.1 The research strategy 

The appropriate research strategy for the project is design and creation because the primary outcome 

is an artefact or an IT product. The IT product is the developed simulation model that represents a 

tangible end-product. However, this study focuses on the development method implemented to build 

the simulation model. In more detail, a comprehensive explanation of the different steps followed to 

get this study finished is presented. After analyzing the system and based on the different what-if 

scenarios, the model then has to be optimized, and the final results indicate the functionality of the 

developed model. This strategy of design and creation is a problem-solving approach, and it generally 

consists of five repeated steps: 

• Awareness: The first step is to recognize the situation, then try to suggest some possible 

solutions. The number of vehicles that visit assembly lines and the inventory level at every 

lineside can be the main objectives that should be addressed. 

• Suggestions: As the main goals are indicated, the suggestions for the defined problem can be 

set. IT product, which is a simulation model, is developed to tackle and achieve the objectives.   

• Development: The IT artefact has to be developed based on a theory, and this theory must be 

rigor and valid. For the simulation model, a lean and simulation-based multi-objective 

optimization was considered to be the best approach in this project since it has all the required 

steps, which consist of the leading theory.  

• Evaluation: The resulted product then has to be evaluated to test and check its validity. For 

the simulation model, the responsible company persons of the project and simulation and lean 

experts are involved in the verification and validation processes.  

• Conclusion: If the work is valid, then it will be written up and identified to make it possible 

for future students getting benefit from it.  

4.2 The philosophical paradigm 

The appropriate paradigm for that strategy is positivism. Since positivism embedded the scientific 

method as an approach to research the natural sciences rather than the social world as in interpretivism. 

The two underlying assumptions in the scientific method are as follows: 
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• The world is ordered and regular, not random. 

• It can be investigated objectively. 

Moreover, the characteristics of positivism make it a suitable paradigm to follow since the researcher 

observes the measurement and modeling way to discover the status quo by making observations and 

measurements and producing different hypotheses, theories of how this world works. On the other 

hand, it depends on the quantitative data analysis to prove the mathematical model and statistical 

analysis. 

Furthermore, the researcher will objectively analyze data and outcomes without interfering with 

personal beliefs and values inside the final reports, and this what makes the final work valid and 

reliable for the scientific community. All mentioned above have been applied in this project to reach 

the final results and discuss them. 

Firstly, the first step in this project was meditating the current status or the real situation. It was done 

through monitoring the situation as it is and take some measurements such as the daily demand, the 

processing time for each workstation, the current method of material delivered, number of shifts. All 

these data are quantitative data and information.  

Secondly, the theory was evaluated at the end of this project. Therefore, the scientific method is the 

general framework in this project, and this method is what positivism includes. As a result, positivism 

is a suitable and appropriate philosophical paradigm to follow and adapt. 

The core of the methodology is compound by building a simulation model of the main shop floor to 

analyze the layout and possible configuration of the logistics systems. The simulation method is 

presented in the following sections. 

4.3  The simulation method 

As mentioned in the theoretical framework section, the LeanSMO approach is used to build the 

simulation model. The simulation types are numerous; however, Discrete-event system simulation 

(DES) is the one chose in this project due to the size and complexity of systems to analyze. As claimed 

by Uriarte et al. (2015b) DES is a discrete, stochastic, and dynamic simulation model, and every term 

is explained below: 
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• Discrete: Basically, it means the state variables change at a discrete set of points in time like 

products in an assembly line. 

• Stochastic: A system that has more one than a random input variable so that the result will be 

random as well. 

• Dynamic: This means that the system changes as time goes by. 

The steps to build a simulation model are presented in the following section. 

4.4 The simulation steps 

The steps of simulation are explained in general so that they could be applied for any project type. 

After that, it would be demonstrated for this project. The flow chart of simulation steps is done 

according to the study of Banks (Banks et al., 2005), and they are reprinted in the following figure, 

Figure 7, and explained in the following sections. 

Figure 7. Simulation steps (Banks et al., 2005) 
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4.4.1 Problem formulation 

As reported by Chung (2003), the formal problem statement includes texts of different situations of 

the manufacturing process, such as: 

• Increasing customer satisfaction: This includes reducing waiting queues, delivering 

materials on time, or reducing the number of backlogs. 

• Increasing Throughput: This means that the number of products that could be processed over 

a particular period can be increased or even includes the elimination of bottleneck processes.  

• Reducing waste: This includes any action that does not add any value to the work and causes 

a decrease in net profits. Besides, the inability to bring the products on time also is considered 

as waste.  

• Reducing WIP: This involves insufficient resource capacity and poor operating policies. By 

reducing WIP, the needed storage space could be reduced. Therefore, the process cost will be 

decreased as well. 

Numerous tools could be used to form the problem statement, such as the fishbone chart and Pareto 

chart. This study adopts the fishbone chart as a tool to indicate the problem statement. In the fishbone 

chart or cause-and-effect diagram, the whole possible sources of the problem are discussed to obtain 

the possible scenarios of solving them. It contains branches or bones, and each one refers to a different 

category. For instance, in the manufacturing field, the significant branches could be man, machine, 

material, and method. Figure 8, shows the fishbone chart of this study: 

Figure 8. Fishbone chart 
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As shown in the previous figure, the different sources of a specific difficulty distributed on a particular 

bone based on the categories that they belong to. For the man bone as an example, it might include 

maintenance people or engineers, supervisors, or technicians. 

For the machine bone, it could include all operations that together represent the whole manufacturing 

process. The branch of material could include all parts that have to be processed to get the final goods. 

Finally, for the method branch, it could include the currently applied method of the manufacturing 

process in each stage.  

As mentioned in this study, the company follows the stocking supply policy where the material is 

delivered to assembly lines and stored in line-side buffers. Firstly, this leads to waste in the time since 

operators at assembly lines consume more time fetching parts to be assembled. Secondly, the stocking 

supply policy results in imbalanced inventories because the material is continuously supplied to 

operation lines. Hence the kitting feeding policy is adapted to overcome these two problems since it 

saves the time that the assembler wastes in searching for the specific required object. Besides, kitting 

policy saves the space that necessary for material storing at assembly lines since the only necessary 

parts that support the assembly of one object are presented at a time. The next step is to set objectives 

and overall project plan. 

4.4.2 The setting of objectives and overall project plan 

The objectives indicate the questions to be answered by simulation. The project plan should include 

all the required information that will be used in doing the intended study. The plan should include the 

required time for different stages of the study. The typical project objectives may involve the following 

(Chung, 2003): 

• Performance-Related Operating Policies: The project objectives in this category are related 

to how to utilize existing resources. Another objective also could involve the layout of the 

process, and this means to determine the best alternative among many different configurations.  

• Performance-Related Resources Policies: Objectives of this category involve different 

alternatives for resource distribution before selecting the best one. Manufacturing applications 

also could be included in this category. Here the objectives would be the type and number of 

manufacturing equipment that should be utilized by a particular system. 

• Equipment Capability Evaluation: The objective of the simulation model of this category 

involves the evaluation process of proposed new equipment regarding its capability. Without 
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simulation, it is difficult to determine that the performance of the equipment will be the same 

as the actual one, as claimed.  

• Cost-Related Resources Policies: Objectives in this category focus on reducing cost while 

maintaining the performance at a given level decided by decision-makers. In other words, the 

goal is to indicate the exact number of resources that are required to keep the system 

performance at an acceptable level. 

As mentioned in the introduction section, the main objective is to design a new material handling 

system and then indicate the required number of AGVs before minimizing them. Thus, this thesis fills 

in the category of resource distribution. The next step is data collection and data analysis. 

4.4.3 Data collection and data analysis 

Data collection is one of the main steps in performing research. It is the actual commence that logically, 

every researcher must do to enable him or her to conduct the research. Data can be either quantitative 

or qualitative. The quantitative data is numeric data that deals with numbers, whereas the qualitative 

data is all other types of data such as words and figures. A data generation method is the means used 

to produce empirical data or evidence. The four main types of data generation can be ordered as 

follows: interviews, observations, questionnaires, and documents. For the project, three techniques are 

appropriate to comply based on the problem definition; they are interviews, observations, and 

documents. Each one of the three is discussed in detail to show how they are related to this thesis 

project (Oates, 2005). 

• Interviews: Interviews are planned conversations prepared by the researcher, and they are not 

covered, this means that the research is not asked to hide his or her identity and try to act as a 

spy to obtain the required data. Interviews are proper for this project because they give detailed 

information about the case under study by meeting different people in the company and asking 

them about the subject of interest. The gathered data can then be analyzed to extract the 

necessary information. Besides, they are suitable to gain information that cannot be obtained 

through questionnaires because, in questionnaires, interviewees may not trust a person who 

they never met before.  

The flexibility to choose the appropriate person for a set of questions also makes interviews 

suitable for this project. It will be appropriate to conduct interviews with the company 

representatives about the validity of the designed simulation model and get some feedback. 
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Semi-structured interviews are what is going to be conducted because they enable to change 

the order of questions depending on the flow of conversation. Thus, production manager, 

vehicle drivers are mainly the persons of interest; and questions about production rates and the 

number of shifts, for instance, are the crucial questions regardless of the order. Some questions 

that have been asked during different interviews could be summarized as follows:  

• How many rounds run the vehicles per hour? 

• What is the demand for each type of kits per day? 

• What is the time of loading and unloading times for the different types of Kits? 

• What is the speed of the transportation system that is used to handle material into assembly 

lines? 

The significant answers were summarized as follows: 

• The demand for each type of kits per day was given. 

• The number of cycles or rounds was calculated by analyzing the demand (throughput) of the 

different lines. 

• The loading and unloading time for plastic boxes is 20 seconds. 

• The loading and unloading time for pallets is 40 seconds. 

• The speed of the transportation system is 7 km/h. 

Documents are another way to generate data, and it is presented in the next paragraph. 

• Documents: Basically, there are two types of documents that can be considered as a data 

generation method. The first type is researcher-generated documents, and they are put together 

for the research purpose. On the other hand, formed documents which represent the second 

type, are existing documents, and this type is suited to the project. Publications are formed 

documents that unavoidably should be used in any research project because the first part of any 

thesis or dissertation is the literature review about the subject of interest. Besides, the company 

documents could also be valuable resources of data like production plans, material inventory 

levels, demands, and throughput. Such information can be obtained in collaboration with the 

company supervisor before analyzing it. 

For data analysis, interviews and observations data can be analyzed using quantitative analysis. 

However, documents can have both quantitative and qualitative analysis. They are both 

explained in the following sections: 
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• Quantitative data: Principally deal with numbers and Figures so they will be associated with 

interviews and observations as they are used in this thesis to collect numeric data.  Tables, for 

instance, are one of many possible ways to analyze the collected data. This means that 

representing different values of one measured variable or factor can be best done using tables. 

For instance, the loading and unloading time, which is the time of loading the material from 

the material preparation area and unloading time of material in front of each production line, 

can be represented in tables. Quantitative data is used to decide the optimal length of input and 

output conveyors as well as the total lead time of the production process, for example, and both 

can be analyzed using tables. 

Moreover, it is significant to know the current capacity of each buffer to optimize it and obtain 

the so-called ‘lean buffer,’ and that will be intrinsic in deciding the required vehicles for 

material delivery. Some statistical measurements like the mean can be used to analyze the data 

and obtain the acceptable standard deviation, for instance.  

Furthermore, the processing time of each assembly line is collected in order to determine the 

minimum material safety storage time in case of any abnormality may happen. Statistical 

distributions such as triangular and normal distributions can be helpful to get more information 

about the disturbances and variation in the system and decide the mentioned number of vehicles 

accurately.  

• Qualitative data In contrast to quantitative data, it deals with non-numeric data like images, 

sounds, texts, and more. For documents, apart from the quantitative side, including numeric 

data, qualitative data can be used to extract other embedded information. Minutes of meetings, 

quality plans, and production plans can be analyzed qualitatively, and this eases the way of 

how the process should go and which approach would be compatible with the company 

procedures and the aim of the thesis.  

 

 

 



       A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines 

Osama Marwan Altrabulsy                39    

4.4.3.1 Case study data collection 

The data collection is one of the most challenging steps in a simulation project since high-quality data 

is necessary to perform an accurate representation of a real system (Freivalds and Niebel, 2009). 

In this study, the data was collected in coordination with the company’s responsible people, and the 

historical records and interviews were used to obtain the necessary data. The primary data were the 

daily demand of all kits, the hourly throughput, and the line storage of line-side buffers. After gathering  

the required data, the analysis process was performed, and it represented in different tables and charts.  

The following tables and figures represent the collected data. The complete figures for each data type 

are presented in Appendix 3. Table 1, shows the variants of the first family of products that are 

assembled on this line.        

Table 1. Line A data 

The daily demand of each variant is the same, and it equals to 180.32 kits per day. The reason for 

equality between the two variants is that one kit of each type is needed to form one product. The 

throughput is calculated based on the daily demand and the adequate production horizon, which equals 

to 14 hours. The maximum number of kits stored in different line storages is agreed to be equal to two-

hours production. Finally, the total number of kits per day of all variants equals 360.64 kits. Figure 9, 

shows a representation of line A data. 

 

 

 

Line Number A 

Variant or Kit Number A 1 A 2 

Demand/Day (Kits) 180.32 180.32 

Throughput per Hour (Kits) 12.88 12.88 

Line Storage (Kits) 25.76 25.76 

Total Number of Kits per Day  360.64 
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Figure 9. Line A data 

The second, the third, and the fourth families of products are shown in Table 2.  

Table 2. Line B data 

Thus, three different families of products are assembled, and as it could be seen that each class consists 

of three integrated variants that form one product. The first three variants (B 1-1, B 1-2, B 1-3) forms 

the second family of products. The third family of products is produced by assembling variants (B 2-

1, B 2-2, B 2-3). The last three variants (B 3-1, B 3-2, B 3-3) forms the fourth family of products. The 

daily demand for each class is different, and this means that the capacities of line storages at different 

assembly lines will be various also. The total number of kits per day equals 667.38 kits. Figure 10, 

shows a representation of line B data. 

Line Number B 

Variant or Kit Number B 1-1 B 1-2 B 1-3 B 2-1 B 2-2 B 2-3 B 3-1 B 3-2 B 3-3 

Demand/Day (Kits) 99.5 99.5 99.5 58.5 58.5 58.52 64.4 64.4 64.4 

Throughput per Hour (Kits) 7.11 7.11 7.11 4.18 4.18 4.18 4.6 4.6 4.6 

Line Storage (Kits) 
 

14.22 14.22 14.22 8.36 8.36 8.36 9.2 9.2 9.2 

Total Number of Kits per Day 667.38 
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Figure 10. Line B data 

The fifth and the sixth families of products, which are assembled at this line, are shown in Table 3. 

Table 3. Line C data 

Variants (C 1-1, C 1-2) composes the fifth family of products, and variants (C 2-1, C 2-2) forms the 

sixth family of products. The daily demand of the fifth and the sixth family of products is 40.32 kits 

and 13.02 kits, respectively. Line storage of the fifth family of products is 5.76 kits, and for the sixth 

family of products is 1.86 kits. The total number of kits per day is 106.68 kits. Figure 11, shows a 

representation of line C data. 

 

Line Number C 

Variant or Kit Number C 1-1 C 1-2 C 2-1 C 2-2 

Demand/Day (Kits) 40.32 40.32 13.02 13.02 

Throughput per Hour (Kits) 2.88 2.88 0.93 0.93 

Line Storage (Kits) 5.76 5.76 1.86 1.86 

Total Number of Kits per Day 106.68 
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Figure 11. Line C data 

 Variants of the seventh and eighth families, which are assembled at this line, are shown in Table 4. 

Table 4. Line D data 

Variants (D 1-1, D 1-2) composes the seventh family of products, and variants (D 2-1, D 2-2) forms 

the last products' family. At this line, the lowest number of products is produced since the demand for 

those product’s families is not so high as in the other families of products. The total number of kits per 

day is 32.48 kits. Figure 12, shows a representation of line D data. 

 

 

Line Number D 

Variant or Kit Number D 1-1 D 1-2 D 2-1 D 2-2 

Demand/Day (Kits) 12.32 12.32 3.92 3.92 

Throughput per Hour (Kits) 0.88 0.88 0.28 0.28 

Line Storage (Kits) 1.76 1.76 0.56 0.56 

Total Number of Kits per Day  32.48 
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Figure 12. Line D data 

The total number of kits per day of each assembly line is presented in the following figure, Figure 13. 

Figure 13. Total number of kits per day 

As shown in figure 13, the maximum value of the daily demand for kits is located at line B since three 

different families of products are assembled at this line.  
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4.4.4 Model conceptualization 

The process of model construction needs a thorough understanding of the system required to build the 

simulation model. Model conceptualization is one of two” key steps” to perform a suitable model in 

order to obtain accurate results. “The art of modeling is enhanced by an ability to abstract the essential 

features of a problem, to select and modify basic assumptions that characterize the system, and then 

enrich and elaborate the model unit a useful approximation results” (Banks et al., 2005).  

4.4.4.1 Material preparation area  

Material preparation area (MPA), is the area where parts of the same product are put together and 

stored in their kits (plastic boxes or pallets) to move to the production lines. Kits are stored in the kits 

storage and prepared to be filled with different parts. Empty kits that AGVs unload on input conveyors 

are stored in the kit’s storage area. When the required amount of kits is placed on the output conveyors, 

one AGV comes to load a specific number of kits depending on its capacity and the demand. At 

assembly lines, kits are emptied then loaded on AGVs to move them to input conveyors (Figure 14). 

 Figure 14. The conceptual model of material preparation area 
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It is essential to mention that the material preparation area is not included in the scope of this project, 

then it is just modeled as a black box with inputs and outputs. The next area is the material handling 

area.  

4.4.4.2 Material handling area  

Material Handling Area (MHA), is the area where AGVs handle the kits prepared at the MPA to 

assembly lines. AGVs load the kits regarding its capacities and the required number of kits during each 

cycle, and then they transport them to the assembly lines following predetermined paths. This process 

is represented in Figure 15. 

Figure 15. The conceptual model of the material handling area 

At unloading stations, AGVs unload the kits in the line-side buffers and load the empty boxes that 

were waiting to be transported back from previous cycles. Afterward, AGVs transport the empty boxes 

following predetermined paths towards the input conveyors of the MPA to unload them and start a 

new cycle. The transportation time was calculated based on the distance between the material 

preparation area and assembly lines on one hand. On the other hand, the speed of AGVs was supposed 
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to be 7 km/h, and with the actual distance between assembly lines and MPA input/output conveyors, 

the transportation time was calculated. The last area is the assembly area, explained in the following 

section. 

4.4.4.3 Assembly area 

The assembly area is compound by the production lines, where kits are stored in line-side buffers. The 

following figure, Figure 16, illustrates this area.  

Figure 16. The conceptual model of the assembly area 

Afterward, parts of the same product being assembled and being kept in finished-good buffers before 

the final distribution. The assembly time for each type of product is calculated based on the daily 

demand, which is obtained in the data analysis previously performed. The combination of the three 

areas represents the entire conceptual model that is illustrated in the following figure, Figure 17, on 

the next page. 

The next section is the model translation. In this section, a brief introduction about the simulation 

software tool is given, and the process of simulation model construction is presented in detail. This 

process includes introducing the different model’s variants that form the final products as well as the 
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different project flows. Additionally, the various properties of the input and output conveyors, plastic 

boxes, and pallets are presented as well. Besides, the transportation times between the material 

preparation area and different production lines are calculated and presented. Furthermore, the 

mechanism of material flow control is introduced. Finally, the entire simulation model is demonstrated 

at the end of this section.  

Figure 17. The entire conceptual model  
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4.4.5 Model translation 

After analyzing the collected data and designing the conceptual model, it is possible to start the process 

of model translation. In the beginning, the simulation software tool selected for this project was the 

Facts Analyzer, which has been developed by the University of Skövde. The opted software tool is 

appropriate for this kind of study because it has remarkably advanced options to deal with the discrete-

event simulation problems that contain optimization processes. The interface of the Fact Analyzer is 

presented in the following figure, Figure 18. 

 

Figure 18. Facts Analyzer interface (Ng et al., 2007) 

As indicated in Figure 18, the software consists of three primary tabs, and the first one is the model 

tab where the simulation model is designed. It includes different objects and variants that are required 

to build the model. The second tab is the Animation, where the model is run to observe its behavior 

and make some modifications if required. The last tab is for the experiment, where the model is run 

under specific numbers of times, including warm-up and simulation horizon to obtain outputs of the 

model (Ng et al., 2007). The following three sections explain the process of simulation model 

construction. The first step takes place in MPA, where the variants of the model are inserted. 
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4.4.5.1 Material preparation area 

The simulation model consists of three fundamental areas, which are the material preparation area, 

material handling area, and assembly area. Variants (parts) filled in kits and delivered to assembly 

lines.  The usage of variants is to model different entities that move between different objects in the 

model. They can be used to represent material flows, to model resources such as AGVs, pallets, 

workers. The names of assembly lines (production lines) are line A and line B for plastic boxes; line 

C and line D for pallets. Line A produces one family of products, and line B produces three families 

of products, line C and line D produce two families of products. The lean 5S tool is applied here, where 

each kit has its particular place in MPA. By using Facts Analyzer software, the first step is to enter the 

different variants that form the different families of products. The next figure, Figure 19, shows the 

insertion of a new variant. 

Figure 19. New variant insertion 

The next table, Table 5, shows the variants used to form the final products. 

Table 5. Variants of assembly lines 

As shown in Table 5, two variants used to build the first family of products in line A. The second line 

needs nine variants to build different types of products families. The last two lines assemble eight 

variants to produce several families of products. The letters and numbers in each variant type 

differentiate it from other variants, for instance, (Kit-B-1-1) means the following: 

Line A B C D 

Variants Kit A-1 Kit A-2 

Kit-B-1-1 Kit-B-2-1 Kit-B-3-1 Kit-C-1-1 Kit-C-2-1 Kit-D-1-1 Kit-D-2-1 

Kit-B-1-2 Kit-B-2-2 Kit-B-3-2 Kit-C-1-2 Kit-C-2-2 Kit-D-1-2 Kit-D-2-2 

Kit-B-1-3 Kit-B-2-3 Kit-B-3-3     
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The letter B represents the line it belongs, and the first number refers to the product family it belongs, 

whereas the second number refers to which kit it is, if the 1st one, or the 2nd one. Usually, two kits are 

necessary to build one product, except for the second line, where three kits are required to produce one 

product. 

In the simulation model, the families of products follow different flows along the way to the final- 

goods buffers. These flows act for different ways that model’s objects and entities follow to reach their 

final destinations. The assembly lines assemble nineteen different variants that represent the final 

products; Thus, nineteen flows exemplify all families of products. 

Additionally, another two flows represent the two types of AGVs used in this project besides one flow 

for the two types of containers, which are plastic boxes and pallets. Figure 20, illustrates the different 

flows in this project and the deterministic variants of each flow. 

Figure 20. Flows of the model 

The material preparation area contains different parts to be assembled and kits that include the 

corresponding parts. The first step in the simulation process is to enter all variants that will be 

assembled in a particular way to form the final product. Final products are formed by using nineteen 

variants inside kits, and they travel to assembly lines on AGVs. As mentioned above, four additional 

variants added to represent the selected type of vehicles, which are AGVs and the containers or kits 

that include variants of different product families (Figure 21). 
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Figure 21. Variants of the model 

As shown in Figure 21, “AGV-1” and “AGV-2” represent the transportation system, and “Plastic 

Boxes” and “Pallets” represent the type of container. In the simulation model, the variants mentioned 

above are generated at the MPA according to the demand of different production lines. Variants 

generation act for the material supply to the factory in reality.  

Once the variants were introduced in the simulation model, it was time to model the generation of kits.   

All lines except line B need two kits to produce one product, and line B needs three kits. Thus, parts 

of a particular product putting in kits and being stored in the material preparation area.  

For a controlling purpose in the model, variants for the same products family are assembled and put in 

kits before being stored in their places, and the assembly time is zero because the purpose here is just 

for control. This step is significant in order to avoid the problem of shortage or blocking. In other 

words, the variants are generated cyclically and sent to the following item in the same manner before 

being kept in the MPA or supermarket. Therefore, kits of the same family of products should be stored 

and handled together during the same cycle. In the simulation model, AGVs unload variants at line-

side buffers that keep them according to their limit proportions, and when all variants are presented, 

the variants of the highest percentage will have the priority in the next cycles. Thus, for the reason that 

variants are supplied cyclically, it is not guaranteed to have the necessary variants at the right time. 

This leads to a shortage problem since the demand for each assembly line is different. For a reason 

explained in the previous paragraph, the generation of variants of the same family of products will be 
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done using separate sources; then, they will be assembled before sending them to the material 

preparation area. The following figure, Figure 22, shows an example of kits assembly of the same 

product. 

Figure 22.  The capacity table of line B and the corresponded limit proportions 

As shown in the previous figure, the kitting process of one product kind on line B takes place. In this 

process, each variant needs three kits, and there are three product variants produced in that line, then 

nine assembly tables are required. In the same figure can be appreciated the three types of product B 

along with their manufacturing proportions. The material is grouped and stored in MPA regarding the 

kitting policy that has been explained earlier. The capacity of the MPA is decided to be enough for 

one-day production for all kits that form all product kinds. 

Now, all kits exist in their places in the MPA. After that, parts will be placed in kits in the pallets or 

plastic boxes. Line A, line B are for small-range products and line C, line D for mid-range products. 

After preparing all kits and arrange them in MPA, they are sent to conveyors before one AGV carry 

them to assembly lines. The initial length of conveyors is decided to be 10 meters supposing the sizes 

are European sizes of plastic boxes and pallets (0.6 x 0.4) meters and (1.2 x 0.8) meters, respectively. 

In  the next figure, Figure 23, the chosen settings for all conveyors in this project are shown. 
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Figure 23. Settings of project's conveyors 

Separated sources in the simulation model generate kits; then, they are sent to their predetermined 

flows in the MPA. The generation process of kits is limited to a specific number, and it is found that 

the best number is 60 for plastic boxes and 40 for pallets (Figure 24).  

Figure 24. The best numbers of plastic boxes and pallets 

After defining the model’s variants and flows, the settings of conveyors, and the best numbers of 

different containers (kits), the next step of the model construction process is to illustrate the handling 

process, and this takes place in the material handling area. 
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4.4.5.2 Material handling area 

Material handling area is the area in which vehicles are generated and sent to a garage located close to 

MPA, and from there, they move to conveyors that contain kits in order to handle them into assembly 

lines. Consequently, AGVs load kits with a capacity of plastic boxes equal to (6) and for pallets limits 

to (1). Thus, two types of AGVs assigned in this project. The first one will be called AGV_1, and this 

type is devoted to small-range products with a capacity of 6 boxes. In the simulation model, it is crucial 

to indicate the leading flow when the kits loading process happens. In other words, the entities of the 

simulation model have different streams, and at the moment of kits loading, the flow of AGVs has to 

be selected. It is possible to do that by choosing the assembly identity of AGVs. The following figure, 

Figure 25, illustrates the assembly process of plastic boxes on AGV_1 with a capacity of six kits and 

shows that the assembly identity was selected to be true for AGVs. 

Figure 25. Assembly table of plastic boxes with AGV_1 

On the other hand, AGV_2 is the second type, and it is devoted to mid-range kits with a capacity of 1 

pallet. The following figure, Figure 26, shows the process of pallets assembly on AGV_2 with a 

capacity of one pallet.  
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Figure 26. Assembly table of pallets with AGV_2 

AGVs move to assembly lines after loading the particular number of kits that decided on the production 

lines. The triangular distribution was applied for transportation time, and it is calculated regarding the 

proposed layout. In more detail, the distance between the material preparation area and each assembly 

line is known, and the speed of AGVs has been proposed. 

The transportation time of each line is known, and Table 6 shows their values. The previous values 

were calculated based on the proposed layout of this main shop floor of this project that is represented 

in Figure1. 

Table 6. Transportation time till each assembly line 

The previous numbers represent the minimum transportation time on triangular distribution. To make 

the model more realistic, the maximum magnitude of transportation time will be double, and the mode 

time could be calculated using the following formula: 

 

Line A Line B Line C Line D 

Transportation Time (Sec) 
 

26 20.5 15 9 
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𝑴𝒐𝒅𝒆 𝒕𝒊𝒎𝒆 = 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒕𝒊𝒎𝒆 +
𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒕𝒊𝒎𝒆

𝟒
 

Equation 6. Calculation of mode time 

The AGVs continue to transport to line-side buffers, then AGVs unload the kits. The kits go to the 

assembly lines when needed to be assembled and formed final goods. For the empty kits (containers), 

they are loaded by AGVs and handled to the MPA again following the return lines, which have the 

same distance and transportation time. When AGVs reach the input conveyors of MPA, they unload 

kits and go to the starting point or the garage to start a new cycle, and kits are filled again with various 

parts. As parts reach line-side buffers, the final step of building the simulation model starts, and this 

occurs in the assembly area. 

4.4.5.3 Assembly area 

Assembly lines where parts coming in the form of kits to be assembled in order to form the final 

product. The kits are stored in the line-side buffers and prepared for Analyze according to the 

processing time f different assembly lines. That time is calculated regarding the daily demand that is 

determined and decided by the management. For assembly time modeling, a triangular distribution is 

assigned in order to add some variability to the model. The maximum and minimum times are assigned 

to be 10% of the mode time. In the results comparison section, it will be removed, and the reason is 

related to the accuracy purpose. 

The effective horizon is decided to be 14 hours that represent the working hours of two shifts a day. 

Thus, the daily demand is divided by 14, and the result will be for one hour, which represents the 

throughput per hour. Then, 60 minutes is divided by the hourly throughput, and the resulted number 

will be the processing time for one product. Line-side buffers are designed to keep a two-hours of 

production, and it is asked to maintain a minimum of one-hour production. To achieve this desired 

level, the batch object is introduced to control the number of kits that should enter buffers of assembly 

lines. In more detail, the capacity of assembly lines’ buffers that contain parts to be gathered is divided 

among variants according to demand for the different product families. Therefore, limit proportions 

are different, and the object which controls the process of material feeding is the batch object. The way 

of how the batch object connected is, the input comes from the line-side buffers that contain the safety 

percent of the buffers to be kept and the output connected to the processes that produce that necessary 

parts to maintain the safety percentages of each line-side buffers. The way that the batch object works 

in the simulation model could be explained simply by saying that the connection from the Batch object 
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to an Operation ensures that the operation processes batches of the parts waiting at the stores located 

before them. The connection from a Store to the Batch object will make the Batch object bring safety 

stock shortages from this Store in order to give priority to the variants with the most considerable 

shortage.  The capacity table of the line-side buffer of line B is shown in the next figure, Figure 27. 

Figure 27. The capacity table of the line-side buffer of line B  

The next figure, Figure 28, shows the first simulation model on the next page. This model will be 

referred to as the basic model, and the different designed scenarios will be compared to it.  

The next section is the Verification and Validation. In this section, a comprehensive explanation for 

the process of model verification and validation is given. In the verification process, the variability 

study in which the model is evaluated is conducted, and some essential concepts such as T-distribution 

and confidence interval are presented. The variability study process consists of two significant steps; 

the first one is the replication analysis, and the second one is the steady-state analysis. In the replication 

analysis section, two fundamental approaches used to indicate the number of required replications are 

introduced. Then, the appropriate period to run the simulation model is determined in the section of 

steady-state analysis. Furthermore, the process of model validation is interpreted. Finally, the improved 

“what-if" scenarios and the second simulation model of the last scenario are presented at the end of 

this section. 
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Figure 28. The basic simulation model 
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4.4.6 Verification and Validation 

The simulation model is built, and the insight of how it behaves was obtained. The next step is to make 

sure that the model was built correctly, and it represents the real-world system, and this could be done 

by the verification and validation processes. They are explained here below. 

4.4.6.1 Model verification 

The verification process is a determination of whether the computer program by which the conceptual 

model has been translated is suitable or not for the study (Banks et al., 2005). It is to ensure that the 

computer program represents the system in the same way as the real one is. Every process in the 

modeling needs to be performed in the right way using the necessary staff only. The input parameters, 

logical structures, and the assumed data have to be correctly represented. In other words, verification 

is the process of ensuring that the simulation model has all the necessary components and that the 

model actually runs. In this project, every variant has been followed from the generation sources in the 

model along the way until the exit sources or “sinks.” Besides, different flows were also observed to 

make sure that variants follow the exact way as in reality. Moreover, the total number of variants and 

kits have also been revised to assure an accurate representation of the system. After conducting the 

verification process, it is possible to proceed with the validation process. 

4.4.6.2 Model validation 

The validation process is the determination process of comparing the simulation model against the 

actual system behavior (Banks et al., 2005). Validation is to assure that the model reflects the core of 

the real-world system. During the validation process, the model was checked thoroughly, and several 

visits were done to the company to discuss it. The model was discussed with the company 

representatives such as project coordinator, simulation expert, production engineer. During Kaizen 

meetings, the results were presented, and feedbacks were noted to be implemented on the model. Then, 

the model was presented and discussed again step by step until the management was satisfied. By 

analyzing the results of the validation process, it could be said that the output results of the simulation 

model were identical with the real system in a good enough percentage. The throughput value gives a 

good indication of how much valid the model is since it represents the final product. Thus, it would be 

the chosen parameter to illustrates the outcomes of the validation process of this project. The following 

table, Table 7, shows the validation process for the basic model concerning the throughput, the most 

significant parameter.  
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Table 7. The validation table of the basic model 

The previous table demonstrates the real values of throughput for all variants on the one hand. On the 

other hand, it also shows the values that resulted after running the simulation model, specifying the 

throughput of all variants as well. The last column represents the difference between the results of the 

real data and simulated one; it is calculated as the following formula: 

𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 = 𝟏𝟎𝟎 −
𝒙̅𝒎𝒐𝒅𝒆𝒍 ∗ 𝟏𝟎𝟎

𝒙̅𝒓𝒆𝒂𝒍 
 

Equation 7.The formula of the difference between the real system and the simulation model 

In this case, this difference was lower than 5% for the mean values; for this project, it was considered 

to be accurate enough. The obtained results from the simulation represent good enough real values. 

With these results, the validation of the model was performed. The next step is to conduct the 

variability study. In this study, two primary analyses are introduced, the first one is the replication 

analysis, and the second one is the steady-state analysis that is explained in the next two sections. 

 

Real Data Simulation Data Difference (%) 

Throughput (product/hour) 

Line 710 

Var A-1 Var A-1 Var A-1 

12.88 12.9 -0.15 

Line 711 

Var B 1-1 Var B 2-1 Var B 3-1 Var B 1-1 Var B 2-1 Var B 3-1 Var B 1-1 Var B 2-1 Var B 3-1 

7.11 4.18 4.6 7.11 4.24 4.52 0% -1.43 1.7 

Line 712 

Var C 1-1 Var C 2-1 Var C 1-1 Var C 2-1 Var C 1-1 Var C 2-1 

2.88 0.93 2.88 0.93 0% 0% 

Line 713 

Var D 1-1 Var D 2-1 Var D 1-1 Var D 2-1 Var D 1-1 Var D 2-1 

0.88 0.28 0.88 0.28 0% 0% 
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4.4.7 Variability study 

The variability study is the process of model evaluation, and it is an essential step in the whole 

simulation study because it indicates the reliability of the designed model. Before going further in the 

explanation of the variability study, some definitions need to be illustrated. 

• T-distribution 

According to Senn and Richardson (1994), T-distribution is used instead of the normal distribution 

when the size of the sample is small. It is used in numerous statistical analyses, such as assessing the 

statistical significance of the difference between the two samples mean values and the construction of 

confidence intervals for the difference between two population mean values. The T-distribution is a 

group of distributions that are almost identical to the normal distribution curve, but a little bit shorter 

and broader, as shown in Figure 29. 

Figure 29. A comparison between the normal distribution and t-distribution 

The first step in calculating the T- distribution, according to Senn and Richardson (1994), starts with 

knowing the degree of freedom. The degree of freedom is the sample size minus one. Then, the alpha 

level or the significance level, which is the probability of making a wrong decision when the null 

hypothesis is proven, could be either given directly, and the most common values are (0.5, 0.1), or 

calculated by subtracting the confidence interval from one. A null hypothesis is a hypothesis that says 

there is no statistical significance between the two variables. There is a standardized statistic test so-



       A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines 

Osama Marwan Altrabulsy                62    

called the T-score represented as “t” and it could be used when the real value of standard deviation is 

unknown, and the size of the sample is under 30. The formula of T-score is given as follows:  

𝒕 =
𝒙̄ − 𝝁𝟎
𝒔

√𝒏

 

Equation 8. T score formula 

𝑡: T-score, 𝑥̄: sample mean, 𝜇0: the population mean, 𝜇0: sample standard deviation, 𝑛: sample size. 

It is feasible to use Excel to compute the two-tailed inverse of the Student's T-distribution value by 

using the following function: 

TINV (probability, deg_freedom) 

Probability = The percentage value of observations to the right of the corresponding t value. 

Deg_freedom = Number of degrees of freedom to use, and it equals the number of replications -1. 

The T-distribution value in the student or T-test in this study is computed for one tail, or one side 

because the simulation model is designed for the future state to show that it is more effective than the 

current one. Thus, the future model will not be compared to the current one if it is less efficient, and 

this is due to the reason that it is not required. Besides, the one-tailed test provides more power to 

detect an effect in one direction. In the next section, the conception of the confidence interval is 

explained. 

• Confidence interval 

The confidence interval is a type of interval estimate, and it is used to appraise the accuracy of a sample 

that might contain the actual value of a population parameter (values of mean and standard deviation). 

It is associated with the confidence level that represents the frequency of the available confidence 

interval that contains the actual value of the population parameter. The confidence intervals are 

composed of a range of possible values of a population parameter; however, it is not necessarily for 

the taken sample to contain the real value because the confidence interval influences the size of the 

taken sample, the confidence level, and the variability in that sample. It is most common that a 95% 

confidence level is used (Kendall and Stuart, 1973). According to (Kendall and Stuart, 1973), the 

confidence interval could be calculated based on the T-distribution provided the actual standard 

deviation unknown, and the number of replications under 30 using the following formula:  



       A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines 

Osama Marwan Altrabulsy                63    

𝒙(𝒏) = ∓𝒕
𝒏−𝟏,𝟏−

𝜶
𝟐
 √
𝒔𝟐(𝒏)

𝒏
 

Equation 9. Confidence interval formula 

𝑥 ̅(𝑛): the mean value, 1 − (
α

2
): One-sided confidence interval, 𝑡: t-distribution, 𝑠: standard deviation 

of the replications mean, 𝑛: number of replications. 

After having a quick review of the T-distribution and the confidence interval concepts, it is possible 

now to start applying the steps of replications analysis. In this analysis, all equations of the relative 

connotations are introduced, such as the standard deviation and the standard error formulas. Besides, 

the two approaches used to calculate the number of required replications are introduced. The first 

approach is the relative precision approach, and the second one is the absolute precision approach, and 

all of that is explained in the next section. 

4.4.7.1 Replication analysis 

This study aims to indicate precisely the number of required replications to make sure that the obtained 

results are reliable and could be considered as a reference for further experiments. The inputs of 

simulation models are naturally probabilistic and variable. This variability causes some variation in 

the model outputs, and because of that, it is inappropriate to do a single simulation run or replication. 

For the sake of reducing the variability, which will result in making a wrong decision based on the 

outputs, a particular number of replications must be performed or run. The first typical number of 

replications is found to be ten, and this gives reasonable statistical confidence before adding the 

subsequent or additional replications which are required. The following are the subsequent steps of 

replication analysis (Chung, 2003): 

1. Calculate the mean and standard deviation (STDEV) of the ten replications mean. This step is 

the commencement of the replication analysis process, and it requires the simulation model to 

be finished. Thus, the simulation model should be run for ten replications, and the summary 

statistics values to be written down. The designed simulation model, in this case, is done for 

vehicle scheduling in a manufacturing firm, and then it has been validated with the company’s 

expert, so the results are reliable. The following tables, Table 8 and Table 9, show the average 

mean value and the standard deviation of the throughput and WIP after running the simulation 

model with ten replications.  
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Table 8. The average mean value and standard deviation of throughput 

Table 9. The average mean value and standard deviation of WIP 

The standard deviation amounts are extracted from the simulation model after running some 

experiments using the simulation software tool that gives the average value of standard deviation. In 

Excel, it is possible to use the function Sted () to calculate the standard deviation magnitude. Another 

way to do that is to calculate the standard deviation manually by using the upcoming equation:  

𝑺 =  √
∑ 𝒙𝒊̅ − 𝒙̿
𝒏
𝟏

𝒏 − 𝟏
 

Equation 10. Standard deviation formula 

𝑥𝑖̅ = the replication averages, 𝑥̿ = the average of replication average, 𝑛 = sample size. 

2. Calculate the standard error of the data. The summary statistics of the previous step beside T-

distribution and confidence interval values are used to calculate the standard error of data under 

study. The formula of the standard error is given as follows: 

  𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑬𝒓𝒓𝒐𝒓 = (𝒕
𝟏−
𝜶
𝟐
,𝒏−𝟏

) ∗ 𝒔/√𝒏 

Equation 11. Standard error formula 

𝑠 = standard deviation of the replication means, 𝑛 = number of replications or sample size. 

      Rep.no 1 2 3 4 5 6 7 8 9 10 

Throughput 33.940 33.937 33.944 33.94 33.931 33.938 33.946 33.95 33.936 33.944 

  Average mean 33.951 

      STDEV 0.00833 

     Rep.no 1 2 3 4 5 6 7 8 9 10 

WIP 1475.5 1475.5 1475.5 1475.5 1475.57 1475.56 1475.56 1475.56 1475.55 1475.5 

  Average mean 1475.5 

     STDEV 0.0091 
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In this study, the initial number of replications is n = 10 and α = 0.05 since the selected confidence 

interval is 95%. From the T-distribution table and for one-sided T-test, the value of (𝑡1−𝛼
2
,𝑛−1)  = 1.833, 

and the values of standard deviation for throughput and WIP are 0.00833 and 0.0091, respectively. By 

compensating for all previous values in the equation (2), standard error magnitudes could be computed. 

Throughput standard error                    = (1.833*0.00833) / √10 = 0.004828. 

WIP standard error                               = (1.833*0.00911) / √10 = 0.005274. 

In Excel, it is possible to calculate the standard error by using the following equation: 

           TINV (probability, Deg_freedom) *STDEV/(N)^0.5 

3. Select the level of precision. After calculating the standard error, it is time to determine how 

many replications are needed. However, in order to do that, it is required to select a level of 

error that is suitable for this kind of study. There are two approaches to indicate the acceptable 

level of precision objectively. The first approach is grounded on an absolute comparison of the 

standards error to a particular tolerance level. The second approach is based on a relative value 

of the standard error in comparison to the sample mean. In this study, both approaches would 

be discussed in the subsequent sections.  

• Absolute precision approach 

In this approach, a level of tolerance for precision is indicated based on the resulted number of standard 

errors. In other words, an additional number of replications needs to be run to reduce the standard error 

to the chosen number of precisions. The standard error of throughput is 0.004828 and 0.005274 for 

WIP, those numbers are small, and they give a good indicator that the model is reliable due to the finite 

level of variability. However, it is still possible to reduce them a little bit, and the exact number will 

be chosen depending on the nature of the project and previous experiences. The value of absolute 

precision of the throughput can be selected at 0.004, and WIP can be 0.005. Since the resulted standard 

error should be reduced to the desired absolute precision, the formula of standard error can be used as 

follows: 

𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = (𝒕
𝟏−
𝜶
𝟐
,𝒏−𝟏

) ∗ 𝒔/√𝒏 

Equation 12. Absolute precision formula 
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The previous equation could be rearranged and solved for the new number of replications which match 

the desired level of absolute precision: 

𝒊 = (
𝒕
𝟏−
𝜶
𝟐
,𝒏−𝟏 

∗ 𝒔

𝐀𝐛𝐬𝐨𝐥𝐮𝐭𝐞 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 
)

𝟐

 

Equation 13. Number of replications based on the absolute precision approach 

In Excel, it is possible to calculate the number of replications needed to achieve absolute precision by 

using the following formula: 

((TINV (Probability, Deg_freedom) *STEDV) / Absolute precision)) ^2 

The next step is to verify that the previous number of required replications is sufficient. The number 

of simulations needed is calculated, and it equals 14.57298 for throughput and 16.95 for WIP. These 

numbers need to round up, so they will be 15 and 17, respectively. Therefore, the simulation model 

will be run for 17 replications since the biggest number is 17, and the simulation model is the same for 

the throughput and the WIP. After running the simulation model, it is possible to observe that summary 

statistics are different from the first ones because the number of replications is not the same. The new 

statistics would be used to calculate the new standard error and compare it to the selected level of 

absolute precision. The standard errors of throughput and WIP are 0.003167 and 0.003345, 

respectively. Since both numbers are smaller than the selected absolute precisions, so the 17 

replications are sufficient for this study. The last thing about this method; depends on the experience 

of practitioners; also, the opting of the desired level of precision is done arbitrarily.   

• Relative precision approach 

This method is more preferred to the first one because it is not necessary to select an arbitrary absolute 

precision level. This method can overcome the arbitrary selection of precision level by dividing the 

value of standard error by the sample mean value. The standard error should be small in comparison 

to the sample mean value for a powerful and robust statistical analysis. A typical value for the desired 

level of relative precision is 0.09, and the resulted relative precision would be compared to it. The 

equation of relative precision is given as follows: 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝒕
𝟏−
𝜶
𝟐
,𝒏−𝟏

∗ 𝒔 / √𝒏

𝒙̿
 

Equation 14. Relative precision formula 
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𝑛 = number of replications, 𝑥̿ = mean of the replication means. 

Since the resulted relative precision values are less than 0.009, so ten replications are sufficient to run 

the simulation model at that number of replications and proceed with the optimization process. A 

further step to confirm that the selected number of replications is adequate to run the simulation model 

for that number is to use the equation of relative precision after rearranging it in a way that isolates the 

number of replications in one side of the equation and other parameters in the other side: 

𝐢 =  
𝐭
𝟏−
𝛂
𝟐
,𝐧−𝟏

∗ 𝐬

𝐑𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐩𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 ∗ 𝐱̿
 

Equation 15. The number of replications based on the relative precision approach 

 i = number of replications needed to achieve the relative precision. 

 In Excel, the implementation of the previous equation is as follows: 

((TINV (Probability, Deg_freedom) *STDEV) / (Relative precision*Average mean)) ^2 

After applying the two methods, it is evident that they give different results. However, the first one, 

which is the absolute precision, depends on the arbitrary selection of precision level, and it is not 

entirely accurate. On the other hand, the second method, which is relative precision is more reliable 

because it gives the level of precision as a percentage between the standard error and the average mean 

of data under study. Therefore, the final chosen number of replications would be 10. After conducting 

the replication analysis, it is possible to proceed with the steady-state analysis explained in the 

following section. 

4.4.7.2 Steady-state analysis 

The study state analysis is the process of getting general information about the necessary period to run 

the model before reaching a steady state. In other words, at the beginning of the simulation, the 

production lines are empty, and some time is needed to load them with the corresponded material until 

the regular operation is reached; that time is known as the warm-up time, and in this case, it is measured 

in days. In reality, the lines are full of material, and they are never empty, and the work is continued 

from the same point in which it stopped the previous day. In the Facts Analyzer program, there is a 

Tab enables the designer to put the different settings of steady analysis. Figure 30, shows the settings 

that were chosen to get the necessary period before getting the model in the steady-state. 
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It shows that the simulation horizon was set to 100 days to give an extra safety period and make sure 

the model has been run enough so the result would be reliable. The log interval was set to 60 minutes 

to be able to analyze the data in the obtained charts, and the number of replications was selected to be 

equal to 10, as explained before.The model was run under this condition, and the outcomes were 

obtained, the two most common parameters in this kind of study are the hourly throughput and WIP, 

so they have been chosen to represent the results. The following figure, Figure 31, represents the 

behavior of the simulation model in terms of throughput. 

Figure 31. Graphical output of throughput after running the steady-state analysis 

The simulation model’s behavior concerning WIP is also shown in the following figure, Figure 32. 

Figure 30. Settings of steady-state analysis 



       A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines 

Osama Marwan Altrabulsy                69    

Figure 32. Graphical output of WIP after running the steady-state analysis 

By analyzing the previous figures, it is easy to notice that the model emerges the steady-state 

approximately 33 hours after running the analysis. Therefore, it could be said that the necessary warm-

up time is 33 hours, and that means that two days have to be selected as a warm-up time before running 

different experiments. As the process of model verification and validation done and the variability 

study is completed, it is possible to proceed with the next step, which is the design of the “What-if” 

scenario. 

4.4.8 Design of “what-if” scenario 

Once the simulation models were verified and validated, it was possible to start with designing  

different scenarios that have some changes from the basic one. Three alternatives were introduced, and 

each one deals with a different aspect of the design, then the results were compared with each other to 

check the advantages and disadvantages of them. The three main scenarios are: 

• To increase the demand by 100%. 

• To change the location of the material preparation area. 

• To change the way by which AGVs deliver material to assembly lines. 

4.4.8.1 The first improved scenario 

The first scenario, to increase the throughput by 100%, was implemented on the model and was done 

by decreasing the process times of assembly lines by 50%. After implementing this scenario, it is 
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evident that the lead time was decreased to half. The following table, Table 10, shows the new process 

Table 10 times of production lines. All process times are measured in minutes. 

 Table 10. The different process times of each variant of the first scenario 

4.4.8.2 The second improved scenario 

The second scenario, to change the location of the material preparation area, was implemented by 

shifting the place of the supermarket. The new place is shifted to be in the center of the opposite area 

located in the front of assembly lines, as shown in Figure 33.  

Figure 33. The new layout of the second scenario 

As shown in the previous figure, the distance between the material preparation area and assembly lines 

are changed. The path that the first type of AGVs follows to deliver parts of small product sizes was 

named 1. The path 2 is the path that the second type of AGVs follows to deliver parts of mid-range 

products. Going through the results shows that the lead time is decreased slightly. 

Variant name Kit-A-1 Kit-B-1-1 Kit-B-2-1 Kit-B-3-1 Kit-C-1-1 Kit-C-2-1 Kit-D-1-1 Kit-D-2-1 

Process time 2.20 4.13 7.05 6.51 10.25 32.15 34.05 107.08 



       A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines 

Osama Marwan Altrabulsy                71    

4.4.8.3 The third improved scenario 

The third scenario, to change the way by which AGVs deliver material to assembly lines, was 

implemented on the model and done by modifying the material handling area in the basic model. The 

new delivering method decreased the lead time significantly because the AGVs are serving the 

assembly lines under the traveling kits process that explained before. In this scenario, each type of 

AGVs serves the two lines that produce the same size of products during the same cycle before going 

back to the starting point to load kits and starting a new cycle. This scenario is designed to improve 

the basic model, and it proved its effectiveness on the one hand. On the other hand, it was decided to 

use this model to compare it to a mathematical model for a validation purpose. However, it was found 

that results were hard to be compared since some data cannot be modeled in the simulation model. 

Therefore, it would proceed with this model as one of several scenarios designed to improve the basic 

model. The differences between this scenario and the basic model are presented in the next paragraph: 

• The capacity of the first type of AGVs varies from 1 to 6 instead of waiting to be fully loaded. 

• Lines of the same product size served during the same cycle.  

• Empty boxes do not go back to MPA, and instead, they go outside the simulation model. 

The next figure, Figure 34, shows the simulation model of this scenario, it is shown on the next page. 

The next chapter is Results and Analysis. In this chapter, different results of the basic model and the 

improved scenarios are presented and analyzed. Besides, the obtained results from running the 

optimization process for the basic model and the third improved scenario are introduced. 

Moreover, all input and output variables of the optimization engine are given.  

Furthermore, the different inserted formulas in the optimization process are shown. Finally, the 

acquired charts for different parameters are presented at the end of this chapter. In the next chapter, 

Chapter 6, a brief discussion of these results is presented. Then, some conclusions and future works 

are presented in Chapter 7.  
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Figure 34. The simulation model of the third scenario 
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5 Results and Analysis 

In this chapter, the results of the basic model and the results of improved scenarios are presented and 

discussed. The results of improved scenarios are compared with the basic simulation model. The results 

were analyzed comparing different parameters, and those parameters are measured to evaluate the 

system performance; then, they are presented in the following tables: 

5.1 Results of the basic model (BM) 

This simulation model is the basic one that all improved scenarios are compared to it. The next table, 

Table 11, shows the obtained results after running the simulation model. 

Table 11. Results of the basic model 

The table shows that the values of lead time, WIP, and throughput of kits that compose different 

products. It shows obviously that the throughput increases when the WIP raises as well. In addition, it 

shows that the lead time value of line B is the largest, and this regular since three kits are needed at 

this line to form one product. The focus is on the values of the plant because it is used for a comparison 

purpose with other improved scenarios.      

 Throughput (product/h) Lead time (sec) WIP (kits) Produced parts (parts) 

Plant 33.82 111706.8 1400.4 22727 

Kit-A-1 12.9 55238.97 197.98 8671 

Kit-B-1-1 7.114 156606.86 309.5 4781 

Kit-B-2-1 4.23 156158.27 183.5 2843 

Kit-B-3-1 4.6 157572.75 201.5 3093 

Kit-C-1-1 2.88 107500 86 1935 

Kit-C-2-1 0.93 116130 30 625 

Kit-D-1-1 0.88 122730 30 591 

Kit-D-2-1 0.28 141427 11 188 
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5.2 Results of scenario 1 (Sce-1) 

This scenario is about to increase demand by 100%. The next table, Table 12, shows the obtained 

results of this scenario. 

Table 12. Results of the first scenario 

The table demonstrates the results of the first scenario compared to the basic model. It shows that the 

throughput and the produced parts values have been doubled since the assembly times of production 

lines were reduced to half to achieve this purpose. Besides, the values of the lead time of lines C and 

D that produce products of mid-range size have been decreased by 50% and by 37% for lines A and B 

that produce products of small sizes. The mean value of the new lead time is 68287 (sec), and it 

represents 39% less than the previous value, and this is a significant reduction compared to the basic 

model. 

 

Throughput (product /h) Lead time (sec) WIP (kits) Produced parts (parts) 

Sce-1 BM Sce-1 BM Sce-1 BM Sce-1 BM 

Plant 67.64 33.82 68287 111707 1345 1400.4 45454 22727 

Kit-A-1 25.8 12.9 30664 55239 207 197.98 16339 8671 

Kit-B-1-1 14.228 7.114 114541 156607 303 309.5 9562 4781 

Kit-B-2-1 8.46 4.23 92157 156158 180 183.5 5686 2843 

Kit-B-3-1 9.2 4.6 101187 157573 198 201.5 6186 3093 

Kit-C-1-1 5.76 2.88 55616 107500 89 86 3871 1935 

Kit-C-2-1 1.86 0.93 59769 116130 31 30 1255 625 

Kit-D-1-1 1.76 0.88 63369 122730 31 30 1183 591 

Kit-D-2-1 0.56 0.28 70768 141427 11 11 376 188 
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5.3 Results of scenario 2 (Sce-2) 

In this scenario, the location of the supermarket or MPA is changed. As a result, the distances between 

MPA and different assembly lines are changed. The next table, Table 13, contains the acquired results. 

of the second scenario. 

Table 13. Results of the second scenario 

The table illustrates the results of the second scenario compared to the basic model. The plant’s lead 

time is decreased by roughly 2%, and the other values of different products are the same as the basic 

model. The reason behinds this is that changing the location of the supermarket affects the 

transportation time only, which constitutes a small proportion of the whole lead time, and 

consequently, the plant’s lead time stays almost the same. 

5.4 Results of scenario 3 (Sce-3)   

In this scenario, the way of material delivery that followed in the basic model is changed. Here, the 

traveling kits process explained earlier in this report will be adapted. Then, the two types of kitting can 

be compared to each other to identify the one that fits best for this study. The next table, Table 14,  

 

Throughput (product/h) Lead time (sec) WIP (kits) Produced parts (parts) 

Sce-2 BM Sce-2 BM Sce-2 BM Sce-2 BM 

Plant 33.82 33.82 109814 111707 1401 1400.4 22727 22727 

Kit-A-1 12.9 12.9 55239 55239 197.98 197.98 8671 8671 

Kit-B-1-1 7.114 7.114 156607 156607 309.5 309.5 4781 4781 

Kit-B-2-1 4.23 4.23 156158 156158 183.5 183.5 2843 2843 

Kit-B-3-1 4.6 4.6 157573 157573 201.5 201.5 3093 3093 

Kit-C-1-1 2.88 2.88 107500 107500 86 86 1935 1935 

Kit-C-2-1 0.93 0.93 116130 116130 30 30 625 625 

Kit-D-1-1 0.88 0.88 122730 122730 30 30 591 591 

Kit-D-2-1 0.28 0.28 141427 141427 11 11 188 188 
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illustrates the obtained results of this scenario and compare them to ones of the basic model. 

Table 14. Results of the third scenario 

The table shows the results of the last scenario that focuses on how AGVs deliver the material into 

assembly lines. It decreased the plant’s lead time by more than 70%, and this gives a strong signal of 

how much the material handling system influences the whole industrial system and lead time in 

particular, which affects the total productivity. Moreover, the applied material handling system plays 

a significant role in reducing wastes that come from unwanted movements and extra cycles that do not 

add value to the whole production process. Thus, the traveling kits process is more suitable than the 

stationary kits process since it gives better results than the stationary kitting. The final decision is up 

to the company staff to choose which material delivery method they want to have. The next part of the 

project was to run the optimization process to improve the obtained results related to these project 

objectives. The next sections illustrate the outcomes of running the optimization process. 

5.5 Results of optimization 

After running two optimizations with 5000 iterations each, the first one was carried out for the basic 

model and the second one for the third scenario. As mentioned previously, NSGA-III was selected as 

 

Throughput (product/h) Lead time (sec) WIP (kits) Produced parts (parts) 

Sce-3 BM Sce-3 BM Sce-3 BM Sce-3 BM 

Plant 33.82 33.82 32675 111707 1324 1400.4 22727 22727 

Kit-A-1 12.9 12.9 55241 55239 197.98 197.98 8670 8671 

Kit-B-1-1 7.114 7.114 156354 156607 309 309.5 4781 4781 

Kit-B-2-1 4.23 4.23 155733 156158 183 183.5 2843 2843 

Kit-B-3-1 4.6 4.6 157182 157573 201 201.5 3094 3093 

Kit-C-1-1 2.88 2.88 107500 107500 86 86 1935 1935 

Kit-C-2-1 0.93 0.93 116130 116130 30 30 625 625 

Kit-D-1-1 0.88 0.88 122730 122730 30 30 591 591 

Kit-D-2-1 0.28 0.28 141427 141427 11 11 188 188 
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the algorithm which would be used as the optimization method since it is built in the simulation 

software tool, and it suits cases where multi objectives need to be fulfilled. The main objectives of the 

optimization are to reduce both the number of used vehicles and capacities of line-side buffers besides 

some other objectives mentioned in the section of thesis objectives; hence, the focus will be on them. 

The input and output variables are represented in the following figure, Figure 35. 

Figure 35. Input and output variables of the optimization process 

As shown in the above figure, different input and output variables of the optimization engine are 

inserted. The first two decision variables represent the upper and lower bounds of the number of used 

AGVs, where they were selected to be between (1 and 5). The next four variables represent the 

capacities of line- side buffers and the lower bounds set to values that equal one-hour production, and 

the upper bounds are equal to values of two-hours production. The bounds of capacities of parts’ 

buffers located at MPA were decided to be between two-hours production for the lower bound and 

one-day demand for the upper bound. The last six variables are the bounds for different conveyors 

located at production lines and MPA; they were chosen to be between 2 and 10 meters and following 

the dimensions of pallets and plastic boxes that were selected according to European standard sizes.  
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The selected software tool for this study does not give the possibility to assign the number of cycles in 

a straightway, and this puts a necessity to find an alternative way. That way is to assign the number of 

entries that each AGV makes when it unloads empty boxes before starting a new cycle. Thus, the 

number of cycles represents the first four outputs, one for each production line, and then WIP and lead 

time to represent the rest. Under the “set” column in Figure 35 and for every input, the base values that 

equal to one represent the step between every two sequential values of the lower and the upper bounds. 

This step acts for an integer value, for example, the lower and upper limits of the number of AGVs 

moves one integer value from 1,2,3,3….,10. This means that it is not possible to have a fractional value 

to represent the number of AGVs. 

The next figure, Figure 36, shows the formulas used in the optimization, and in here, different 

objectives of the studied project are consigned. 

Figure 36. The different objectives of this project 

As mentioned before, the main objectives were to minimize the number of vehicles and line-side 

buffers. Besides, some additional objectives were assigned, such as minimizing the capacities of part 

buffers, lengths of conveyors, WIP, and lead time. The optimization algorithm to be followed is 

NSGA-III, and it is run with 5000 iterations, and the results were obtained and discussed further in this 

section. 

5.5.1 The optimization results of the basic model 

 The next figure, Figure 37, shows the plot of lead time on the Y-axis and the total number of AGVs 

on the X-axis. It shows the result of running the 5000 iterations of the optimization process, where 

each point represents a feasible solution. 
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Figure 37. 2D-plot of LT and Numof_ AGV for the basic model 

As shown in Figure 37, the lead time (LT) is compared to the number of AGVs (Numof_AGV). Pareto 

optimal front could be drawn, and it shows that the minimum number of AGVs which is required to 

perform the material handling process is 2 (1 AGV for pallets and another 1 for plastic boxes). The 

corresponded value of lead time that AGVs need to handle the required amount of kits is 30966 

seconds, which is 516 minutes or 8.6 hours. The graph shows that going up one step on the Y-axis 

decrease the lead time significantly, where the new value is 20124 seconds and this a decrease of 35%.  

The following figure, Figure 38, shows the number of vehicles of the first type AGV_1. 

Figure 38. 2D-plot of LT and AGV_1_Source_CreationNumber 
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As Figure 38 shows, 3 AGVs of the first type is the best selection regarding the value of lead time and 

the total number of AGVs. However, the LT is not so different from choosing 2 AGVs, that is 

something to prioritize by the managers.  

For the second type of vehicle AGV_2, it is shown in Figure 39 that one vehicle is required to deliver 

material to the assembly lines. 

Figure 39. 2D-plot of LT and AGV_2_Source_CreationNumber 

Therefore, two vehicles of the first type and one vehicle of the second type are required to perform the 

material handling process in this study, and it could be considered as the first alternative in terms of 

prioritization in the concerned company. 

Moreover, the minimal value of lead time equals to 18445 seconds, as shown in Figure 37, and it could 

be achieved by assigning 4 AGVs.  This selection represents the second alternative. It is noticed that 

the value of lead time stays constant after the previous magnitude, and this means that there is no 

benefit from assigning more AGVs to be put in service in order to deliver the material into assembly 

lines. The former selection gives the minimal lead time, and if it is going to be chosen, the number of 

necessary vehicles of each type would be 3 and 1, respectively, as shown in the previous chart. 

The final decision about what alternative would be followed is totally up to the decision-makers in the 

company because it represents a trade-off between the two parameters. In other words, if the company 

concerns the number of AGVs more than the lead time, then the first alternative fits better. On the 

other hand, if the company gives priority to the lead time, then the second alternative is better than the 

first one.  
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The two following tables, Table 15 and Table 16, contain a comparison between the two former 

alternatives for the other objectives.  

Table 15. The first alternative of the basic model 

Table 16. The second alternative of the basic model 

By having a close look into them, it could be said that the first scenario has some advantages in terms 

of WIP, the number of AGVs, and the number of cycles; whereas, the second scenario is better for lead 

time, line-side buffers and length of conveyors.  

To verify the effectiveness of running the optimization process, the initial inputs of the basic model 

would be compared against the magnitudes, which are extracted after running the optimization process. 

The maximum initial number of AGVs, line-side buffers, length of conveyors were 12 AGVs, 170 

store places, and 60 meters of conveyors, respectively. After the optimization process, the previous 

values for both alternatives became 3 or 4 AGVs, 110 or 97 store places, and 22 or 12 meters of 

conveyors. The capacities of line-side buffers have been reduced to the minimum possible amounts 

while maintaining the condition of one-hour production on the one hand. On the other hand, the number 

of AGVs has been reduced dramatically with keeping the condition, which says that shortage is not 

allowed according to the feeding policy of material. 

5.5.2 The optimization results of the third improved scenario 

In this scenario, the material is handled into assembly lines under the stationary kitting process, and 

the obtained results show significant improvements in different parameters. The value of lead time has 

been steadily decreased where the maximum magnitude was 32493 seconds at the beginning of the 

optimization process, the fifth iteration in particular, and it went down to the minimal value 5790 

seconds (Figure 40). The same is true when it comes to Figure 41 that shows the dramatic decrease 

in WIP, where the value of WIP has been declined from 1310 to 212.  

 



       A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines 

Osama Marwan Altrabulsy                82    

Figure 40. The evaluation of WIP                                     Figure 41. The evaluation of LT 

The following figures, Figure 42 and Figure 43, show the happened decrease in values of part buffers 

and line-side buffers, and it is easy to observe the significant improvements that come of this scenario, 

for example, the line-side buffers can be reduced till 89 with maintaining the condition that says the 

shortage is forbidden.  

Figure 42. The evaluations of Part’s buffers                  Figure 43. The evaluations of Line-side’ buffers 

In the below figure, Figure 44, it can be appreciated that the Pareto-optimal front is located at the left 

bottom side of the graph, and it illustrates that the minimum necessary number of AGVs is two and 

the corresponded value of lead time is 11437 seconds.  
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Figure 44. 2D-plot of LT and Numof_AGV for the third improved scenario 

The previous figure shows that assigning 3 AGVs would decrease the value of lead time by 42%, 

where the new number becomes 6601 seconds. Thus, using three vehicles has a remarkable impact on 

the entire simulation model, and this was discussed in the previous chapter. In more detail, the number 

of AGVs of the first type is 2, and the second type is 1. Besides, the minimum lead time is obtained by 

consigning 4 AGVs, where it equals to 5790 seconds. However, the ultimate decision is up to the 

company.  

The two following tables, Table 17 and Table 18, show a comparison between the two previous 

alternatives concerning the other objectives. 

Table 17. The first alternative of the third scenario 

Table 18. The second alternative of the third scenario 

The first resolution is better in terms of WIP, the number of AGVs, and the number of cycles. 

Nevertheless, the other resolution outnumbered the first one in three aspects, which are the lead time, 

the line-side buffers, and the length of conveyors.  
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6 Discussion 

By analyzing the obtained results of the different designed scenarios, it is possible to notice the level 

of potential improvements that occurred. The results of the basic model show the values of principal 

parameters for each product’s types and the plant as a whole. This model was designed as a future state 

consigning the data that is being used by the company in the current state, such as the daily demand of 

each variant, line storage for two hours of production. However, the focus was on modeling a future 

layout configuration of the main shop floor. 

The purpose of creating the model is to design a new material handling system and analyze the 

necessary changes in the factory’s layout, then verify the applicability and compatibility with the 

current state. The model was verified and validated based on the outcomes of real data that have been 

used as a reference compared to the obtained results of the simulation model. It is essential to clarify 

that the value of WIP and lead time of the plant would be the mean value of all variants. For the number 

of required AGVs, the optimization outcomes showed that it is possible to obtain the same desired 

results by using a lower number than the initial one, where the number of necessary vehicles has been 

minimized to 4 or even 3.  

For the first scenario, to increase the demand by 100%, the most recognizable amendment could be 

noticed on the new value of lead time, where it declined due to the reason that the assembly times of 

the production lines were reduced to the half in order to get the throughput increased 100%. It is well 

known that the lead time is the time allotted for the production of a part on the line; however, in Facts 

Analyzer, the lead time is the time that one variant takes to pass through the entire model. Therefore, 

the plant’s lead time went down by 39%, and this due to that assembly times form the most significant 

proportion of the total lead time and the transportation time, storage, loading, and unloading times 

form the residual proportion. It is evident that the magnitude of WIP is almost the same, and this small 

difference is because of the little variability in the model, which comes from the triangular distribution 

of transportation time and assembly time. The company required to have line-side buffers with a 

maximum and minimum capacity of 1- and 2-hours production respectively, the possible variability 

was not significant regarding the WIP. 

As it concluded in the second scenario, to change the location of the material preparation area, the 

effects of changing the location of the supermarket on the model were marginal since it influenced 

only the lead time, which has been declined slightly. The reason that stands behind this little impact is 

related to the small portion of transportation time to the whole lead time of the plant. The new place 
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of the parts store moved to the center of production lines, so the distance between the production lines 

changed, and this will affect the values of transportation times that AGVs need to pass before unloading 

material at the line-side buffers that located at the front of different lines.  

The last scenario, to change the way by which AGVs deliver material to assembly lines, showed 

appreciable impacts on the designed model. The traveling kitting process found to be considered 

efficient on the material handling system since the plant’s lead time declined significantly. As 

mentioned before, the safety stock of line-side buffers was decided to be equal to one-hour production, 

and the batch object is introduced to fulfill that condition, where it will maintain that safety percent of 

each limit proportion of different variants of all line-side buffers. Thus, when this level is about to be 

reached, AGVs will begin a new cycle loading the required number of kits regarding the needs at lines. 

In case of stationary kitting which is adapted in the basic model, an AGV serves only one workstation, 

and it waits until the total capacity being unloaded and for instance, if lines of small products require 

one kit for each of them, then two AGVs would move into assembly lines carrying the kits and the 

transportation time will be equal to the sum of the two lines together. In contrary, and if the same 

number of kits needs to be carried to the production lines, just one AGV will move handling kits to the 

lines under a transportation time that equals to the time of the most remote line which certainly is 

shorter than the previous transportation time in the stationary kitting process. Therefore, the lead time 

in the last scenario is substantially less than the lead time of the basic model.   

During this study, some usual constraints that the modeler had to face when developing these kinds of 

projects can be mentioned. One of the main constraints is the lack of enough time of the stakeholders 

whom the system designer has to meet in order to develop the model. This means that continuous 

communication between the people in charge who are responsible for the real system and the developer 

of the simulation model is significantly necessary. The concerned company located in a remote city, 

so it was overworked to travel there and arrange kaizen workshops with stakeholders who were 

involved even though their little available time. 

Another constraint was a model that is characterized by its stochastic nature. It is highly substantial to 

well-understand the objectives of any project and the most effective methods to follow in order to 

achieve them. Then the suitable simulation tools must be selected carefully for translating the 

conceptual model into a simulation one and implement the chosen method during the simulation 

method. The poor selection of the appropriate method and simulation tools will affect the whole 

process of system insight and will be a very tedious and time-consuming process. As it is mentioned 

previously, the discrete-event simulation such as this project contains a vast number of variables which 
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are characterized by its stochastic behavior and this put an extra work on the designer to run a 

considerable number of experiments before reaching the steady-state at which the model begins to 

show an acceptable level of stability. The material handling system which is designed includes a set 

of random variables that are difficult to be predicted precisely during each cycle that AGVs do. For 

instance, the number of every product’s parts throughout every individual cycle is one of those 

stochastic variables, and the difficulty of indicating them comes from the fact that the assembly lines 

determine the required quantities of each one depending on the needed process times to assemble the 

different product variants. 

The last constraint is the lack of references that talk on the chosen simulation software used in this 

project, which is Facts Analyzer. The University of Skövde develops this software, so it is the only 

available resource to learn the software, and it is still in a continuous development process. Besides, it 

is not simple to implement some commands straight away because there is no direct option for those 

commands that could be selected. As well, inserting some decision variables is difficult to put in 

immediately. For instance, in the case of assigning the number of cycles, it is infeasible to consign this 

parameter in promptly way , and another way was followed to assign that parameter, and that way was 

to insert the number of entries that AGVs make at unloading stations when they disassemble empty 

boxes before starting a new cycle. However, after working to overcome these constraints, the model 

has been built, validated, and verified, and the results of the what-if scenarios and optimization 

obtained. The following chapter is Conclusions and Future Work.   

 

 

 

 

 

 



       A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines 

Osama Marwan Altrabulsy                87    

7 Conclusions and Future Work 

In this chapter, the methodology and results of this project are summarized. The accomplishment of 

different goals and the future work of this thesis is presented as well. 

7.1 Conclusions 

The case-related organization produces the manufacture of goods of different sizes, and it is located in 

the southern part of Sweden. The main objective in the performed study, as mentioned, was to design 

a new material handling system characterized by its efficiency and applicability in a future layout. 

Then determining the necessary number of transporting vehicles and run an optimization process by 

adapting one of the meta-heuristic algorithms in order to minimize the store capacity, LT, WIP, and 

evaluate some what-if scenarios regarding the MHS method. In this study, a lean and simulation-based 

optimization method, LeanSMO, has been selected to be the theoretical framework, and it showed to 

be very efficient since it combines the three approaches simulation, lean, and optimization. 

Moreover, lean was used in this study, wherein several lean tools such as 5S, JIT, and Kanban were 

applied, and significant benefits were obtained. For example, Kanban, which represents one kind of 

pull system mechanism, helps to control the handling process of material effectively because Kanban 

assures that the material is transported under the JIT method. Beside Kanban, 5S was also applied in 

this project, especially in the material preparation area, and this tool has assisted in reducing the total 

lead time of the manufacturing company since it aided to standardize and sort the different types of 

kits that form products.  

By analyzing the results of different scenarios, it is clear that the newly designed material handling 

system would have several beneficial impacts on the whole production process. The number of 

necessary vehicles has been reduced significantly after running the optimization as well as the plant’s 

lead time has been decreased. Besides, the capacities of line-side buffers were reduced to an acceptable 

level that saves the space for the company and maintains the condition of one-hour production at the 

same time.   

The development of this project and analyzing the different outcomes of “what-if” scenarios 

demonstrates that all objectives have been accomplished. The main objective was to design an efficient 

handling system which characterizes by its high applicability and effectiveness, then determine the 

required number of vehicles and minimize it by running multi-objective optimization algorithms, and 
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this mission was done. The next primary objective was to minimize the capacities of line-side buffers, 

and this also done successfully. Some of the additional objectives were achieved, such as minimizing 

the capacities of part buffers and the length of conveyors. 

Moreover, it could be said that the applied approach, which is Lean-SMO found to be efficacious and 

suitable in this project since the advantages of the three approaches could be obtained. This 

combination of the three approaches fits best this kind of study because one of its branches- which is 

the discrete event simulation- can follow the continuous changing of some parameters over the time 

as well as it is more suitable than a mathematical model that based on one kind of algorithm since the 

dynamic changing behavior of the system. 

Finally, the concerned company has considered the results of this project as valuable knowledge for 

managers and stakeholders. The utilization of this knowledge is relevant for the implementation of the 

future vision strategy of the company regarding its forthcoming production, where new products will 

be introduced, and redistribution of the layout will be performed. Besides, a new internal logistic 

system will be implemented to gather the material from MPA and deliver it to assembly lines. 

7.2 Future work 

Future work could be the design of more scenarios that the company would be interested in to 

implement “what-if” experiments. For instance, one scenario could be to design a new material 

handling system with another type of transporters such as forklifts, tow trains, or overhead conveyors. 

After that, the final results could be compared against each other, and the best alternative could be 

discussed with the decision-makers and later on be implemented if they would approve of doing so. 

In addition, another simulation software could be used in order to make the simulation process more 

manageable and to facilitate performing some commands that were difficult to be designed in the 

simulation software, which is the Facts analyzer. Flexsim simulation software is an advantageous 

choice to be selected in the future work of this study since it is more advanced than the Facts analyzer 

in the simulation part, and it gives more options to simulate different commands quickly and flexibly. 

Besides, the integration between the two simulation software tools could also be done, and for instance, 

the simulation model would be designed on Flexsim then import it to Facts analyzer to perform the 

optimization process using one of the meta-heuristic algorithms that are integrated with Facts. Hence, 

the most optimal configuration of the system could be found, and this would save significant amounts 

of money, time, and resources.  
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9 Appendices 

In this chapter, different project’s assumptions, data included in the basic model, the entire figures of 

collected data, some outputs of the basic model, and some optimization results of the basic model are 

presented.  

9.1 Appendix 1 

This appendix shows the different assumptions of this project; they are included in the following table. 

Model assumptions 

 

 

Assumption Comments 

One supermarket is available to serve the lines. 
This helps in applying the kitting method, and all AGVs visit one storage 

area to load the required parts. 

The traveling path, location of lines, and the 

supermarket on the shop floor are given. 

This is agreed upon with the decision-makers, and it is the future layout 

for this study. 

The storage capacity in each line is limited and 

known. 
The maximum and minimum limits are known. 

AGVs are only allowed to travel on predefined paths. 
AGVs follow predetermined paths that are designed in the future plan, 

and this helps in calculating the transportation time of each AGV. 

AGVs do not block each other during a cycle. 
Two different ways were created for this purpose. Besides, the pull 

system -which is followed- contributes to this goal. 

There are two AGVs’ types, and they are identical in 

terms of loading capacity. 

This is true for the basic model. However, for the third scenario, AGVs 

can be loaded with capacities varying from one to six kits.  

All AGVs are similar in terms of speed. 
This helps in calculating the transportation times of each products’ type 

since the different distances are known. 

Parts are supplied only in kits and only fully loaded, 

and  empty kits are delivered and collected at each 

line, respectively. 

This is true for the basic model. Nevertheless, for the third scenario, 

various capacities of kits to be loaded and empty kits are feasible. 
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9.2 Appendix 2 

This appendix presents different data included in the basic model for the entire entities.  

Objects 
Creation 

number/amount 

Process 

time 

(sec) 

Length of 

conveyors 

(m) 

Buffers size 
(kits) 

Loading 

time 

(sec) 

Unloading 
time (sec) 

Transportation 
time (sec) 

Line_A_Product 2 - - - - - - 

Plastic_Boxes_Source 60 - - - - - - 

Line_B_Product_1 3 - - - - - - 

Line_B_Product_2 3 - - - - - - 

Line_B_Product_3 3 - - - - - - 

Line_C_Product_1 2 - - - - - - 

Line_C_Product_2 2 - - - - - - 

Pallets_Source 40 - - - - - - 

Line_D_Product_1 2 - - - - - - 

Line_D_Product_2 2 - - - - - - 

Kit_Preparation_Product_B_1 3 0 - - - - - 

Kit_Preparation_Product_B_2 3 0 - - - - - 

Kit_Preparation_Product_B_3 3 0 - - - - - 

Kit_Preparation_Product_C_1 2 0 - - - - - 

Kit_Preparation_Product_C_2 2 0 - - - - - 

Kit_Preparation_Product_D_1 2 0 - - - - - 

Kit_Preparation_Product_D_2 2 0 - - - - - 

MPA_LineA - 0 - 361 - -  

Plastic_Boxes_Buffer - 0 - 60 - - - 

MPA_LineB - 0 - 668 - - - 

MPA_LineC - 0 - 107 - - - 
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Objects 
Creation 

number/amount 

Process 

time 
(sec) 

Length of 

conveyors 
(m) 

Buffers size 

(kits) 

Loading 

time 
(sec) 

Unloading 

time (sec) 

Transportation 

time (sec) 

Pallets_Buffers - 0 - 40 - - - 

MPA_LineD - 0 - 33 - - - 

Kanban_A_1 - 0 - - - - - 

Kanban_A_2 - 0 - - - - - 

Kanban_B_1 - 0 - - - - - 

Kanban_B_2 - 0 - - - - - 

Kanban_B_3 - 0 - - - - - 

Kanban_C_1 - 0 - - - - - 

Kanban_C_2 - 0 - - - - - 

Kanban_D_1 - 0 - - - - - 

Kanban_D_2 - 0 - - - - - 

Plastic_Boxes_Input - - 10 - - - - 

Pallets_Input - - 10 - - - - 

Disassembly_B - 0 - - - - - 

Disassembly_C - 0 - - - - - 

Disassembly_D - 0 - - - - - 

Boxes_A_Assembly 2 0 - - - - - 

Boxes_B_Assembly 9 0 - - - - - 

Boxes_C_Assembly 4 0 - - - - - 

Boxes_D_Assembly 4 0 - - - - - 

AGV_1_Source 6 - - - - - - 
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Objects 
Creation 

number/amount 

Process 

time 

(sec) 

Length of 

conveyors 

(m) 

Buffers size 
(kits) 

Loading 

time 

(sec) 

Unloading 
time (sec) 

Transportation 
time (sec) 

Conveyor_A - - 10 - - - - 

Conveyor_B - - 10 - - - - 

Conveyor_C - - 10 - - - - 

Conveyor_D - - 10 - - - - 

Starting_Point_1 - 0 - 6 - - - 

Starting_Point_2 - 0 - 6 - - - 

Load_AGV_1_1 6 - - - 120 - - 

Load_AGV_2_1 6 - - - 120 - - 

Load_AGV_3_1 1 - - - 40 - - 

Load_AGV_4_1 1 - - - 40 - - 

Unload_AGV_1_2 - - - - - 120 - 

Unload_AGV_2_2 - - - - - 120 - 

Unload_AGV_3_2 - - - - - 40 - 

Unload_AGV_4_2 - - - - - 40 - 

OP_1_1 - 34 - - - - - 

OP_1_2 - 34 - - - - - 

OP_2_1 - 26.25 - - - - - 

OP_2_2 - 33.75 - - - - - 

OP_3_2 - 19 - - - - - 

OP_3_1 - 19 - - - - - 

OP_4_2 - 18.75 - - - - - 
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Objects 
Creation 

number/amount 

Process 

time 

(sec) 

Length of 

conveyors 

(m) 

Buffers size 
(kits) 

Loading 

time 

(sec) 

Unloading 
time (sec) 

Transportation 
time (sec) 

Unload_AGV_1_1 - - - - - 120 - 

Unload_AGV_2_1 - - - - - 120 - 

Unload_AGV_3_1 - - - - - 40 - 

Unload_AGV_4_1 - - - - - 40 - 

Load_AGV_1_2 6 - - - 120 - - 

Load_AGV_2_2 6 - - - 120 - - 

Load_AGV_3_2 1 - - - 40 - - 

Load_AGV_4_2 1 - - - 40 - - 

Empty_Boxes_A - 0 - 6 - - - 

Empty_Boxes_B - 0 - 6 - - - 

Empty_Boxes_C - 0 - 5 - - - 

Empty_Boxes_D - 0 - 5 - - - 

Store_1 - 0 - 55 - - - 

Store_2 - 0 - 100 - - - 

Store_3 - 0 - 16 - - - 

Store_4 - 0 - 20 - - - 

Assembly_A - - - - 263 - - 

Assembly_B_1_1 - - - - 495.6 - - 

Assembly_B_2_1 - - - - 846.6 - - 

Assembly_B_3_1 - - - - 781.2 - - 

Assembly_C_1_1 - - - - 1230 - - 
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Data included in the basic model 

 

 

 

 

 

 

 

 

 

 

Objects 
Creation 

number/amount 

Process 

time 

(sec) 

Length of 

conveyors 

(m) 

Buffers size 
(kits) 

Loading 

time 

(sec) 

Unloading 
time (sec) 

Transportation 
time (sec) 

Assembly_D_1_1 - - - - 4086.6 - - 

Assembly_D_2_1 - - - - 12850.2 - - 

F_G_C - 0 - 5 - - - 

F_G_D - 0 - 5 - - - 

Sink_A - 0 - - - - - 

Sink_B - 0 - - - - - 

Sink_C - 0 - - - - - 

Sink_D - 0 - - - - - 



       A Simulation-based Optimization Approach for Automated Vehicle Scheduling at Production Lines 

Osama Marwan Altrabulsy                102    

9.3 Appendix 3 

In this appendix, the entire figures which represent the collected data for all production lines are 

presented. 

9.3.1 Line A data 
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9.3.2 Line B data 
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9.3.3 Line C data 
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9.3.4 Line D data 
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9.4 Appendix 4 

In this appendix, some outputs of the basic model are presented. 
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9.5 Appendix 5 

This appendix includes some optimization results of the basic model. 
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