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Microcomputed Tomography (lCT)
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Texture is one of the critical parameters that affect the process behavior of ore minerals.
Traditionally, texture has been described qualitatively, but recent works have shown the
possibility to quantify mineral textures with the help of computer vision and digital image
analysis. Most of these studies utilized 2D computer vision to evaluate mineral textures,
which is limited by stereological error. On the other hand, the rapid development of X-ray
microcomputed tomography (lCT) has opened up new possibilities for 3D texture analysis
of ore samples. This study extends some of the 2D texture analysis methods, such as asso-
ciation indicator matrix (AIM) and local binary pattern (LBP) into 3D to get quantitative
textural descriptors of drill core samples. The sensitivity of the methods to textural differ-
ences between drill cores is evaluated by classifying the drill cores into three textural classes
using methods of machine learning classification, such as support vector machines and
random forest. The study suggested that both AIM and LBP textural descriptors could be
used for drill core classification with overall classification accuracy of 84–88%.

KEY WORDS: X-ray computed micro-tomography (lCT), Machine learning, Texture quantification,
Local binary pattern, Co-occurrence matrices.

INTRODUCTION

Geometallurgy can be referred to as the estab-
lishment of a link between geology and downstream
processes with the aim to maximize economical va-
lue, reduce production risks, and guide the man-
agerial decision-making process (Dominy et al. 2018;
Lishchuk et al. 2020). A geometallurgical program is
undertaken by creating a spatial model of the ore-

body that predicts how each ore block behaves in a
mineral processing circuit (Lund et al. 2013; Aasly
and Ellefmo 2014). Such predictive models require
the establishment of a link between the ore prop-
erties (mineralogy and textures) to the process out-
puts, which can be done by geometallurgical tests
(Mwanga et al. 2017; Lishchuk et al. 2019) or pre-
dictive process models (Koch et al. 2019).

The importance of mineral textures in relation
to the mineral processing behavior of different ore
samples has been underlined by several researchers
(Lund et al. 2015; Tungpalan et al. 2015; Pérez-
Barnuevo et al. 2018a). For example, the informa-
tion about grain size can be used to predict target
liberation size of the minerals of interest (Vizcarra
et al. 2010; Evans et al. 2015). Textural patterns of
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the minerals in an ore have been shown to affect
leaching (Ghorbani et al. 2011; Fagan-Endres et al.
2017), flotation process (Tungpalan et al. 2015),
comminution (Little et al. 2016), and sintering
(Donskoi et al. 2016).

Geologists have commonly used qualitative
textural descriptors to describe different drill core
samples. This practice imposes some limitations on
the use of such textural descriptors in geometallurgy,
as it is subject to human bias (Bonnici et al. 2008;
Vos 2017). When it comes to geometallurgy, the
integration of textural information to predictive
process models requires the texture information to
be free of any subjectivity, which then necessitates
the use of computer vision to obtain quantifiable
textural descriptors from the ore sample (Pérez-
Barnuevo et al. 2018b).

Lobos et al. (2016) categorized mineral texture
as two distinct types: structural and stationary tex-
tures. Structural textures refer to grain size, shape,
and orientation in the ore samples. Stationary tex-
tures then describe the spatial distribution or the
pattern of the mineral grains in the ore sample. The
quantification of grain size has been presented
elsewhere (Evans et al. 2015; Reyes et al. 2017),
while shape analysis has mostly been done for par-
ticulate samples with relation to comminution pro-
cess (Little et al. 2016, 2017). On the other hand, the
quantification of stationary textures has been mostly
conducted with the help of computer vision to rec-
ognize the textural pattern of the ores (Donskoi
et al. 2007; Nguyen 2013; Pérez-Barnuevo et al.
2013; Pérez-Barnuevo et al. 2018b; Koch et al. 2019).
Most of the stationary textural analysis studies uti-
lized 2D computer vision techniques, which is lim-
ited by stereological error (Lätti and Adair 2001;
Pirard et al. 2007). This created the need for 3D
texture quantification methods that are not subject
to stereological error.

Over the last decades, the development of X-
ray microcomputed tomography (lCT) in the field
of geosciences has received wide attention. The
advantage of a lCT system lies in its ability to
analyze the 3D interior of a sample in a non-de-
structive manner. Many studies have utilized lCT to
extract various ore properties such as grain surface
exposure (Miller et al. 2003; Wang et al. 2017; Reyes
et al. 2018), structural textures (size and shape) (Lin
and Miller 2005; Evans et al. 2015), porosity (Peng
et al. 2011), mineralogy and mineral liberation
(Reyes et al. 2017; Guntoro et al. 2019b; Ueda 2019),
and stationary textures (Jardine et al. 2018; Voigt

et al. 2019). Beside for research purposes, the use of
lCT has also been explored for industrial cases in
mine sites, particularly with the development of 3D
drill core scanning machines such as Orexplore
GeoCore X10 (Bergqvist et al. 2019).

The potential application of lCT systems in
quantitative analysis of stationary textures in drill
core samples has been initially studied by Becker
et al. (2016) and Jardine et al. (2018). They used one
of the popular methods in 2D texture analysis,
namely gray-level co-occurrence matrices (GLCM)
and extended this method in 3D. They showed
that such method is able to capture the changes in
mineralogy and stationary textures in three different
types of Ni–Cu sulfide drill cores. Voigt et al. (2019)
then developed the method further by including the
rock strength information in the textural descriptors.

Expanding further the research topics of 3D
textural quantification of drill cores, this current
study attempts to explore some other 2D texture
analysis methods and extend them for stationary
texture analysis in 3D. The potential use of associ-
ation indicator matrix (AIM) developed in 2D by
Lund et al. (2015) and Parian et al. (2018) as a 3D
textural descriptor for stationary textures in drill
core samples is evaluated in this study. Besides
AIM, the study also evaluates the popular texture
analysis method of local binary pattern (LBP)
(Ojala et al. 2002) as a method for quantifying sta-
tionary textures in 3D drill core images. Further-
more, this study examines the potential use of such
textural descriptors for automated classification of
drill core textures using machine learning classifi-
cation models such as support vector machines
(SVM) (Vapnik et al. 1995) and random forest (RF)
(Breiman 2001). Such quantification and classifica-
tion approach attempts to analyze the uniqueness of
the textural descriptors in describing different drill
core textures, and whether different types of sta-
tionary textures can readily be discriminated using
such textural descriptors.

MATERIALS AND METHODS

In this section, some qualitative texture
descriptions of the drill core samples are provided.
Further, the methodology used for 3D image
acquisition and image analysis is also explained.
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Drill Core Samples

The drill core samples were obtained from
Garpenberg mine in Sweden, located approximately
180 km northwest of Stockholm. The deposit is de-
scribed as massive sulfide deposits containing Zn,
Pb, Ag, Cu, and Au (Bindler et al. 2017). The de-
posit is currently owned and operated by Boliden
AB. Major sulfide and oxide minerals include
sphalerite, galena, pyrite, pyrrhotite, chalcopyrite,
and magnetite. Some silver bearing minerals such as
freibergite and dyscrasite also exist in trace amount
(Tiu et al. 2019).

The drill core samples used in this study are
shown in Figure 1. The drill core samples consisted
of half-cores with around 4 cm diameter and around
20–25 cm length. These drill core samples have been
logged and classified with respect to their mineral-
ization types (Tiu et al. 2020): (a) skarn-hosted sul-
fide mineralization, (b) footwall disseminated
mineralization, and (c) shear zone mineralization.
The relevant textural classes for these particular drill
core samples are described in Table 1.

X-ray Microcomputed Tomography (lCT)

The fundamental principle of lCT measure-
ment is that it records the differences in X-ray
attenuation of the material. As the X-ray beam
passes through the material, a proportion of the X-
ray interacts with the material, thereby decreasing
the intensity of (attenuating) the X-ray. The X-ray
attenuation is dependent on the material�s density
and composition as well as the energy of the X-ray
itself. The differences in the attenuation are repre-
sented in the varying grayscale levels of the voxels
(volume elements) in the reconstructed slice images,
with more attenuating materials having brighter
grayscales. In the case of drill core imaging, the
grayscale levels can give some information about the
various mineral phases present in the drill core.
Further analysis of these grayscale levels could then
reveal some idea about mineralogy and textures of
the drill core.

In this study, GE phoenix v|tome|x s at Geo-
logical Survey of Finland (GTK) was used as the
lCT scanner. The scanning conditions are summa-
rized in Table 2. Samples A and B were scanned
together, and sample C was scanned together with
another half-core not included in this study. Due to
the size and density of the drill cores, coarse reso-
lution of 50 lm was chosen to compensate for the
acquisition time, as it was also deemed sufficient for
this study. The multi|scan� module in the lCT sys-
tem allows the automated complete scans of long
objects and automatic volume stitching, which was
suitable for the drill core samples in this study.
Multi|scan could also be used for automatic scanning
of longer drill core samples, up to 30 cm in length.
Reconstruction was done with the phoenix datos|x
software. ORS Dragonfly� software was used for the
volume rendering and visualization of the 3D image.

Texture Analysis and Quantification

All of the texture analysis algorithms were
developed in MATLAB�. The processor used in this
study to perform the computational tasks was Intel�

Xeon� CPU E5-2650 v3 @2.3 GHz (40 CPUs) with
262 GB of Random Access Memory (RAM). Ta-
ble 3 gives some information about the acquired 3D
image. It is also worth noting that the drill core only
makes some part of the 3D image, with the rest
being air. Otsu thresholding (Otsu 1979) was used to
segment out the air in the 3D image, leaving only the

Figure 1. Drill core samples analyzed in this study. Sample

A—tremolite-bearing skarn. Sample B—mica schist. Sample

C—talc-bearing ore. Sample C in this figure is broken into two

parts.
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drill core volume for the analysis. The proportion of
the drill core out of the whole 3D image is also given
in Table 3.

Due to the large size of the 3D image, MA-
TLAB Parallel Computing Toolbox� (Sharma and
Martin 2009) with 20 single-thread workers was
used. With parallel computing, the computational
task is divided to a number of workers that executed
the task in parallel. This greatly reduced the com-
putational time; without parallelization, it took
around 1 h each to extract LBP and AIM textural
features from the 3D image, while the same proce-
dure took around 5–7 min each with parallelization.
Furthermore, in order to decrease the demand for
RAM during the data processing, the 3D image is
processed as a repository of 2D slice images using
MATLAB Image Datastore, which stores the data
as an array of strings containing the directory of the
image files (Andersson 2017).

Association Indicator Matrix (AIM)

The concept of association index was first
developed by Lund et al. (2015) to describe the
frequency of the target mineral associated with other
minerals regardless of the liberation degree and the
modal composition in a particulate sample. The
association index (AI) is calculated using the for-

mula described in Eq. 1. If the AI of a mineral pair
A–B is 1, then the association between the pairs is as
common as the modal composition suggests. AI va-
lue of lesser than 1 indicates that the association is
rarer than expected and vice versa for AI value of
greater than 1. AI value of zero indicates no asso-
ciation between the minerals.

AIA�B ¼ AssociationofmineralAwithmineralB excludingliberatedgrainsð Þ wt%½ �
Mineral B grade in a fraction excluding mineral Að Þ wt%½ �

ð1Þ
Parian et al. (2018) developed the concept fur-

ther by using co-occurrence matrices. In a mineral
map with n minerals (n voxel values), the co-oc-
currence matrix will be the size of n 9 n. The value
in C(i,j) indicates how many times the mineral i co-
exists with mineral j in a defined offset. The offset is
defined as the distance between the voxels and the
directional pairs of the voxels. In 3D space, there
would be 26 directional pairs, of which 13 are un-
ique. The concepts of association index and co-oc-
currence matrix are essentially the same as in
GLCM (Haralick and Shanmugam 1973). The spa-
tial relationship in a co-occurrence matrix is illus-
trated in Figure 2, while example application for a
mineral map in Figure 3 is given in Table 4.

The co-occurrence matrix can then be normal-
ized to give an estimation of the abundance of phase
interfacial area (association) between the minerals.
This can then be done normalizing the non-diagonal
cells (by row or by column), as the diagonal cell is
indicating the association of the mineral with itself.
This is then called the AIM, shown in Table 5 for
the mineral map in Figure 3.

In this example, it can be concluded that out of
all phase 1 in the sample, 20.9% is associated with
phase 2, while 71.6% associated with phase 3. Parian
et al. (2018) have demonstrated that the information
about surface exposure of each phase can also be
deduced using the association with background (air).

Table 1. Mineralogy and textural characteristics of the samples (Tiu et al. 2020)

Sample Mineralization type Major sulfide minerals Gangue minerals Mineral textures

A Skarn-hosted sulfide mineralization Sphalerite, galena,

pyrite, pyrrhotite

Pyroxene, amphi-

boles, quartz

Medium-to-coarse grained interstitial

sphalerite and galena

B Footwall disseminated mineralization

hosted by mica-quartzite

Sphalerite, galena,

pyrite

Mica, quartz Disseminated sulfide mineralization

parallel to the foliation

C Shear zone mineralization Sphalerite, galena,

pyrite, chalcopyrite

Amphiboles, talc,

pyroxene, calcite

Talc-bearing sulfide mineralization

associated with the shear zones

Table 2. Experimental conditions of the lCT scanning

Voltage 220 kV

Current 250 lA
Power 55 W

Number of projections 4 9 2000 for A–B, 4 9 1500 for C

Filter 1 mm Cu

Resolution 50.0 lm
Total acquisition time 166 min
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In the example above, the exposed surface for pha-
ses 1, 2, and 3 are 19.8%, 24.2%, and 56%, respec-
tively. This concept of surface exposure is
particularly useful for particulate samples. Since drill
core samples are used in this study, the surface
exposure is not included in the calculation of AIM.

Local Binary Pattern (LBP)

LBP was initially developed by Ojala et al.
(2002) as a method to describe the local geometric
pattern of a texture image. LBP is quite popular in
texture analysis due to its computational simplicity
and robustness to monotonic grayscale-level change.
LBP has been extensively studied and has found

many applications especially in facial image analysis
(Ahonen et al. 2006; Huang et al. 2011). In relation
to mineral texture analysis, LBP has been used, for
example, to identify different mineral samples under
microscopy (Aligholi et al. 2015) and as a textural
descriptor for drill core images (Koch et al. 2019).

LBP compares each central pixel value ( pc)
with all neighboring pixel values ( pi). Depending on
the value of pi, a binary value is then assigned on the
neighboring pixel following Eq. 2, in which P is the
number of neighboring pixels within R pixels dis-
tance from the central pixel ( pcÞ. LBP is illustrated
in Figure 4

Table 3. Dimension of the 3D image

Sample Image type Dimension (voxels) Drill core proportion (%)

A 16-bit tif 824 9 386 9 4787 57.71

B 16-bit tif 829 9 383 9 5153 59.29

C 16-bit tif 943 9 432 9 5563 49.37
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Figure 2. Directional pairs of a voxel in a 3D neighborhood (from Guntoro et al. 2019a). The voxel of

(0,0,0) is the reference point, and its relation to other voxels within the offset of one voxel (Chebyshev)

distance is analyzed. In this example, there are 13 unique directional pairs, in which mirroring direction is

not accounted. For example, the direction of (0,� 1,0) is not accounted in this as it is the mirror of (0,1,0).
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LBPP;R ¼
XP�1

i¼0

s pi � pcð Þ2i; where s xð Þ

¼ 0; x\0
1; x � 0

�
ð2Þ

While LBP has been extensively studied and
developed, there are quite limited studies devoted to
extending LBP into 3D space (Fehr and Burkhardt
2008; Paulhac et al. 2008; Montagne et al. 2013).
Fehr and Burkhardt (2008) have noted in their study
that extending LBP to 3D is apparently not as trivial
as it seems. This is due to the difficulties in per-
forming equidistant sampling of the neighboring
voxels in 3D space in order to achieve LBP�s rota-

tional invariance. Furthermore, LBP requires
ordering of the neighboring voxels, which is rela-
tively trivial in 2D but quite complex in 3D space.
Finally, the computational cost is also a challenge
with 3D LBP.

Montagne et al. (2013) simplified the approach
of 3D LBP by considering the six nearest neigh-
boring voxels in the 3D space. Using the 3D neigh-
borhood in Figure 2, the 6 nearest voxels ( P ¼ 6Þ to
the central voxel (0,0,0) are then: voxel (0,0,� 1);
voxel (0,0,1); voxel (0,� 1,0); voxel (0,1,0);
voxel(� 1,0,0); and voxel (1,0,0). Note that these six
voxels are within Euclidean distance of one voxel to
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Figure 3. Example of 3D mineral map. Colors denote the corresponding voxel values of 0 (background/air), 1, 2, and 3.

Table 4. Co-occurrence matrix for mineral map in Figure 3, in

which all the voxel directional pairs are summed up

0 1 2 3

0 38 72 88 204

1 5 20 14 48

2 1 14 4 23

3 8 50 24 85

Table 5. Association indicator matrix (AIM) for the mineral map

in Figure 3

0 1 2 3

0 – 19.8% 24.2% 56.0%

1 7.5% – 20.9% 71.6%

2 2.6% 36.8% – 60.5%

3 9.8% 61.0% 29.3% –
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the central voxel, hence fulfilling the criteria of
equidistant sampling. Using this neighborhood defi-
nition, there will be a possible of 26 = 64 patterns. In
order to achieve rotational invariance, these 64
patterns are grouped to 10 LBP groups containing
similar patterns. The grouping is defined in Table 6
and Figure 5, following Eq. 3. The value of card pcð Þ
represents the number of neighboring voxels that
have higher value than the central voxel. The 3D
LBP developed by Montagne et al. (2013), with R ¼
1 and P ¼ 6, was used in this study to extract textural
features from drill core volumes.

card pcð Þ ¼
XP�1

i¼0

s pi � pcð Þ; where s xð Þ ¼ 0; x\0
1; x � 0

�

ð3Þ

Texture Classification

Supervised classification models such as SVMs
(Cortes and Vapnik 1995; Vapnik et al. 1995) and
RF (Breiman 2001) were used in this study. The aim
of supervised classification is to train a classifier so

that it can categorize the textural features (AIM and
LBP) of the drill cores to their respective textural
class. A classifier is simply a function that assigns a
class to each feature values, which in this case are
the AIM and LBP features. During feature extrac-
tion, the drill core volumes are divided into smaller
3D cells with 50 slices each, in which AIM and LBP
features are extracted from each cell. This allows the
creation of a feature vector containing LBP and
AIM values from different parts of the drill cores
(the cells). The feature vector is then assigned the
preexisting textural classes and used as a training
data to train the classifiers. This is illustrated in
Figure 6.

RF is a classification technique, which builds a
set of classification trees by bootstrap aggregating
(bagging). Classification tree is a decision tree that
asks binary questions in each branch of the tree, in
which the sequence of responses of each branch is
used to categorize the data. The decision tree is built
by examining possible splits in the data in which the
resulting branch should have lower impurity. The
‘‘best’’ split is where the decrease in impurity is
largest on that particular split. In bootstrap aggre-
gating, multiple trees are built by repeated random
sampling of the training data with replacement,
allowing the building of decision trees based on
different parts of the training data. This is done to
reduce overfitting of the training data. RF classifies
the data by majority voting of the trees.

A SVM is a classifier that constructs an opti-
mum hyperplane to separate the data, in which the
hyperplane has the largest margin to the classes in
the data. The term ‘‘support vectors’’ refers to the
data points that are closest to the hyperplane, in
which these vectors are used to maximize the margin
of the hyperplane. While originally SVM was cre-
ated as a linear classifier (Vapnik and Lerner 1963),
nonlinear classifiers can also be created by using
kernel functions (Guyon et al. 1992). The kernel
function maps the data to a higher-dimensional

Figure 4. Local binary pattern with R ¼ 1 and P ¼ 8.

Table 6. The 10 LBP groups of the rotationally invariant patterns

LBP3D
P;R Card pcð Þ Condition

1 0 –

2 1 –

3 2 Opposite voxels

4 2 Bend voxels

5 3 Voxels on the same plane

6 3 Voxels on different planes

7 4 Voxels on the same plane

8 4 Voxels on different planes

9 5 –

10 6 –
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space where the linear hyperplane can be created to
separate the data.

In order to validate the classification models, K-
fold cross-validation was used. In K-fold cross-vali-
dation, the training data are sub-sampled into K sub-
samples, in which only K � 1 of the sub-samples are
used to train the classifiers. The remaining one sub-
sample is used for validation. This is repeated K
amount of times with all sub-samples, in which the
validation results across the training sessions are
then averaged to get an indication of the overall
performance of the classifier. In this study, tenfold
cross-validation was done.

In relation to this study and Figure 6, cross-
validation physically means that the drill core vol-
ume is divided into parts (cells), in which some parts
are reserved for validation, while the other for
training the classifier. This gives some indication

about the similarity of the textural features that are
observed across the whole volume of the drill core.
Since the whole drill core belongs to a specific tex-
tural class, it logically follows that a part of the drill
core should have similar textures so that a trained
classifier should be able to recognize that drill core
part as the same textural class. Such cross-validation
is illustrated in Figure 7.

EXPERIMENTAL RESULTS

The drill core volumes acquired from lCT
analysis are given in Figure 8. The textural differ-
ence between the drill cores can be observed from
the lCT volumes. The medium-to-coarse grained
sphalerite and galena minerals in sample A can be
observed especially in the lower part of the core.

Figure 5. The 10 LBP groups containing in total 64 rotationally invariant patterns, in which the number in the brackets

indicates the number of different patterns in the group. The white and black colors in neighboring voxels indicate the binary

value of s(x).

Figure 6. Textural feature extraction of the drill core volumes and training of classifiers.
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Some textures were not observed in the 2D color
images in Figure 1, for example the veinlet miner-
alization in the upper part of sample A. Some fine
disseminated sulfide mineralization associated with
the foliation can be observed especially in the upper

part of sample B, with some clustered minerals ob-
served in the lower part. Meanwhile in sample C, the
shear zone-associated mineralization can be ob-
served on the upper part, while some fine dissemi-
nated sulfide grains can be seen in the lower part of
the core.

Mineral Association of the Drill Cores

Before calculating the association index of the
minerals, the minerals in the drill core volumes were
segmented with Otsu thresholding. After the min-
erals were segmented, their composition in the drill
cores could be calculated. The composition is given
in Table 7, while some of the segmentation results
are shown in Figures 9, 10, and 11

The mineralogical composition differed be-
tween the drill cores. Sample A contains the highest
amount of galena, while sample C contains the most
sphalerite. The mineralogical composition in Ta-
ble 7 is simplified into three major mineral groups:
the gangue mineral group that contains amphiboles
and quartz, the sphalerite group that contains
sphalerite, pyrite, and pyrrhotite, and lastly the ga-
lena group that contains galena and some silver
bearing minerals. Furthermore, galena in Garpen-
berg deposit has been shown to contain varying
amount of silver, ranging from 0.1 to 1 wt% (Tiu
et al. 2019).

Mineral association of the drill core samples is
presented with the AIM in Table 8. One thing that

Figure 7. Cross-validation of drill core textural classification. Drill core is sub-sampled into cells (parts) and their LBP

features are extracted, in which some cells are used for training and the rest are used for validation. This is repeated K amount

times, and the overall performance is averaged across the sessions.

Figure 8. Drill core volumes acquired from lCT for samples

A, B, and C, respectively.
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can be noticed from the AIM is that in all samples,
galena occurs mostly together with sphalerite, which
is in agreement with findings of Tiu et al. (2019).

Furthermore, due to the sphalerite-galena associa-
tion, more sphalerite will be associated with galena
instead of the gangue minerals as the galena content

Figure 9. Segmentation results for sample A, showing (from left to right) color image of drill core, XZ slice of 3D lCT
image, and segmented XZ slice of 3D lCT image.

Figure 10. Segmentation results of sample B, showing (from left to right) color image of drill core, XZ slice of 3D lCT image,

and segmented XZ slice of 3D lCT image.

Table 7. Mineral composition of the drill core samples obtained from the segmentation results of the 3D volumes

Mineral groups Color Sample A (%) Sample B (%) Sample C (%)
Gangue minerals 86.6 88.8 74.3
Sphalerite and pyrite 9.7 10.7 25
Galena and other Ag-minerals 3.7 0.5 0.7
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in the sample increases. This can be seen in the AIM
for samples B and C where the galena content is
relatively low (< 1%) and sphalerite occurs mostly
with gangue, but since in sample A, there is signifi-
cantly higher amount of galena, the sphalerite
association with gangue decreases, while sphalerite
association with galena increases. This relationship
is illustrated in Figure 12.

LBP Features of the Drill Cores

The term LBP features refer to the frequency of
the 10 LBP groups (illustrated in Fig. 5) in the

sample, revealing which textural patterns are most
common in the sample. LBP features of the samples
are shown in Figure 13. While interpreting AIM
values is relatively straightforward as it directly de-
scribes the association between the minerals, the
same cannot be said of LBP features. In 2D, some
distinction between the features can be made as
uniform or non-uniform (Ojala et al. 2002). A pat-
tern is considered uniform if the LBP contains at
most two transitions from 0 to 1 or vice versa in a
circular motion. For example, in Figure 4, the binary
string of the LBP is 10001101 (clockwise from top
left), which contains four transitions; hence, it is
non-uniform. It has been found that uniform pat-

Figure 11. Segmentation results of sample C, showing (from left to right) color image of drill core, XZ slice of 3D lCT
image, and segmented XZ slice of 3D lCT image.

Table 8. Association indicator matrix (AIM) of each sample

Gangue group Sphalerite group Galena group

Sample A

Gangue group – 98.47% 1.53%

Sphalerite group 82.71% – 17.29%

Galena group 7.73% 92.27% –

Sample B

Gangue group – 99.78% 0.22%

Sphalerite group 95.43% – 4.57%

Galena group 5.44% 94.56% –

Sample C

Gangue group – 99.73% 0.27%

Sphalerite group 94.56% – 5.44%

Galena group 5.06% 94.94% –
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terns contain more information than non-uniform
patterns (Ahonen et al. 2006; Shan and Gritti 2008).
However, this logic cannot be used for the current
implementation of 3D LBP, due to the difficulties in
ordering the neighboring voxels and defining the
circular neighborhood in 3D space, as has been
discussed earlier by Fehr and Burkhardt (2008).

Mäenpää and Pietikäinen (2005) defined some
texture primitives that correspond to each LBP
feature, which are illustrated in Figure 14. Using
these texture primitives as a framework, some ideas
about the texture primitives in the 3D LBP can be
obtained. For example, 3D LBP number 1 corre-
sponds to the spot texture, while 3D LBP number 10
can be regarded as spot or flat textures. Physically,
both textures can represent areas where the minerals
are less textured (flat or plain). The proportion of
these LBP features is less than 10% in all drill cores,
indicating that the drill cores are generally textured.

Furthermore, the clearest difference in the LBP
features between the drill cores is observed in LBP
number 6. LBP number 6, as shown in Figure 5,
indicates diagonal oriented textures. Diagonal ori-
ented textures can also be captured by LBP numbers
4 and 8. This is due to LBP numbers 4, 6, and 8
containing voxels that are located in different planes
(Table 6), capturing intensity changes across multi-

ple planes. This is in contrast to LBP numbers 3, 5,
and 7, which contain voxels that are on the same
plane. The voxels that are categorized as LBP
number 6 are visualized in Figures 15, 16, and 17.

As can be seen from Figures 15, 16, and 17, the
LBP feature number 6 captures mostly the diagonal
phase boundaries between the minerals in the sam-
ple. As samples B and C both exhibit some diagonal
textures with the foliation and shear zone-associated
mineralization, the proportion of LBP feature
number 6 is higher in these samples compared to
sample A, where the sphalerite occurs mostly as
medium and coarse disseminated grains. Neverthe-
less, LBP feature number 6 is the most abundant
feature in all samples compared to other types of
LBP features.

Textural Classification of the Drill Cores

The texture classification was performed using
the extracted LBP and AIM features. The purpose
of such classification is to evaluate the discrim-
inability of each textural features, whether the LBP
and AIM features of the drill cores are different
enough so that the drill cores can be classified into
different textural classes. In total, there are four
classification schemes that were evaluated, which
correspond to two features (LBP and AIM) and two
classifier models (RF and SVM). The performance
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for each classification scheme is shown in Tables 9,
10, 11, and 12. The performances of the classification
schemes are shown using the normalized confusion
matrix, which gives information of both the hit rate
and miss rate for each drill core sample.

The results shown in Tables 9, 10, 11, and 12
suggest that both LBP and AIM features can be
used as textural descriptors to discriminate between
textures in different drill cores, given that a suit-
able classifier is used. As it can be observed that
while AIM features of the drill cores can be dis-
criminated with a RF classifier, the same cannot be
said if a SVM was used as a classifier instead. On the
other hand, LBP features are better classified with
SVM classifier. The results suggested that in this
particular case, the combination between LBP fea-
tures and SVM classifier gives the best classification
accuracy.

By examining the hit rate for each drill core
sample, some ideas about the similarity of textures
between different drill cores can be obtained. For
example, by looking at Tables 11 and 12, it can be
seen that both classifiers have the best predictive
performance (higher hit rate) for sample C, with

92% hit rate using RF and 95% hit rate using SVM.
This indicates that the textural features of sample C
are easier to distinguish as compared to the textural
features of samples A and B. Similar results could
also be observed in Table 9 for AIM features with
RF classifier.

The observation that textural features of sample
C are easier to distinguish corresponds well to the
mineral composition of the samples (Table 7).
Sample C contains larger amount of sphalerite than
the other samples, which could affect the textural
pattern of the drill cores. On the other hand, sample
A contains the most galena, but since galena occurs
in relatively small amount in all drill cores, this
variation does not significantly affect the textural
pattern of the drill cores. Furthermore, the qualita-
tive textural descriptors used to describe the drill
cores as foliated, shear zone associated, or coarse
disseminated, are mostly correlated with the pattern
of the sphalerite minerals in the drill core. This
means that change of sphalerite composition in the
sample would be more likely to alter the textural
pattern of the drill core.

Figure 14. Texture primitives defined for 2D LBP.

Figure 16. 3D LBP feature number 6 (red voxels) in the XZ

(vertical) slice of sample B.

Figure 15. 3D LBP feature number 6 (red voxels) in the XZ

(vertical) slice of sample A.
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DISCUSSION

Geometallurgy relies on building block models
that can explain the process behavior of the different
ore blocks. This is done by establishing a link be-
tween the ore properties to the metallurgical re-
sponse of the ore. It has been widely accepted that
mineral textures are one of the most important ore
properties that affect the ore behavior in the bene-
ficiation process. Since the traditional qualitative
textural descriptors are highly subjective, more ef-
forts have been done to devise quantifiable textural
descriptors that are able to describe different min-
eral textures. This study presented the evaluation of
lCT system coupled with LBP and AIM as a
methodology to obtain such textural descriptors.

A good textural descriptor should be discrim-
inable and sensitive to textural and mineralogical
changes. This is evaluated in this study by classifying
the various drill core samples to their respective
textural class with the help of machine learning
models. The high classification accuracy (84% and
88% for AIM and LBP, respectively) indicates that
both AIM and LBP are good textural descriptors
that are discriminable. Such classification accuracy is
on par with other case studies of drill core texture
classification using 2D images obtained from a dig-
ital camera (Pérez-Barnuevo et al. 2018b; Koch et al.
2019). Furthermore, the importance of choosing the
suitable classifier model is also highlighted in this
study, in which RF classifier is better suited for AIM
features, while SVM classifier is better suited for
LBP features.

Within the framework of geometallurgy, a good
textural descriptor should represent significant dif-
ferences in processing behavior (Koch et al. 2019).

When the textural classification scheme is estab-
lished, a new sample can be expected to behave
similarly as the existing sample depending on which
textural class it belongs. This is highlighted in Pérez-
Barnuevo et al. (2018b), in which the different tex-
tural classes that were often misclassified as the
same textural class ultimately have the similar pro-
cessing behavior in the laboratory tests. The evalu-
ation of the processing behavior of each textural
class is not included in this study, but will be in-
cluded in future studies.

Besides the use of textural descriptors in texture
classification, another application of such descriptors
is in building texture-based predictive process
models. A suitable textural descriptor for such pur-
pose should have some physical meaning linked to
the mineralogical and textural properties of the ore
itself. This is where AIM would have an advantage
over LBP, as AIM directly describes the mineral
association in the ore, while LBP only evaluates the
intensity changes in the image, capturing texture
primitives such as edges, corners, and spots. While
such texture primitives are usually powerful for
texture classification (shown by the higher classifi-
cation accuracy in Tables 11 and 12), it lacks phys-
ical meaning with regard to the intrinsic ore
properties, which in turn limits its application in
predictive process models. On the other hand, min-
eral association has been demonstrated to be di-
rectly correlated with breakage mechanism (Parian
et al. 2018) and flotation (Jordens et al. 2016; Bah-
rami et al. 2019), which opens up the potential of
building such predictive process models using AIM.

This study further explored the potential use of
the X-ray microcomputed tomography (lCT) sys-
tems for 3D texture analysis of drill core samples.
Previous application of lCT for texture analysis of
drill core samples has been limited (Jardine et al.
2018; Voigt et al. 2019). The approach of using AIM
is similar in principles with the 3D GLCM by Jar-
dine et al. (2018), with the difference that in AIM,
the association of minerals is used instead to build
the co-occurrence matrices. Additionally, in AIM,
the 13 unique voxel directions are summed, meaning
that directional change of the texture (anisotropy) is
not accounted for in AIM. Nevertheless, AIM can
be readily modified to account for such directional
change, as well as to account for different scale of
texture changes by increasing the distance. It is also
worth noting that AIM is directly extendable for
particulate samples, in which it can also take into
account the surface exposure of particles by using

Figure 17. 3D LBP feature number 6 (red voxels) in the XZ

(vertical) slice of sample C.
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the association of the minerals with the air/back-
ground (Parian et al. 2018).

The directional changes in textures can also be
captured by using 3D LBP. The extension of LBP
from 2D space and 3D space presented in this study
is simplified as it only accounts for the six closest

neighbor voxels in 3D. The technique is modifiable;
more neighboring voxels could be added and the
distance could be changed to evaluate different
scales of textures. Such modification would poten-
tially capture more textures, but computational
complexity and processing time would increase

Table 9. Drill core classification performance with AIM—RF. Overall accuracy of the scheme is 84%

Predicted Class
Sample A Sample B Sample C

True Class

Sample A 80% 14% 6%

Sample B 12% 84% 5%

Sample C 9% 4% 88%

Table 10. Drill core classification performance with AIM–SVM. Overall accuracy of the scheme is 59%

True class Predicted class
Sample A (%) Sample B (%) Sample C (%)

Sample A 51% 43% 6%
Sample B 8% 87% 6%

Sample C 5% 55% 39%

Table 11. Drill core classification performance with LBP–RF. Overall accuracy of the scheme is 76%

True class Predicted class
Sample A (%) Sample B (%) Sample C (%)

Sample A 66% 23% 11%

Sample B 29% 69% 2%
Sample C 5% 3% 92%

Table 12. Drill core classification performance with LBP–SVM. Overall accuracy of the scheme is 88%

True class Predicted class 
Sample A (%) Sample B (%) Sample C (%) 

Sample A 82% 13% 5% 

Sample B 13% 86% 1% 

Sample C 4% 1% 95% 
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considerably as more voxels are being processed. In
this study, the current 3D LBP technique is capable
of extracting distinctive textural features of various
drill core textures, which can be classified to their
respective textural classes with relatively high
accuracy.

One of the challenges with 3D texture analysis
is the processing of large core volumes. In this study,
parallelization was done to speed up the computa-
tional time; it took around 5–7 min each to extract
LBP and AIM features from one of the half-core
samples shown in Figure 1. This translates roughly
to 40–70 min per meter of full-core sample, although
the computational time can be further decreased by
using more processors (Gustafson 1988). After
extracting the textural features from the 3D drill
core images, the training and validation of classifiers
could be done rapidly within 10 s as the large 3D
data have been reduced to feature vectors. Jardine
et al. (2018) have noted that the computational cost
of the 3D texture analysis must be taken into ac-
count when considering the application of such
analysis for on-line drill core scanning. On top of the
computational complexity of the texture analysis,
optimization of lCT scanning parameters should
also be evaluated to obtain a balance between good
image quality and reasonable acquisition time.

Other aspects of the developmental works
could also combine other X-ray based sensors in the
lCT scanning, such as X-ray fluorescence (XRF)
(Bergqvist et al. 2019) and X-ray diffraction (XRD)
(King et al. 2014), allowing the acquisition of min-
eralogy and elemental composition of the drill core
samples. Continuous development of lCT systems
coupled with the improvement of processing capa-
bility of modern computers could potentially estab-
lish lCT as a valuable tool for automated drill core
scanning and analysis, allowing better decision
making in mine planning in the context of geomet-
allurgy.

CONCLUSIONS

A methodology for 3D texture quantification
and classification for drill core samples has been
presented. The methodology utilized lCT systems to
acquire 3D image of the drill core, as well as texture
quantification methods such AIM and 3D LBP to
extract textural descriptors from the drill core sam-
ples. Machine learning classifiers were trained and
then validated using these textural descriptors. The

validation results indicated that a trained classifier
could classify the drill core samples to their respec-
tive textural classes with high accuracy of 84% and
88%, respectively, for AIM and 3D LBP. This shows
that both AIM and 3D LBP are good textural
descriptors that are discriminable and sensitive to
textural differences between the drill cores. Proper
choice of the classifier is also important to achieve
good classification accuracy; in this study, AIM
features were better classified with RF, while 3D
LBP features were better classified with SVM.

The methodology presented in this study has
potential applications especially in geometallurgy,
where the information about the variability of ore
textures in the orebody is critical to predict the
downstream processes. By linking the textural
information of the ores with the processing behav-
ior, a new sample that is classified to a preexisting
textural class could be predicted to have similar
processing behavior as the samples belong to the
aforementioned textural class. Such link could be
established by the use of either texture-based pre-
dictive process models or laboratory testing of the
samples belonging to different textural classes.
Texture-based predictive process models require
textural descriptors that can be linked with the
intrinsic ore properties, in which AIM could be a
good descriptor for such application as it directly
describes the mineral association in the ores. On the
other hand, 3D LBP could be a good descriptor for
more accurate texture classification.

Future studies should include addressing the
challenges of big data processing of lCT 3D data,
complemented with optimization of scanning con-
ditions. Classification accuracy could be improved
by training the classifiers with more datasets, or by
modifying the LBP and AIM features to account for
different scales and directions of the texture.
Moreover, process behavior data obtained from
texture-based predictive models or laboratory tests
should also be incorporated in the classification
scheme. Ultimately, the classification scheme can be
used as a geometallurgical tool where the textural
and mineralogical information can be used to pre-
dict the processing behavior of the ore.
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