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ABBREVIATIONS 
BAM    binary alignment map 

CRISPR   Clustered Regularly Interspaced Short Palindromic Repeats 

DSBs     Double Strand Breaks 

FN   False negative 

FP   False positive 

GEO     Gene Expression Omnibus 

HDR      homology-directed repair 

NCBI    National Center for Biotechnology Information 

NEAT    NExt-generation sequencing Analysis Toolkit 

NGS      next generation sequencing 

NHEJ     non-homologous end joining  

PCR     Polymerase chain reaction 

PPV   Positive predictive value 

ROC   Receiver operating characteristics 

sgRNA    single guide RNA 

SNP    Short nucleotide polymorphism 

TN   True negative 

TP    True positive 

VCF   Variant call format 

WGS    Whole genome sequencing  



1. INTRODUCTION 

1.1 Introduction: 

The bacterial CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system is 

the most robust and versatile genome editing technique to-date. Use of CRISPR for genome 

editing in eukaryotic cells was first reported in 2013 (Jinek et al., 2013) and is now widely used 

to execute targeted genome editing, enabling precise modification of genetic information in 

order to effectively study gene function, biological mechanisms, disease pathology and crop 

breeding (Cong et al., 2013). The CRISPR system replaced previously developed zinc finger 

nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) (Dahlem et al., 

2012; Urnov et al., 2005), and was elucidated  as an adaptive immune system for bacteria 

utilizing Cas enzymes complexed to RNA to identify invading virus and phage DNA (Barrangou 

et al., 2007).  The system consists of a predesigned 20bp short guide RNA, for example the 

sgRNA (single guide RNA), and a custom-designed endonuclease like the Cas9 (Hsu et al., 

2014). The sgRNA targets the endonuclease machinery to the genomic locus of choice 

containing the protospacer adjacent motif (PAM) and the site-specific endonuclease cleavage 

leads to DSBs (double strand breaks). The DSBs generated by Cas9 at approximately 3 bp 

upstream from PAM are subsequently repaired through either the cellular non-homologous 

end joining (NHEJ) or homology-directed repair (HDR) resulting in a wide range of outcomes 

including insertions, deletions, and nucleotide substitutions. In the case of HDR, 

recombination of extrachromosomal donor sequences is the resulting outcome (Canver et al., 

2014; Mali et al., 2013; Ran, Hsu, Lin, et al., 2013; Ran, Hsu, Wright, et al., 2013).  

Possible outcomes for a CRISPR/Cas9 genome editing in a single diploid cell include: no 

mutation, a heterozygous mutation where only one allele is mutated, a biallelic mutation 

where both alleles are mutated but the sequence of each allele is distinct or a homozygous 

mutation where both alleles carry the same mutation (Zischewski et al., 2017). The use of 

CRISPR/Cas9 for genome editing has been widely adopted in model organisms and systems 

such as mouse and zebrafish in previous researches (Hall et al., 2018; M. Li et al., 2016). 

Screening and characterizing the resulting mutations from CRISPR/Cas9 genomic edits in a 

large number of samples is made possible by next generation sequencing (NGS) which is high-



throughput, cost-effective and offers high-coverage and precise-quantification (Bell et al., 

2014).  

A big challenge in analyzing NGS data is how to handle the huge amounts of data and accurate 

detection of variants (Bianchi et al., 2016).To this end, many bioinformatic tools have been 

developed for NGS data analysis. These tools require significant work to install and to operate, 

and it is difficult to call mutations in NGS data and display results without an appropriate 

pipeline connecting different tools and automating the process. Pipeline tools are therefore 

becoming increasingly important for NGS data analysis and visualization of workflows. Using 

a pipeline to manage and run workflows comprised of multiple tools reduces workload and 

makes analysis results more reproducible (Ewels et al., 2016).   

From a CRISPR/Cas-9 genome editing experiment and the subsequent screening of the 

outcome through NGS, variant calling follows. Variant calling is the process of identification of 

variants such as insertions/deletions (indels) and single nucleotide variants (SNVs). It is a 

multistep process with several potential error sources such as artifacts introduced during 

polymerized chain reaction (PCR) amplification, machine sequencing errors, base calling 

errors, incorrect local alignments of reads in the sequence data and challenges in 

deconvoluting mixed HDR/NHEJ outcomes, and these may lead to incorrect variant calls 

(Nielsen et al., 2011). Due to lack of validation data such as “gold standard” datasets or truth 

sets, pinpointing incorrect variant calls such as false positives and false negatives arising from 

these errors is significantly curtailed (Krusche et al., 2018). Experimental validation of all called 

sites across a whole genome can remedy this challenge by pinpointing incorrect calls, but this 

involves a lot of work and is quite costly. Due to these bottlenecks, accurate variant calling is 

a significant challenge in mutation screening in NGS data from a CRISPR/Cas-9 genome editing 

experiment (Altmann et al., 2012). 

There are only a limited number of pipelines available for variant calling in CRISPR NGS data, 

and they all vary in their approach and use. Even though they all aim to call variants with high 

sensitivity and precision, many questions remain regarding how well they work in identifying 

and accurately calling sequence variation and estimating the true mutation efficiency (O’Rawe 

et al., 2013). Estimation of the true mutation efficiency  and identification of candidate 

variants is dependent on multiple steps that are subject to different biases, and 



methodological decisions for analyzing NGS data can significantly affect mutagenesis 

efficiency estimates (Lindsay et al., 2015). Following sequencing, reads have to be aligned to 

the correct reference, filtered for artifacts, and then the mutation efficiency has to be 

quantified and normalized. In many tools, many of the choices made during these steps are 

not clear to the user and may lead to potential misinterpretation of the data and widely 

different estimates of mutation efficiency (Labun et al., 2018). Comparing outputs from 

multiple tools and pipelines and learning from their methodological differences through 

evaluation studies can to some extent be an effective practical solution to minimize and 

prevent misinterpretation of the data analysis results. 

There has been a limited number of CRISPR screening pipeline evaluation studies carried out 

to date (Roy et al., 2018). Lindsay et al. evaluated CrispRVariants against AmpliconDIVider, 

CRISPR-GA and CRISPResso (Lindsay et al., 2015). CRISPR/Cas9 experimental data (from 

pooled zebrafish embryos) was used to demonstrate CrispRVariants as the only CRISPR 

sequencing analysis tool that can adjust mutation efficiency estimates for existing genetic 

variation. In the synthetic simulated data mutation efficiency estimates of AmpliconDIVider, 

CRISPR-GA and CRISPResso’s were lower than those of CrispRVariants. Similarly, Labun et al. 

also evaluated ampliCan against CRISPResso, AmpliconDIVider and CrispRVariants in a 

benchmarking study (Labun et al., 2018). Their study also made use of both CRISPR/Cas9 

experimental data from zebrafish embryos and synthetic simulated data where the synthetic 

data were used to quantify how much the different tools under evaluation differed in their 

mutation efficiency estimates. There were three synthetic datasets. In synthetic dataset 2, 

ampliCan matched the perfect score of CrispRVariants and AmpliconDivider. However, 

synthetic dataset 3 was slightly modified; it had adjusted length of amplicons and reads, its 

gRNA target sites were designed to be covered by both reads, PCR off-target reads were 

created without mutating the primer sequences, and mutation efficiency was tested across a 

range of mismatch rates (10%, 20% and 30%). In this synthetic dataset 3, ampliCan was more 

consistent at estimating mutation efficiencies within the dataset. CRISPResso performed 

poorly on all benchmarks. ampliCan obtained the highest precision and demonstrated the 

most robust performance when the mismatch rate of all bases was increased from 10% to 

20% and 30%. Compared to other pipelines, ampliCan summarily displayed more consistency 

in the estimation of known indel efficiencies, identified large indels of >10 bp, and accounted 



for the donor template and the original genomic sequence to define the set of events that 

corresponded to a correct HDR editing experiment. 

False positive rates and false negative rates, as applied in the previous test study by Pinello et 

al. (Pinello et al., 2016), have also been used for assessment of the pipelines in this study. 

Using simulated data to assess the performance and limitations of CRISPResso, Pinello et al. 

observed that CRISPResso robustly and accurately identified editing events with a negligible 

false positive rate of not more than 0.1%. Altogether, their results indicated that CRISPResso 

was able recover the location and frequency of mutations with high accuracy and provided a 

reasonable estimate even in the absence of an untreated control sample.  

CRISPRMatch (You et al., 2018) is a recently developed automatic stand-alone pipeline 

scripted in Python. It processes high-throughput CRISPR genome-editing NGS data by 

integrating analysis steps like mapping reads and normalizing read count, calculating mutation 

frequency, evaluating efficiency and accuracy of genome-editing, and visualizing the results in 

tables and figures. Its dependency packages include BWA (Burrows-Wheeler Aligner) (H. Li & 

Durbin, 2009), SAMtools  (H. Li et al., 2009), Picard1, Pysam2, and Matplotlibs (Hunter, 2007). 

CRISPRMatch was mainly developed for genome-editing data of CRISPR nuclease transformed 

protoplasts, which could evaluate the targeted mutation efficiency of DNA endonucleases and 

regions of guide RNAs quickly. It can analyze a series of CRISPR-Cas9 or CRISPR-Cpf1 NGS 

samples and compare the efficiency and accuracy of genome-editing endonucleases at one 

time. In the CRISPRMatch software test, its ability to analyze both CRISPR-Cas9 and CRISPR-

Cpf1 NGS samples was tested using data from their previous work (Tang et al., 2017) and 

summaries of mutation frequency and details of genome-editing efficiency in each position 

was applied as an evaluation criterion for its robustness. In the test, CRISPRMatch identified 

different types of mutation - including deletion and insertion (Indels) - and the output was a 

set of charts, figures and tables on which the benefits and advantages of using CRISPRMatch 

such as expression, detailed mutation visualization, genome-editing efficiency evaluation and 

checking were assessed. CRISPRMatch has however currently not been previously 

benchmarked against any other commonly used NGS pipeline. 

 
1 https://broadinstitute.github.io/picard/ 
2 https://pypi.org/project/pysam/ 



In this study project, a comparative evaluation of CRISPRMatch has been undertaken against 

the top-rated and commonly used CRISPR genome-edited NGS data analysis pipeline namely 

ampliCan (Labun et al., 2018) using simulated data as well as experimental CRISPR datasets 

deposited online in the BioProject database by Gagnon et al (Gagnon et al., 2014) under the 

accession number PRJNA245510 and experiments performed by Labun et al. (Labun et al., 

2018) deposited online in ArrayExpress under accession numbers: E-MTAB-6310, E-MTAB-

6355, E-MTAB-6356, E-MTAB-6357, E-MTAB-6358. 

1.2 AIMS: 

The aim of this study is to test two pipelines (ampliCan vs. CRISPRMatch) and evaluate their 

performance in terms of the ability to identify mutations correctly in CRISPR NGS data. 

In order to fulfill this aim, the following objectives will be pursued. The detection capabilities 

of NGS pipelines will be evaluated by: 

• using simulated synthetic data to assess the true and false positives and negatives in 

datasets with known mutation values; and 

• using experimental CRISPR datasets available from online databases such as 

ArrayExpress and BioProject.  

The outcome and the analysis of this study will contribute to the limited number of CRISPR 

NGS data analysis pipeline validation studies and will potentially provide good insights for 

choosing a pipeline for CRISPR genome-editing NGS data analysis. 

1.3 NGS data: 

NCBI’s BioProject3 provides a large collection of expression data. For this study, the 

experimental CRISPR datasets deposited online in the BioProject database by Gagnon et al 

(Gagnon et al., 2014) under the accession number PRJNA245510, and datasets in ArrayExpress 

under accession numbers: E-MTAB-6310, E-MTAB-6355, E-MTAB-6356, E-MTAB-6357, and E-

MTAB-6358 have been utilized. Labun et al. (Labun et al., 2018) made use of this dataset in 

their study to benchmark and assess the performance of ampliCan against CrispRVariants, 

 
3 https://www.ncbi.nlm.nih.gov/bioproject/ 



CRISPResso and AmpliconDivider and showed that ampliCan is the most accurate and efficient 

of these three pipelines. 

Synthetic NGS data has also been utilized in this study. The synthetic data has provided details 

on the variants present in the sets and their characterization such as read alignments and 

variant locations, and this has been used to assess the accuracy of the pipelines. In order to 

ensure the smooth operation of our assessment of these pipelines, synthetic data has been 

generated by the same technique as highlighted by Labun et al. (Labun et al., 2018). Their 

method utilizes an R script in the ART Illumina environment. The same method has been used 

in our experiments. 

1.3.1 Methods: 

The following two pipelines have been assessed and compared. 

1.3.2 CRISPRMatch: 

CRISPRMatch (You et al., 2018) is an automated toolkit developed to process high-throughput 

CRISPR genome-editing NGS data. It is scripted in Python. It integrates NGS read mapping, 

normalization of read counts, mutation frequency calculation, genome-editing efficiency 

statistics at each position of the target region, and results multiform expression. It maps and 

classifies reads, detects indels and calculates mutation frequencies, and outputs read 

alignment mutation details using BWA (H. Li & Durbin, 2009), SAMtools (H. Li et al., 2009), 

Picard4, Pysam5 and Matplotlibs (Hunter, 2007) dependency packages. CRISPRMatch takes 

target region sequence, sample information and sequencing data as input and outputs 

summaries of mutation frequency and details of genome-editing efficiency in each position 

through sets of charts, figures and tables in text and pdf formats. In its software test, 

CRISPRMatch for frequency calculation categorized three types of mutations as reads with 

deletion only, reads with insertion only, and reads with both deletion and insertion. Reads 

were categorized into deletion groups where deletions existed, insertion groups where 

insertions existed, and insertion and deletion group when both mutation types existed. 

 
4 https://broadinstitute.github.io/picard/ 
5 https://pypi.org/project/pysam/ 



1.3.3 ampliCan: 

ampliCan (Labun & Valen, 2018) is a comprehensive pipeline that determines the true 

mutation frequencies of CRISPR experiments from high-throughput DNA amplicon 

sequencing. It is implemented in R and Bioconductor, and uses the Needleman-Wunsch 

algorithm with tuned parameters to ensure optimal alignments of the reads to their loci. It 

quantifies the heterogeneity of reads, the complete mutation efficiency and the proportion of 

mutations resulting in a frameshift and also aggregates and quantifies mutation events of a 

specific type if a particular outcome is desired. ampliCan provides overviews of the impact of 

all filtering steps, and outputs. ampliCan takes in FASTQ files of sequenced reads and 

configuration files containing information about barcodes, gRNAs, forward and reverse 

primers, amplicons and paths to the corresponding FASTQ files. It then outputs reports 

containing plots summarized over all deletions, insertions and variants, reports summarizing 

the alignments of top reads, plots showing the general state of the experiments like 

heterogeneity of reads, and overviews of how many reads were filtered or assigned at each. 

Additionally, ampliCan produces R objects containing all alignments and read information, 

which can be manipulated, extended and visualized through the R statistical package. In its 

software test with synthetic datasets, ampliCan displayed more consistency in the estimation 

of known indel efficiencies compared to other pipelines. It was also able to identify large indels 

of >10 bp. It was also able to account for the donor template and the original genomic 

sequence to define the set of events that corresponded to a correct HDR editing experiment. 

ampliCan is compatible with most of the popular plotting packages, such as ggplot2 (Wickham, 

2016) and ggbio (Yin et al., 2012), as well as the most popular data processing packages, such 

as dplyr (Wickham & François, 2015) and data.table. 

ampliCan can be used alone or integrated with the CHOPCHOP guide RNA (gRNA) design tool 

(Labun et al., 2016) to incorporate all computational steps necessary for a CRISPR experiment. 

Comparison of CRISPRMatch and ampliCan is presented in table 1. 

  



 CRISPRMatch ampliCan 

INTERFACE Command line Command line 

OUTPUT Output includes sets of 

charts, figures and tables 

with summary reports of 

mutation frequency and 

details of genome editing 

efficiency in each position. 

 

Output includes reports with plots 

summarized over all deletions, 

insertions and variants, reports 

summarizing the alignments of top 

reads, and plots showing the general 

state of the experiments. Also produces 

R objects with all alignments and read 

information. 

USAGE Amplicon sequencing -

based experiments. 

Amplicon sequencing-based 

experiments.  

 

INPUT DATA Takes in target region 

sequence, sample 

information and 

sequencing data. 

Takes in FASTQ files, and configuration 

files containing information about 

barcodes, gRNAs, forward and reverse 

primers, amplicons. 

YEAR OF FIRST 

RELEASE 

2018 2018 

PROGRAMMING 

LANGUAGE 

Scripted in python Scripted in R  

TARGETED 

DATA 

Developed for genome-

editing data of CRISPR-

Cas9 and CRISPR-Cpf1 

nucleases, and CRISPR 

nuclease transformed 

protoplast. 

 

Developed for genome-editing data of 

CRISPR-Cas9 system, but can also be 

scaled any other   

Genome-editing system. 

DEPENDENCIES Requires independent 

packages including BWA 

(Burrows-Wheeler 

Aligner), 

SAMtools, MatPlotlibs, 

and Picard. 

Does not require independent 

packages. However for advanced users, 

it is compatible popular plotting 

packages ggplot2 and ggbio, as well as 

popular data processing packages dplyr 

and data.table. 

Table 1. An overview comparison table of the pipelines that will be evaluated. 



2 MATERIALS AND METHODS 

2.1 Materials and Methods: 

There are only a limited number of pipelines available for variant calling in CRISPR NGS data, 

and they all vary in their approach and use. Thus evaluation studies are important to assess 

the performance of the available pipelines, compare their outputs and learn from their 

methodological differences to minimize and prevent misinterpretation of the NGS data 

analysis results.  

This study has evaluated the performance of the CRISPRMatch pipeline against the top-rated 

and commonly used pipeline namely ampliCan. 

2.2 Datasets 

BioProject is a public database maintained by the National Center for Biotechnology 

Information (NCBI). It provides a large collection of both raw and processed expression data 

as well as written experimental designs, sample attributes, and methodologies for studies 

(Clough & Barrett, 2016). To assess the performance of the aforementioned pipelines, 

experimental CRISPR datasets deposited online in the BioProject database by Gagnon et al. 

under the project ID PRJNA245510 were used.  In their study, Gagnon et al. applied a detailed 

protocol that entailed target site selection, sgRNA production, stop codon cassette design, 

Cas9 protein purification and injection to generate these datasets using the TLAB strain of 

zebrafish as a model organism. In summary, Cas9 mRNA and sgRNA were co-injected into the 

zebrafish zygotes, and genomic DNA prepared. Polymerase chain reaction (PCR) was then used 

to attach barcoded sequencing adapters and to amplify approximately 120–300 base pairs of 

genomic sequence surrounding the targeted locus. The amplicons were later purified, pooled, 

and finally sequenced on a MiSeq to obtain paired-end reads (Gagnon et al., 2014). Labun et 

al. utilized this same dataset in their study to benchmark the performance of their pipeline 

ampliCan against CrispRVariants, CRISPResso and AmpliconDivider pipelines (Labun et al., 

2018).  It will be interesting to compare the results of ampliCan using the same dataset used 

by Labun for comparison with the newer pipeline CRISPRMatch. 

In addition to the real experimental data, a simulated NGS dataset has also been utilized in 

this study. Generally, simulated datasets are functionally similar to sequencing output but 



with all underlying mutations known. In most cases, accurate variant calling pipeline 

assessments are hindered by the lack of “ground truth” information about the variants 

present in the sequencing data. Therefore, simulated datasets significantly improve the 

accuracy of assessments of variant calling pipelines by characterizing the dataset to be used. 

Details available and known in simulated datasets include the variants present in the datasets, 

read alignments, read lengths and precise variant locations. Previous benchmark and test 

studies have also made use of synthetic simulated data. In the benchmarking study of 

CrispRVariants, Lindsay et al. applied a custom R script to generate a synthetic benchmark 

dataset (Lindsay et al., 2015). Labun et al. replicated the simulation strategy applied by Lindsay 

et al. and also applied the same custom R script to generate a synthetic dataset for their 

benchmark study of ampliCan (Labun et al., 2018). 

Other, simulator toolkits are also publicly available, but they all differ in their error model 

(empirical or theoretical) used to generate synthetic datasets.  Examples of such tools include 

ART (Huang et al., 2012), CuReSim (Caboche et al., 2014), GemSim (McElroy et al., 2012) and 

NEAT (Stephens et al., 2016) et cetera. ART simulates reads for the Illumina, 454 and SOLiD 

sequencing platforms and can define the number of reads to be produced per amplicon.  

CuReSim does not use an error model and its parameters must be specified on the command 

line. GemSim on the other hand uses an empirical error model to mimic individual sequencing 

runs and assumes a uniform or constant error rate for all positions within a sequencing read. 

NEAT provides the simulator software to generate reads as well as a set of scripts to extract 

many of the simulation parameters from real data (Stephens et al., 2016). However, these 

simulators are not adequately documented and can thus be difficult to use for non-experts. 

Generally, all these simulators can introduce different types of variants such as short 

nucleotide polymorphisms (SNPs), indels, inversions, translocations, copy-number variants 

etc. in the simulated sets (Escalona et al., 2016).  All of this results in variability of synthetic 

data generated using inherently different simulator toolkits without adequate documentation 

and perhaps even without complete understanding of the functions resulting in variations 

introduced in the synthetic data analyzed.  

Here, in order to induce some form of standardization between Labun, Lindsay, and the 

present study, it was decided to use the same R script method used by the other scientists to 



generate synthetic data and conduct the analysis. An analysis conducted then would be more 

comparable with the other authors’ work. 

The R script was designed by Lindsay et al. in 2016 to generate synthetic data of 20 genes (see 

supplementary note 10 for genes details) from Danio rerio (zebra fish) and was used to 

compare the performance (mutation detection) of CrispRVariants with other well-known 

CRISPR pipelines of that time. In 2018, the R script was again used by Labun et al. and then 

slightly modified for his study of comparison of ampliCan against other pipelines.  

It uses danrer7.fa as reference genome file and generates synthetic data of 20 genes. It adds 

mutations in the form of insertions, deletions, indels, cuts and variants using mutation weight 

levels obtained from Shah et al. (Shah et al., 2015). This script runs under the ART_ILLUMINA 

environment and generates forward and reverse reads followed by merger to form paired end 

reads (300 bp). It generates the following percentage of mutation: 0%, 33%, 67% and 90%. It 

is also capable of generating varying amounts of deletions, insertions, cuts, and indels at four 

different frequencies namely 1, 2, 3 and 4. For greater details see supplementary note 11. 



2.3 Variant Calling Pipelines 

2.3.1 CRISPRMatch 

CRISPRMatch is an automated pipeline most 

recently developed to process high-throughput 

CRISPR-Cas9 and CRISPR-Cpf1 genome-editing 

NGS data (You et al., 2018). Scripted in python, 

CRISPRMatch integrates NGS reads mapping, 

reads count normalization, mutation frequency 

calculation, genome-editing efficiency statistics 

at each position of target region, and outputs 

visualizations in the form of tables and figures. 

It maps and classifies reads, detects indels and 

calculates mutation frequencies, and outputs 

read alignment mutation details. With BWA (Li 

& Durbin, 2009), SAMtools (Li et al., 2009), 

Picard6, Pysam7 and Matplotlibs (Hunter, 2007) 

dependency packages, data processing, 

analysis and outputting are executed 

automatically. Paired-end reads are joined by 

FLASH (Magoč & Salzberg, 2011) to become 

single long reads and these are mapped to the 

target editing region by BWA software. The 

aligned files are then sorted and indexed by 

Picard and SAMtools, and the genome-editing 

system types and target regions for mutation calculation are confirmed. Manual definition of 

the two cleavage regions of the endonucleases is also performed. The 5'-3' region from 10 

base pairs upstream, gRNA, 'NGG' PAM, PAM, to 10 base pairs downstream is defined for Cas9. 

For Cpf1, the 5'-3' region covered 'TTTN' PAM, crRNA and 30 base pair downstream. The 

pysam package detects different types of mutations, including deletions and insertions that 

 
6 https://broadinstitute.github.io/picard/ 
7 https://pypi.org/project/pysam/ 

 

Figure 1: Description of the steps involved in 

CRISPRMatch data processing. 1) A target gene 

index is built 2) deep sequencing reads are 

mapped by paired end sequencing read and 

joining into a single long read by FLASH 3) 

mutation detection namely insertion, deletion 

and combination indels is performed 4) efficiency 

calculation is conducted and results exported. 

Two cleavage regions of the endonucleases are 

defined resulting in the pipeline’s ability to detect 

and classify the actions of Cas9 vs CPF1. 

 



may be present in each mapped read. Reads are categorized into deletion groups, insertion 

groups, and insertion and deletion groups. The matplotlib package plots summaries of 

mutation frequency and details of genome-editing efficiency in each position. CRISPRMatch 

thus takes the target region sequence, sample information, and sequencing data as input. It 

then outputs summaries of mutation frequency and details of genome-editing efficiency in 

each position through sets of charts, figures and tables in text and pdf formats (figure 1). 

The software is available for public usage on GitHub8. 

2.3.2 ampliCan 

ampliCan (Labun & Valen, 2018) is an automated pipeline designed to determine the true 

mutation frequencies of CRISPR experiments from high-throughput DNA amplicon sequencing 

 
8 https://github.com/zhangtaolab/CRISPRMatch 

 

Figure 2: Overview of ampliCan (Labun et al., 2018). Takes fastq files and experiments 

discription as input and gives out put in form of html reports. 



(for greater details see supplementary note 7). Scripted in R, it quantifies the heterogeneity 

of reads and the complete mutation efficiency, as well as the proportion of mutations resulting 

in a frameshift. It also aggregates and quantifies mutation events of a specific type if a 

particular outcome is desired. Furthermore, it also provides overviews of the impact of all 

filtering steps and outputs. ampliCan takes in reads in fastq format, configuration files with 

barcodes, gRNAs, amplicons, forward and reverse primers information, and paths to the 

corresponding Fastq files. It then filters low quality reads either based on user settings or 

recognizing ambiguous nucleotides by default and assigns them to the particular experiment 

by searching for matching primers. From here, ampliCan implements the Needleman-Wunsch 

algorithm with tuned parameters to ensure optimal alignments of the reads to their loci and 

models the number of indels and mismatches to ensure that the reads originated from the 

particular loci. Primer dimer reads and sequences that contain a high number of indels or 

mismatch events compared to the remainder of the reads are filtered out, and mutation 

frequencies are finally calculated from the remaining reads using the frequency of indels that 

overlap a short region of up to 5bp around the expected cut site. The output includes reports 

containing plots summarizing overall deletions, insertions and variants, and the alignments of 

top reads. It also provides plots showing the general state of the experiments, such as 

heterogeneity of reads, and overviews of how many reads were assigned. ampliCan also 

outputs R objects containing all alignments and read information, which are manipulated, 

extended and visualized through the R statistical package (figure 2). 

ampliCan is compatible with the most popular plotting packages ggplot2 (Wickham, 2016) and 

ggbio (Yin et al., 2012) as well as the most popular data processing packages dplyr (Wickham 

& François, 2015) and data.table. It can also be integrated with the CHOPCHOP guide RNA 

(gRNA) design tool (Labun et al., 2016) to incorporate all computational steps necessary for a 

CRISPR experiment.  

The software is available for public usage on Bioconductor9 or on Github10.  

2.4 Evaluation Metrics 

Mutation frequencies and mutation efficiency estimates have been used to assess the 

performance of the pipelines in this study. Mutation frequency is the total number of 

 
9 https://bioconductor.org/packages/ampliCan 
10 https://github.com/valenlab/ampliCan 



mutations that exist and are known in a given dataset while mutation efficiency is the 

percentage of mutations identified by a particular pipeline, out of the total number of 

mutations that exist and are known in a given dataset. 

Pinello et al (Pinello et al., 2016) compared the performance of CRISPResso against that of 

CRISPR-GA  and showed that CRISPResso, even in the presence of sequencing errors, robustly 

and accurately recovered editing events with a negligible false positive rate of at or below 

0.1%.  Recently, Lindsay et al. (Lindsay et al., 2016) benchmarked CrispRVariants against 

CRISPResso, CRISPR-GA, CRISPRessoPooled and AmpliconDIVider under a range of scenarios. 

In this benchmarking study, Lindsay et al demonstrated that, given all the complexities and 

confounders, CrispRVariants performed better by giving a precise, transparent and 

reproducible pre-processing, providing easy visualizations of variant alleles across samples 

and allowing calculation of the mutation efficiency. Labun et al. (Labun et al., 2018) also  most 

recently benchmarked ampliCan against other leading pipelines - CrispRVariants, 

AmpliconDIVider, CRISPResso  and CRISPRessoPooled - and demonstrated that ampliCan 

outperformed the others in the face of common confounding factors. Both Lindsay et al. and 

Labun et al. applied the use of mutation frequencies and mutation efficiency estimates in their 

benchmarking studies (Labun et al., 2018; Lindsay et al., 2015). 

In the current study, utilizing the synthetic data, false positives (FP), false negatives (FN), true 

positives (TP) and true negatives (TN) are calculated. From the observed FP, FN, TP and TN 

values positive predictive values (PPV) and sensitivity are also calculated and applied as 

additional metrics to evaluate the performance of the pipelines in this study. In summary, true 

positives are mutations identified by the pipeline being tested and are truly present in the 

synthetic simulated data, herein considered as the “truth set”. False positives are mutations 

identified by the pipeline being tested but are not truly present in the synthetic simulated 

data. True negatives are mutations that are not identified by the pipeline being tested and are 

not truly present in the synthetic simulated data. These are nucleotide bases that could not 

be a mutant form because of the parameters set by synthetic data generation where the 

original data file is assessed as “wild type”. False negatives are mutations that are not 

identified by the pipeline being tested but are truly present in the synthetic simulated data 

(Cornish & Guda, 2015). From these, PPV and sensitivity will be computed as follows; 



PPV = TP / (TP + FP) 

Sensitivity = TP / (TP + FN) 

It will be very interesting to verify the conclusions reached by the above highlighted test and 

benchmarking studies by applying all the above-mentioned performance evaluation metrics 

in this present evaluation study. The application of these metrics will be made possible using 

synthetic simulated data which will for the purpose of this study be considered as the “truth 

set”.  

There are other metrics that have been applied in previous evaluation and benchmarking 

studies, such as precision-recall curves and the receiver operating characteristic (ROC) curves 

(Hwang et al., 2016). Precision-recall curves facilitate comparison of variant calling pipelines 

over the complete range of precision and sensitivity values and may be more informative than 

ROC curves (Jackson et al., 2017). However, as their computation will require installation and 

use of additional and quite complex software 

such as hap.py11, these metrics will not be 

applied in this study. 

2.5 Implementation: 

The initial datasets for zebrafish (Danio rerio), 

BioProject accession number PRJNA245510, 

were downloaded. This BioProject entry links to 

the SRA database where the read files are 

stored. The Ubuntu Linux version of the SRA-

Toolkit was installed and used to download the 

read files SRR1264585 and SRR1264598 (run 1 

and run 5 respectively), which are control 

samples from Gagnon’s data. (See 

supplementary note 1 for greater detail). These 

files contain 3,431,734 and 2,715,834 reads, 

respectively. The quality of the data was checked 

 
11 https://github.com/Illumina/hap.py 

 

Figure 3: representation of the steps for 

such experiments 



using the FastQC program. After initial analysis, adapter trimming and paired end joining was 

performed with the aid of Trimomatic, cutadapt and fastq-join. A second FastQC analysis was 

performed prior to data analysis using ampliCan. See figure 3. 

2.5.1 Obtaining Datasets: 

The datasets used by Labun in his work, run 6 to 10 were downloaded manually from 

ArrayExpress (E-MTAB-6310, E-MTAB-6355, E-MTAB-6356, E-MTAB-6357, E-MTAB-6358). 

2.5.2 Dataset Processing: 

FastQC (by Babraham Bioinformatics), a software tool used to assess the quality of raw 

sequence data generated by high throughput sequencing pipelines, was utilized to ascertain 

the quality of data sets obtained from the SRA toolkit (linux version). (See supplementary note 

2 for details). 

  



 

 

Figure 4: (A) quality score of raw dataset run 1 forward reads; (B) quality score of raw 

dataset run 1 reverse reads; (C) quality score of raw dataset run 5 forward reads; (D) 

quality score of raw dataset run 5 reverse reads. The central red line represents the 

median, yellow box represents the inter-quartile range, the upper and lower whiskers 

(error bars) represent the 10 and 90% points, and the blue line is indicative of the mean 

for each base pair’s position within the read (x axis). The y-axis shows the quality score 

with the background of the graph representing good quality data area as green, 

reasonable quality as orange and poor quality as red. Here, most of the data resides in the 

green area indicating good quality calls overall with some data falling in the red regions. 

 

 

 



While the initial analysis of the data sets revealed acceptable sequence quality per base 

(Paired end data shown in Figure 4 (A) and (B)), a significant number of overrepresented 

sequences contributing to the increased size of the whiskers (increased error) in the FastQC 

were noted revealing a higher number of duplicated sequences including adapters. It was 

decided to remove the adapters to comply with research requirements. A list of adapters was 

obtained from Trimmomatic and after manually searching the data sets the cutadapt tool was 

 

Figure 5: Cumulative plot of the fraction of reads where the sequence library adapter 

sequence is identified at the indicated base position. This can be used to identify adapters 

that are shorter than the read length resulting in read-through to the adapter at the 3’ end 

of the read. (A) adapter content in raw dataset run 5 reverse read prior to trimming while 

(B) shows adapter content after trimming in dataset run 5 reverse read indicating removal 

of over representative sequences. Similar analysis was conducted to similar results for run 

1 as well. Representative data are shown here. 

 



utilized on run 5 to generate research compliant data sets. (See supplementary note 3 for 

greater detail). Following adapter trimming, paired end joining (merging forward and reverse 

sequence into a single file) was performed utilizing the fastq-join tool (Aronesty, E., 2013) (See 

supplementary note 4 for greater details). A subsequent FastQC analysis of the adapter 

trimmed and paired end joined sequence was performed. The FastQC tool indicated the 

adapter content tab as green indicating the fitness of our data set for further processing (See 

supplementary note 5 for greater detail). The resulting data sets (paired-end images) are 

shown in Figures 5A and 5B. 

2.5.3 ampliCan Pipelines Analysis: 

After initial FastQC data analysis and adapter trimming followed by paired end joining, data 

quality was assessed and finalized using FastQC once more. The data were now considered 

ready for analysis using ampliCan. However, significant requirements for ampliCan analysis 

had to be satisfied. Following is a description of the method of data analysis using ampliCan. 

An R script was written to download all packages that are dependencies for the ampliCan 

pipeline (See supplementary note 6 for greater details). Additional software required by the 

pipeline was installed, including BWA (v 0.7.12) (Li & Durbin, 2010), seqprep, pear (v0.9.10), 

blat (version 35x1), CRISPResso (1.0.13), art_illumina (2.5.8) (See supplementary note 7 and 

the flow chart in graphical view of ampliCan shown in Figure 2). 

2.5.4 Method: 

After completion of installation and optimization of ampliCan, using a self coded R script, runs 

1, 5 and 6 were analyzed (See supplementary note 8). 

As per the requirements of ampliCan, a config.csv file containing information regarding 

forward and reverse primers, gRNA, amplicon sequence, and control etc. was created. The 

amplicon sequence was obtained from the UCSC genome website, guide RNA was obtained 

from the CHOPCHOP web-tool (Labun et al., 2016) (See supplementary note 8 for details on 

commands used for analysis in ampliCan). Once runs 1, 5, and 6 were analyzed using ampliCan, 

synthetic mutated datasets generated using the R script were also analyzed with ampliCan 

and are presented and discussed in the results section (Section 3 and Section 4).  



2.5.5 CRISPRMatch pipeline Analysis: 

Real data from Gagnon et al., run 1, run 5 and run 6, were then processed using CRISPRMatch. 

As an analysis tool, CRISPRMatch requires relatively fewer steps to setup and initiate 

processing. Its ability to communicate with both CRISPR dataset Cas9 and Cpf1 file types as 

well as its relatively few dependency packages make it a user-friendly tool for high-throughput 

CRISPR data analysis. 

Subsequent to CRISPRMatch download and installation from github, the following 

dependency packages were installed: Anaconda, python3, bwa, samtools, picard, matplotlib, 

pandas, numpy, argparse and FLASH. (see figure 1 for CRISPRMatch analysis flow chart) 

2.5.6 Methods: 

Run 1, run 5 and run 6 were analyzed using CRISPRMatch by completing two main files. A 

reference FASTA file was also obtained for analysis using CRISPRMatch. (see supplementary 

note 9) 

GuideRNA PAM with known start and end positions and an amplicon sequence was obtained 

like ampliCan analysis, though strand direction and start and end positions were manually 

provided. The samples to be compared as well as a control sample were also obtained. A 

synthetic dataset was then created to analyze the pipelines.  (see supplementary note 11 for 

greater details) 

2.5.7 Generating Synthetic Dataset: 

For the purpose of benchmarking and comparing the pipelines, simulated datasets are needed 

so that it will be known which mutations were introduced. When the mutations detected by 

each pipeline can be compared to the known (artificially induced) mutations, it will be possible 

to calculate performance measures that can be compared between the pipelines. An R script 

used by Lindsay et al. (Lindsay et al., 2016) and Labun et al. (Labun et al., 2018) was used 

during this study as well, so that there will be a similarity and a standardization. For details on 

how synthetic datasets were generated, see supplementay section 11. 

ART is a collection of simulation tools used to generate synthetic next generation sequencing 

reads. The R script utilized in this study runs under the ART_ILLUMINA toolkit environment 

and generates synthetic data. Here, synthetic data for 20 genes that are part of the original 



experimental sequence file (danrer7.fa) of reference genome was utilized by the R script 

under the ART ILLUMINA toolkit environment to generate synthetic data. It adds mutations 

according to Shah et al.’s guide lines (Shah et al., 2015) in the form of deletions, insertions, 

cuts, variants and indels. These guidelines were established in 2015 and utilized by seqprep 

(St John, J. 2014) to merge the pair-end reads. The guidelines specified using 100% matched 

merged reads reduces sequencing error in analysis by removing all unpaired reads and 

collapsing the forward and reverse pairs into a single read followed by generation of XML files 

containing all the reads for a single amplicon.  

  



3 Implementation and Results: 

3.1 Results: 

CRISPR is a family of DNA sequences that is found within bacterial and archaeal genomes. It is 

akin to a bacterial immune defense in which a DNA fragment of bacteriophage-derived 

sequences (from phages that previously infected the bacteria) are used to detect and destroy 

DNA from similar infections occurring subsequent to the original infection. Various 

endonucleases have been found to function with guide sequences to cleave the infecting DNA 

from bacteriophages. Among these, CRISPR-associated protein 9 (Cas9) and Cpf1 (CRISPR from 

Provetella and Francisella 1) now called Cas12a are of particular interest to researchers for 

use in introducing various forms of mutations in double stranded DNA (dsDNA). Cas9 is a 4 

component system consisting of two small crRNA molecules and trans-activating CRISPR RNA 

(crRNA). These components have since been fused by scientists to generate a single guide RNA 

that functions with the endonucleases (Figure 6). The Cas9 endonuclease works downstream 

of a protospacer adjacent motif (PAM) that needs to be G-rich while the Cpf1 endonuclease 

 

Figure 6: CRISPR endonucleases Cas9 and Cpf1. Cas9 (CRISPR associated protein 9) 

endonuclease functions with the aid of a guide RNA (gRNA) and requires the presence of a 

G rich PAM region. In a Cpf1 (CRISPR from Prevotella and Francicella 1), a T-rich region 

(TTTN) acts as a protospacer adjacent motif (PAM). It generates double stranded breaks 

(DSB) distal from the recognition site while Cas9 generates DSB’s proximal to the 

recognition site (three nucleotides away) and the resultant DNA has blunt ends. For both 

types of CRISPR endonucleases the DNA repair occurs by the nonhomologous end joining 

(NHE) and homology directed repair (HDR). 

 



requires a T-Rich motif. The two endonucleases also function differently from each other in 

that Cas9 results in the generation of blunt end DNA while Cpf1 results in the generation of 

sticky ends of DNA. 

Custom designed endonucleases can generate a large amount of DNA breaks and are an 

attractive avenue of research for the introduction of specific mutations. They are also capable 

of generating significant amounts of sequence data, requiring the need for specialized, high 

coverage, high throughput sequencing methods. Various pipelines have been developed and 

continue to be developed to perform these tasks. In simplest terms, an NGS pipeline should 

be able to accurately detect mutations with minimal to no errors. Previously, as shown by 

Labun et al. in 2018, ampliCan has been established as superior to the other known pipeline 

tools (CRISPResso, CrisprVariant, Amplicondivider). Here, we chose to study ampliCan against 

CRISPRMatch (a new pipeline with the advantage of being able to analyze data generated by 

Cpf1 as well as Cas9 endonucleases). Here, synthetic data generated using a method 

previously described by Labun et al was used to: 1) assess the user friendliness of both the 

processing and data output 2) compare the accuracy of mutation detection against the control 

sequence and 3) compare the detected mutation efficiency of CRISPRMatch to that detected 

by the current best as shown by Labun et al (ampliCan). 

3.1.1 Synthetic data analysis using ampliCan: 

An R script was used to generate synthetic data for multiple gene families (Neuroligin, 

Contactin associated protein, Neurexin, tight junction protein, and gap junction protein) (total 

20 genes) (see supplementary note 10 for the description of the proteins tested). Among 

these, CNTNAP5 (Contactin associated protein AP5) is used as a representative of data 

synthesis and detection success. In the current study (as in the previous studies) any gene 

modified by the R script can be used to conduct the analysis as it is the mutation generation 

that is being tested and no single gene itself (for other genes see supplementary note 11). This 

R script has been used in the past by both Lindsay et al and Labun et al for their analysis and 

was thus chosen to maintain a standard of treatment for synthetic data generation. Figures 7-

9 show the results of this analysis for 200 mutations frequency 2 (67% mutations inserted) 

(Figure 7-9). For other mutation levels analyzed by ampliCan as part of this analysis see 

supplementary note 11.  



  

 

Figure 7: AmpliCan pipeline processed data for synthetic/generated data constrained to 200 mutations 

(67% mutations) within the sequence for CNTNAP5 (Contactin like protein AP5). (A) corresponds to a 

deletion plot produced by ampliCan for CNTNAP5 gene analysis and shows arches that represent 

deletions (x-axis, start to end of arch) present at a frequency indicated by the y axis and transparency. 

Verticle dotted lines represent the start and end of the primers. As the number of mutations grows in 

the synthetic data, the size of the deletions, insertions, and cuts increases accordingly and is detected by 

ampliCan (see supplementary figure 12-15 for the trend (B) corresponds to insertions (small amount of 

insertions detected).  

 



  

 

Figure 8: AmpliCan pipeline processed data for synthetic/generated data constrained to 200 mutations 

(67% mutations) within the sequence for CNTNAP5 (Contactin like protein AP5). (A) corresponds to 

Mismatches to the reference sequence (generated by R script during the earlier steps of the ampliCan 

processing) and (B) corresponds to cuts introduced to the sequence and whether they vary from 

traditional/PAM related cut sites. Arches represent cuts (x-axis, start to end of arch) present at a 

frequency indicated by the y axis and transparency. 

 



 

 

  

 

Figure 9: The ampliCan pipeline processed data for synthetic/generated data constrained to 200 

mutations (67% mutations) within the sequence for CNTNAP5 (Contactin like protein AP5). The figure 

shows an alignment plot in the 200 mutations data for the top 10 most abundant reads in a synthetic 

data experiment. Here the table on the right side of the figure shows the relative efficiency (Freq) of a 

read, the absolute number of reads (count). It also shows the summed size of the indels represented as 

F. A green color in F indicates a frameshift which is detected in this “200 mutation” dataset indicating 

that the ampliCan analysis is proceeding as expected. The percent match also indicates that the amount 

of sequence unmatched/mutated as generated in the synthetic data also matches the amount detected. 

 

 



Figure 7 (A) exhibits the detected deletions as represented in the form of a deletion plot with 

arches. The two points of the arches connect the length of the deletion in the sequence (x-

axis) and the transparency of the arch represents the number of times said cut was detected 

in the analyzed data (y-axis). The remaining data (for 0%, 33%, and 90% mutations can be 

found in supplementary note 11 figures 12-15). There, supplementary figure 12 (A) shows 0 

cuts detected (as expected) since the R script did not introduce any mutations at this point. 

However, as the number of synthesized mutations increases in the synthetic data, the 

corresponding number of deletions and variation in the sizes of deletions increases. This 

suggests that ampliCan is able to detect the increasing number of deletions as introduced in 

the synthetic data. Looking at the y-axis for each image that shows frequency [%] in part A of 

Figure 7 as well as supplementary figures 13-15 we can see that the maximum height of the 

arch corresponds to a frequency [%] on the Y-axis. As you look at each image, it is obvious that 

the corresponding y-axis value is changing. This percent frequency of these deletions increases 

from 0.15 to 0.25 to 0.35 in the 33%,67% and 90% mutations datasets respectively. When you 

extract this information and plot it in a graphical software it can be fit to a linear model. The 

linear model fits this data well showing an R2 of 0.9926 for a slope of 0.0038 exhibiting near 

linear relationship between the increase in percent mutation introduced vs. detected (Figure 

10). Assuming 90% mutations occurring in the samples corresponding to 90% mutations the 

 

Figure 10: Percent mutations generated vs Percent deletion frequency plotted as a 

scatter plot and fit to a line with a slope of 0.0038 and an R2 of 0.9926. 

 

 

Figure 11: Percent mutations generated vs Percent deletion frequency plotted as a 



calculated percentage of mutations in 33 and 67 % mutation samples is found to be 38.6 and 

64.2% respectively. This is done by dividing the 0.15 percent frequency by 0.35 percent 

frequency and then multiplying it by 90 (percent normalization). This also indicates the 

presence of the correct number of deletions detected in the corresponding samples (See Table  

2) when compared to the percent of mutations synthesized though indicates that most of the 

generated mutations are deletions while insertions and cuts play a less significant role in the 

R script used to generate synthetic data. 

Part (B) of these supplementary figures (12-15) (see figure 7 B for 200/67% mutation) exhibits 

the insertions detected in the sequence during data synthesis. Interestingly, the data here do 

not change with changes in percent mutation though may account for the slight deviation 

from the near linear relationship of the deletions introduced as part of data synthesis. 

Understandably, the R script is supposed to introduce deletions as well as insertions and 

indels. As the majority of the mutations detected by ampliCan are deletions and not the other 

mutations introduced by the R script, the small variation of the deletions from a perfect linear 

fit could be because the remainder of the mutations are insertions and thus not part of the 

calculations conducted for deletions detection only. No insertions were detected by ampliCan 

in the 90% mutations synthetic dataset. Part (C) of the ampliCan supplementary figures (12-

14) (see Figure 8 A for 200/67% mutation) and Part (B) of supplementary figure 15 represents 

the mismatches detected in the various regions within the sequence (colored in the same 

Percent mutation 

generated 

Percent deletion 

frequency 

Calculated percent 

deletion 

0 0 0 

33 0.15 38.6 

67 0.25 64.3 

90 0.35 90 

Table 2: Percent mutation generated vs. Deletion frequency output by AmpliCan vs. 

Calculated percent mutation derived using the assumption that maximum percent 

deletion frequency corresponds to 90%. 



manner as the amplicon). In the current experiment, mismatches seem to have an inverse 

relationship, with the number of mutations generated going up and the frequency of 

mismatch going down. A similar relationship with deletions is also noticeable. Part (D) of 

supplementary figures 12-14 and Part (C) of supplementary figure 15 (see figure 8 B for 

200/67% mutation) corresponds to cuts that occur during the data generation process, occupy 

the identical sequence and correspond to similar percent frequency (y-axis) indicating that the 

missing mutation total (i.e. Cuts) is mostly due to deletions.  

The final part of supplementary figures 12-15 (Figure 9 for 200/67% mutation) contain an 

alignment plot for the corresponding percent mutation generated. In this part of each figure, 

the table on the right provides the relative frequency (Efficiency) of the read, the absolute 

number of reads (count), and the summed size of the indels (insertions and deletions) as F. 

Green color filled parts of the table correspond to a frameshift detected within each dataset. 

In the percent bar chart presented above the table on the right, the percent match indicates 

the percent of the sequence that matches the control sequence (pre-synthetic-mutation-

generation). Here we can see that the synthesized data at 0 mutation, 33% mutation, 67% 

mutation, and 90 % mutation correspond with 100%, 67%, 33% and 10% match and 

corresponds well with the remaining un-mutated data. This shows that the synthetic data is 

detected by ampliCan with high efficiency and accuracy.  

The R script affords users to assign the amount of variability withing the mutations inserted 

during the generation of the synthetic data. This is represented as increasing frequency of 

mutation addition to the sequence. A low “Freq” number corresponds to minimal/less drastic 

insertions, deletions and indels to the sequence while a larger number indicates greater 

variability. While the data shown in the results section and supplementary note 11 

corresponds to CNTNAP5 and other various genes tested in the synthetic dataset at a mutation 

insertion frequency of 2, analysis was conducted (see supplementary results files provided) 

for other mutation frequencies as well. This data was analyzed for all 20 genes tested 

(supplementary note 11) and data regarding CNTNAP5 is presented here. This shows the 

variation in the data introduced due to the mutation insertion frequency value and can be 



used to compare the relative efficiency of CRISPRMatch to the current standard (ampliCan) 

(Figure 11). 

 

3.1.2 Synthetic Data Analysis using CRISPRMatch: 

CRISPRMatch is a recently developed automatic stand-alone toolkit based on python script 

that has the ability to process the high-throughput, CRISPR nuclease dependent, genome 

editing data. It does so by integrating multiple analysis steps including mapping reads, 

normalizing read counts, evaluating the accuracy and efficiency of genome editing, calculating 

deletion and insertion frequency. In the final step of automated analysis, it generates 

visualizable results of the data (figures and tables). It also boasts the ability to analyze Cpf1 

endonuclease generated sticky ends containing data. 

The synthetic data generated by the R script and initially analyzed by AmpliCan was then 

analyzed using CRISPRMatch so that a comparison could be made between the two pipelines. 

Similar to the results for AmpliCan, CRISPRMatch analysis for CNTNAP5 is presented as part of 

the results section while representative genes of the CNTN, NLGN, NRXN families etc. are 

 

Figure 11: F (insertions and deletions) as detected by ampliCan Plotted against the 

increased number of mutations with 0, 100, 200, 270 corresponding to 0, 33%, 67%, and 

90% respectively. This shows that an increase in frequency in the data synthesis process 

results in increased variation in the number of mutations synthesized with a frequency of 

four exhibiting the most significant variation in mutation numbers with increasing number 

of mutations added. 

 



presented as part of the supplementary note 11 and the entirety of the analysis results are 

provided as supplementary files.  

Data output in CRISPRMatch is presented in the form of bar charts. Figure 12 Part (A) and 

supplementary figure 22-24 part (A) represents the various forms of mutations detected in 

the sequence while part (B) of these figures is a representation of deletions within the 

samples. Part (A) of figure 13 and part (C) of supplementary figures 22-24 is a representation 

of deletion frequency and is hence directly comparable with deletion frequencies shown in 

the data visualization from top part. Figure 13 part (B) and supplementary figures 22-24 parts 

(D) could be considered as a non-visual representation of part (B) of these supplementary 

figures and of figure 12 which shows the control sequence against which the treatment is 

tested. This could also be compared to the alignment chart generated by AmpliCan (figure 9). 

Supplementary figures 22-24 show sequence analysis for 100, 200, 270 (33%, 67%, and 90%) 

synthetically generated mutation data. Supplementary figure 22 part (A) shows the 

distribution of all the various mutations present in the synthetic sequences. It detects mostly 

deletions and some minute quantities of insertions in this sample. With increasing number of 

mutations, CRISPRMatch continues to detect deletions and insertions in the sample with 

values ranging between 15%-40%. When these results are compared to the AmpliCan analysis 

they are found to be similar. Figure 12 B and 13 A show the frequency of deletion between 

the sample and control as well as deletion frequency of each sequencing sample respectively. 

The comparison between control and experiment are represented together as a qualitative 

representation of efficiency of genome editing experiments. In the ampliCan analysis, the 

same data is represented as the height of the arches indicating deletion frequency and the 

color intensity of the arch is indicative of the frequency of that deletion occurring in the same 

sample. The deletion frequency of the synthetic data detected by CRISPRMatch however, 

appears to be significantly higher than the one detected by AmpliCan. At 33% mutation level, 



ampliCan detected a deletion frequency of 0.15 while CRISPRMatch detected a frequency of 

0.30 (supplementary figure 22 Part (C).  

 

Figure 12: CRISPRMatch output files for 200 mutation (67% mutation) data for CNTNAP5. 

(A) shows the bar chart that summarizes all-inclusive mutations (insertion, deletion, and 

combination of insertions and deletions) between “Treatment” (synthetic data) and 

“Control” unmutated data. The purple, orange and blue represent the frequency of all 

mutations, reads with deletion only, and reads with insertion and deletions respectively. If 

found insertion only data is represented with green bar. (B) is the summary of deletion 

among samples in a group and displays the frequency of deletion between the synthetically 

generated data and control.  

 

 

 



 

 

 

Figure 13: CRISPRMatch output files for 200 mutation (67% mutation) data for CNTNAP5. 

(A) represents the deletion frequency of each sequencing sample where the x-axis shows 

the sequence of the genome and labels shown in red are parts of PAM. (B) shows the 

alignment profile of control showing mostly the same sequence represented on the top, 

while the bottom alignment exhibits the alignment result of partial reads (sample vs 

control) for the CNTNAP5 gene. Deletions are marked by – and the pattern of deletions 

corresponds to the histogram generated in (B). 

 

 

 

 



The shape of the bar chart of deletion frequency in CRISPRMatch corresponds with the 

alignment data presented in the lower part of alignment in each figure representing 

CRISPRMatch data.  

The trend of increased deletion frequency detection continues at the higher mutation level 

samples in supplementary figures 23 and 24-part C. The resulting curve (Figure 14) from 

compiling the deletion frequencies from the CRISPRMatch data (Table 3) fits to a linear fit 

extremely well (R2 of0.9991) but has a slope of 0.0088 which is greater than two times the 

slope of deletion frequencies obtained using ampliCan (Figure 15).  

 

Figure 14: Percent mutations generated vs Percent deletion frequency plotted as a scatter 

plot and fit to a line with a slope of 0.0088 and an R2 of 0.9991. 

 

 

90%. 

 

 

 

Percent 

mutation 

generated 

Percent deletion 

frequency 

Calculated 

percent deletion 

0 0 0 

33 0.301 34.3 

67 0.61 69.5 

90 0.79 90 

Table 3: Percent mutation generated vs. Deletion frequency output by CRISPRMatch vs. 

Calculated percent mutation derived using the assumption that maximum percent 

deletion frequency corresponds to 90%. 



In all cases the deletions shown by CRISPRMatch are increasing in percentage in the same 

manner as ampliCan with the increase in the mutation level. Interestingly, though 

CRISPRMatch seems to be detecting more deletions, whether these deletions are truly present 

in the synthetic data remains to be seen. A comparison with true deletion in the sequence, 

manually detected, is presented in the later part of this report. 

3.1.3 Analysis of Real Experiments using ampliCan and CRISPRMatch: 

The investigation into next generation sequencing techniques was then extended into 

understanding how these two pipelines/toolkits may deal with real data rather than 

synthetically generated data. In order to do this, real experiment data was acquired from 

ArrayExpress as outlined by Labun et al (Run 6). Multiple genes were tested within this data 

analysis. Among those tested, the data of a representative gene, PITX2, is presented here. For 

remaining gene data see supplementary note 12. The real experiment dataset (263 real 

CRISPR experiments) was created by Labun et al where they combined 151 experiments that 

they had previously published (available at BioProject under accession number 

PRJNA245510), and 112 novel experiments from five sets for their most recent study 

(ArrayExpress: E-MTAB 6310, 6355, 6356, 6357, 6358). These experiments were conducted by 

 

Figure 15: Percent mutations generated vs Deletion (%) plotted as a scatter plot for 

CRISPRMatch (CM, blue) vs ampliCan (AC, red) showing a slope of >2x when CM is used for 

detection of deletion within the synthetic sequences generated the R script. 

 

 



injecting zebrafish zygotes which were sequenced two days after fertilization. Due to the rapid 

cell division within the early phase post-fertilization, these experiments most likely contain 

heterogeneous mutational efficiencies due to mosaicism. Thus, the true mutation efficiency 

is unknown and only a quantification of differences between the two tools could be presented 

here. 

While during the synthetic data analysis, both CRISPRMatch and ampliCan showed similar 

trends (even though they ended up having dissimilar slopes for deletion frequency) in 

mutation detection, in the real experiment data, these trends are no longer present. Here, the 

ampliCan data shows significant number of insertions while the CRISPRMatch data indicates 

no insertions at all. As a comparative NGS sequence pipeline, CRISPRMatch should at least be 

able to detect some insertions. The fact that it is unable to find any insertions at all in data 

that by virtue of being real experiment data where one cannot control for zero insertions 

clearly speaks to CRISPRMatch being an inferior NGS pipeline to ampliCan. As endonucleases 

function in real experiments they are incapable of generating deletion only data. Thus any 

detection by an NGS pipeline in a real experiment that show zero insertions is erroneous and 

indicates a flaw in the pipeline itself. In deletion frequency comparison between the two 

pipeline both detected the same percent deletions at 0.04%. 



  

 

Figure 16: AmpliCan pipeline processed data for real experimental data within the sequence for PITX2. (A) corresponds to a deletion plot produced by 

ampliCan for PITX2 gene analysis and shows arches that represent deletions (x-axis, start to end of arch) present at a frequency indicated by the y axis and 

transparency, respectively. Verticle dotted lines represent the start and end of the primers. Deletions of varying sizes and number are present. (B) 

corresponds to insertions. (Significant number of insertions detected in the sequence in question indicative of insertions during repair after double stranded 

DNA breaks caused by the endonuclease).  

 



 

 

Figure 17: AmpliCan pipeline processed data for real experimental data within the sequence for PITX2. (A) corresponds to Mismatches to the reference 

sequence and (B) corresponds to cuts introduced in the sequence and whether they vary from traditional/PAM related cut sites.  

 



 

 

Figure 18: AmpliCan pipeline processed data for real experimental data within the sequence 

for PITX2. The panel shows an alignment plot to PITX2 from uninjected sample showing 

about 65% match between the two. Here the table on the right side of the figure shows the 

relative efficiency (Freq) of read, the absolute number of reads (count). It also shows the 

summed size of the indels represented as F. A green color in F indicates a frameshift which 

is detected in the dataset.  



 

 

 

Figure 19: CRISPRMatch output files for real experiment data for PITX2. (A) shows the bar chart that 

summarizes all-inclusive mutations (insertion, deletion, and combination of insertion and deletion) 

between “Treatment” (injected) and “Control” (un-injected) sample’s sequence for PITX2. The purple, 

orange and blue represent the frequency of all mutations, reads with deletion only, and reads with 

insertion and deletions, respectively. If found, insertion only data is represented with green bar. (B) is 

the summary of deletion among samples in a group and displays the frequency of deletion between the 

injected and un-injected sample data. (C) represents the deletion frequency of each sequencing sample 

where the x-axis shows the sequence of the genome and labels shown in red are parts of PAM. (D) shows 

the alignment profile of control shows sequence of control on left and treatment on right for the PITX2 

gene. Deletions are marked by + – while the pattern of deletions does not correspond to the histogram 

generated in (B). 



The biggest difference is notable between the alignment plots of the two methods. Here, 

ampliCan (Figure 18) shows 65% match and areas of frameshift mutations and deletions, while 

the CRISPRMatch result (Figure 19 part D) shows two alignment plots (un-injected vs. injected) 

that have minimal deletions within them, although the rest of the figure shows deletions etc. 

 

Figure 20: CRISPRMatch output files for real experiment data for PITX2. (A) represents the deletion 
frequency of each sequencing sample where the x-axis shows the sequence of the genome and labels 
shown in red are parts of PAM. (B) shows the alignment profile of control, showing sequence of control 
on the left and treatment on the right for the PITX2 gene. Deletions are marked by – while the pattern of 
deletions does not correspond to the histogram generated in (B). 

 

 



These are stark differences between the two pipelines’ results. Their potential causes and 

implications will be discussed in the following section. 

3.1.4 Analysis of pipeline synthetic data analysis with comparison to manual 

detection 
On the synthetic data generated based on instructions provided by Labun et al, manual 

detection was conducted for deletions within this dataset. The 33%, 67% and 90% fastq files 

were aligned using the LAST tool against the reference genome which resulted in a large data 

file and manually detected (see supplementary note 13). These manually calculated results in 

the synthetically generated fastq files are shown in Table 4. 

Mutation level deletion added 

0%  0 

33%  2905 

67%  10448 

90%  18595 

Table 4: the total number of deletions detected in the synthetically generated data. 

The information shown in Table 4 was then percent normalized. The percent normalized 

mutation rates are shown in Table 5: 

Mutation level percent deletion added 

0% 0% 

33% 14.06% 

67% 50.05% 

90% 90% 

Tabel 5: Percent normalized deletions detected in synthetically generated data 



Following is a graphical representation of the percent normalized data since percent 

normalization allows for direct comparison between the manually calculate, ampliCan 

detected, and CRISPRMatch detected deletions (Figure 21). 

 

Figure 21: Comparison of percent normalized deletions between manual detection, ampliCan 

and CRISPRMatch. The blue bars represent the 33% mutated dataset fastq file and the red 

bars represent 67%.  

Manually calculated deletions represent the reference, i.e. the true number of deletions in 

the generated synthetic data. ampliCan represents the deletions detected by ampliCan while 

CRISPRMatch is a representation of deletions detected by the corresponding pipeline. The 

clear difference between the manually detected deletions and the two pipelines indicates that 

both pipelines over-detected the deletions within the dataset. It is worth noting that at the 

detected value, both pipelines are within +/- 5% of the predicted value (based on the code 

used to generate the synthetic data), while the manually calculated deletions are at a much 

lower percentage (14%). This could be explained by the ability of the manual detection 

technique to detect insertions and insertions/deletions and separate them from deletions. It 

may also indicate a lack of efficacy of the normalization procedures within the currently 

available pipelines. This assertion is further validated when one looks at the plots from 



CRISPRMatch and ampliCan which show minimal (if any) insertions and insertions/deletions 

detected in the synthetic dataset. 

 

Figure 22: Positive predictive value (PPV) of the two pipelines when compared with manually 

detected deletions. This figure shows the PPV of both the pipelines in detecting the deletions 

for 33% mutation and 67% mutation presented with blue and red bars respectively. ampliCan 

showed PPV of 0.36 in 33% synthetically mutated data and 0.78 in 67%. While CRISPRMatch 

has 0.41 PPV in 33% and 0.72 in 67%. (the calculation is based on the scale of 1.00). 

Positive predictive value of a pipeline indicates the level at which a detected mutation has a 

chance to be true i.e. when a mutation is detected, it is actually present. Positive predictive 

values tend to go up with increased prevalence (e.g. in disease models) which is a trend that 

holds true here as well (figure 22). With higher number of mutations present in the synthetic 

data, the positive predictive value of both pipelines goes up. At lower mutation levels (where 

PPV and thus confidence is low in the accuracy of the detection), both pipelines perform with 

less adequacy. It is worth noting however, that CRISPRMatch performs better at this level.  

Specificity also speaks to the accuracy of the detected mutation, though it represents the 

dataset currently being tested and is not influenced by population trends like positive 

predictive value where increasing number of mutations grants greater predictive ability to the 



pipelines.  Here, when compared to manually detected deletions, ampliCan performs more 

consistently than CRISPRMatch, which shows fluctuations in the specificity with varying 

number of mutations (Figure 23). 

 

Figure 23: Specificity bar chart. The blue bars show the results for 33% mutation while the red 

bars show the results for 67%. ampliCan showed almost the same specificity for both the 

mutation levels (0.78, 76%) while CRISPRMatch indicates variable specificity, it showed 0.81 

(81%) for 33% and 0.72 (72%) for 67%. 



 

Figure 24: Detection of true positives, true negatives, false positives and false negatives in 

both the pipelines. Blue bars represent True Positives, red bars represent True Negatives, 

green bars represent False Positives and purple bars (if detected) represent False Negatives. 

Figure 24 shows the TP,TN,FP, and FN for both pipelines. Of note, due to the over-detection 

by both pipelines, no false negatives were detected. A comparison table (with percent 

normalized values) is also made to display the deletions detected by both the pipelines 

alongside the manually detected deletions (table 6). 

Percent Mutation 

level 

base mutation 

level 

True Deletions ampliCan CRISPRMatch 

0% 0 0 0 0 

33% 100 14.1% 38.6% 34.3% 

67% 200 50.1% 64.3% 69.5% 

90% 270 90% 90% 90% 

Table 6: a comparison table for ampliCan and CRISPRMatch alongside the True Deletions 

The mutation added was not only deletions, it was a mixture of deletions, insertions, cuts, 

mismatches and variants. So the True deletions (manually detected) values are 



understandably low while both the pipelines are detecting >33% deletions in 33% mutation 

level where the deletions are only 14.06%. This remains the case for 67% mutation where 

50.06% deletions were added and both the pipelines over-detected to the tune of >60% 

deletions. 

For details about sensitivity, specificity, positive predictive value, true positive, true negative, 

false positive and false negative calculations see supplementary note 13. 

  



4 Discussion and Conclusion: 

4.1 Discussion: 
The two pipelines tested during this study include ampliCan (the current superior pipeline for 

analysis) and CRISPRMatch (a relatively new analysis toolkit). Both use similar steps to analyze 

sequencing data from CRISPR experiments. CRISPRMatch takes the NGS data and performs 

read mapping, region confirmation (due to its ability to analyze Cpf1 and Cas9 data), and 

mutation classification followed by output (Figure 1).  

On the other hand, ampliCan utilizes a multistep process as well including filtration and 

normalization steps that seem to play a major role in the quality of the data assessed 

(previously described by Labun et al) (Figure 2). The normalization occurs by two methods and 

uses the control sample to conduct the process namely the subtraction method and threshold 

method. In the first, the frequencies from events in the control sample are subtracted from 

the frequencies in the treated sample while in the second method, all events in the control 

sample that are above a threshold (1% by default in ampliCan) are automatically removed 

from the treated samples since they were most likely present in the sample prior to the 

introduction of the endonuclease and should not contribute towards detection of deletion in 

the treated sample.  

In the current study, during the synthetic data analysis, ampliCan provided a slope of 0.0038 

for the increase in deletion frequency detection in the synthetic data while CRISPRMatch 

showed a slope of 0.0088 (>2x the slope of ampliCan mutation detection) (Figure 10,14,15). It 

is conceivable that some of the baseline differences in the control sample that the 

normalization step removes from the treated samples result in a more accurate result from 

analysis using ampliCan. This suggests that ampliCan is able to clean the data and detect the 

more accurate number of mutations generated due to this step, a notion further solidified 

when doing the indel analysis (Figure 11) that shows that as the mutation insertion frequency 

is increased in the generation of synthetic data, it is detected in the ampliCan analysis as well.  

This notion is made concrete by the fact that during the previous study by Labun et al, 

ampliCan was found to have normalized the synthetic and real data better than the other 

pipelines and resulting in increased efficiency of detection.  



During its comparison with CRISPRMatch, due to CRISPRMatch providing us with higher 

number of deletions detected, ampliCan seems to have performed similarly and better than 

CRISPRMatch. Interestingly, however, when the highest deletion frequency (corresponding to 

270 mutations) is set to correspond to 90% (equal to the generated percentage of frequency 

in the synthetic data), the other samples (33% and 67% mutations) are detected very near to 

their generated value in both CRISPRMatch and ampliCan. The slope of this change is the only 

thing that suggests that ampliCan maybe normalizing the data and detecting true mutations 

while CRISPRMatch may not have been able to do this as well as ampliCan and may have given 

false positives. However, when compared with manually detected deletions, both pipelines 

seem to over-detect and may be providing a significant number of false positives. Thus, using 

ampliCan as a “gold standard” would have led to false conclusions of this study. 

Thus while ampliCan may indeed be better at weeding out the various pre-existing changes 

present within the dataset being analyzed, it still seems to be falling short of the mark when 

compared to manually detected deletions. The manual detection (percent normalized) 

showed there to be ~14% deletions while ampliCan detected 38% and CRISPRMatch detected 

34% in the set corresponding to 33% total mutations (Figure 21). Our manual detection 

suggests that only 14% out of the 33% synthetically mutated data is 14 % and the rest is most 

likely insertions and indels (insertions plus deletions). However, both pipelines detected 

deletions at a much higher level. This trend continues within the 67% total mutation data 

where we see ~50% deletions when manually detected but >60% when pipelines are used. 

This suggests that both ampliCan and CRISPRMatch are either 1) over-detecting deletions 

within the dataset or 2) counting deletions, insertions and indels as the same thing and 

presenting them as deletions in their analysis. The second hypothesis is more likely to be true 

since (as noted before), it is curious that both ampliCan and CRISPRMatch show minimal 

insertions and indels in their analysis of the synthetically generated data.  

This has a predictable consequence on the positive predictive value (PPV) of these two 

pipelines (figure 22). They both end up being poor performers when the overall mutations 

within the sample are few (real world experiment equivalent would be an experiment that 

was terminated at an earlier timepoint with the endonucleases halted after a few turnovers). 

This can also be interpreted as showing that analyses generated by both ampliCan and 



CRISPRMatch are less trust worthy when overall mutation levels are low. At higher levels of 

mutation, they both perform better with PPV’s >70% (0.78 and 0.72). 

Specificity is another measure of trustworthiness of an NGS pipeline. ampliCan maintains its 

specificity over the increasing range of mutations inserted, while CRISPRMatch suffers from 

variability in specificity. This also indicates that ampliCan may be superior to CRISPRMatch 

(Figure 23). 

Similarly, in real experiment data, the ability of ampliCan to normalize and analyze the data to 

conduct the analysis seems superior to CRISPRMatch, as it is able to detect variable types of 

mutations (including insertions) while CRISPRMatch suggests only the presence of deletions. 

The deletion percent is the same between the two pipelines though suggested that overall 

efficiency between the two is similar in the real experiment data (although that was not the 

case in synthetic data analysis).  

This study highlights the need of standardization of evaluation criteria for benchmarking of 

pipelines for analysis of CRISPR data. Synthetic data analysis seems to be the correct way to 

pursue this goal, though selection of the correct synthesis system is paramount. Synthetic data 

analysis allows for evaluation of parameters such as PPV, Specificity, TP, TN, FP, and FN which 

cannot be accomplished when analyzing real experiment data. Here, the same R script that 

was used by Lindsay et al and Labun et al was used to maintain the same starting point of our 

study. The concern was that even small changes at the onset of synthetic data generation may 

lead to detection issues in later steps of the analysis. Thus, for future analysis, either one 

method of such data generation should be used or a standard dataset should be made 

available to properly assess all pipelines against each other. Labun et al’s recent work (Labun 

et al. 2018.) did this for comparison between CrispRVariants, AmpliconDIVider, CRISPResso, 

and ampliCan. Their work found ampliCan to be superior to the other processing pipelines. 

For this reason, we chose to compare ampliCan and CRISPRMatch treating ampliCan as the 

current leader. Our analysis reaffirmed the status of ampliCan as an overall better pipeline, 

though comparison to manually detected deletion data showed that even ampliCan is prone 

to over-detection of deletions, possibly by detecting insertions and indels as deletions. 

The idea of utilizing a known sample set for analysis of NGS pipelines can be extended to the 

compilation of a singular collection of experimental datasets for the purpose of 



standardization in detection, so that the results from one study could be directly analyzed 

with newer pipelines as they are developed. Otherwise, the research into next generation 

sequencing techniques would continue to be marred by the proverbial comparison of apples 

to oranges. 

Multiple endonucleases can be used to conduct a real CRISPR experiment. CRISPRMatch has 

the ability to process batch samples of CRISPR-Cas9 and CRISPR-Cpf1 at one time, detect 

efficiency of mutations and evaluate accuracy of genome editing experiments. It has the ability 

to output the data in figures and tables format. It was mainly developed for analysis of genome 

editing data of CRISPR nuclease transformed protoplasts, where it could quickly analyze 

targeted mutation efficiency of DNA endonucleases which needs to be calculated after the 

initial analysis of data. On the other hand, ampliCan offers a complete pipeline for genome 

engineering and controls for biases at each step of evaluation. It has the ability to be 

integrated with the CHOPCHOP tool for gRNA design (when used in CRISPR experiments), can 

be scaled from a single experiment to genome wide screens, and can be run with a single 

command. As a user becomes advanced in their understanding and ability to use ampliCan, it 

allows further exploration of data by providing an adaptable framework. 

Finally, understanding mutational efficiencies of a specific endonuclease and gRNA is 

important in generating disease models to be studied. As a technology, CRISPR has the ability 

to permanently affect the landscape of human evolution. Currently, there are a plethora of 

genetic abnormalities resulting in life-long disabilities and morbidities. Diseases like muscular 

dystrophy (Hoffman et al., 1989) affecting mobility and eventually one’s ability to breath, 

leading to respiratory failure induced death; or cystic fibrosis, where thick mucus secretions 

can lead to respiratory infections and eventually death (Buchwald et al., 1989). Advances in 

pharmacological research has led to the ability of these individuals to live long enough to be 

able to reproduce. It is at this point where CRISPR technology has the potential of having the 

greatest impact. Removing the defective genes from affected next generation individuals at 

the embryonic level prior to implantation could result in relief from these diseases. However, 

the possibility of unintended consequences (unintended silencing of other genes with similar 

binding motifs) has led to hesitation and concern among the scientists. While still in the realm 

of science fiction, conceivably the advancement of such technology could lead to parents 

being able to pick height, skin color, eye color etc. of children before their births. Such a 



selection pressure could lead to a race to manipulate the next generations of humanity. 

Recently, Jian-kui HE became one of the first scientists to claim to have created CRISPR 

modified babies where he edited out genes responsible for the protein responsible for the 

binding of HIV to the surface of human cells and allowing the virus to be taken into human 

cells thus creating babies that are naturally immune to HIV (Cyranoski & Ledford, 2018). This 

has become a hotbed of discussion for basic questions about the moral goals of science and 

technology in general and fundamental ethical problem on this type of germline gene-editing 

reproduction itself.  

The generalconclusion of a multitude of ethics investigations that followed this incident was 

that the current gene editing techniques are not safe enough or effective enough to be used 

on human reproductive cell lines. Another major result of these investigations was the 

imprisonment of Juan Ki HE for three years for illegal medical experiments (Cyranoski D., 2020; 

Li et al., 2019). One of the reason’s why these techniques are deemed unsafe, as of yet, is the 

large possibility of unintended genome editing. In the future, this could have consequences in 

the generation of a race of so called “designer babies” as well (Ball P., 2017). Thus, the ability 

of NGS pipelines to accurately detect the edited genome becomes vital to the success of 

CRISPR genome editing. Thus, the need of an automated pipeline that is able to ascertain true 

efficiencies of an NGS dataset is paramount and has widescale experimental and ethical 

implications. In this project, ampliCan seems to take a higher number of steps during analysis 

to ensure the efficiencies of genome editing and proves to be superior to CRISPRMatch, 

though both of them fall off the mark when compared to manual detection. 

4.2 Conclusion: 
While CRISPRMatch provides the ability to analyze Cpf1 endonuclease data analysis its 

calculated mutational efficiencies are less accurate when compared with ampliCan and it 

seems to suffer from the inability to detect different types of mutations within the sample. 

Based on these shortcomings, ampliCan is a better pipeline for the analysis of NGS data from 

CRISPR genome editing experiments. In this author’s view, ampliCan is also a superior choice 

due to its user-friendly interface. However, when compared to manual detection, both 

pipelines fall short of being reliable. 
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