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Abstract

Estimating the Cost of Capital and the Profit Share Compensation of the factor of production capital is not directly
observed since most firms own part of their capital stock. I develop a new method to estimate capital compensation. I show
how firms' input choices reveal the user cost of capital when firms minimize costs and produce according to a homogeneous
production function. Subtracting estimated capital compensation together with all other observed costs from sales gives
economic profits. Estimating the model using Compustat data, I find that the cost of capital has been declining, and that the
profit share has been increasing over the past fifty years from around 4% to around 8% of sales. The increase in the profit
share coincides with the observed fall in the labor share, while I estimate the capital share to be falling as well. Therefore,
the fall in the labor share is not due to an increased capital intensity, but due to an increase in profits.

Profits and the Marginal Product of Capital Around the World The extent to which marginal products of capital are
equalized across countries is informative of how well international capital markets function. I estimate the marginal product
of capital across a wide range of countries while allowing for imperfect competition. I find that richer countries have a
higher marginal product of capital than poorer countries, but that this is entirely driven by differences in depreciation rates.
Thus, in terms of output net of depreciation there is no gain by reallocating capital from poor to rich countries or vice versa.
Furthermore, I find that profits have increased globally, but that the rise in profits is more pronounced in rich countries.

The Life Cycle of Profits Old firms make more profits than young firms, and nowadays profits are more back-loaded
than thirty years ago. I study to what extent this changing life-cycle pattern of profits explains the observed rise in profits
and fall in firm entry. I build a quantitative life cycle model with oligopolistic competition and an occupational choice
between being an entrepreneur and being a worker. All else equal, the more back-loaded profits are, the lower the value of
the firm due to discounting, and therefore the fewer agents choose to be an entrepreneur. In equilibrium, aggregate profits
rise to a level such that agents are indifferent between occupations. I find that the observed change in the life-cycle pattern
of profits explains about two-thirds of the rise in profits, and more than fully explains the fall in firm entry.

Diffusion of Ideas in Networks and Endogenous Search I study the diffusion of technology when the decision to
search for productivity-enhancing technologies depends on the network of interactions between agents. Agents have the
option to engage in costly learning from their first-degree connections. The more productive an agent's connections, the
more willing it is to learn. Hence, the network affects the reservation productivity at which agents choose to learn and
affects therefore aggregate productivity. I find that the denser the network, the higher learning effort and therefore the
higher total factor productivity and the lower inequality. However, the effect of the network on the share of agents that
learn in equilibrium is ambiguous. Furthermore, I find that nodes that are central in terms of their closeness to other nodes
tend to exert more learning effort and have a higher productivity.
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Abstracts

Estimating the Cost of Capital and the Profit Share Compensation of the factor
of production capital is not directly observed since most firms own part of their
capital stock. I develop a new method to estimate capital compensation. I show
how firms” input choices reveal the user cost of capital when firms minimize costs
and produce according to a homogeneous production function. Subtracting esti-
mated capital compensation together with all other observed costs from sales gives
economic profits. Estimating the model using Compustat data, I find that the cost
of capital has been declining, and that the profit share has been increasing over the
past fifty years from around 4% of sales to around 8% of sales. The increase in the
profit share coincides with the observed fall in the labor share, while I estimate the
capital share to be falling as well. Therefore, the fall in the labor share is not due to
an increased capital intensity, but due to an increase in profits. Furthermore, I find
that the increase in profits is due to reallocation between firms, but not due to real-
location between industries. Finally, I find an upward trend in the returns to scale,
which combined with the rise in profits implies that markups have been increasing.

Profits and the Marginal Product of Capital Around the World The extent to
which marginal products of capital net of depreciation differ across countries is
informative of there being frictions in international capital markets. I estimate the
marginal product of capital across a wide range of countries while allowing for
imperfect competition and non-constant returns to scale technology. I find that
richer countries have a higher marginal product of capital than poorer countries,
but that this is entirely driven by differences in depreciation rates. Thus, in terms
of output net of depreciation, there is no efficiency gain from reallocating capital
from poor to rich countries or vice versa. Furthermore, I find that profits have
increased globally, but that the rise in profits is more pronounced in rich countries.



The Life Cycle of Profits Old firms make more profits than young firms and,
nowadays, profits are more back-loaded over the firm’s life cycle than thirty years
ago. I study to what extent this changing life-cycle pattern of profits can explain
the observed rise in profits and fall in firm entry. I build a quantitative life cycle
model with oligopolistic competition and an occupational choice between being
an entrepreneur or a worker. All else equal, the more back-loaded profits are,
the lower is the value of the firm due to discounting and therefore, fewer agents
choose to be an entrepreneur. This fall in entry decreases competition and, in
turn, leads to an increase in profits until agents are again indifferent between
occupations. I find that the observed change in the life-cycle pattern of profits can
explain about two-thirds of the rise in profits, and can explain more than fully the
fall in firm entry.

Diffusion of Ideas in Networks and Endogenous Search I study the diffusion of
technology when the decision to search for productivity-enhancing technologies
depends on the network of interactions between agents. Agents have the option to
engage in costly learning from their first-degree connections. The more productive
an agent’s connections, the more willing it is to learn. Hence, the network affects
the reservation productivity at which agents choose to learn and therefore affects
aggregate productivity. I find that the denser the network, the higher learning
effort and therefore the higher total factor productivity and the lower inequality.
However, the effect of the network on the share of agents that learn in equilibrium
is ambiguous. Furthermore, I find that nodes that are central in terms of their
closeness to other nodes tend to exert more learning effort and have a higher
productivity.
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Introduction

The average Swede living today is about twice as rich as her parents and four
times as rich as her grandparents. Going back further in time, a person living
in Sweden today is about twenty times as rich as the average Swede that lived
150 years ago. This historically unprecedented income growth has had dramatic
effects on the ways in which we live our lives. It has led to much more freedom
and an increase in possibilities. Nowadays, people take it for granted to take an
airplane that can take them within a day to the other side of the world, whereas a
century ago many people would never leave their own country—unless, perhaps,
to fight a war. In addition, life expectancy has almost doubled in the last 150 years
from being around 45 years in 1870 to being 83 years in Sweden today.

This rise in welfare is due to productivity growth. Productivity grows for two
reasons: i) innovation and ii) innovations diffusing over the entire economy, also
making other producers more productive. In recent time, productivity growth
has slowed down. To understand this slow down, it is imperative to better
our understanding of innovation and technology diffusion. This is also key for
understanding the patterns of economic development we observe and will be
helpful for designing policies that can make low-income countries grow faster.

Let me first focus on innovation. A substantial fraction of innovations is done
by firms. And when an innovation is not done by a firm, but let us say by a
university instead, a firm is still often needed to transform the innovation into a
product or service that is useful to a consumer. Thus, to understand innovation
and productivity growth, we need to better understand the reasons for why firms
innovate. The main incentive for engaging in innovation is to generate profits.
This means that it is essential for economists to understand to what extent firms
are making profits and how this has changed over time. The first three chapters
of this thesis study this in detail. In the first chapter, I develop a new method to
estimate profits, and use this method to estimate how profits have changed during
the last fifty years in the United States. I find that profits, as a share of output, have
roughly doubled during this time period. In the second chapter, I find that other
countries around the world have also experienced an increase in profits. Chapter
three provides an explanation for why profits have been increasing. I find that
profits nowadays appear at a later stage of the firm’s life than they used to. Due to
discounting, this lowers the value of the firm and makes it less attractive to be an
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entrepreneur. Thus, fewer people decide to become an entrepreneur and therefore
competition declines and aggregate profits increase. This mechanism can explain
about two-thirds of the rise in profits and is consistent with the observed decline
in firm entry.

As mentioned above, for innovations to have a substantial impact on aggregate
productivity they need to diffuse across the entire economy. Take as an example
the idea of the assembly line that was introduced by Henry Ford. If this innovation
had only stayed within Ford Motor Company, it would have had a limited effect
on aggregate productivity. Instead, the idea of the assembly line has diffused
around the world and has revolutionized manufacturing and beyond. The fourth
and final chapter of this thesis studies how new innovations diffuse from one firm
to other firms to which it is connected. In particular, it studies which network
properties are beneficial for diffusion when the effort put into learning is endoge-
nous and depends on the network. I find that the denser the network (i.e., the
more connections there are between firms), the faster diffusion and therefore the
higher aggregate productivity.

I will now summarize each chapter in more detail.

The first chapter, Estimating the Cost of Capital and the Profit Share, esti-
mates how much profits firms are making. Profits are equal to output minus all
costs. However, capital costs are not directly observed as they are not reported on
the income statement of the firm. Therefore, we need to estimate capital costs first
in order to estimate economic profits. In this chapter, I develop a new method to
estimate capital costs. This method uses that firms’ input choices reveal the cost
of capital when firms minimize costs and produce according to a homogeneous
production function. Using this method, I find that capital costs as a share of
output have been weakly declining during the last 50 years in the United States.
Subtracting these estimated capital costs, together with all other observed costs,
from output, I find that profits have roughly doubled from being around 4% of
output in the 1960s to being around 8% of output today.

Knowing how much profits firms are making is not only important for under-
standing the productivity dynamics we observe but is also crucial for understand-
ing inequality. In the last few decades, the labor share of income in the US has
been declining. This means that a lower share of income goes to workers and a
higher share to the owners of the firms and of the capital stock. This fall in the
labor share could either be due to capital becoming more important in production
(e.g., due to automation) or due to an increase in firms’ market power. That the
capital share has been declining while the profit share has been increasing means
that the fall in the labor share is due to a rise in firms’ market power and not due
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to capital becoming more important in production.

Considering the distribution of profitability across firms, I find that the entire
distribution has shifted to the right. Thus, it are not only the most profitable firms
that have become more profitable, but also the median firm has become more
profitable over time. Nonetheless, the rise in profits is due to economic activity
reallocating from firms with a low profit share to firms with a high profit share.
Finally, I find that large firms have a higher profit share than small firms and that
this relationship has become stronger over time.

The second chapter, Profits and the Marginal Product of Capital Around the
World, uses the method developed in the first chapter, to study how the profit
share has evolved around the world. I find that the profit share shows an inverted
U-shape in Europe between 1990 and 2015, with an overall increase of around
2 percentage points. Profits have also been increasing in Asia, Latin America
and North America. This does not mean that profits in all countries have been
increasing. For instance, in Canada the profit share has not increased. The global
profit share has been increasing by around 2 percentage points from 1990 to 2015,
which is somewhat less than the increase in the United States. Overall, richer
countries have experienced a somewhat faster increase in profitability than poor
countries.

Furthermore, this chapter studies the extent to which marginal products of
capital are equalized across countries. This is important for understanding the
functioning of international capital markets. When the marginal product of capital
net of depreciation differs across countries, international capital markets do not
function well, and global output could be increased by reallocating capital from
countries with a low marginal product of capital to countries with a high marginal
product of capital. I estimate the marginal product of capital across countries
while allowing for imperfect competition and the returns to scale to be different
from one. I find that richer countries have a higher marginal product of capital
than poorer countries, but that this is entirely driven by differences in depreciation
rates. Thus, international capital markets seem to be working well, and there is no
gain, in terms of output net of depreciation, from reallocating capital from poor to
rich countries or vice versa.

In the third chapter, The Life Cycle of Profits, I document that over time profits
have become more back-loaded over the firm's life cycle . A firm younger than ten
years today makes about as much profits on an annual basis as a young firm was
doing thirty years ago. However, an old firm today makes much more profits than
it used to make thirty years ago. There are two reasons for this changing life-cycle

pattern of profits. Young firms today are only slightly larger in terms of their sales
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than they used to be, while older firms have become much larger than older firms
thirty years ago used to be. Second, young firms have started to make less profits
relative to their size while old firms nowadays have a profit share that is about the
same as it used to be.

I next build a quantitative model to understand to what extent this changing
life-cycle pattern of profits can explain the rise in profits. An entrepreneur will
start a business when the value of having that business (i.e., the discounted sum
of profits) exceeds the entry costs. All else equal, as profits nowadays appear at
a later stage than they used to, the value of the firm is lower due to discounting.
This makes it less attractive to start a business and will therefore lead to less firm
entry. This lowers the competition among firms and, in turn, leads to an increase
in profits. I find that the observed change in the life-cycle pattern of profits can
explain about two-thirds of the rise in profits found in chapter 1, and more than
fully explains the fall in firm entry that is observed.

Finally, the fourth chapter, Diffusion of Ideas in Networks and Endogenous
Search, studies the diffusion of technology. New ideas tend to spread gradually
and agents that are directly connected to early adopters are more likely to adopt
themselves. This means that how the network of interactions between agents
looks like affects the speed of diffusion. Furthermore, also search effort depends
on the network and on the productivity distribution. When one is connected
to high-productive agents, one is willing to put more effort into learning and
adopting the technologies these high-productive agents are using than when one
is only connected to low-productive agents. This chapter studies theoretically
which network properties are beneficial for diffusion when the decision to search
for productivity-enhancing technologies depends on the network of interactions
between agents.

Agents have the option to engage in costly learning from their first-degree
connections. The more productive an agent’s connections, the more willing it is
to learn. Hence, the network affects the reservation productivity at which agents
choose to learn and therefore affects aggregate productivity. I find that the denser
is the network (i.e., the more connections there are between firms), the higher is
the learning effort and therefore the higher is total factor productivity and the
lower is inequality. However, the effect of the network on the share of agents that
learn in equilibrium is ambiguous. Finally, I find that nodes that are central in
terms of their closeness to other nodes tend to exert more learning effort and have
a higher productivity.



Chapter 1
Estimating the Cost of Capital
and the Profit Share”

Compensation of the factor of production capital is not directly observed since
most firms own, rather than rent, their capital stock. This means that also economic
profits are not directly observed. However, being able to distinguish between
capital compensation and economic profits is crucial for understanding several
recent macroeconomic trends. It is essential for understanding whether the fall
in the aggregate labor share of income (Elsby et al., 2013; Karabarbounis and
Neiman, 2014) is due to production becoming more capital intense or due to a
rise in market power, and it is informative on whether antitrust policy should
be enhanced. This distinction is also key for understanding the productivity
slowdown (Gordon, 2016) and the fall in firm entry (Decker et al., 2014) as the
incentive for entrepreneurs to create new ideas, products and firms is to generate
economic profits. Finally, telling capital compensation apart from economic profits
is essential for calibrating models. In this chapter, I develop a new method to
distinguish between capital compensation and economic profits, and quantify the
evolution of capital compensation and economic profits in the US.

Through the lens of a simple but general model, capital compensation is
revealed by cross-sectional variation in firms’ input choices. To see this, suppose
for now that production is constant returns to scale and that firms minimize costs.
In the presence of a markup, this makes that nominal output, PY’, is equal to the
markup, p, times total costs, which is the sum of expenditure on inputs other than
capital, PX X, and capital compensation, R - PX K,

PY = pu(P*X +R-PFK) . (1)

*I thank Timo Boppart, Mitch Downey, Andreas Ek, Emilien Gouin-Bonenfant, Basile Grassi,
John Hassler, Pete Klenow, Per Krusell, Vicke Norén, Christina Patterson, Yimei Zou, members
of the Stockholm macro discussion group, and seminar and conference participants at Stockholm
University, Tilburg University, University of Copenhagen, the Swedish Ministry of Finance, Banca
d'Ttalia Conference on Recent Trends in Firm Organization and Firm Dynamics, and the 8th National
PhD Workshop in Finance for helpful comments.
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Here, ;1 and the (user) cost of capital, R, are unobserved while the other variables
are typically observed. The effect of varying the nominal capital stock, PX K,
on nominal output, while holding other inputs constant, equals the markup
times the cost of capital, #R. By cost minimization, this also equals the valued
marginal product of capital.! Furthermore, the effect on nominal output of varying
expenditure on other inputs than capital, while holding capital constant, equals
the markup. In Section II, I bring the above equation to a regression framework.
Thus, regressing nominal output on input expenditure other than capital and on
the capital stock gives as coefficients the markup and the markup times the cost
of capital, respectively. Dividing these two estimates with each other gives the
cost of capital. I run a modified version of this regression year-by-year which
yields a time-varying estimate of the cost of capital. Multiplying this estimate
of R with the capital stock gives total capital compensation, which subtracted
together with all other observed costs from nominal output gives economic profits.
Importantly, in Section II I relax the assumption of constant returns to scale and
instead assume that the production function is homogeneous of a constant degree,
possibly different from one. This yields a similar relationship between nominal
output and inputs as above, but with the markup replaced by the price-average
cost ratio.

I estimate the cost of capital and the profit share using Compustat data for
the United States from the 1960s until today. The capital stock, and therefore the
capital share, includes physical capital plus externally purchased intangibles, but
does not include internally developed intangibles. Costs for internally developing
intangibles, such as R&D and marketing, are part of operating expenses and
are therefore part of the costs subtracted from sales to obtain economic profits
(together with the other operating expenses and estimated capital compensation).?
I find that the user cost of capital has been declining from around 25% in the 1960s
and 1970s to around 20% today. The capital stock relative to sales has increased
somewhat over time but not enough to compensate for the fall in the cost of
capital and therefore, capital compensation as a share of sales has been falling
from around 8% to around 7%. Economic profits as a share of sales have doubled
from being around 4% in the 1960s and 1970s to being around 8% today.

The rise in profits coincides with a fall in the labor share (Elsby et al., 2013;

Karabarbounis and Neiman, 2014).3 Several explanations for the fall in the labor

ITo be precise, the markup times the cost of capital equals the valued marginal product of capital
divided by the price of capital P¥. See Section II for details.

2See Koh et al. (2016) for a discussion of how the treatment of intellectual property products affects
the measurement of the labor share.

3See Rognlie (2015) for a discussion of the role of housing in measuring the labor share. Correcting
for the self-employed and housing, Cette et al. (2019) and Gutiérrez and Piton (2019) find that the
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share have been put forward. These explanations fall into two categories. The
first category attributes the fall in the labor share to changes in technology that
have increased the importance of capital in production (such as (dis)embodied
capital-biased technical change).* The second category attributes the fall in the
labor share to increased market power of firms in the product or labor market.” If
the fall in the labor share were due to production becoming more capital intense,
the fall in the labor share would coincide with a rise in the capital share, whereas
if market power has risen the fall in the labor share would be accompanied by
a rising profit share. As I find that the profit share has been increasing while
the capital share has been declining, the fall in the labor share is not due to an
increased capital intensity, but due to increased market power.

The econometric model studied here is a random coefficient model as the
markup, u, and the cost of capital, R, can vary across firms. Therefore, variation in
inputs should not be due to variation in the markup or the cost of capital (i.e., the
coefficients), but should be due to other factors such as variation in technology
(e.g., factor-augmenting productivity) or the price of inputs other than capital (e.g.,
wages). I address this econometric challenge in the following way. To deal with
variation in the markup, I divide both sides in equation (1) by PX X, such that
the regressor becomes the capital stock divided by expenditure on inputs other
than capital. According to standard economic theory, variation in this capital-
input ratio is not due to variation in the markup because the markup distorts
the first-order condition of all inputs in the same way. Therefore, variation in
markups does not lead to a bias when using this modified specification. On the
other hand, the cost of capital only affects the first-order condition with respect to
capital and therefore does affect the relative input choice. To deal with variation
in the cost of capital, I first allow the cost of capital to depend on the capital-input
ratio up to a first order. Second, I include observables that control for the extent
to which firms are financially constrained and find that this does not affect the
estimates to any considerable extent, suggesting that the remaining, unobserved,
variation in capital costs is limited. Third, using across industry variation leads to
similar results as using within industry variation (my main specification). This
is reassuring since the source of variation in the capital-input ratio might be
substantially different comparing firms within industries with each other versus

comparing different industries. Fourth, I specify a structural model, and matching

decline in the labor share is mainly a US phenomenon. I sidestep the issue of housing and the
self-employed by focusing on the corporate sector.

4See, e.g., Karabarbounis and Neiman (2014), Grossman et al. (2017), Autor and Salomons (2018),
Acemoglu and Restrepo (2018), Hubmer (2018), Martinez (2019) and Moll et al. (2019).

5See, e.g., Barkai (2017), Gutiérrez and Philippon (2017), De Loecker et al. (2018) and Gouin-
Bonenfant (2018).
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moments of the data, I find that the bias due to variation in the cost of capital is
reasonably small. Finally, to validate the cost of capital estimator, I regress the
estimated cost of capital on the observed depreciation rate across industry-year
pairs and, as expected, I find a correlation that is slightly below one.

One attractive feature of my approach to estimating the valued marginal prod-
uct of capital and the cost of capital is that I do not have to specify the production
function. The fall in the labor share coincides with a drop in the relative price of the
investment good, which affects the capital and labor share differently depending
on the elasticity of substitution between capital and labor (Karabarbounis and
Neiman, 2014). Furthermore, the fall in the labor share might be related to the rise
in the skill premium, and therefore, capital-skill complementarity (Krusell et al.,
2000) or a task-based production function (Acemoglu and Autor, 2011) might
be the appropriate production structure. It is generally challenging to estimate
production functions and the elasticity of substitution between different inputs.®
The assumption that the production function is homogeneous of a constant de-
gree comprises the above mentioned production functions, and I do not need to
estimate a specific functional form or elasticities of substitution. Moreover, firms
are allowed to produce multiple products using varying technologies. Also the
requirements on the data are limited as (firm-specific) input or output prices and
expenditure on each specific input (such as different types of labor) are not needed
to be observed, but only data on total expenditure on inputs other than capital,
nominal output and the nominal capital stock are required. Those are usually
available in a typical firm-level data set. Finally, another advantage of this ap-
proach is that firms are allowed to have different production technologies of which
recent evidence shows that this is the relevant case (David and Venkateswaran,
2019; Doraszelski and Jaumandreu, 2018; Raval, 2019a).

This paper estimates the cost of capital and the profit share using micro-data
on firm inputs and output, whereas the existing literature studies the evolution
of the cost of capital and the profit share using a required rate of return approach
(Hall and Jorgensen, 1967; Barkai, 2017). The required rate of return approach uses
that, according to theory, the user cost of capital, R, equals the sum of the interest
rate and depreciation rate minus expected inflation of the capital good, which are
obtained from aggregate data.” Applying the required rate of return approach
to Compustat data, I find that the estimated profit share is similar across the two

6See for instance Oberfield and Raval (2014) and Karabarbounis and Neiman (2014) on estimating
the elasticity of substitution between capital and labor, and Katz and Murphy (1992) on estimating the
elasticity of substitution between high- and low-skilled labor.

The required rate of return approach also takes into account the differential treatment of capital
expenditure by the tax authorities. This is also included in my measure of the cost of capital as input
choices reveal the cost of capital including taxation.
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methods in both level and trend after 1985, but is very different during the 1960s
and the 1970s. The required rate of return approach finds the profit share to be
as high in the 1960s and 1970s as it is today, which is also found to be the case in
aggregate data (Karabarbounis and Neiman, 2018; Barkai and Benzell, 2018). That
profits are high during the 1960s and 1970s is rather surprising given that the labor
share was at a high level during this time period, and has led to concerns about
whether the required rate of return approach measures capital costs accurately
(Karabarbounis and Neiman, 2018). Instead, I find the profit share to be (much)
lower in the 1960s and the 1970s compared to today, which is consistent with
the fall in the labor share being associated with a rise in profits. One potential
explanation for the discrepancy between the two methods is that expected inflation
is needed for the required rate of return approach, which is approximated with
realized inflation. During the period from the 1960s until the early 1980s, the
inflation rate was first rapidly increasing and then rapidly declining. However,
this does not necessarily imply that expected inflation was also changing rapidly,
and therefore might lead to a biased estimate for the required rate of return
approach.

In this paper, I study the long-run changes in the cost of capital and profit share.
To estimate the cost of capital, I assume that the firm's first-order condition for
each input hold. Presumably, these hold to some extent in the long run. However,
the extent to which these hold is likely to vary over the business cycle, making my
approach not suitable for studying how the cost of capital and profit share change
over the business cycle. Furthermore, variation in the cost of capital across firms
should be limited and the extent to which this holds depends on the data studied.
In this light, the method developed here might not be appropriate for studying
small private firms. Using Compustat data partly alleviates this concern as the
sample comprises mainly publicly listed firms, which tend to be larger and have
access to the capital market. Indeed, in a recent paper David and Venkateswaran
(2019) find that the scope for variation in the cost of capital is limited in this data
set.

On the other hand, care should be taken when extrapolating my results to
the rest of the economy as Compustat is not a representative sample. In some
industries, a larger share of firms is public than in other industries, and public
firms tend to be larger than private firms. I deal with the representativeness of the
data in three ways. To correct for the differential industry composition, I weight
the industry profit share with the economy-wide share of value added for that
industry to obtain aggregate profits. If anything, this leads to a faster increase

in the profit share. To correct for size-based selection I reweight observations
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based on the size distribution obtained from the Census. Because I find that larger
firms are more profitable than smaller firms and that this relationship has become
stronger over time, this attenuates the rise in the economy-wide profit share.
However, the rise in the size-based reweighted profit share is still substantial by
being around three percentage points. Third, I estimate the profit share using
economy-wide industry level data from the Bureau of Economic Analysis. This
yields an estimate that is very similar to the estimate based on Compustat data.

It has been documented that a large part of the fall in the labor share is due
to reallocation toward firms with a low labor share (Autor et al., 2017; Kehrig
and Vincent, 2018), potentially due to offshoring labor-intensive tasks (Elsby
et al., 2013). However, based on existing evidence it is not clear whether these
firms have a low labor share because they have a high capital share (e.g., due to
automating more tasks) or a high profit share. Estimating the profit share using
micro-data allows me to study how the distribution of the profit share across firms
has changed over time. I find that larger firms have a higher profit share and that
the rise in the profit share is due to reallocation between firms, though mainly not
due to reallocation between industries.® Furthermore, I find that the median profit
share has risen at the same rate as the average profit share.

When calculating economic profits I do not subtract entry costs as I do not
observe them. Thus, the rise in what I call economic profits could potentially be
explained in its entirety by a rise in entry costs. I argue that this is not the case
because the life-cycle pattern of profits has changed over time. In a simple model
of entry, a potential entrant enters the market when the present value of profits
is larger than the cost of entry. In a stationary equilibrium, firms of all ages are
observed and hence total profits observed at any point in time exceed the present
value of profits when discounting is positive and therefore exceed the entry costs
(Atkeson and Kehoe, 2005).” The discrepancy between total and discounted profits
is larger the more back-loaded profits are over the life cycle. I find that profits
have indeed become more back-loaded. Young firms today make as much or less
profits than young firms in the 1980s but older firms have become more profitable.
Therefore, the present value of the future stream of profits (or, equivalently, entry
costs) has grown at a lower rate than total profits. This suggests that at least part
of the rise in profits is not due to a rise in entry costs. Furthermore, depending on
the discount factor, the value of entering the market might, in fact, have declined,
which could explain the observed fall in firm entry (Decker et al., 2014).

The returns to scale do not need to be estimated in order to estimate the cost of

8That the rise in the profit share is due to reallocation across firms is also found for markups by
De Loecker et al. (2018) and Baqaee and Farhi (2020).
9This is the case as long as profits are not heavily front-loaded.
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capital and the profit share, and are allowed to vary over time and across firms.
However, knowing the returns to scale makes it possible to estimate the markup
as the markup is the price-average cost ratio times the returns to scale.!? I follow
Syverson (2004) and estimate the returns to scale using cost shares based on my
estimate of the cost of capital. I find that the returns to scale have been increasing
from just below one in the the 1960s and 1970s to around 1.05 toward the end of the
sample period. Combining this increase in the returns to scale with the increase
in the profit share, the cost-weighted average markup has increased from around
1.05 to around 1.15. This estimate of the markup relies on additional assumptions
compared to my estimate of the profit share, such as that real quantities are ob-
served. However, an advantage compared to the literature on estimating markups
using production data (De Loecker and Warzynski, 2012; De Loecker et al., 2018)
is that firms are allowed to differ in their factor-augmenting technologies. The rise
in markups that I find is similar, though somewhat smaller in magnitude, as what
De Loecker et al. (2018) find using the same data.

In my main specification, I assume that labor markets are competitive. How-
ever, it could be that the wage is a markdown on the marginal product of labor,
which would be another source of profits besides imperfect competition in the
product market. I relax this assumption and show that it is possible to also esti-
mate the markdown with my framework. Allowing for imperfect competition in
the labor market does not affect the estimated profit share. Furthermore, I find
that the markdown has been relatively constant at around 1.05. This means that
firms have some labor market power but that, at least in this sample, the rise in
profits and the decline in the labor share cannot be explained by firms having
experienced an increase in their labor market power.

Section I discusses the literature in more detail. Section II derives the estimator
of the cost of capital. The data I use to estimate the evolution of capital compen-
sation and the profit share is discussed in Section III. Section IV shows the main
results and Section V compares my approach with the required rate of return
approach in the literature to estimating the cost of capital. Section VI shows that
my results are robust to different specifications and Section VII studies heterogene-
ity in profitability across firms and discusses the life-cycle pattern of profits. In
Section VIII, I estimate the returns to scale and the markup. Section IX finds that
changes in markups are negatively correlated with changes in concentration at the
industry level. Section X discusses alternative applications of the cost of capital
estimator and Section XI concludes.

19That is because the returns to scale equal average costs divided by marginal costs.
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I Related Literature

This paper is foremost related to the literature on estimating the cost of capital.
Hall and Jorgensen (1967) derive a formula for the user cost of capital from the
condition that the price of a new capital good equals the discounted value of
all future services derived from this capital good. This makes that the cost of
capital equals the interest rate minus expected inflation of the capital good plus
the depreciation rate, corrected for the tax treatment of capital.

Barkai (2017), Barkai and Benzell (2018) and Eggertsson et al. (2018) use this
required rate of return approach to estimate the evolution of the cost of capital,
the capital share, and therefore the profit share in the US economy. Barkai (2017)
finds that the capital share has been declining and that the profit share has been
increasing since the late 1980s. This coincides with the fall in the labor share and
therefore indicates that the labor share has fallen due to an increase in profits.
Karabarbounis and Neiman (2018), Barkai and Benzell (2018) and Eggertsson et al.
(2018) extend this analysis further back in time and find that the profit share was
declining beforehand and that the profit share in the 1960s and 1970s was about
equally large as it is today.!! This evolution of the profit share is not consistent
with the narrative that relates profits to the labor share as the labor share was
high during the 1960s and 1970s. Moreover, the labor share was roughly constant
during this period and therefore the large swings in the profit share, as inferred
using the required rate of return approach, suggest large changes in the role of
capital in the production technology.!> One possibility for this surprising behavior
of the profit share is that the required rate of return approach mismeasures the
cost of capital. The main challenge for the required rate of return approach is to
estimate the interest rate (including a risk premium) and the expected inflation of
the capital good.!"?

My contribution to this literature is that I develop a complementary method to
estimate the cost of capital and therefore the profit share. In my framework, I do
not need to specify the individual components of the cost of capital, as opposed
to Hall and Jorgensen (1967), because I estimate the entire cost of capital directly
using firm-level data, whereas the papers cited above estimate each individual

component separately from different data sources (e.g., the interest rate from

HKarabarbounis and Neiman (2018) call it factorless income instead of economic profits. See Rognlie
(2018) for an excellent discussion of Karabarbounis and Neiman (2018).

12Furthermore, Karabarbounis and Neiman (2018) show that the required rate of return approach
implies that there is a tight negative relationship between the profit share and the real interest rate over
the business cycle.

13For instance, it is not clear how the risk premium has evolved over time. Farhi and Gourio (2018)
find a rising risk premium.
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financial markets data and the depreciation rate from national accounts data).
However, a drawback of my method is that heterogeneity in the cost of capital
across firms might lead to a biased estimate.

Another potential problem with estimating the profit share using the required
rate of return approach is mismeasurement of the capital stock as the cost of capital
needs to be multiplied by the capital stock to obtain total capital compensation.'
In contrast, with my approach, unobserved capital does not lead to a biased
estimate of the profit share as long as the unobserved capital stock is proportional
to the observed capital stock. The reason is that I estimate the cost of capital using
data on capital. If the capital stock were to be undermeasured, this means that
I would estimate a too high cost of capital. However, when this too high cost of
capital is multiplied with the too low measured capital stock to obtain total capital
compensation, these two errors cancel out exactly. On the other hand, idiosyncratic
measurement error leads to attenuation bias for my method, while this is not an
issue for the the required rate of return approach. Given that using variation across
industries leads to similar results as using variation across firms within an industry,
and that there is plausibly less measurement error in the industry-average capital
stock, attenuation bias is not a major concern.

Second, this paper contributes to the literature on estimating markups using
production data.'® De Loecker et al. (2018) estimate markups in the same data set
as I use, using the production approach (Hall, 1988; De Loecker and Warzynski,
2012). They find that markups have increased since the 1980s. The markup equals
the output elasticity with respect to an input times nominal output divided by
expenditure on that input. The difficulty is in consistently estimating the output
elasticity. Raval (2019b) finds contradicting estimates of the markup using different
inputs and argues that the reason for this is that the typical estimator of the output
elasticity does not allow for differences in factor-augmenting productivity across
firms. I add to this literature by developing a method to estimate the markup
allowing for differences in factor-augmenting technology. I find that the markup
increases over time, although at a lower rate than what is found by De Loecker
et al. (2018).1® Furthermore, both methods lead to different results for how the
distribution of markups has changed over time. I find that the median markup
has increased at a similar rate as the average markup while De Loecker et al.

14Gee Hall (2001), Atkeson and Kehoe (2005), McGrattan and Prescott (2005), Corrado et al. (2009)
and Eisfeldt and Papanikolaou (2013) for a discussion of the role of unobserved intangibles, such as
brand names, patents and organizational capital.

15See Basu (2019) and Syverson (2019) for a discussion.

16Traina (2018) uses the same method as De Loecker et al. (2018) but looks at different cost variables
within the same data set (i.e., Compustat) and finds a smaller increase in markups than what is found
by De Loecker et al. (2018).
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(2018) find that the median markup has not increased. I show in Section VII that
this discrepancy in distributional implications can be explained by an increased
heterogeneity in factor-augmenting technology over time.

Third, this paper contributes to the literature on explaining the rise in profits
and markups. Explanations include consumer inertia (Bornstein, 2018), an in-
crease in common ownership (Azar and Vives, 2019), IT improvements leading
to a fall in the firm-level costs of spanning multiple markets (Aghion et al., 2019),
falling interest rates (Liu et al., 2019) and a decline in knowledge diffusion be-
tween frontier and laggard firms (Akcigit and Ates, 2019). I find that profits have
become more back-loaded over the firm’s life cycle. All else equal, this lowers the
present value of profits and for the entry condition to continue to hold, aggregate

profits/markups need to increase in response.

II Estimating the Cost of Capital

Capital compensation is the product of the (user) cost of capital, R, and the nominal
capital stock, PX K,

Capital Compensation, = R, - P/ K, 2)

where t denotes time. The price of capital, PX, is the price paid to acquire one
unit of real capital K (e.g., the price of buying a computer). The cost of capital,
R, refers to the cost of employing one unit of nominal capital during a period,
and does, for instance, take into account that capital does not fully depreciate
within a period, that acquiring capital leads to services in the future that have to be
discounted appropriately and the way capital expenditure is treated by the taxation
authority.!” As the capital stock is observed, estimating capital compensation
comes down to estimating the cost of capital R.'® In order to do so I rely on basic
economic theory. I assume cost minimization and that the production function
is homogeneous of a constant degree. For notational simplicity, I here consider
the static firm problem in which the firm rents capital. See Appendix A that
the dynamic firm problem leads to the same first-order conditions, except that
expectations of the variables are taken.

Suppose that firm ¢ at time ¢ produces real output Y;; using as inputs cap-
ital, K;;, and M other inputs, X}, according to the production function Y;; =

17Equivalently, the cost of capital can be denoted in real terms. This would neither affect the
derivation of the estimator nor the results. I decided to define R in nominal terms because I observe
the nominal capital stock and not the real capital stock.

18In Section V, I discuss systematic mismeasurement of the capital stock and show that this has no
effect on my estimate of the profit share.
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Fiy (X},.... X}, Kit). These inputs could, for instance, be (different types of)
labor and materials. Different types of capital are also allowed, but for notational
simplicity I only consider one capital good here.

Assumption 1 (Cost minimization). The firm chooses inputs to minimize costs subject
to output at time t being equal to some scalar Y ;; and takes input prices, P\ and P/,
and R;; as given,

M

o m)i(rllW . Z P XD+ Ry PE Ky 3)

(22NN et ¥ A m=1

st By (X XY K, ) =Y.

I allow for firm-specific input prices. However, I assume that the firm takes
these input prices as given. This does not preclude input providers from charging
a markup over their marginal cost, but it does assume that the price cannot be a
function of the quantity demanded. This precludes for instance monopsonistic
competition and bulk discounts.!” Note that I have not made any assumptions
about the price-setting behavior in the output market.

The following Lagrangian is associated with the cost minimization problem:

M
Liv (X} XN Kin, M) =Y PY"XJ + Ru P Ky + 4)
m=1
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where \;; is the Lagrange multiplier, which equals the marginal cost. Define the
Py

E .

Taking the derivative of the Lagrangian with respect to capital, K, gives

markup as the output price, P, divided by marginal costs: p;; =

OF; ()

Ry Pl =\
s oK,

Realizing that \;; equals the price divided by the markup and denoting the price
times the marginal product as the valued marginal product, VM PK]}, gives, after
rewriting, that the cost of capital equals the valued marginal product of capital
divided by the price of capital and the markup,

_ VMPK;

In Section VI, I relax the assumption that the firm takes the wage as given and estimate the
markdown in the labor market together with the cost of capital. I find that this leads to a similar
estimate for the profit share as in the baseline.
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The price of capital, PX, shows up in this equation because the cost of capital,
Ry, is defined in nominal terms. %@K* is the increase in output (valued at
prices) when the nominal capital stock increases by one. When there is no risk of
confusion, I will refer to this ratio as the marginal product of capital.

To estimate the cost of capital, I first estimate the markup and the valued
marginal product of capital divided by the price of capital (both scaled by an iden-
tical constant), and then divide these two estimates with each other. Subsequently
multiplying this estimate with the capital stock gives total capital compensation
and hence allows me to estimate economic profits.

Taking the derivative with respect to the other inputs, X}, gives a similar
first-order condition, namely that the markup times the price of an input equals

the valued marginal product of that input,
pa P =VMPX?, me{l,...,M}. (6)

This first-order condition will be used when estimating the valued marginal
product of capital and the markup.

In order to obtain estimates of the (scaled) markup and the (scaled) valued
marginal product of capital divided by the price of capital, I assume that the
production function is homogeneous of a constant degree.

Assumption 2 (Homogeneous production function). The production function F; is
homogeneous of degree ¢ip: Fiy (AXY, ..., AXA AK) = M0 Fyy (XY, ... XA Ki)
for A >0.

The production function is indexed by it to highlight that the production
function is allowed to differ across firms and that it can change over time. E.g.,
firms can differ in their factor-biased technologies and also in their elasticities
of substitution between different inputs. Homogeneous production functions
include, but are not limited to, frequently used production functions such as Cobb-
Douglas, CES, task-based production functions as in Acemoglu and Autor (2011),
and capital-skill complementarity (Krusell et al., 2000). Note that here there is only
one type of capital, but this model could easily be extended to allow for multiple
types of capital, such as structures and equipment. Then, the cost of capital would
be the weighted average cost of capital of structures and equipment. To estimate
the cost of capital in this extended model, observing only the total capital stock is
sufficient, without needing to impose that the different types of capital are perfect
substitutes. This is for the same reason, which I show momentarily, why it is only
necessary to observe total operating expenses and not each individual expense.

A commonly used production function that is not homogeneous is the translog
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production function. Furthermore, I have assumed that capital and the inputs
X" are factors of production and are not fixed costs such as overhead costs. If
there are fixed costs, these should not be included in the production function and
therefore not in the estimation of the cost of capital, but still need to be subtracted
from revenues to obtain economic profits. I will discuss fixed costs in more detail
in Section VL.

Firms are also allowed to produce multiple products according to a product-
specific production function. This does not affect the estimation, and data on
outputs and inputs do not need to be observed at the product level. The reason is
that the final equation, that I bring to the data, is linear. See Appendix B for more
details.

Assumption 2 ensures that Euler’s theorem holds, which states that output
equals the sum of the factors of production multiplied by its respective marginal
products divided by the returns to scale (for simplicity I omit the time subscripts):

v Z MPX;” MPX | MPE;

oK @)

m=1
Anticipating that I only observe nominal output and capital, I multiply Euler’s
theorem by the output price P; and multiply and divide capital with its price, P/,
to obtain

VMPX;” m, VMPE;
PY,; = Z X o PE PEEK;. (8)

m=1

Instead of marginal products, valued marginal products appear on the right-hand
side. Using that VM PX™ equals y; PX"™ by the first-order condition (6), and
taking £+ out of the summation gives

M
PY; = 5 Z PXTX™ 4 %Pf&. )
m=1 v

There are two benefits of plugging in the first-order condition with respect
to inputs X™. The first benefit is that only expenditure on all inputs other than
capital is needed and not data on each specific input, while still allowing for a
rich production structure. The second benefit is, as I show momentarily, that this
makes that firm-specific input prices, X", do not lead to a bias when bringing
this equation to a regression framework. Finally, denoting total expenditure on
inputs other than capital by firm i by PX X, = "M pX™ X and dividing both

sides of equation (9) by total input expenditure glves modlfled Euler’s theorem.
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Proposition 1 (Modified Euler’s theorem). Suppose that Assumption 1 and 2 hold,
then

PXX; & &P PYX;C

(10)

As I discuss in more detail later, dividing both sides by input expenditure,
PX X, makes that markup dispersion does not lead to a bias when bringing
modified Euler’s theorem to a regression framework, while a bias would occur
when we would not divide by input expenditure.

Modified Euler’s theorem shows that there is a tight relationship between nom-
inal output divided by input expenditure (the output-input ratio) and the nominal
capital stock divided by input expenditure (the capital-input ratio), governed by
the marginal product of capital, the markup and the returns to scale. Nominal
output, input expenditure and the capital stock are directly observed, while the
other variables are not. If one has prior information about the returns to scale
and the markup, one can back out the marginal product of capital using equation
(10). Caselli and Feyrer (2007) estimate the marginal product of capital assuming
constant returns to scale and perfect competition. Indeed, setting ¢ = land p =1
in equation (10) leads to the same equation as the one that Caselli and Feyrer (2007)
use to estimate the marginal product of capital. Thus, modified Euler’s theorem
generalizes the estimator of the marginal product in Caselli and Feyrer (2007) to a
general homogeneous production function and imperfect competition.

Moreover, if there is variation in the capital-input ratio, the marginal product of
capital can be estimated together with the markup (i.e., without needing to assume
a value for the markup). However, an assumption about the returns to scale still
needs to be made. So far, I have not yet used the first-order condition with respect
to capital. I will use this first-order condition next in order to estimate the cost of
capital and show that no information about the returns to scale is needed in order
to estimate the cost of capital.

The Cost of Capital

In order to estimate the cost of capital, I bring modified Euler’s theorem (10) to a
regression framework,

PY; PKE,
PXXi:ao—i_alPXiXi_F&i’ (11)

3
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where ¢; denotes the error term. Note that Euler’s theorem is exact, meaning that
for instance, unobserved productivity, which is the typical econometric challenge
when estimating production functions, does not lead to a bias here (see Appendix
B for a discussion of the differences between this regression and the literature on
production function estimation.).?’ However, the marginal product of capital, the
markup and the returns to scale might vary across firms, meaning that this is a
random coefficient model and that the error term consists of heterogeneity in the
marginal product of capital, the markup and the returns to scale.

The intercept, a, in equation (11) refers to the average of the markup divided
by the returns to scale, £. The reason is that for a (hypothetical) firm that employs

no capital, total costs are given by PX X;, and thus the price-average cost ratio
P;Y;

PrXi"
product of capital divided by the returns to scale,

for that firm equals

The slope, a1, refers to the average of the marginal

VMPK
oPK

the average increase in nominal output when the nominal capital stock increases

. That is, the slope gives

by 1 while holding all other inputs constant. Under constant returns to scale this
equals the valued marginal product of capital.

By the first-order condition with respect to capital (5), the cost of capital, R,
equals the valued marginal product of capital divided by the markup and the price
of capital. Therefore, to estimate the cost of capital I divide the slope coefficient
by the intercept coefficient. Because both coefficients are scaled by the returns to
scale parameter, this parameter will cancel out when both coefficients are divided
with each other. Thus, the returns to scale do not affect the estimate of the cost of
capital.

Inow summarize the assumptions needed to obtain this estimate of the cost
of capital. Cost minimization gives a relationship between the cost of capital and
the marginal product of capital. However, marginal products of capital are not
observed while the average product of capital, holding all other inputs constant,
is observed. Assuming a homogeneous production function gives that there is a
size-independent relationship between the marginal product and average product,
and that this relationship is the same across all inputs. Furthermore, firms are
assumed to take input prices as given such that the wedge between the marginal
product and the cost of an input is the same across all inputs, including capital.

20However, unobserved productivity can lead to a bias if it affects the marginal product of capital
or the markup. The marginal product is, for instance, affected if there are unanticipated productivity
shocks to which capital cannot respond instantaneously.
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Identification

The error term in equation (11) comprises variation in the marginal product of
capital divided by the returns to scale and variation in the price-average cost ratio.
Here, I discuss which conditions on firm heterogeneity need to be imposed in
order to identify the cost of capital.

Proposition 2 (Identification). Suppose that Assumption 1 and 2 hold and that the cost
of capital is equalized across firms, then the cost of capital is identified, up to a first-order
approximation, by first estimating regression equation (11) and then dividing the resulting
slope coefficient by the intercept coefficient, R = Z;(l)

Thus, as long as the cost of capital is equalized across firms, the cost of capital is
identified.?! This proposition implies that firm heterogeneity in other dimensions
does not lead to a bias. Firms are allowed to differ in their markups and returns
to scale, but also in dimensions that are not captured by the coefficients, such as
differences in input prices, PX". I will first explain why heterogeneity in price-
average cost ratios does not lead to a bias while heterogeneity in the cost of capital
does. Subsequently, I discuss how I deal with this econometric challenge.

Heterogeneous Price-Average Cost Ratios

The next equation shows the regression equation when the error due to hetero-

geneity in the price-average cost ratio, 7;, is written out:

P Ki (i & PKK,
R +(¢i_¢><1+RPXX> (12)

i

% denotes the average price-average cost ratio and I have replaced the marginal
product of capital with z; R following from the first-order condition with respect to

capital. For there to be no bias, 7; has to be uncorrelated with the capital-input ratio
K
?X? Because 5 — 5 is zero in expectation, this is fulfilled when the price-average

cost ratio is uncorrelated with the capital-input ratio.

Lemma 1. The markup p; does not affect the capital-input ratio = PX X

Proof. Taking the ratio of the first-order condition with respect to input m (6) and
the first-order condition with respect to capital (5) gives

VvMPXxXy P
VMPK;  PEKR,’

2I'The error induced due to the first-order approximation is negligible (see Appendix J).
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$—1
Dividing the left-hand side numerator and denominator by ( P Xt ) and using

zt

that the derivatives of the production function are homogeneous of degree ¢ — 1

by Euler’s theorem gives

K Ky 1
OFy (Pi}( Bur gt )
Pt Pr Xt Pl Xt PXm
[ 5 -
dXit _ 1t (13)
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K;

K
; does not show up in this equation and hence 4

PXX, does not depend on the

markup (note that does not depend on the markup because the markup

PXX
distorts the first-order condltlon for each input in the same way). O

The capital-input ratio is not affected by the markup because the markup
distorts the first-order condition with respect to capital in the same way as the first-
order condition with respect to the other inputs. Combined with a homogeneous
production function, this means that both the capital stock and the other inputs
are affected in the same way. Furthermore, the returns to scale do also not affect
the capital-input ratio and hence, the price-average cost ratio is not correlated
with the capital-input ratio. Thus, the error term induced by price-average cost
heterogeneity is not correlated with the regressor and hence, this heterogeneity
does not lead to biased results.

That markups do not affect the capital-input ratio is the reason why I have
divided by input expenditure to obtain regression equation (11). When I would
not have divided by input expenditure, heterogeneity in the price-average cost
ratio would lead to a bias as the price-average cost ratio does affect the level of
inputs.

Lemma 1 assumes that there are no unanticipated shocks to the markup. When
there are unanticipated shocks to markups, there might be a correlation between
the markup and the capital-input ratio as it might take longer to adjust capital
than it takes to adjust other inputs. I discuss this in more detail in Section VI and
show that markup shocks only have a limited effect on my estimate by showing
that using lagged values as instruments gives similar results.
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Heterogeneous Costs of Capital

Now consider the case of heterogeneous costs of capital. For simplicity, assume

that the price-average cost ratio is the same across firms,

PY;
PXX;

RPFK; R —R)PFK,
_ kR 4 M ) K (14)
¢ o PXi ¢ PrX

K2

i

where ; denotes the error due to heterogeneity in the cost of capital, and the
average cost of capital is denoted by R.

The cost of capital affects the first-order condition of capital and not the other
first-order conditions, and therefore the capital-input ratio depends on the cost
of capital. A firm facing a high cost of capital will choose to employ less capital
compared to a firm with a low cost of capital. Therefore, this firm will have a
relatively low capital-input ratio. This negative correlation between the cost of
capital and the capital-input ratio makes that ¢; is not equal to zero in expectation
and that v); is correlated with the regressor leading to a biased estimate of both the
scaled marginal product of capital and the scaled markup.

Differences in the cost of capital across firms could, for instance, be caused by
differential access to capital markets and bank loans, differences in risks, or by
differences in depreciation rates. Variation across firms in costs of other inputs
than capital, P/, does not lead to a bias because nominal input expenditure shows
up in modified Euler’s theorem and this expenditure is observed. This is not the
case for variation in the cost of capital since R; is unobserved (which is the reason
for doing this estimation exercise in the first place).

As Proposition 2 shows, OLS leads to unbiased results as long as the cost of
capital is equal across firms. This would be the case if capital is mobile. This
paper is about long-run changes in the cost of capital and profit share. Presumably,
capital mobility holds to some extent in the long run providing a justification for
the method proposed here. Furthermore, this paper uses Compustat data, which
mainly comprises publicly listed firms. Hence, these are firms that have access to
the capital market and are therefore likely to face a similar cost of capital. Another
important observation is that the main object of interest of this paper is the change
in the profit share, and not so much the level of the profit share. If variation in
the cost of capital (relative to variation in the capital-input ratio) has remained
constant over time, then the bias has remained constant over time allowing me to
identify the change in the capital share and profit share, even in the presence of a
bias.
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Nonetheless, I control for differences in the cost of capital across firms to the
extent possible with the available data. The econometric challenge is that the
slope coefficient is correlated with the regressor. Therefore, in the regression I
allow the slope coefficient to depend on the regressor up to a first-order (thus the
capital-input ratio squared enters in the regression). This does not mean that I
assume this relationship to be linear (it is not), but it captures the variation in the
cost of capital to the extent that it is proportional to the capital-input ratio.

Furthermore, I include additional controls that are meant to capture to what
extent firms are financially constrained. Specifically, I use i) financial leverage
measured as total liabilities divided by total assets, ii) long-term debt divided
by total liabilities to capture that firms that rely more on short-term debt might
be more financially constrained, iii) interest payments divided by total liabilities,
iv) firm size measured by sales and v) sales growth. The estimate of the cost of
capital does not differ to any great extent depending on whether these controls
are included (see Figure 27a in Appendix H). This makes it plausible that the
remaining variation in the cost of capital is small. Furthermore, because firms
might differ in the types of capital they are using I also use the depreciation rate as
a control. I demean all controls and multiply them by %, as these are controls
for the cost of capital. In addition, I include the controls not interacted with the
capital-input ratio as a control for price-average cost heterogeneity. This leads to
the following regression, where Z/ refers to the j-th control,

P;Y; i =i
PXX, :O‘ﬁzjjvj (2-7')+

— PKK, PKK PKK,

J 7 2 7 ?

a1+§ ’Yj(Zi]_Z>+’y<P_XX‘_PXx> P_XX,+€1" (15)
j O Lo

Demeaning the controls entails that the coefficient «; refers to the average marginal
product of capital divided by the returns to scale. The coefficient on the capital-
input ratio squared, -y, will be less than or equal to zero since the higher the cost of
capital the lower the capital-input ratio.

To run the regression, variation in the capital-input ratio is needed. This
variation should come from other sources than variation in the cost of capital,
such as variation in technology (e.g., factor-augmenting productivity) or variation
in input prices (e.g., wages). Hsieh and Klenow (2009) find a large variation
in revenue productivities across firms, which could potentially be explained by
differences in the cost of capital. David and Venkateswaran (2019) decompose this
variation in revenue productivities into variation due to markups, differences in
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technology and other factors such as the cost of capital. They find for the same
data as I am using that about half of the variation in capital revenue productivities
within 4-digit industries is due to variation in output elasticities and that about
13% of the variation is due to markup dispersion.?? Likewise, Doraszelski and
Jaumandreu (2018) and Raval (2019a) also find heterogeneity in technology in
other data sets. In my main specification, I will use variation across firms within a
2-digit industry (examples of which are chemicals and allied products and business
services). As robustness, I use variation in the capital-input ratio across industries.
Arguably, there is a great deal of variation in technology across industries, which
makes this specification attractive. However, variation in the cost of capital across
industries might be large as well, for instance when there are differences in risks
across industries. Nonetheless, the type of variation in the capital-input ratio
across firms versus across industries is very different and, reassuringly, both

estimates are similar, suggesting that the variation in the cost of capital is limited.

Bias Formula in Case of Cobb-Douglas and Log-Normal Distribu-
tion

An analytic expression of the bias can be obtained in the case of a Cobb-Douglas
production function and parameters being log-normally distributed (and when no
controls are included in the regression). Suppose that the production function is
Cobb-Douglas, Y; = A; K, f CX f f, where 65 and 6;* refer to the output elasticities
with respect to capital and other inputs, respectively, and A; denotes Hicks-neutral
productivity. The ratio of the first-order conditions gives that the capital-input
ratio equals the product of technology, 6; = %, and the inverse of the cost of

capital, R%’

PEK;, 1
i N o 16
PXx, 'R, (16)

It turns out that the capital-input ratio is well approximated by a log-normal
distribution (see Figure 24 in Appendix H). Based on equation (16), one way of
generating a log-normally distributed capital-input ratio is that both ¢; and R;
are independent log-normally distributed. Suppose that these variables, as well
as p;, are indeed log-normally distributed with parameters py, ag, LR, 012%, My

K

and o7, respectively. Then, by the properties of the log-normal distribution, % is

2These numbers are based on a specification in which David and Venkateswaran (2019) assume that
all firms in an industry pay the same wage. When they instead use the reported wage bill at the firm
level (a smaller sample) they find that 62% and 28% of the variation in capital revenue productivities is
due to variation in output elasticities and markups, respectively.
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log-normally distributed with py — g and o3 + 0% as parameters.
The estimator for the valued marginal product of capital is

, PXK, PFK;
cov (Vj\}gim PXX, PLXXL)

PKK; o PEEK;\’
var PXX, var PXX,

i

where the equality is obtained by plugging in the first-order conditions. Using the
properties of the log-normal distribution for the covariance and variance gives,
after rewriting, that

80'2—0'?3 — e_”?%

T — B(ur)

e toh — 1

=relative bias+1
The latter ratio equals the bias (in relative terms) plus one. This ratio is smaller
than or equal to one, meaning that the estimate of the cost of capital is biased
downward when there is dispersion in the cost of capital.>> When the cost of
capital is the same across firms (0% = 0), the ratio is one, and hence the estimator
is unbiased. When there is no variation in technology (03 = 0), the ratio is 0
and hence a marginal product of 0 is estimated. The bias (in relative terms) only
depends on the dispersion in (log) technology o2 and the dispersion in the (log)
cost of capital 0%. The absolute value of the relative bias is increasing in % and
decreasing in o7.

That the marginal product of capital is estimated to be zero when there is no
variation in technology is not a general result, but is due to the assumption of a
Cobb-Douglas production function. With a Cobb-Douglas production function,
variation in the input price, P;*, does not lead to variation in the capital-input
ratio and hence, all variation should indeed be due to variation in technology.
However, when the production function is not Cobb-Douglas, variation in input
prices also leads to variation in the capital-input ratio. In the data I use in this
paper, there is a large dispersion in wages, thus, plausibly leading to variation in
the capital-input ratio.

Finally, Appendix C shows that the bias is reasonably small based on data that
is simulated using a structural model that matches moments of the data, and that
deviates from a Cobb-Douglas production function.

0202 52
BTo see that <2 E5e £ < 1, multiply both sides by evotoR 1 (which is positive) and rewrite
76T R 1

to get €6=R — =R +1— €73 +oR = (e"g — 1) (e*"%ﬂ — 1) + e (1 — e"%%> <0.
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Weighting

In this paper I use the estimated cost of capital to estimate the evolution of eco-

nomic profits. Profits of a firm i are nominal output minus costs,
Profits; = P,Y; — PXX; — R;,PFK;,
and total profits are the sum of firm-level profits,

PKEK,
PEK

Profits =Y _ Profits; = PY — PXX - PKK Y "R; 17)

7

R

where variables without an i-subscript denote totals. The last term is obtained by
dividing and multiplying by the total nominal capital stock PX K. This shows
that the aggregate cost of capital, R, is the capital-weighted average cost of capital.
The regression only identifies the average marginal product of capital, and not a
firm-specific marginal product of capital.* Therefore, inspired by equation (17), I
run the regression weighted by capital (not weighting by capital does not affect
the results).?

Furthermore, if there is heterogeneity in the cost of capital, then the expectation
of the error term in the regression does not equal zero (see equation (14)), and
therefore the intercept, %, is not identified (this would also be the case when
having an instrument (Wooldridge, 1997, 2003)). However, it turns out that the
cost-weighted average price-average cost ratio is identified.2® To see this, rewrite
modified Euler’s theorem (10) to obtain an expression for the firm-specific price-
average cost ratio

¢ PXX; ¢ PE PXX,’

The cost-weighted average price-average cost ratio then becomes

b PXX ¢; PXX PXX ¢;PX PKK’

g g

 «—PX;m  PY PFK

(18)

24Golon et al. (2015) show that when heterogeneous effects are not fully modeled, the population
average effect is not identified when the variance of the regressor differs across group. However, this
bias is small when the variation of technology does not depend on the cost of capital.

ZNote that taking the weighted marginal product of capital is not inconsistent with the costs of
capital being equalized across firms as heterogeneity in marginal products can also occur due to
heterogeneity in markups.

26The cost-weighted average markup is also the relevant statistic that summarizes the distortions to
employment and investment decisions (Edmond et al., 2018).
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where the last term is the capital-weighted average marginal product of capital,

an object obtained from the capital-weighted regression.?”

VMPK,; PEK;
VMPK/(PKgb)_ i PK$, PFK

n/o uw PXX,

i

i ¢ PXX

Thus, my estimate of R is , which turns

K.
outtobe equalto ), R; I;KII? in expectation. To see that these two expressions are
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t with p; R; and rewrite to obtain that the required condition

X K
is that ), 5t 3= has to equal }, S, RiPFE;

average cost ratio does not affect the capital-input ratio.

equal, replace

. This holds because the price-

To summarize, I run a regression weighted by capital to obtain the average
marginal product of capital divided by the returns to scale and I use equation (18)
to obtain the cost-weighted average price-average cost ratio. Then, the capital-
weighted cost of capital is the division of these two objects. Multiplying the
cost of capital by the capital stock gives total capital compensation. Subtracting
capital compensation together with operating expenses from nominal output gives
economic profits. I will report profits as a share of sales, which is equal to the

sales-weighted average profit share at the firm level.

III Data

This paper uses Compustat data for the US, which mainly covers publicly listed
firms. The main advantage of Compustat is that it goes back to the 1960s and
therefore allows me to study the change in the profit share over a long time horizon,
while with 29% still covering a substantial share of US private employment (Davis
etal., 2006). A disadvantage is that the firms included are not a random sample
of the universe of US firms. These are firms that tend to be older and bigger
than the typical firm.?® Therefore, care should be taken when extrapolating my
results to the rest of the US economy. Nonetheless, in the setting of the present
paper there is an additional advantage to using Compustat data, namely that all
firms have access to the capital market and therefore, there is most likely less

ZInstead, an error term appears in case of the unweighted average price-average cost ratio (denote
by N the number of observations):

1 Mi 1
NXZ,: i_NZPZ.XXi N & ¢;PK PXX;

i
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where VM PK/PX is the average marginal product of capital (weighted or unweighted). The last
term is the expectation of the error term which is unobserved and not equal to zero when there is
heterogeneity in the cost of capital.

BMoreover, the number of firms in Compustat over time shows an inverted U-shape with the
maximum being in the late 1990s.
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variation in the cost of capital across firms than would be the case for private firms.
Indeed, David and Venkateswaran (2019) find that heterogeneous markups and
technology, and not heterogeneous costs of capital, could explain the bulk of the
variation in revenue products of capital among Compustat firms.

In order to keep US firms, I drop all firms that have a different country code
than "US". Furthermore, I only keep firms that report in US dollars. As is standard,
I drop the financial industry (sic codes 60-67), utilities (sic code 49), mining (sic
codes 10-14) and the miscellaneous category. I drop observations which have
a missing or negative value for sales, input expenditures, capital or one of the
controls. Furthermore, to drop outliers, for each year I trim the top and bottom
percentile of the variables that show up in the regression (i.e., the sales-input ratio,
the capital-input ratio and the controls). Given that there are only few firms in the
first years of the data, I only consider the years 1961-2017. This leaves me with
16,759 unique firms and 183,778 firm-year observations.

For output I use the variable "SALE" which represents sales net of returned
sales and excludes sales taxes and excise taxes.”” For expenditures on inputs, I use
the variable "XOPR" which covers operating expenses. Operating expenses consist
of costs of goods sold ("COGS") and selling, general and administrative expenses
("SGA"). Costs of goods sold refer to expenses allocated to production while
selling, general and administrative expenses are expenses not directly related to
product production such as marketing and R&D. Operating expenses include all
employee benefits including (corporate) profit sharing and provisions for bonuses
and stock options. This is desired as bonuses are part of the costs needed to attract
and retain employees, and are therefore not economic profits. Note that I do not
require COGS and SGA, nor their components, to be perfect substitutes with each
other.

There has been some discussion in the literature on whether SGA should be
considered as a variable input into production or as an overhead cost, i.e., should
the production function be F'(K, COGS, SGA) or F(K, COGS), respectively (see
De Loecker et al., 2018; Karabarbounis and Neiman, 2018; Traina, 2018). In my
main specification, I treat SGA as a variable input. As a robustness check, I include
COGS and SGA separately in the regression to let the data speak of to what extent
SGA is a factor of production. I find that the resulting profit share is similar to my
baseline estimate.

For the capital stock I use property, plant and equipment net of depreciation
("PPENT"). Since this variable is recorded as the end of period stock, I use the

290.2% of the observations correspond to a book year that is not equal to 12 months. For these
observations I multiply all flow values by 12 divided by the number of actual months covered.
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lagged value. Furthermore, this variable represents tangible capital, but some
firms also include intangible capital in this variable.3’ Therefore, to treat firms in
the same way, I add intangibles to the capital stock.’! Intangibles refer to externally
purchased intangibles while internally developed intangibles do not appear on the
balance sheet. Therefore, as a robustness check, I capitalize R&D expenditures and
add this to the capital stock. I find that this leads to similar results. To calculate
the depreciation rate (which is one of the controls) I use data on the reported value
of depreciation and the capital stock (see Appendix E for details).

I run regressions within 2-digit industries, where I use the sic classifier to
identify an industry.3? In order to estimate the evolution of the cost of capital, I run
the regression on a 5-year moving window. This is because there is not enough
data to run the regression year-by-year. Within each 5-year period I include time-
trends for the marginal product of capital and the markup.The estimate refers
to the middle of a 5-year period. I only consider industries with more than 100

observations in a 5-year period and I cluster standard errors at the firm level.

Model Validation

To get a sense of whether the linear relationship between the sales-input and the
capital-input ratio as predicted by the model is a reasonable description of the
data, Figure 26 in Appendix H shows the binned scatter plot for the years 1975,
1995 and 2015. Firms across all industries are included. The relationship is close to
linear, but there is some concavity. This concavity is consistent with firms with
a high capital-input ratio having a lower cost of capital. However, when both
the sales-input and capital-input ratio are residualized using the controls, the
relationship becomes linear. This suggests that the controls are rich enough to
capture the heterogeneity in the cost of capital.

Finally, to validate the cost of capital estimator, I regress the industry-year
cost of capital on the average depreciation rate within that same industry-year.
Industries with a higher depreciation rate are expected to have a higher cost of
capital, all else equal. And since firms can deduct depreciation from their taxable
income, increasing depreciation by one increases the cost of capital by somewhat

less than one. Table 7 in Appendix G shows that, as expected, when the observed

30The Compustat description for intangibles states that it excludes “Intangibles included in property,
plant, and equipment by the company”.

31To calculate intangibles, I exclude goodwill, such that intangibles refer to "other intangibles" and if
intangibles are missing I set them equal to zero. Including goodwill in the capital stock does not alter
the results, see Figure 27b in Appendix H.

%2The reason for using the sic classifier and not the naics classifier is that the naics classifier has
many missing values for the first years of the data set while the sic classifier has no missing values. For
instance, in the 1970s, about 40% of observations have a missing naics.
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Figure 1: Price-average cost ratio £ Figure 2: Cost of capital R

depreciation rate increases by one, the estimated cost of capital increases by around
0.8. Note that although I use the depreciation rate as a control when estimating
the cost of capital, the regression does not use the average depreciation rate. The
regression only uses information about the heterogeneity in depreciation rates
across firms. Therefore, it is by no means hard-wired that a positive relationship
between the industry cost of capital and the depreciation rate emerges.®

IV Results

Figure 1 shows the evolution of the markup divided by the returns to scale (i.e., the
price-average cost ratio). In all graphs, the shaded areas represent 95% confidence
intervals based on standard errors clustered at the firm level, and a quadratic
best fit is shown in addition. Initially, the price-average cost ratio decreases, but
increases after 1970 from just below 1.05 to about 1.1 in 2015. Figure 2 shows that
the cost of capital has been decreasing over time by around five to ten percentage
points from being around 25-30% in the 1960s to being around 20% toward the
end of the sample period. The decline in the cost of capital mainly takes place
during the late 1970s and the early 1980s. From the mid-1980s onward the cost
of capital is weakly increasing. One explanation for the latter increase is the rise
in the depreciation rate due to the composition of capital shifting from structures
toward equipment and intangibles.

Figure 3 shows the capital share, which is capital compensation as a share of
sales, over time, where capital compensation is the cost of capital, R, times the

33Furthermore, in Appendix D I show how the resulting profit share at the industry level correlates
with market capitalization corrected for asset holdings. I find that when economic profits increase
by 1 dollar, market capitalization increases by around 30 dollar. This is consistent with a stationary
equilibrium in which the asset-corrected market capitalization equals the discounted sum of future
profits and the discount rate is 0.97.
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capital stock. The capital share has been ranging between 5% and 10%, and has
been going up and down during this period.3* Overall, there is a negative trend
and the largest part of the decline occurred during the 1990s. Figure 4 shows
profits as a share of sales, which is sales minus operating expenses and capital
compensation, divided by sales. Profits were just below 5% of sales during the
beginning of the sample and increase gradually starting from the 1970s. By 2015
the profit share has almost doubled and is close to 10%. The evolution of the
profit share is similar to the evolution of the markup divided by the returns to
scale. This is not surprising since the markup divided by the returns to scale is
the price divided by the average cost. Therefore, the profit share equals 1 minus
the inverse of % This holds at the industry level but not at the economy level due
to a differential weighting. The price-average cost ratio shown in Figure 1 is the
price-average cost ratio weighted by input expenditures across industries and the
profit share shown in Figure 4 is the sales-weighted average of the industry level
profit share (i.e., total profits divided by total sales).

The results so far show profits as a share of sales because there is no good value
added data in Compustat. However, for about 10% of the sample, there is data on
the wage bill, making it possible to construct value added in the following way.
Subtracting the wage bill from operating expenses gives materials, and subtracting
materials from sales in turn gives value added. Furthermore, I subtract R&D
expenditure from materials in order to mimic the capitalization of intellectual
property products by the Bureau of Economic Analysis in the national income
and products account. Koh et al. (2016) show that the treatment of intellectual
property products is important for the evolution of the labor share. To increase the
sample I impute value added for the remaining observations using information

341t is important to keep in mind that the capital share only reflects the cost of owned capital. Rented
capital is not part of the capital stock, but is recorded as an operating expense.
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Figure 5: Income shares of value added Figure 6: Profit and capital share of gross op-
erating surplus

on the number of employees. For observations that have data on both the wage
bill and the number of employees, I calculate the wage per employee. Then, for
each industry-year, I calculate the average wage and multiply this by firm-level
employment to impute the wage bill for those observations that do not report

the wage bill.*®

Using this imputed wage bill I impute value added. This gives
value added for around 95% of the observations in my sample. I assume that the
remaining 5% of observations have the same ratio between sales and value added.

Value added is about 40—45% of sales, and adjusting the factor income shares
for this time-varying ratio gives the factor shares as a share of value added, which
are shown in Figure 5. The labor share is relatively constant at around 68% during
the first 20 years of the sample after which it declines to around 60% in 1995. After
1995, the labor share moves up and down. Thus, overall, there is a negative trend
in the labor share. The labor share looks similar in both level and trend to what is
found for the corporate sector (Karabarbounis and Neiman, 2014).

One important question in the literature is what has caused the decline in
the labor share. Broadly speaking, there are two possible explanations. The first
explanation is that due to technological change, the role of labor in production
has deteriorated over time (e.g., due to the price of capital changing over time). If
this were the case the fall in the labor share would coincide with an increase in
the capital share. The other explanation is that firms have increased their market
power over time, either in the product or labor market. If this were the case, the
fall in the labor share would coincide with an increase in the profit share. Figure 5
also shows the capital and profit share as a share of value added. Coinciding
with the fall in the labor share, the profit share increases, while the capital share

%5For industry-years for which there is no information on the wage, I use the average wage across all
firms within a year. When calculating the average wage, I trim the top and bottom percentiles for each
year in order to have a measure that is not sensitive to outliers.
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declines. In addition, Figure 6 shows how the residual of the labor share (i.e.,
gross operating surplus) is distributed between payments to capital and economic
profits. At the beginning of the sample period, gross operating surplus is split
between around 40% profits and 60% capital compensation. Toward the end of
the sample, this split has reversed and around 60% of gross operating surplus
is profits. All this together implies that the fall in the labor share is due to firms
increasing their market power. In Section VI, I estimate the markdown in the labor
market together with the cost of capital and find that the markdown has been
roughly constant over time. Therefore, the fall in the labor share can be attributed
to an increase in markups in the output market. A fall in the returns to scale would
be another explanation for the fall in the labor and capital share and the rise in the
profit share, but in Section VIII, I instead find an increasing trend in the returns to
scale.

Note that profits as a share of value added have been hovering between 10
and 20%. These numbers are large but turn out to be similar in magnitude (but
not necessarily trend) to what is found using the required rate of return approach
with aggregate data of the corporate sector (Barkai and Benzell, 2018).

V Comparison with the Required Rate of Return Ap-

proach

Barkai (2017) and Barkai and Benzell (2018) are recent papers studying the evolu-
tion of the profit share. They follow Hall and Jorgensen (1967) when estimating
the cost of capital and subsequently use this to estimate the capital share and the
profit share. Hall and Jorgensen (1967) derive the following formula for the user
cost of capital, or the required rate of return on capital:

D
D+ FE

1—1tc— z1

iP1—71)+ i¥ + 5 —B(x") : (19)
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where D is the value of debt, E is the value equity, i is the debt cost of capital,
i¥ is the equity cost of capital, § is the depreciation rate, E(7*) is the expected
inflation of the capital good, itc is the investment tax credit, 7 is the corporate
income marginal tax rate and z is the net present value of depreciation allowances.
Equation (19) follows from the condition that the price of a capital good equals the
discounted value of all future services derived from this capital good. Note that in
the original formulation of Hall and Jorgensen (1967), the discount rate shows up,

which is here approximated by 525" (1 — ) + 555",
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It is challenging to measure the components in equation (19), of which measur-
ing the equity cost of capital is probably the most challenging. In the literature,
several variables have been used to proxy i (some authors do not distinguish
between i and i¥). For instance, Basu and Fernald (1997) proxy i by the dividend
yield on the S&P 500. Barkai (2017) constructs i” as the yield on AAA corporate
bonds and proxies i” as the yield on the ten-year US treasury plus a 5% equity
risk premium.

The main difference between my approach and the required rate of return ap-
proach is that my approach estimates R directly using microdata without needing
to specify what the individual components are. For instance, the cost of capital I
estimate has the differential tax treatment of expenditure on capital versus expen-
diture on other inputs incorporated in it without needing to explicitly model the
tax code. Corporations can deduct all their expenditure on intermediate inputs
from their taxable income, but only part of their expenditure on capital. The cost
of capital that I estimate includes corporate income tax levied on the share of
capital costs that cannot be deducted, but does not include the tax on economic
profits, which is included in the profit share. To see this, denote the corporate
income tax rate by 7 and the share of capital expenses that can be deducted by p.
Then the cost of capital is R = (1 + 7(1 — p)) R where R denotes the cost of capital
excluding tax. If all capital expenses can be subtracted then R = R, while if no
capital expenses can be subtracted the cost of capital increases by 1007 percent.
When deciding on its inputs, the firm takes into account taxation and hence it is
the cost of capital including taxes that is equal to the ratio of the marginal product
and the markup, which is what is estimated. The advantage of this approach is
that p does not need to be explicitly known. This is different from the required
rate of return approach, in which the fraction of capital costs that can be deducted
for tax purposes is needed to be known in order to estimate the cost of capital.

In equation (2) I have defined total capital costs as being linear in capital.
Although this definition seems innocuous at first, it limits the way in which capital
adjustment costs can be present. Capital adjustment costs are allowed in my
framework as long as the total capital costs (including the adjustment cost) are
linear in K37 When all other capital costs are linear in capital, then convex capital
adjustment costs violate the assumption of capital costs being linear in capital.
When capital costs are not linear, an additional wedge shows up in the first-order
condition with respect to capital, making it impossible to estimate the cost of
capital without having information on this wedge. This is a limitation of my

36Gutiérrez and Philippon (2017) use the required rate of return approach as well and estimate the
equity risk premium using firm-level analyst forecasts.
%7The adjustment cost is considered as part of the cost of capital and is included in the estimated R.
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approach, as it is for the required rate of return approach (i.e., equation (19) is
derived assuming that there are no adjustment costs). However, for the data I am
using, David and Venkateswaran (2019) find that adjustment costs only play a
limited role in explaining heterogeneity in capital revenue productivities.
Furthermore, to estimate total capital compensation, the cost of capital needs
to be multiplied by the capital stock. It is not only difficult to measure the cost
of one unit of capital, it is also difficult to measure the capital stock (Corrado
et al., 2009).% The capital composition has shifted from relatively easy to measure
structures to relatively difficult to measure equipment and intangibles. Therefore,
it is likely that the growth of the capital stock is understated, thus leading to an
underestimate of the growth of the capital share and therefore an overestimate of
the growth of the profit share when using the required rate of return approach.
For the method I propose, systematic mismeasurement of the capital stock has
no effect on estimated capital compensation, where systematic mismeasurement
of the capital stock is defined as each firm’s unobserved capital stock being a
common (within industry) fraction of observed capital. This fraction is allowed
to vary over time. Systematic mismeasurement does not affect the estimate of
total capital compensation because I use the capital stock to estimate the cost of
capital and a too low measured capital stock leads to a too high estimated cost of
capital R. However, when this too high cost of capital is multiplied with the too
low capital stock to obtain total capital compensation, these errors cancel out.

Proposition 3 (Unobserved capital). If unobserved capital is proportional to observed
capital then mismeasurement of capital does not affect the estimated capital compensation
R - PX K and the price-average cost ratio %

Proof. Suppose that unobserved capital is © — 1 times the observed stock of capital
such that the true capital stock (observed plus unobserved) is . times the observed
capital stock K. Following from (18), the estimator for the price-average cost ratio
is

i

ii PY cov (pr§< iii) PKK
¢_(PXX)_ var(%) (PXX>
PY cov (pr§< ) %) WPEK
- () =l (o)

3 There is a strand of the literature that attributes the amount of income not accounted for by labor
or observed capital to unobserved intangibles, such as brand names, patents and organizational capital
(see, e.g., Hall, 2001; Atkeson and Kehoe, 2005; McGrattan and Prescott, 2005; Corrado et al., 2009;
Eisfeldt and Papanikolaou, 2013).
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where the last equality holds because ¢ drops out. Thus, the estimate of the price-
average cost ratio is independent of .. The estimator for capital compensation

is

K .

— —_ VMPETD 1 cov (% B )
R-PEK = ——— " PKRK = — R

/¢ /¢ var(P:xXi)

PY;, P K;

1 cov( 5, 55 )
- PrX,;’ P*X; LPKK

Also here ¢ drops out from the last equation and hence, estimated capital compen-
sation is not affected by systematic mismeasurement of the capital stock. O

That systematic mismeasurement of the capital stock does not affect my esti-
mate of the capital share and the profit share does not mean that idiosyncratic
measurement error does not lead to a bias. Idiosyncratic measurement error leads
to attenuation bias and, therefore, the estimated marginal product of capital and
capital share would be downward biased. If measurement error has grown over
time, then my method will underestimate the growth in the capital share and
therefore overestimate the growth in the profit share. If idiosyncratic measure-
ment error has fallen over time, the opposite is true. It is reassuring that using
variation across industries gives similar results as, presumably, there is much less
measurement error in the industry average than in the firm specific capital-input
ratio.

To put my results on the cost of capital and the profit share into perspective, I
calculate the profit share in a similar way as Barkai and Benzell (2018) do. I take for
the debt cost of capital the yield on AAA corporate bonds and for the equity cost
of capital the yield on ten-year government bonds plus a 5% equity premium.*
The value of equity is the number of common shares outstanding times the closing
price and the value of debt equals total liabilities. I assume that the expected
inflation of the investment good equals the realized inflation and get the inflation
rate from the BEA.%’ Data on the corporate tax rate is taken from Jorgenson and
Yun (1991) for the period 1963-1986, and from the OECD tax database for the
period thereafter.*! The present value of capital consumption allowances for tax

%Both yields come from FRED. Specifically, the series Moody’s Seasoned Aaa Corporate Bond Yield
(AAA) and 10-Year Treasury Constant Maturity Rate (DGS10).

40To calculate the inflation rate of the investment good, first calculate the price of the investment
good by dividing investment in private nonresidential fixed assets (fixed assets accounts table 4.7, line
37) by the chain-type quantity index (fixed assets accounts table 4.8, line 37) and then calculate the
inflation rate of this series. This is done for the corporate non-financial sector.

41Gee http:/ /www.oecd.org/tax/tax-policy / tax-database.htm#oecdcit.
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Figure 7: Cost of capital and profit share using the required rate of return approach

purposes is taken from Jorgenson and Sullivan (1981) for the period 1963-1980,
and from the tax foundation for the period thereafter.*> Values of the investment
tax credit come from Jorgenson and Sullivan (1981) for the period 1962-1980. I
assume that the investment tax credit stays at its 1980 values in the years thereafter
until it is abolished in 1986.

The first panel of Figure 7 shows the evolution of the required rate of return
over time (the series denoted by "GOV + 5% + depr"). The cost of capital is
decreasing over time during the 1960s and 1970s from around 15% to around
10%. Around 1980 the cost of capital suddenly increases to around 20%, after
which there is a weak positive time trend. For the period after 1985 the cost of
capital according to this approach is very similar to the cost of capital I estimate,
both in level and trend. However, during the 1960s and 1970s I estimate the cost
of capital to be more than ten percentage points larger than the required rate of
return approach does.** The required rate of return estimate of the cost of capital
is robust to two alternative specifications of the interest rate and tax treatment of
capital. One alternative is to take both the debt and equity cost of capital as the
yield on corporate BBB bonds.** This leads to almost identical results (this is the
series denoted by "BAA + depr"). Another alternative is to not take the differential
tax treatment of capital into account and to approximate the interest rate by the
government yield plus 5%, plus taking depreciation and inflation of the capital
good into account (the series denoted by "GOV + 5% + depr, no tax"). The added

42Gee https:/ /taxfoundation.org/oecd-capital-allowances-three-assets-1979-2012/. I impute the
values post-2012 with the 2012 value.

430ne potential explanation for why I estimate such a high cost of capital during the 1960s and 1970s
is that inflation was high during that period which is likely to lead to an underestimate of the nominal
capital stock as reported on the balance sheet. This would lead to an overestimate of the cost of capital,
R, but does not lead to a biased estimate of the capital share and profit share by Proposition 3.

#The yield is the Moody’s Seasoned Baa Corporate Bond Yield (BAA) from FRED.
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value of the latter approach is that the data on the tax credit and depreciation
allowances come from aggregate data and publicly listed firm might differ in their
ability to lower their tax burden. This approach gives similar results as well.

The second panel of Figure 7 shows the resulting profit share for the three
different specifications. Profits are around 8% of sales during the 1960s and 1970s
due to the low cost of capital and then drop quickly to less than 5% in the early
1980s. Afterwards, they steadily rise but to a lower level than what was the case in
the 1960s. The profit share resulting from specifying a required rate of return on
capital is broadly similar to my estimate for the period after 1985, both in terms of
level and trend. However, the results are very different before 1985. The required
rate of return approach estimates a high profit share during the 1960s and 1970s
and then it drops quickly around 1980. That is, over the entire sample period, the
profit share follows a U-shape whereas my estimate of the profit share gives that
the profit share is increasing throughout. The reason why the profit share drops so
quickly around 1980 according to the required rate of return approach is that this
was the Volcker period with high interest rates leading to a high required rate of
return as indicated by the first panel of Figure 7. However, a high federal fund
rate does not necessarily imply a high cost of capital for firms.

A similar pattern for the profit share emerges when the analysis is done for the
entire corporate sector and not restricted to Compustat firms (Barkai and Benzell,
2018). That the profit share is so high during the 1960s and 1970s (while the
labor share was also high) has led to concerns whether the required rate of return
approach measures the cost of capital accurately (Karabarbounis and Neiman,
2018). For instance, the risk premium might not have been constant over time, or
the depreciation rate and inflation expectations are mismeasured, and the level
of this measurement error has changed over time. Especially mismeasurement
of inflation expectations seems to be a potent explanation for the discrepancy
between the two estimates of the profit share, as inflation was volatile during the
1960s, 1970s and early 1980s, coinciding with the period at which the two methods
give different results. Instead, both methods give very similar estimates for the
period after 1985 when inflation is no longer volatile .

The discrepancy between the two methods is unlikely to be driven by hetero-
geneity in the cost of capital being larger in the 1960s and 1970s than in the later
period. Heterogeneous costs of capital lead to a negative bias in the estimate of
the cost of capital, while I estimate the cost of capital to be larger than the required
rate of return approach does during the 1960s and 1970s.

Finally, Karabarbounis and Neiman (2018) note that at the business cycle
frequency there is a negative correlation between the real interest rate and the
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Table 1: Relationship real interest rate and profit share

Baseline Required rate of return approach
1) ) 3) 4) @) (6)
Ay Aoy A37Tt Aqmy Aoy A37Tt
Ayry  0.164* -0.291
(0.0754) (0.182)
JADY & 0.106 -0.485*
(0.0867) (0.183)
Asry 0.0332 -0.674***
(0.0933) (0.184)
Obs 49 48 47 49 48 47
R? 0.042 0.022 0.003 0.044 0.115 0.230

Robust standard errors in parentheses
*p < 0.05,** p <0.01, *** p < 0.001

profit share according to the required rate of return approach. It is not clear why
such a negative relationship would emerge in the real world, and this negative
relationship could be purely mechanically as, all else equal, a fall in the real interest
rate lowers the required rate of return and therefore leads to a lower estimated
capital share and a higher estimated profit share.*® Table 1 shows the correlation
between the change in the real interest rate and the change in the profit share,
according to my method and the required rate of return approach, where the real
interest rate refers to the yield on ten-year government bonds minus inflation
expectations obtained from the Michigan surveys of consumers. A; refers to the
j-th difference, A;m; = m — m—;, where 7 refers to the profit share, and likewise
for the real rate r. The first three columns show that my method gives a weakly
positive relationship between the interest rate and the profit share. The relationship
is positive when the one-year difference is considered but disappears for the two-
and three-year differences. The last three columns replicate the result that the
required rate of return approach leads to a negative relationship between the
interest rate and the profit share. My results suggest that this negative relationship
obtained by the required rate of return approach is mechanical.

4 Although it is, of course, possible that there is a negative relationship between the real interest rate
and the profit share. For instance, Liu et al. (2019) provide a possible mechanism through which such a
relationship would emerge.
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VI Robustness

In this section I perform several robustness checks of my estimate of the profit
share.

Using Variation Across Industries

In order to identify the marginal product of capital and the markup (both scaled
by the returns to scale ¢), variation in the capital-input ratio is needed. This
variation should be due to variation other than differences in the cost of capital,
such as differences in technology (e.g., differences in factor-biased productivities)
or input prices across firms. In the above I have dealt with this by controlling
for differences in the cost of capital and I have considered variation across firms
within an industry. Here, I use variation across industries.*® Arguably, there is
considerable variation in technology across industries. However, it is not clear
whether the variation in the cost of capital is smaller across industries than within
industries. In a model with capital mobility and risk differing across industries but
being the same across firms within an industry, the cost of capital is the same for
firms within an industry but differs across industries. If, in contrast, heterogeneity
in the cost of capital predominantly comes from firms differing to the extent in
which they are financially constrained then the cost of capital differs across firms
within an industry, but the cost of capital is on average the same across industries
if the fraction of financially constrained firms is the same across industries. Given
that it is likely that in the Compustat data a majority of the firms is not financially
constrained, using within industry variation seems the most appropriate, and
that is why that is my baseline estimate. However, there is still some value in
considering the across industry estimate as it would be a concern if the results
were very different.

To use variation across industries, I instrument the capital-input ratio by the

46Yet, another alternative would be to estimate a model with firm fixed effects. That is, running a
regression of the form
PEK

PiYi + Kit
= [vmpkt + vmpk; + pt 4+ i +vit,
Pi)t(Xit [ . it Xit ' '

where vmpk; is the time fixed effect for the marginal product of capital, vmpk; the firm fixed effect
for the marginal product, p; the time fixed effect for the markup and p; the firm fixed effect for the
markup (all scaled by the returns to scale parameter ¢) and v;; is the error term. Then, the average
marginal product at time ¢ (which is the object of interest) would be vmpk; plus the average of vpmk;.
However, it is problematic that in order to identify vmpk;, time variation in the capital-input ratio is
needed. To ensure that the fixed effect is really a fixed effect, this regression should be run on a short
panel (i.e., a firm with a high cost of capital in the 1980s does not need to have a high cost of capital
in the 2000s), but a short panel would not give enough time variation in the capital-input ratio, thus
making fixed effects inappropriate.
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Figure 8: Profit share - robustness

average capital-input ratio within an industry-year.* As already noted above, it
is unlikely that the exclusion restriction, which is that the average cost of capital
is the same across industries, holds, but there is still some value in using this
instrument as robustness. To deal with heterogeneity in risk across industries I use
as a control variation in the growth rate of sales across firms within an industry.
I also include the same controls as in the baseline, except for the capital-input
interaction term. Given that these controls are multiplied by the capital-input
ratio, which is endogenous, I use as additional instruments the controls times the
average capital-input ratio. Likewise, I interact the instrument with the time trend
for the marginal product of capital. It should be clear that I run this regression
on the economy level. I only consider industries that in a given year have more
than twenty observations since otherwise the average capital-input ratio is noisy.
Standard errors are clustered at the industry level.

Figure 8a shows that the resulting profit share is similar in level and trend to
the baseline profit share. However, the increase in the profit share starts somewhat
later than in the baseline and the increase in profits is larger than in the baseline. An
alternative to using the industry capital-input ratio as an instrument is to combine
all firms across industries together and run the OLS with controls. Figure 27c in
Appendix H shows that combining all industries leads to very similar results as
when using the variation within industry, although also in this case the rise in the
profit share does emerge later than in the baseline.

47Wooldridge (1997, 2003) shows that under reasonable assumptions, 2SLS is a consistent estimator
for the slope, even when the endogeneous regressor appears in the error term. However, the intercept,
i.e. the markup, is not identified since the expectation of the error term does not equal zero. I deal with
this using appropriate weights, see above.
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Productivity and Markup Shocks, and Adjustment Frictions

One reason why marginal products of capital might be correlated with the capital-
input ratio is unexpected productivity and markup shocks, combined with capital
not being able to adjust instantaneously. In response to a productivity or markup
shock, a firm will change its use of intermediate inputs, affecting the capital-input
ratio. That capital cannot adjust immediately will also entail that the shock affects
the marginal product of capital. Hence, idiosyncratic productivity and markup
shocks lead to heterogeneity in the marginal product of capital and to a correlation
between the marginal product and the capital-input ratio. That unanticipated
markup shocks lead to a bias is different from Lemma 1 in which anticipated
heterogeneity of the markup was discussed and not shocks to the markup.

Note that the correlation between the marginal product and the capital-input
ratio due to shocks arises from capital not being flexibly adjustable while other
inputs are flexibly adjustable. If it were also to take time to adjust these other
inputs, then such a correlation would not necessarily emerge. Adjustment frictions
could be the time it takes to hire and train new workers, and the costs associated
with changing existing contracts with suppliers or finding new suppliers.

An instrument that deals with unanticipated productivity and markup shocks
is the lagged capital-input ratio. The lagged capital-input ratio is not affected
by the present shock and therefore captures other variation in the capital-input
ratio.*® Figure 8b shows that using the lagged capital-input ratio as an instrument
leads to a similar estimate of the profit share as the baseline. The level is slightly
higher than in the baseline, but the change over time is very similar as in the
baseline. That the level is slightly higher is because no controls are included in
this regression.

The instrument does not work well when capital adjustment costs are high.
This is because in that case the lagged capital-input ratio also captures dispersion
in the marginal product of capital in the previous period which will persist into the
current period due to the high capital adjustment cost. To deal with adjustment
costs, I take five-years sums of the data. That is, I take sales as the sum of sales over
five consecutive years and the same for capital and the other inputs.*’ The logic
behind this exercise is that over a longer time horizon, adjustment costs matter
less. The resulting profit share, displayed in Figure 27d in Appendix H, is very
similar to the baseline.

8 Appendix I uses simulations to show the validity of this instrument.
“1f a firm has fewer than five years of consecutive data, I also take the four or three year sum. I drop
firms that have less than three years of consecutive data for this exercise.

42



Estimating the Cost of Capital and the Profit Share

Overhead Costs

In my main specification, I have treated selling, general and administrative ex-
penses (SGA) as a factor of production. In the literature there is a debate on
whether this cost is a factor of production or a fixed overhead cost (De Loecker
et al., 2018; Karabarbounis and Neiman, 2018; Traina, 2018). When SGA is a fixed
cost it does not enter Euler’s theorem, but still needs to be subtracted from sales
when estimating economic profits. As a robustness, I include COGS and SGA
separately in modified Euler’s theorem,

VMPK; _x i w9
PY; = ——#— P K; + ——COGS; + ——SGA;. 20
oPK TG g 20
The term 1" denotes the marginal product of selling, general and administrative

expenses divided by the price of one unit of these expenses. When these costs are
a fixed cost, the marginal product will be zero and the coefficient on SG A will be
zero. When these costs are a factor of production, the coefficient will be positive.

Problematic with running OLS on equation (20) is that if SGA is an overhead
cost, then due to selection it is likely to be correlated with the markup, 1;, leading
to a bias. The reason is the following. In the data, there is heterogeneity in SGA.
If a firm with a high overhead cost does not exit the market, this means that
this firm is either larger or charges a higher markup in order to recover these
fixed costs. If this firm is larger because it is more productive, this would not
lead to a bias because productivity is not an omitted variable in equation (20).
However, when this firm charges a higher markup this leads to a bias because
markup heterogeneity is part of the error term. Therefore, I add demeaned SGA
as a control for both the markup and the marginal product of capital (and I divide
the left-hand side and the right-hand side by COGS).

Figure 9 shows the results. The first panel shows the marginal product of direct
labor and materials divided by the price of one unit of direct labor and material,
and the returns to scale (i.e., 5). This ratio has been increasing from just above 1
to just below 1.15. This is broadly similar to the baseline price-average cost ratio,
but the increase is somewhat faster here. The second panel shows the marginal
product of selling, general and administrative expenses divided by the price of one
unit of these expenses. This value is around one, and therefore these inputs are

sga
not a fixed cost, but a factor of production. £ and “7 are of a similar magnitude

sga
on average but show different trends with “:— decreasing over time. I do not

have a good explanation for this difference in trends. The third panel shows that

the cost of capital is around 20%, and behaves similarly as in the baseline. Finally,
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Figure 9: Results when COGS and SGA enter the regression separately

the fourth panel shows that profits under this specification show a similar pattern
over time as the baseline does.

Another way of testing whether SGA is a factor of production or an overhead
cost is to omit SGA expenditure from modified Euler’s theorem. Figure 28 in
Appendix H shows that this regression results in a cost of capital that is on average
around 50%. This seems unreasonably large and the reason for this large cost of
capital is a high estimated marginal product of capital. This suggests that a factor
of production is omitted from this regression, and that SGA is indeed a factor of
production and should be included in the regression.

The above has given a statistical reason for why SGA is a factor of production.
An economic reason for why SGA is a factor of production is the following.
Compustat comprises larger firms and one reason why these firms differ in their
sales is that they differ in the number of product lines. If each product line needs
its own sales and administrative team, and if we consider the production function
as the number of varieties that can be produced, then SGA is a factor of production.

Finally, the baseline is my preferred estimate over including COGS and SGA
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separately in the regression. The reason is that firms have freedom in allocating
expenses to either costs of goods sold or selling, general and administrative
expenses, which likely leads to measurement error. Indeed, there are firms that

report zero expenses for one of these items.

Capitalizing R&D Expenditure

The capital stock includes intangibles, but these are only intangibles that are
externally purchased and do not include internally developed intangibles. If firms
within an industry differ in the extent to which they purchase versus internally
develop intangibles, this will lead to idiosynchratic measurement error of the
capital stock and therefore to attenuation bias of the estimated marginal product
of capital and hence an overestimate of the profit share.®® Since the share of
intangibles has been increasing over time, not measuring intangibles correctly
would lead to an overestimate of the rise in the profit share. Therefore, I here
include internally developed intangibles in the capital stock, by capitalizing R&D
expenditure, and show that this does not alter the conclusions. Another argument
for capitalizing R&D is that fully expensing R&D might not be appropriate as
Ré&D expenditure is risky and leads to future services that have to be discounted
appropriately.

To calculate the internally developed intangible capital stock, K%?, I capital-
ize R&D as follows

KASP = (1= 6™P)K [P 4+ R&Dy,

where R& D, is the expenditure on R&D. I set the depreciation rate, ¢ R&D, equal
to 15% (Griliches and Mairesse, 1984).5! Given that most of these firms have been
founded several years before they enter the Compustat data, it is unlikely that they
enter with an intangible capital stock of zero. Therefore, I use the first observation
of R&D expenditure divided by 7P as starting value for the intangible capital
stock. The underlying assumption is that the firm is in steady state. Furthermore,
I set R&D expenditure equal to zero if it is negative in a period, and I interpolate
when R&D expenditure is missing. Finally, I subtract R&D expenditure from
operating expenses to avoid double counting.

Doing so leads to the estimated profit share displayed in Figure 10. The

50 As discussed in Section V, when unobserved intangibles are the same share of the capital stock for
each firm then this will not lead to a bias.

51The BEA also calculates industry-specific depreciation rates for R&D capital (Li and Hall, 2018).
However, these are based on a model that assumes perfect competition and are therefore not applicable
to the current setting.
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Figure 10: Profit share when R&D is capatalized

estimated profit share is broadly similar to the baseline. The profit share declines
in the first decade of the sample and increases afterwards. Different from the
baseline is that the profit share levels off after 1995 whereas it continues to increase
in the baseline.

Markdown Labor Market

So far I have assumed that firms take input prices as given, although the input
price is allowed to differ across observations (e.g., in the case of labor due to
compensating differentials or differences in the skill composition across firms).
The reason why input prices are allowed to differ across observations while the
cost of capital is not, is that total expenditure on inputs is observed while capital
compensation is not. However, it is not allowed that there is a wedge other than
the markup showing up in the first-order conditions. The reason is that the first-
order conditions with respect to inputs X" are used to infer the markup and then
the markup is used to back out the cost of capital. If there were to be an additional
wedge, then only the markup times this additional wedge could be estimated. A
wedge would, for example, show up when firms have monopsony (or oligopsony)
power in an input market.>?

Different from the baseline, I here split total input expenditure into expenditure
on labor and into expenditure on intermediate inputs. This makes it possible to
introduce a wedge in the labor market (which I will also refer to as the mark-
down), while assuming that the firm takes all other input prices as given. Still, no
assumptions about the output market are needed. Splitting up input expenditure
allows me to study whether the rise in the profit share is robust to allowing for a

52For a discussion of monopsony power in the labor market see Boal and Ransom (1997). Recent
papers that study labor market power are Dube et al. (2020), Azar et al. (2017) and Berger et al. (2019).
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markdown in the labor market, and if so, whether the rise in the profit share is
due to changing markups in the output market or changing markdowns in the
labor market. Allowing for a wedge in the first-order condition of labor leads to

the following first-order condition with respect to labor
VMPLiy = pristthywic (21)

where uét is the markdown following from labor market power and w;; is the
wage of firm ¢ at time ¢. The first-order conditions for capital and the other inputs
are as in equations (5) and (6), respectively.

Doing the same manipulations of Euler’s theorem (7) as before and plugging
in first-order condition (21) gives

PY; = WPiKKi+& > P +“¢M wiLi (22)
i meM/

where M’ refers to inputs other than labor (and capital). Hence, regressing output
on the capital stock, intermediate input expenditure and labor expenditure gives as
coefficients the marginal product of capital, the markup and the markup times the
markdown, respectively, all scaled by the returns to scale. To obtain the estimate
of the markdown, p!, I divide the estimate of “Tf‘l by the estimate of % In order
to obtain the estimate of the cost of capital, I divide the estimate of the marginal
product of capital by the estimate of the markup.

When running the regression, I divide both sides of equation (22) by total
expenditure on intermediate inputs to ensure that markup heterogeneity is not
correlated with the regressors. The markdown ! is correlated with the choice
of relative inputs as it does not show up in the first-order conditions other than
the first-order condition with respect to labor. Berger et al. (2019) show that the
markdown is correlated with firm size in terms of the wage bill. Therefore, I
control for markdown heterogeneity using the wage bill. I assume that there is no
further heterogeneity in the markdown than what is explained by the wage bill.

Finally, in order to have the error term being equal to zero in expectation,
the marginal product of capital has to be weighted by capital and quﬁ has to be
weighted by the wage bill. Therefore, I run two regressions. In the first regression
I weight by capital and obtain the marginal product of capital and in the second
regression I weight by the wage bill and obtain ’%‘I Using equation (22) I use
these estimates to obtain the average markup % weighted by expenditure.

Figure 11 shows the results. The first panel shows that the resulting profit share
is very similar to the baseline profit share. The second panel shows the markdown
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Figure 11: Results with markdown in labor market

which is estimated to be around 1.05 for most of the period. This means that firms
have some labor market power. There is no trend in the markdown except for a
decline in the last five years. This means that labor market power cannot explain
the rise in profits.>® Instead, as the third panel shows, the rise in the profit share is
due to an increase in the markup in the product market divided by the returns to
scale.

My results on the markdown are very similar to what is found by Berger et al.
(2019). They consider changes in local labor market concentration combined with
estimates of the degree of labor substitutability. They find that, all else equal,
changes in labor market power would have increased the labor share by 2.89
percentage points between 1976 and 2014. With a labor share of around 60%, this
means that the markdown has decreased by around 5% which is what I find as
well.

Using Economy-wide Weights

Compustat comprises a non-representative subset of all firms, namely mainly
publicly listed firms. One way in which the Compustat sample differs from the
aggregate economy is in the sectoral composition. For instance, a relatively large
number of manufacturing firms are in Compustat. If manufacturing tends to
have an above-average profit share, this will lead to a positive bias in the profit
share that I estimate. Moreover, a change in the industry composition within
Compustat over time could be driving the increase in the profit share I find. If
firms in industries with a low profit share tended to be public at the beginning
of the sample while industries with a high profit share tended to have relatively
more public firms toward the end of the sample, this would mechanically lead to

53This is under the assumption that firms do not have market power in other input markets. My
measure of ! is the markdown in the labor market relative to the markdown in other input markets.
It could potentially be the case that the markdown in all input markets has increased instead of a
constant markdown in the labor market.
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Figure 12: Profit share using BEA value added as sector weights

an increase in the profit share in my data while the economy-wide profit share
might not have increased at all.

To correct for this, I calculate the average profit share across industries using
the economy-wide size of each industry as weights. This entails that the average
profit share is not influenced by the industry composition of Compustat firms.
As weights I use industry value added obtained from the Bureau of Economic
Analysis (BEA). Figure 12 shows that the profit share using BEA weights is similar
to the baseline profit share estimate. If anything, the profit share has risen faster in
the weighted sample. Therefore, the rise in the profit share I find is not due to the
sectoral composition of publicly listed firms.

Another way of dealing with the representativeness of the data is to estimate
the model using economy-wide industry level data from the BEA. This has as
advantage that all firms are included in these industry aggregates. Appendix F

shows that this yields very similar estimates as the baseline.

VII Heterogeneity

In Section IV I have found that the aggregate profit share has been increasing.
Here, I explore how the distribution of the profit share has changed. Is the rise in
the profit share due to few firms becoming more profitable or did the entire profit
distribution shift to the right?

To calculate the profit share at the firm level, I use the firm-specific cost of
capital obtained using the controls in the regression.* Figure 13 shows the un-
weighted kernel density of the profit share across firms in 1970, 1985, 2000 and
2015. Two observations stand out. The distribution has shifted to the right and the

54None of the results in this section change qualitatively when the firm cost of capital is taken as the
industry-year average cost of capital.
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Figure 13: Kernel density profit share ~ Figure 14: Percentiles profit share distribu-
tion

dispersion has increased over time. Figure 14 displays the evolution of some of
the percentiles of the profit share distribution over time and tells a very similar
message. Here, observations are weighted by sales as the aggregate profit share
equals the sales-weighted average profit share. Weighting by sales makes the
median comparable to the average. The 25th, 50th, 75th and 90th percentile have
all been increasing since 1980 onward. Only the 10th percentile experienced a
constant profit share, which was just below 0%. The median profit share coincides
almost perfectly with the average profit share. Therefore, the rise in the profit
share is due to the entire distribution of firms becoming more profitable, except for
the bottom decile. It is true that the profit share of the 90th percentile grows faster
than the 75th percentile in absolute terms, which in turn grows faster in absolute
terms than the median etc. However, in relative terms the growth rates between
the different percentiles are very similar. That the rise in the profit share is present
across most of the distribution is different from what De Loecker et al. (2018) find
for the markup.®® They find that the markup only increased for the upper half of
the distribution, and thus that the median has not increased.

One potential reason for this difference in results for the median, between
my approach and De Loecker et al. (2018), is that De Loecker et al. (2018) do not
account for heterogeneity in factor-augmenting technology. Raval (2019b) and
Demirer (2019) show that not accounting for heterogeneity in factor-augmenting
technology leads to a biased estimate of the average markup when using the
method of De Loecker et al. (2018). Here, I show that not properly accounting
for factor-augmenting technology affects the average and median markup in a
different way. Rewriting the first-order condition (6) gives that the markup equals

55T also find for the markup (which I estimate in Section VIII) that the median has risen at the same
rate as the average.
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the output elasticity of an input X™, X", times the inverse revenue share of
P;Y;
the markup, but assume that the output elasticity is the same across firms. This

that input . De Loecker et al. (2018) use this equation when estimating

leads to the following relationship between the firm-level markup as estimated by
De Loecker et al. (2018), 2PLFU, and the true markup, p;,
gx
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where §X" is the estimated output elasticity which is common across firms.*

Thus, a firm for which De Loecker et al. (2018) estimate a high markup might in
fact be a firm with a low output elasticity. This means that the distribution of the
estimated markup is not necessarily informative of the true distribution when
there is heterogeneity in the output elasticity. As an example, suppose that X"
and p; are independent log-normally distributed. This implies that the larger the
heterogeneity in the output elasticity, the larger the ratio of the estimated average
markup to the median markup relative to the true ratio between the average and

median markup,

2

E(@PLEY) /med(iPLEV) o
B /med) ¢ 24

where o3 is the variance of the logarithm of the output elasticity. The reason is that
an increase in the variance of ;X" , all else equal, leads to an increase in the average
APEEU (by Jensen's inequality), while the median is not affected as much.%”

Thus, an increase in heterogeneity in technology across firms over time can
explain why De Loecker et al. (2018) find a larger increase in the average markup
compared to the median markup while I do not.

Profits-Size Relationship

Next, I study whether bigger firms are more profitable. Figure 15 shows the point
estimates and 95% confidence intervals obtained from regressing the profit share,
as a percentage, on log sales. This regression is run by year, and industry fixed
effects are included. During the 1960s and early 1970s the profit share was not
correlated with firm size. However, after 1975 this started to change and bigger
firms became more profitable than smaller firms. The relationship between size

56De Loecker et al. (2018) also estimate a translog production function in which they allow for limited
heterogeneity in the output elasticity across firms, but they do not allow fully for heterogeneity in
output elasticities as they do not allow for heterogeneity in factor-augmenting technology.

57] am assuming here that X is consistently estimated.
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Figure 15: Effect of log firm size on the profit share (p.p.)

Notes: The point estimates denote the percentage point increase in the profit share when sales increases by 1 log
point. Industry fixed effects are included. To remove outliers I trim the top and bottom fifth percentile of the
dependent and independent variable. The vertical lines denote 95% confidence intervals based on robust standard
errors.

and profitability has become stronger over time but has also fluctuated. For in-
stance, the great recession was relatively bad for large firms in terms of profitably.
However, after the great recession, the larger firms quickly increased their prof-
itability relative to smaller firms. In 2015 one log point more in sales would imply
a ten percentage point higher profit share.

Autor et al. (2017) use Census data and focus on the period after 1981 and
show that the fall in the labor share is due to reallocation toward "superstar firms"
which are larger firms with a low labor share. Based on existing evidence it is
not clear whether these firms have a low labor share because they have a high
capital share or because they have a high profit share. Figure 15 shows that these
larger firms have a higher profit share (at least in the later period) and that this
relationship has become stronger over time.”®

That larger firms have a larger profit share, and that this relationship has been
changing over time, combined with publicly listed firms tending to be larger than
private firms, makes it problematic to generalize the estimated profit share among
Compustat firms to the entire economy. Extrapolating to private firms, the positive
relationship between size and profits toward the end of the sample period suggests
that during this period the economy-wide profit share was lower than the profit
share among publicly listed firm, at least based on size-dependent selection. On
the other hand, during the beginning of the sample period, selection based on
firm size does not seem to have led to as much of a discrepancy between the profit

share among publicly listed firms and the economy-wide profit share. Therefore,

58In contrast, Gutiérrez and Philippon (2019) find that "superstars" have not become more productive
over time.
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the economy-wide profit share might not have risen as quickly as the rise in the
profit share I estimate.

To correct for selection based on firm size, I weight observations according to
the sectoral size distribution. The Census Business Dynamic Statistics provide
information on the number of firms by binned number of employees from 1977
until 2014 for each industry. In Compustat there are very few observations with
fewer than 10 employees whereas the majority of the universe of firms falls into
this size class. Including this size class puts a great deal of weight on only a
few observations and hence leads to an unreliable estimate of the profit share.
Therefore, I calculate the reweighted profit share for different cutoffs. That is, I
provide six different estimates. One in which firms of all sizes are included, one in
which only the firms with at least 10 employees are included, up to an estimate
in which I only consider firms with at least 100 employees. The latter is the least
sensitive to having a small sample size for some bins, but its drawback is that it
omits firms with fewer than 100 employees. Furthermore, to minimize the reliance
on outliers, I only take into account firms with a profit share between minus 100%
and plus 50%.

Figure 16 shows the resulting estimates of the profit share corrected for selec-
tion based on firm size. As was anticipated based on the minimal effect of firm
size on profits, correcting for size-based selection does not affect the profit share
around 1980. Because the Census only provides data on the size distribution from
1977 until 2014, it is not possible to make the correction before 1977. First consider
the estimate only based on firms with more than 100 employees. The profit share
is similar in magnitude as the baseline estimate. The weighting here is based on
seven different bins for employment (i.e., from 100 to 250 employees, 250 to 500
employees etc. up to a bin for firms with more than 10,000 employees). That the
profit share is increasing after this size-correction means that the rise in the profit
share is not only due to the super large firms, but is also present among smaller
firms with more than 100 employees.

Each additional estimate of the size-corrected profit share includes one addi-
tional bin. All size corrected profit shares based on firms with at least 10 employees
display a positive trend in the profit share, although attenuated compared to the
baseline estimate. The more small firms there are included in this estimation, the
lower the estimated rise in the profit share, but also the less reliable the estimate
becomes as there are only few firms in the Compustat data that are small. The
size-corrected profit share including all firms is very noisy, but there seems to
be also an upward trend for this series. This series is so noisy because for some

industry-years there are only a handful of firms with less than 10 employees.
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Figure 16: Profit share corrected for selection based on firm size

Notes: The colored lines show the profit share weighted to match the economy-wide size distribution, considering
all firms and only firms with more than 10, 20, 50 or 100 employees, respectively.

Moreover, publicly listed small firms are most likely not representative for the
typical small firm.

Another way to deal with a changing selection of firms over time is to estimate
the profit share for the largest firms only, as most of the largest firms in the
economy are represented in Compustat. Figure 27e in Appendix H shows that the
profit share of the 500 largest firms in each year is slightly higher than the profit
share when taking into account all firms, but that the evolution over time is very
similar as the baseline estimate.

Decomposition

An obvious question is whether the rise in the profit share is due to an increase in
profits within industries or due to reallocation from industries with low profits
to industries with high profits. In order to answer this question, I decompose the

change in the profit share into a within industry component and a reallocation

component (Haltiwanger, 1997),%
Within Between Covariance
A’]Tt = E mjt,lAﬂjt + E (thfl — 7Tt,1) Amjt + E Amthth
Continue Continue Continue
+ E Mg (Tje — Te—1) — E Mji—1 (Tje—1 — 1), (25)
Enter Exit
Net entry

%Figure 29 in Appendix H shows the profit share for each industry separately.
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where 7, is the aggregate profit share, 7;; is the profit share of industry j and
m;; is the market share of industry j (i.e., sales of industry j divided by total
sales). A represents one-year differences. The decomposition consists of five
terms. The first term represents the within industry effect and measures the
increase in profits when the market share of industries would not have changed.
The remaining terms together represent the reallocation effect. The second term
represents the between industry component which reflects changes in the market
share weighted by the deviation of industry profits from aggregate profits. The
third term represents the covariance between the change in the market share and
the change in profits. This term is positive when growing industries experience
a faster increase in their profit share than shrinking industries. The first three
terms refer to industries that are in the data for two consecutive periods. There
are two additional terms which refer to entering and exiting industries. This is
atypical for an industry-level decomposition as all industries are normally present
throughout the entire sample. However, when I estimate the profit share I only
include industries that have more than 100 observations in a five-year period.
Therefore, there are some industries that are present some years, but not in the
other years. The last two terms correct for this entry and exit of industries. The
fourth term corresponds to the contribution of entering industries by taking the
deviation of profits from average profits in the previous year weighted by the
industry size of entering industries. The last term represents the effect of exiting
industries by taking the deviation of profits in the previous period from aggregate
profits weighted by the previous industry size of exiting industries. Net entry can
be considered as part of reallocation here, since industries that enter are industries
that grow in terms of the number of firms while industries that exit are industries
that are shrinking.

Figure 17a shows the cumulative effect of each term in equation (25). The solid
black line shows the cumulative change in the profit share with respect to 1963.
The majority of the rise in the profit share is attributed to the within-industry
effect, although the within effect is negative during the early decades. That the
within effect is the dominant factor means that the rise in the profit share is due
to industries experiencing an increase in their profits. All other terms are close to
Zero.

A similar decomposition can also be done at the firm level, simply by replacing
the j-subscript in equation (25) with an i-subscript. Doing the decomposition at the
firm level allows to decompose the change in the profit share between within-firm
effects and reallocation between firms.

Figure 17b shows the resulting decomposition. The within-firm effect falls
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Figure 17: Decomposition profit share

during the entire time period. The accumulated between effect is positive, but
constant during the last twenty years. This means that during the period 1963—
1995 the market share of profitable firms has been increasing, while during the
period 1995-2015 the market share of profitable firms has been constant. The
between effect is relatively small compared to the covariance effect. Had it been
for the covariance effect alone, the profit share would have been increasing by
eight percentage points. The positive covariance effect means that firms that
increased their market share also increased their profit share. One explanation for
the dominant role played by the covariance term is creative destruction. Some
firms are able to increase their market share while increasing their profitability.
This suggests that these firms have a dominant marketing strategy or developed a
new variety of which they are the sole supplier and which is highly in demand.

Finally, net entry does not contribute permanently to the change in profits in
the long run, but its contribution does fluctuate over time. The term "net entry" is
misleading as these are firms that enter and exit the data set and do not necessarily
enter or exit the market. For instance, an exiting firm could be a firm that goes
private or that is acquired. An entering firm could be a firm going from private to
public or be the result of a merger. That the reallocation effect (the between plus
covariance effect) dominates the within effect is also found by De Loecker et al.
(2018) and Baqaee and Farhi (2020) for markups, and Autor et al. (2017) for the
labor share.

How can the accumulated within-firm effect be negative while the distribution
of the profit share has shifted to the right? The reason is that the decomposition
considers changes over time. There have been some firms that were initially large

(i.e., a large m;;—1) and experienced a decline in their profit share, while some
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small firms experienced a (faster) increase in the profit share. This leads to a
negative within effect, but can shift the distribution to the right. Furthermore,
this did not lead to a drop in the profit share because the firms with a growing
profit share experienced an improvement in their market share as well, which also
explains the positive covariance term.

Entry Costs and the Life Cycle of Profits

If profits and markups increased, why did firm entry not increase in response?
Instead, during the last decades, firm entry in the US has declined (Decker et al.,
2014). Does this mean that entry costs have increased over time and that the
economic profits I measure reflect only entry costs? I argue here that it is unlikely
that the rise in the profit share is entirely driven by a rise in entry costs because
the life cycle pattern of profits has changed over time.

Profits tend to be back-loaded over the life cycle of the firm. A young firm
hardly makes any profits while older firms do. In a simple model of entry, a
potential entrant decides to enter the market when the discounted sum of profits
exceeds the entry costs. Suppose that we are in a stationary equilibrium such that
firms of all ages are observed. Then total profits observed at any point in time
exceed the discounted sum of profits and therefore exceed entry costs (Atkeson
and Kehoe, 2005). The discrepancy between observed profits and the present value
of profits increases in the extent to which profits are back-loaded, because profits
that occur in the distant future are discounted more. Thus, one explanation for
the rise in profits is that profits have become more back-loaded over time. All
else equal, this would lower the present value of profits, and to make the entry
condition continue to hold, aggregate profits need to increase in response. If this
were indeed the case, the profit share could have increased without an increase in
entry costs.

To test this hypothesis, I obtain the firm founding age from Field and Karpoff
(2002) and Loughran and Ritter (2004) (of firms that went public between 1975
and 2018) and calculate average deflated profits by age and see how those have
changed over time. Since the founding age is only available for a subset of firms,
there is not enough data for the years before 1980 to calculate the life-cycle pattern
of profits. Figure 18 shows the resulting life-cycle pattern of profits for firms active
in the 1980s, 1990s, 2000s and 2010s, respectively, where I have grouped firms
in 5-year age bins. During all four time periods, profits are increasing in firm
age, and this relationship is clearly the strongest for the period after 2000. After
2000, firms younger than ten years old were making less or as much profits as
firms before 2000, while older firms were making more profits than in the 1980s
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Figure 18: Profits over the firm life cycle

Notes: The point estimates denote average profits in millions of dollars for each age bin (in 2012 dollars, deflated
by the GDP deflator), where age is denoted in years. The vertical lines denote 95% confidence intervals.

and 1990s. A potential entrant cares mostly about profits during the beginning
of the firm’s life because of discounting. That profits were low for the youngest
firms after 2000 could, depending on the discount factor, potentially explain why
entry has not gone up despite an increase in aggregate profits; the present value of
profits has not increased as much as aggregate profits.

VIII Returns to Scale and the Markup Have Been In-

creasing

In order to estimate the profit share, the returns to scale do not need to be known.
However, knowledge of the returns to scale is helpful in understanding the rise in
the profit share. When there are decreasing returns to scale, profits are positive
even in a competitive market where prices equal marginal costs. The reason is
that with decreasing returns to scale average costs are lower than marginal costs
(Lucas, 1978). Therefore, a decline in the returns to scale over time could be an
explanation for the increase in profits. In this section, I estimate the evolution of
the returns to scale and find that the returns to scale are close to one and increasing
over time, and therefore do not account for the rise in profits (in a direct sense).
Furthermore, having an estimate of the returns to scale allows me to estimate the
markup, which I find to be increasing over time.

I estimate the returns to scale using cost shares as in Syverson (2004). A
first-order approximation of a production function gives

Yir = By + devit + wir (26)
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where small scale letters denote logs; y is the log of real output and w is the log of
productivity. v is the cost-share weighted sum of logged inputs,

ok cogs xsga
Vit = agkic + a7 cogs;, + oy sgay,

where k is the log of real capital, cogs is the log of real costs of goods sold
ko

S

and sga is the log of real selling, general and administrative expenses. «
R, PFK;

R; PX K;+input expenditure,

Equation (26) states that regressing the log of real sales on v and a constant gives

is the cost share of capital, and likewise for ;"% and %"

the returns to scale ¢,, that are now assumed to be the same across firms within an
industry.

I calculate the cost shares using the baseline estimated (firm-specific) cost of
capital. Note that the cost shares and therefore technology are allowed to differ
across firms. As opposed to what was needed to estimate the cost of capital,
this regression requires all variables to be in real terms. No firm-specific deflator
is available and therefore I deflate sales, cogs and xsga using the non-financial
corporate business sector price index and deflate capital using the non-financial
corporate investment price index.*’

Note that here I consider costs of goods sold and selling, general and admin-
istrative expenses separately, because combining them into operating expenses
would require that they are perfect substitutes with each other. For my main anal-
ysis estimating the profit share, considering operating expenses as one expense
does not require both to be perfect substitutes. Moreover, here I need to assume
that different types of costs of goods sold (such as materials and labor) are perfect
substitutes with each others, whereas this assumption is not needed for estimating
the profit share.

Unobserved productivity shows up in equation (26), making OLS biased as
input choices (i.e., v) are correlated with productivity. This is also different from
my main analysis as productivity does not show up in Euler’s theorem. I deal
with omitted productivity in equation (26) by using a proxy approach, which is a
standard IO technique (see, e.g., Ackerberg et al. (2015)). I first purge measurement
error by regressing log sales on a third order polynomial of the logs of capital,
cogs and sga, for each industry j. Denote the resulting estimate of log sales
free of measurement error by (;;;. Suppose that productivity follows an AR(1):
wijt = pjwiji—1 + &jr, where &;;; is an unanticipated shock to productivity. This

60The value added price index is obtained using NIPA table 1.14 from the BEA (Gross Value Added
of Domestic Corporate Business in Current Dollars and Gross Value Added of Nonfinancial Domestic
Corporate Business in Current and Chained Dollars). The price index is nominal gross value added
(line 17) divided by real gross value added (line 41). Both for nonfinancial corporate businesses. See
footnote 40 for details on the investment good price index.
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gives rise to the following moment condition to obtain the industry-year-specific
returns to scale:

E (&ije () Zije-1) = 0,

where 7,;;;_1 are variables that are in the information set of firm ¢ in industry j
at time ¢t — 1, and §;;; (+) is a function of the parameters ¢;, B? and p;. In order
to obtain &;;; (+), I first obtain productivity from w;j+(¢;, ﬂ?) = Cijt — GjVijt — 6?,
and then &5:(¢5, 87, pj) = wije(dj, B3) — pjwiji—1(¢5, B9). To identify the three
parameters I use as moments the lag of the log of cogs, (;;:—1 and a constant. The
lag of sga would not be a good moment condition as it includes R&D expenditure
and is therefore likely to be correlated with future changes in productivity. I use
a five-year moving window to estimate how the returns to scale have changed
over time. To calculate the average returns to scale across industries I weight by
operating expenses as later I will use the returns to scale to calculate the markup
(which is weighted by operating expenses as well). Figure 19 shows that the
returns to scale have been increasing over time from a level just below 1 in the
1960s to around 1.05 toward the end of the sample. Therefore, changes in the
returns to scale do not explain the rising profit share (in a direct sense).!

The evolution of the returns to scale over time looks similar to how the rela-
tionship between firm size and profitability has evolved over time (see Figure 15).
When there is no relationship between firm size and the profit share the returns to
scale are approximately one, and when larger firms are relatively more profitable
the returns to scale are larger than one. One potential explanation is that, when
estimating the returns to scale, I assume that all firms charge the same price and
face the same price for their inputs. If there would be price heterogeneity, this
would lead to an additional error term in equation (26). Under the assumption of
no heterogeneity in prices, that larger firms have a higher profit share means that
these firms have a lower average cost than small firms, for instance due to the re-
turns to scale being larger than one. Thus, in a sense, the relationship between the
profits-size relationship and the returns to scale I estimate might be ‘mechanical’.
However, the proxy approach deals with this unobserved price variation as long

as price variation is a monotonic function of productivity (Brandt et al., 2017).

61Figure 30 in Appendix H shows the returns to scale by industry and the returns to scale have been
increasing for almost all industries.
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The markup

Given the estimate of the returns to scale, I can estimate the markup by multiplying
the estimate of the price-average cost ratio with the estimate of the returns to scale.
The resulting cost-weighted average markup is shown in Figure 20 which also
shows for reference the estimated price-average cost ratio. Given that the returns
to scale have been increasing over time, it should come as no surprise that the
markup has been increasing faster than the price-average cost ratio.

The markup has been increasing from around 1.03 in the 1970s to around 1.15
toward the end of the sample. De Loecker et al. (2018) estimate the evolution of the
markup for the same data using the production approach (Hall, 1988; De Loecker
and Warzynski, 2012), which states that the markup equals the output elasticity of
costs of goods sold times revenue divided by costs of goods sold. Their baseline
estimate gives a markup that is about 30 percentage points higher than what I
find, but with a broadly similar pattern over time, although the markup increases
somewhat faster according to De Loecker et al. (2018). One reason why De Loecker
et al. (2018) find a much larger markup than I do is that they do not include
selling, general and administrative expenses in the production function, which
presumably leads to a too high estimated output elasticity of costs of goods sold.
Indeed, when they include selling, general and administrative expenses in the
production function they find a markup that is similar in levels to the markup I
find. They find a markup that increases from 1980 onward from 1 to 1.3, while I
find that the markup starts to increase five to ten years earlier and increases at a
lower rate. One difference in estimating the markup between their method and my
method is that differences in technology (i.e., factor-biased productivity) across
firms are allowed here.

Figure 31 in Appendix H shows the markup by industry and, as is the case for
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Figure 21: Output elasticities

the profit share, most industries have experienced an increase in markups over
time.

Output elasticities Having estimated the returns to scale I am also able to
estimate the output elasticities of the different inputs. The output elasticity of an
input equals the cost share of that input times the returns to scale.®? Figure 21
shows the resulting output elasticities. The elasticity with respect to materials
and direct labor is the highest and has been relatively stable over time between
0.7 and 0.75. The output elasticity with respect to capital is the lowest at around
0.08. The output elasticity with respect to selling, general and administrative
inputs has been increasing, from around 0.17 to around 0.25. This suggests that
the importance of inputs such as R&D and marketing has increased over time.
However, this could also be an artifact of the freedom firms have in deciding
whether to put an expense under costs of goods sold or under selling, general
and administrative expenses (Karabarbounis and Neiman, 2018). If firms today
were to classify a larger class of expenses as selling, general and administrative
expenses than they used to do, this would mechanically lead to an increase in the
estimated corresponding output elasticity.

IX Industry Concentration

Over the last decades, industry concentration in the United States has increased
(Autor et al., 2017).°® This could be a sign that a decline in competition has led to a

62To see this, note that the output elasticity with respect to an input X is Ex = a X Y Plugging in
the first-order condition with respect to X and multiplying and dividing by the output price gives
X
Ex =pt PYX , and further noting that the markup equals the returns to scale times output divided by
X x
pBoX

costs gives Ex =
63Rossi-Hansberg et al (2019) show that local concentration has gone down instead.
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fall in the labor share. However, trade costs have fallen rapidly which has increased
the geographical size of markets and therefore an increase in concentration does
not necessarily imply a fall in competition when customers nowadays have the
option to get a product from a more distant producer. Autor et al. (2017) and Barkai
(2017) find a negative industry-level correlation between changes in domestic
concentration and the labor share. However, the complement of the labor share is
not the profit share and therefore this does not necessarily imply that increases
in concentration are associated with increases in profits or markups. Here, I
study whether changes in industry concentration are correlated with changes in
markups.

To study the effect of industry concentration on markups I obtain data from
the US Census Bureau on concentration. The census provides data on the share
of sales by the 4, 8, 20 and 50 largest firms for a wide variety of industries every
5 years.* In order to obtain the change in industry concentration, a consistent
industry classification is needed. Starting with the 1997 census, the Census Bureau
switched from the Standard Industrial Classification (SIC) to the North American
Industry Classification System (NAICS). Therefore, I split the Compustat sample
in two parts and estimate the change in the markup between 1972 and 1995 using
the SIC classifier, and estimate the change in the markup between 1997 and 2013
using the NAICS classifier.° Given that the estimated markup is quite erratic at
the industry level, I use 5-year averages around these years. For the SIC period
I use the 2-digit codes, and the industry concentration is based on the same 2-
digit codes or, when not available, the sales-weighted average concentration of
the underlying 3-digit industries.®® For the NAICS classification there are not
as many 2-digit industries as for the SIC classification because manufacturing
has only three 2-digit NAICS industries. Therefore, I estimate the markup for
manufacturing at the 3-digit level and for the other industries at the 2-digit level.®”

%There is no concentration data for construction.

65The SIC and NAICS classifications have changed over time as well. However, the number of
(narrowly defined) industries that have been reclassified across the broad industry classifications I use
is limited. That is, there were no reclassification across the two digit industries in my data going from
SIC1972 to SIC1977. 31 4-digit industries are reclassified to another 2- or 3-digit industry from SIC1977
to SIC1987 out of in total more than 1000 4-digit industries. For NAICS, there were no relevant changes
between 1997 and 2002, there were 11 relevant changes between 2002 and 2007 and 2 relevant changes
between 2007 and 2012. Again, out of more than 1000 industries this is a relatively small number and
unlikely to be driving the change in concentration over time within a broad industry.

%The data for the 1972 and 1992 manufacturing censuses is obtained from
https:/ /www.census.gov/econ/concentration.html. For the other industries I ob-
tain the 1972 censuses from scanned copies of the census books available on
https:/ /archive.org and https://www.hathitrust.org, and the 1992 census data is obtained
from https:/ /www.census.gov/prod/www /economic_census.html#min92ind.

7Most 3-digit industries other than manufacturing do not have sufficient observations in Compustat
to estimate the markup.
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Change markup (residualized)

-5 0 . 1
Change sales share, 50 largest firms (residualized)

Figure 22: Relationship change in concentration and markups across industries

The concentration data is based on the same 3-digit codes for manufacturing, and
for the other industries, concentration is the sales-weighted average concentration
of the underlying 3-digit industries.%® If no concentration data is available for all
firms I use concentration based on firms subject to federal income tax.

Figure 22 shows the relationship between the change in concentration and
the change in markups after taking out period fixed effects. In this graph, the
change in concentration refers to the sales share of the 50 largest firms. A negative
relationship emerges. More formally, I regress the change in the markup during the
periods 1972-1995 and 1997-2013 on the change in the concentration ratios during
the periods 1972-1992 and 1997-2012 including a dummy for the SIC/NAICS
period. The results are shown in Table 2. Changes in concentration measured by
the share of sales of the four, eight, twenty and fifty largest firms in an industry
have a negative effect, significant at the 5% level. It is surprising that this effect is
negative as this means that the more concentrated industries become, the lower
the markup becomes.®” When all four concentration measures are included in
the regression none of them is significant because the concentration measures are
highly correlated with each other.

One possible explanation for this result is that competition from abroad has
increased which is not incorporated in the concentration measures. Increasing
competition from abroad would lead to a fall in the markup and forces small firms
to exit, leading to an increase in domestic concentration. If at the same time an
increase in competition from abroad leads to more rapid automation, this would
imply a negative correlation between changes in domestic concentration and the
labor share as Autor et al. (2017) and Barkai (2017) find.

68The data of the 2012 census is obtained from American fact finder while the data of the 1997 census
is obtained from https://www.census.gov/prod/www /economic_census.html.

®This result is different from Grullon et al. (2019) who find a positive relationship between concen-
tration and profit margins but their definition of the profit margin includes capital compensation.
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Table 2: Effect of industry concentration on the markup

1) (2) 3) 4) )
Apy Apy Apy Apy Apy
Act/ct -0.0808* 0.159
(0.0345) (0.194)
Act/cB -0.103* -0.0963
(0.0422) (0.398)
Ac2V /20 -0.132* -0.430
(0.0562) (0.492)
A0/ -0.160* 0.259
(0.0702) (0.354)
Period fixed effects X X X X X
Observations 44 44 44 44 44
R? 0.118 0.144 0.159 0.149 0.180

Notes: Robust standard errors in parentheses. ¢ refers to the share of sales by the s largest firms
in an industry. Source: Census, Compustat and own calculations.

*p <0.05 ** p <0.01, *** p < 0.001

X Alternative Applications

In this chapter I have developed a new method to estimate the cost of capital and
apply it to estimate the evolution of the profit share in the long run. Is this method
also useful to answer other questions, such as the effects of a policy reform on
competition? The answer is yes, although it depends on the exact nature of the
policy reform.

Suppose that we are interested in the effects of a trade liberalization on com-
petition. One option is to use a method similar to De Loecker and Warzynski
(2012) and estimate the markup by multiplying the output elasticity of an input
with the inverse of the revenue share of that input. Challenging is that the output
elasticity needs to be estimated. This is typically done by estimating a production
function. Problematic is that in response to the trade reform firms might change
their technology. For instance, some firms might decide to automate more tasks.
If this were to lead to heterogeneity in the technology used, this would lead to a
biased estimate of the output elasticity. In contrast, the method I propose does
not require firms to share common technology parameters. However, my method
gives biased results when the reform induces heterogeneity in the cost of capital.
Naturally, which method to use also depends on what outcome we are interested
in. My method estimates the profit share while the method of De Loecker and
Warzynski (2012) estimates the markup. However, when the returns to scale are
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not affected by the reform then my method is also informative of the change in the
markup.

Finally, having estimated the evolution of the profit share over time has im-
plications for the measured Solow residual. In Appendix K, I perform a growth
accounting exercise using my estimate of the output elasticities. Allowing for
imperfect competition attenuates the productivity slowdown, but by no means
makes the productivity slowdown disappear.

XI Conclusions

This chapter develops a new method to estimate the cost of capital and studies
how the cost of capital and the resulting profit share have evolved over time. The
user cost of capital has been declining from around 25% in the 1960s to around
20% today. This implies a decline in the capital share and an increase in the profit
share. This is different from the profit share that is obtained using the required
rate of return approach, namely a profit share that is higher in the 1960s and 1970s
than it is today. My results imply that the fall in the labor share is associated with
an increase in markups and not with a change in capital intensity.

It is not the goal of this paper to get policy recommendations. In order to reach
policy recommendations a much more structural approach would be needed. For
instance, the rise in profits is not necessarily bad for welfare as it also affects the
return to innovation. Instead, the goal of this paper is to study how the patterns
of profitability have changed over time, and for this we want to impose as little
structure as possible. These facts can then be used to select and discipline models
of firm heterogeneity and imperfect competition such that these models can be
used to analyze different policies. In this light, I think that especially my results
about how the underlying distribution of profitability has changed over time are
relevant. I find that the median profit share has gone up at the same rate as the
average and that bigger firms have become relatively more profitable over time.
Furthermore, I find that the rise in the profit share is a within industry, but across
firms phenomenon. Correlating profits with firm age, I find that profits have
become more back-loaded over the life cycle of the firm. This affects the value of
the firm negatively and can therefore potentially explain why entry has not gone
up in response to the increased profits.
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Appendix A Dynamic Model

The main text uses a static optimization problem to derive the estimator for the
cost of capital. Here I derive the estimator using a dynamic model.

Suppose that firm ¢ at time ¢ produces real output Y;; using as inputs capi-
tal K;; and M variable inputs X' according to the production function Y;; =
Fy (Kit, XY, ..., XA"). The firm minimizes costs subject to output at time 7 being
equal to some scalar Y, and the capital stock is chosen one-period ahead,

HliIl Q:“L (I_{”HH X?ilb e ,Xfy) (27)

it Jr=t

s.t. FiT (Ki.,-, Xl

2Ty "
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where ¢;; (I?t, XL 7)‘('1‘/1\/1) =B >0, BirCir (K7, Krqq, X1, ..., X) denotes
the expected sum of discounted future costs at time ¢t where C;.(-) are the costs in
period 7. “'indicates a time-vector and 3, is the (7 — t)-period stochastic discount
factor. The time-7 cost function C;, depends on capital at time 7 and 7 + 1 because
the costs include investment costs. Firm-specific input prices are suppressed in
the 7 subscript of the cost function.

The following Lagrangian is associated with the cost minimization problem:
Lio (Rt Ky X0 ) = (Ko, X X0T) + (28)
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where §;; A;; is the Lagrange multiplier. This means that ;- A;; is the increase in
the (with respect to time-t) discounted costs of increasing output at time 7 by one.

Thus, A;; is the marginal cost at time 7. Define the markup as the output price,
Pir

)\117' :

Taking the derivative of the Lagrangian with respect to input X} gives after

P, divided by marginal costs: p;; =

rewriting that the valued marginal product equals the markup times the input
price,

VMPXD = puyPX", me{l,...,M}. (29)

Now take the derivative of the Lagrangian with respect to capital K,

OFit41 (0)
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K
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where I have used that the derivative of the cost function with respect to capital
equals R;; 11 P/f | by the assumption that costs are linear in capital. Multiplying
and dividing the left-hand side, within the expectation, by the output price gives
that the expected cost of capital equals the expected valued marginal product of
capital divided by the markup and the price of one unit of capital,

VMPKi

E,
K
pit+1 P

=E/Rjt11, (30)
where I have used that the price of capital is known one period ahead (i.e., capital
at time ¢ + 1 is purchased at time ¢). The difference with the first-order condition
in the main text is that now expectations are taken.

For concreteness, the following is an example of a typical cost function, where
I; denotes investment and P/ the price of the investment good

T—t PX Xm PII
rrnx et e, tzﬁ Z -

s.t.FT(KT,XTl,...,XN):YT & Kipi=0-0)K,+1,, VYr>t.

Substituting out investment I from the cost function using the second constraint,
setting up the Lagrangian and taking the derivative with respect to Ky, gives
after rewriting

VMPK 1 P!
tilyl = |= — ( (5)Et t+1 = ]Eth+1 .
pe+1 Py B
With 8 = = and 7 expected inflation of the investment good, this gives the

usual condltlon that YLK = PX(r +§ — 7 + o) where usually the last term is
omitted because it is small (and which does not show up when the model is cast
in continuous time).

Appendix B Relation to Production Function Estima-
tion
Equation (9) obtained from Euler’s theorem looks similar to a production function,

which is a typical object of study in the industrial organization (IO) literature.”
However, there are some notable differences which I discuss here. These dif-

70See, e.g., Olley and Pakes (1996), Blundell and Bond (2000), Levinsohn and Petrin (2003), Ackerberg
et al. (2015) and Gandhi et al. (2016).
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ferences are important since the recently popularized production approach to
estimate markups relies on the estimation of a production function (see, e.g.,
De Loecker and Warzynski, 2012 and De Loecker et al., 2018). It is true that
markups are a different object of interest than the profit share, since the profit
share is a measure of the price relative to the average cost, while the markup is
the price relative to the marginal cost, but both are clearly related. Another reason
for why it is relevant to discuss the differences between my approach and the
production function estimation literature is that estimating a production function
would provide an alternative way to estimate the cost of capital. This would work
as follows. Cost minimization still implies that the cost of capital is the marginal
product of capital divided by the markup. Estimating a production function
provides indirectly also an estimate of the marginal product of capital. Dividing
this estimate with the markup found using the production approach provides an
alternative estimate of the cost of capital. As I discuss here, the method I propose
requires fewer assumptions than that are needed to estimate a production function.
The differences in assumptions are the following.

First, equation (9) suggests that a production function linear in inputs is as-
sumed. The opposite is true, I have assumed a general homogeneous production
function and linearity follows from Euler’s theorem. Instead, a specific functional
form needs to be assumed when estimating production functions whereas here
the functional form is not needed to be known.

Second, estimators employed in the IO literature typically require data on real
output and real inputs. However, most data sets only comprise data on nominal
inputs and output. See Klette and Griliches (1996) for a discussion of the bias
that arises when no firm-specific output prices are available, and De Loecker et al.
(2016) for the bias that arises when no input prices are available. To estimate the
cost of capital I only need data on nominal quantities.

Third, when having only data on total inputs and not inputs by type one
implicitly assumes that these different types of inputs are perfect substitutes when
estimating a production function. For example, in the Compustat data that I use
in this paper, expenditures on labor and materials are lumped together for around
90% of the observations. Hence, estimating a production function using these
data requires assuming that materials and labor are perfect substitutes. This is not
the case with the method I propose here. No assumption about the elasticity of
substitution between different inputs X" is made. A general production function,
where each input enters separately, is assumed. This also means that different
types of labor (such as workers with different skill levels) or different types of

material or capital are not required to be perfect substitutes with each other.
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Fourth, unobserved productivity leads typically to an omitted variable bias
when estimating production functions. Most of the literature on production func-
tion estimation is about how to deal with unobserved (Hicks-neutral) productivity.
The most common approach is to proxy for productivity using inputs (see, e.g.,
Olley and Pakes, 1996, Levinsohn and Petrin, 2003 and Ackerberg et al., 2015.).
Productivity is not an omitted variable in my approach since the productivity
term does not show up in Euler’s theorem. This comes at the cost that unobserved
heterogeneity in the cost of capital leads to a bias.

Fifth, firms are usually assumed to have identical production functions up to a
Hicks-neutral productivity term. If firms would differ in their factor-augmenting
productivities this would lead to a bias.”! Doraszelski and Jaumandreu (2018)
and David and Venkateswaran (2019) provide evidence that there is substantial
heterogeneity in factor-augmenting productivities across firms. My method allows
for production functions to be different across firms.

Sixth, the usual methods to estimate a production function assume that firms
produce a single product. However, many firms produce several products. This is
problematic because most data sets do not report output and inputs at the product
level. To deal with multi-product firms authors have assumed identical produc-
tion functions across products combined with input proportionality (De Loecker,
2011) or have estimated the production function using only single-product firms
(De Loecker et al., 2016). My method does not require firms to produce a sin-
gle product or that the production function is identical across different products.
Suppose that firm i produces several products indexed by ! according to the
product-specific production function Y;; = F;; (K, X}, ..., X}"). Then Euler’s
theorem for each individual product yields, after multiplying by the product spe-
cific output price and plugging in the first-order condition on the variable inputs
(for notational simplicity I set the returns to scale equal to one)

VMPK;

PyY; =
P

P K+ paPy X, (31)
where P X;; is the total expenditure on variable inputs by firm i used to produce
product [, and Kj; is the capital allocated to the production of product {. I only
observe total output and inputs, and not sales and inputs per product. Taking the
sum of equation (31) over all products yields

VMPK;
PYi =) PaYu=—pg— > Pl Ku+pmy PiXu, (32)
l ' l l

K3

710r, in the case of a Cobb-Douglas production function, if firms have a different output elasticity
this would lead to a bias as well.
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where VM PK;/P[ is the capital-weighted average marginal product of cap-
. PXK,VMPK, Pk .
(VJ\]{IP(K’L = Zl g ZLZP'Il(K'Ll L/ : ), and /le 1S
the e}i(penditure—weighted average markup across different product lines (y; =
2P Xapa
> P 1)1( Xit
diture and the total capital stock are needed.

ital across different product lines

)- Note that only data on total output, total intermediate input expen-

Appendix C Simulations

To get a better sense of the magnitude of the bias due to heterogeneous capital
costs, I apply the cost of capital estimator to simulated data. In order to simulate
data I assume the following functional form of the production function,

v—1

Vi = Agmin{ (0B, 7 +(1- a7 )" al}. (33)

There is a constant elasticity of substitution, v, between capital and labor, and
materials are perfect complements with capital and labor. A; is a Hicks-neutral pro-
ductivity term, o; represents capital augmenting technology, and o} represents
materials augmenting technology.

I choose parameter values to match moments in the data and vary the disper-
sion in the cost of capital. Firms are still assumed to minimize cost and output is
assumed to be log-normally distributed such that the dispersion in output equals
the observed coefficient of variation of 2.1. All statistics reported here are within
industry-year, and means are in thousands of dollars per employee. In the data I
use, the wage is approximated reasonably well by a log-normal distribution with
parameters 3.7 and 0.36. I assume =~ is log-normally distributed with, condi-
tional on the dispersion in the cost of capital, mean and standard deviation such
as to match the observed average capital-labor ratio and coefficient of variation,
which are 74 and 1.54, respectively. Furthermore, I normalize the price of materials
to 1 and assume that o™ is log-normally distributed with parameters such as to
match the average and coefficient of variation of the material-labor ratio (197 and
1.28, respectively). Finally, A is also log-normally distributed such that the average
markup equals 1.1 and the standard deviation equals 0.05, which is roughly similar
to what I find in the data.

I set the depreciation rate to 0.1, which is the average depreciation rate over
the period I am studying. I further assume the interest rate, r, is log-normally
distributed with mean 0.1, to match a cost of capital of 0.2 as I find it to be in the
data, and I let the dispersion vary. I set the elasticity of substitution between capital
and labor equal to 0.5 (Raval, 2019a). Setting a higher elasticity of substitution
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leads to a similar bias (see Table 6 in Appendix G). I simulate data for 5,000 firms
100 times, and for each simulation I estimate the cost of capital and compare it
with the true cost of capital. Table 3 shows how much larger the true cost of capital
is relative to the estimated cost of capital; both the average and standard deviation
across simulations are reported. Suppose that the value of this relative bias is
5%. This means that the true cost of capital and therefore the capital share are 5%
larger than what I estimate them to be. In the data, I estimate the capital share to
be around 8%. Thus, a 5% relative bias means that the true capital share would be
8.4%, and hence the bias in the capital (profit) share is minus (plus) 0.4 percentage
points.

The second column of Table 3 shows the relative bias when the squared capital-
input ratio is not included as a control, for different assumptions on the coefficient
of variation of the interest rate (column 1). For each cell, technology parameters
are re-calibrated to match the data moments. The bigger the dispersion in interest
rates, the bigger the bias, but the bias is limited. When the coefficient of variation
is 0.5, the relative bias is 11%. Thus, in this case, with an estimated capital share of
8% the absolute bias is less than a percentage point and can therefore not explain
the four percentage point rise in the profit share I find. Of course, the coefficient of
variation of the interest rate could be bigger than 0.5 and therefore the bias could
be bigger. However, a coefficient of variation of 0.5 implies that the interquartile
range is 0.06 and that eleven percent of firms face an interest rate lower than 0.05
while fourteen percent of firms face an interest rate higher than 0.15. Given my
sample of publicly listed firms, this is already a substantial variation in interest
rates. Moreover, when going to the data, I will control for financial data such as
the leverage ratio. Thus, to get a substantial bias, a large variation in interest rates,
after including these controls, is needed.

Note that the dispersion in the bias across simulations is sizable. For instance,
when the coefficient of variation of the interest rate is 0.2, the standard deviation of
the relative bias across simulations is 5.1%. This should not be a big concern since I
estimate the cost of capital at the industry level. There are around 30 industries, so
this standard deviation partially averages out when aggregating across industries.
Figure 25 in Appendix H shows that the bias across simulations is symmetrically
distributed around the mean.

The third column shows the bias when the squared capital-input ratio is in-
cluded as a control. The resulting bias gets somewhat lower, but does not go to
zero because the relationship between the capital-input ratio and the cost of capital
is not linear. One reason for the low bias, both without and with control, is that

there is a large dispersion in the capital-input ratio in the data, which yields a
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Table 3: Monte carlo results relative bias

Var. capital-labor ratio I Var. capital-labor ratio II

Coefficient of No control  With control No control With control
variation r

0 0.2% (2.5%) 0.3% (3.8%) 0.2% (2.8%) -0.1% (4.3%)
0.1 0.8% (3.4%) 0.6% (4.2%) 0.8% (3.1%) 0.1% (4.5%)
0.2 2.4% (5.1%) 1.8% (5.5%) 2.6% (4.2%) 1.1% (5.1%)
0.3 4.7% (6.9%) 3.8% (7.1%) 5.4% (5.5%) 2.8% (6.1%)
0.4 7.7% (8.7%) 6.2% (8.8%) 8.9% (6.8%) 5.2% (7.2%)
0.5 11.1% (10.3%) 9.0% (10.3%) 12.8% (7.9%) 8.0% (8.4%)

Notes: The relative bias is < % - 1) 100%. Each cell shows the average and the standard deviation

(within parentheses) of this statistic across simulations. The control refers to the squared capital-input
ratio. For each cell, technology parameters are re-calibrated to match the moments of the data. In the
columns referring to var. capital-labor ratio I, the simulations match the observed variation in the
capital-input ratio, while in the columns referring to var. capital-labor ratio II, the simulations match
half of the observed variation.

large dispersion in technology across firms in the simulations. The variation in
the capital-input ratio could be high, partially because firms cannot adjust the
capital stock within the period or because of measurement error. Therefore, the
last two columns of Table 3 show the bias when the model only captures half of the
observed variation in the capital-input ratio. This leads to only a small increase in
the relative bias, and when the squared capital-input ratio is included as a control,
the bias decreases in fact compared to the simulations that match all the variation
in the capital-input ratio. The reason is that, in this case, with less variation in
technology the relationship between the cost of capital and the capital-input ratio
becomes closer to being linear.

Appendix D Relationship Between Profit Share and
Market Capitalization

As a check of my estimate of the profit share, I study to what extent the profit
share is related to market capitalization. All else equal, it would be expected that
the more profitable an industry is the higher market capitalization. However,
owning a stock provides claims on the future cash flow and this cash flow includes
payments to capital. Therefore, to relate the profit share with market capitalization,
we would want to exclude the value coming from future payments to capital
from market capitalization. Therefore, I subtract net assets (i.e., total assets minus
total liabilities) from market capitalization. The underlying rationale is that net
assets equal the liquidation value of the firm, and that the value that exceeds the
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liquidation value corresponds to the value derived from future economic profits.

Table 4 shows the results of regressing the profit share, at the industry level,
on the asset-corrected market capitalization as a share of sales. The coefficient
is statistically significant and is around 0.03. Thus when profits increase by 1
dollar, market capitalization increases by around 30 dollar. This is consistent with
a stationary equilibrium in which the asset-corrected market capitalization equals
the discounted sum of future profits when the discount rate is 0.97. The coefficient
is insensitive to including industry fixed effects, and the coefficient is also similar

when market capitalization not corrected for net assets is used.

Table 4: Relationship profit share and market capitalization across industries

@ 2) ®3) 4)
7T ™ ™ 7T
market capitalization - net assets 0.0347*** 0.0223***

sales
(0.00367)  (0.00475)

market csaaitsalization 0.0328*** 0.0223***
(0.00277)  (0.00410)
Year fixed effects X X X X
Industry fixed effects X X
Observations 1427 1427 1427 1427
R? 0.117 0.435 0.148 0.439

Notes: Robust standard errors in parentheses. To remove outliers I trim the top and bottom
fifth percentile of the dependent and independent variable.

* p < 0.05,** p < 0.01, *** p < 0.001

Appendix E Calculating the Depreciation Rate

Compustat reports the flow value of depreciation and accumulated depreciation.
One way to calculate the depreciation rate is to divide the flow value of deprecia-
tion by the net capital stock in the previous year. However, this gives unreasonably
large values for the depreciation rate. The reason for this can be seen as follows.
Suppose a firm buys a machine for $1000 at the end of period 0 and depreciates it
linearly in 5 time periods. Table 5 shows the resulting gross and net capital stock,
and the flow and accumulated depreciation as it would be reported in Compustat.
The sixth row shows the resulting depreciation rate when dividing the flow value
of depreciation by the net capital stock in the previous period. The depreciation
rate increases quickly toward the end because the net capital stock is declining
over time. The average depreciation rate in this example is 46%, which is high for

a machine that depreciates in 5 years. The reason is that the company depreciates
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Table 5: Example depreciation rates

time 0 1 2 3 4 5

Gross capital 100 100 100 100 100 100

Net capital 100 80 60 40 20 0

Flow depreciation 0 20 20 20 20 20

Accumulated depreciation 0 20 40 60 80 100

Flow depreciation,

“Net capital, 20% 25% 33% 50% 100%
i 1/age

1 (G ) 20% 23% 26% 33% 100%

linearly whereas economists typically use geometric depreciation. To avoid these
high depreciation rates that are also volatile over time, I will calculate the depre-
ciation rate in the following way. Start with the following equation, relating net
capital to gross capital at time ¢, assuming capital has depreciated with a constant
depreciation rate,

Net capital, = (1 — &;)*° Gross capital, .

. 1/age
Net capital, ) , where the age of the

Gross capital,,
capital stock is measured as accumulated depreciation divided by the flow value

Rewriting this equation gives 6; = 1 — (

of depreciation. This leads to values of the depreciation rate as reported in the
seventh row. The average depreciation rate is at 40% still high, but not as high as
for the naively calculated depreciation rate. The main reason why it is so high is
because the net capital stock is 0 in the last period leading to a depreciation rate of
100%. If the company continuously replenishes capital this would not occur.

Appendix F Profit Share from Industry Data

I here estimate the profit share using industry level data from the BEA. This has as
benefit that all firms are included to construct the industry values and not only
firms that are present in Compustat, but has as downside that there are only few
observations.”?

I use data on value added and its components (from the industry economic
accounts), and the capital stock at current costs (table 3.1ESI). The components of
value added are compensation of employees and taxes on production and imports.
These data is only available from 1987 onward at the industry level. As for the

Compustat data I exclude the utilities, mining, finance, insurance, real estate and

72Hall (1988, 2018) estimates the markup using industry level data. His approach requires knowing
the cost of capital.
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government sectors. This leaves me with 50 industries. To estimate the cost of
capital and the profit share, I construct the left-hand side as value added minus
taxes, divided by labor compensation and the right-hand side as capital divided
by labor compensation. Because there is not enough power to estimate the profit
share year-by-year I include a cubic time trend for the marginal product of capital
and the markup, and industry fixed effects.

Figure 23 shows the resulting profit share, and for reference the profit share as
a share of value added in Compustat. The profit share I estimate using industry
data is very similar in both level and trend to what I estimate using Compustat

data. It increases during the late 1980s and 1990s and flattens out afterwards.

1965 1975 1985 1995 2005 2015

Compustat  ====- Industry BEA |

Figure 23: Profit share (of value added) using BEA industry data

Appendix G Additional Tables

Table 6: Monte carlo results relative bias when elasticity of substitution between capital
and labor is 1.2

Coefficient of No control Control
variation r

0 0.1% (2.4%) 0.2% (3.7%)
0.1 1.0% (3.1%) 0.7% (3.9%)
0.2 3.8% (4.6%) 2.5% (5.6%)
0.3 8.0% (6.2%) 5.6% (7.6%)
04 13.1% (7.6%) 9.5% (9.3%)
0.5 18.7% (8.8%) 13.9% (10.9%)

Notes: Average of (% — 1) 100%. Within parentheses is the
standard deviation of this statistic across simulations.
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Table 7: Relationship cost of capital and depreciation rate across industries

R R
Depreciation rate 0.812*** 0.379*
(0.122) (0.179)
Year fixed effects X X
Industry fixed effects X
Observations 1425 1425
R? 0.106 0.377

Notes: Robust standard errors in parentheses. The depreciation rate
is the average depreciation rate within an industry-year, weighted by
capital. To remove outliers I trim the top and bottom fifth percentile
of the dependent and independent variable.

*p < .05,% p < .01, *** p < .001

Appendix H Additional Figures

KIX

Kernel density (standardized)
----- Log—normal(0,1)

Figure 24: Density Capital-Input Ratio

Notes: The plot shows that the kernel density of the capital-input ratio after log standardizing at the industry-
level (i.e., take the log, subtract the industry-mean and divide by the industry-standard deviation (of the logged
variable) and then take the exponential) coincides with the log-normal distribution with parameters . = 0 and
o = 1. The plot uses data of the year 2000.
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(a) Coefficient of variation r equals 0.02, with- (b) Coefficient of variation r equals 0.02, with
out control control
Figure 25: Histogram of the relative bias across simulations

Notes: The histogram shows the number of simulations with a certain relative bias. The total number of
simulations for each specification is 100.

Salefinputs
e
Iy

4 0 1 4 5

2 5 0 2 3
Capital/inputs

0 1 2 3 2
Capital/inputs Capital/inputs
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(d) 1975 (controls) (e) 1995 (controls) (f) 2015 (controls)
Figure 26: Binned scatter plot

Notes: The plots show the relationship between the capital-input and sales-input ratios for three different years,
both with and without controls. All firms across industries within a year are included. The bins refer to equally
sized groups and are weighted by capital, as the main regressions are.
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1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015

(a) Excluding controls (b) Including goodwill in the (c) All industries combined
capital stock

1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015

(d) Five-year sums of vari- (e) 500 largest firms in each
ables year

Figure 27: Profit share - robustness

13

4-
1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015

(a) Price-average cost ratio (ex- (b) Cost of capital R (c) Profit share
cluding SGA) %

Figure 28: Results when SGA is considered to be a fixed cost (i.e., SGA is not included in
the regression but still subtracted, together with all other costs, from sales to obtain profits)
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Figure 29: Profit share across industries (5-year moving average)

87



Estimating the Cost of Capital and the Profit Share

2 .16

.15
14
.15
1
12
1
1
.05
.05 08
0 .06 0
1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015

(m) Instruments (n) Misc. Manufacturing

.08

(o) Air Transportation

2 .04
.07
15 - 3
1 .05
.02
.04-
.05
03 01
1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 2015
(p) Communications (q) Wholesale Durables (r) Wholesale Nondurables
1 .15{ .07
1 .06
0
.057 .05
-1
0 .04-
P _0s| 03
1965 1975 1985 1995 2005  201f 1965 1975 1985 1995 2005 201t 1965 1975 1985 1995 2005 2015
(s) Apparel Stores (t) Eating and Drinking Places  (u) Retail Miscellaneous
15 1

157

.057
.05

>
<

.05

k

o] 51
1965 1975 1985 1995 2005 2015 1965 1975 1985 1995 2005 201f

(v) Business Services (w) Health Services

51
1965 1975 1985 1995 2005 201f

(x) Engineering and Related
Services

Figure 29: Profit share across industries - continued
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AppendixI Lag as Instrument

When there are productivity shocks, and capital responds with a lag while other
inputs do not, then this leads to a correlation between the capital-input ratio and
the marginal product of capital, and therefore to a bias. In the main text I deal with
the bias arising from shocks, by using the lagged capital-input ratio as instrument.
Here I show, using simulations, that this instrument is indeed appropriate.
I'solve the following model. For simplicity, only consider two inputs: capital
K and one other input X. The firm solves the following maximization problem,

E Y(PY, — P*X, — I,
{Ptyyt’Xzfll??i(t‘Fl}?iO ;B ( e P t)
st Y, = ALKPX} e
Pt _ Y;—l/o’

Kt+1 = (]. - 5)Kt + It .

It maximizes the discounted sum of its profits choosing output, inputs and the
price where the firm takes into account an iso-elastic demand curve with price
elasticity o. Production is assumed to be Cobb-Douglas, as this allows for an
analytic solution of the optimization problem. The advantages of an analytic
solution are that it improves the reliability of the results and that it becomes easier
to allow for rich heterogeneity.

Substituting the constraints into the objective and taking the derivative with
respect to X; and rewriting gives the following expression for X; as a function of
K; and A,

PX -0 1-o m
Xt:(ft A7 Kt"a> : (34)

—

where ;1 = ~%5 is the markup. Taking the derivative with respect to K¢, gives

a(c—1)-0 o1 (1_g)e=L 1
al 7 By (Atfl Xf,(+1 ' ) =M (3 +0— 1) . (35)

Bringing the expression for X; from equation (34) one period forward, plugging it
into (35) and solving for capital gives

a 14+a(oc—1) w (a—1)(c—1) 1+U(1 - 14+a(o—1)
Kipp= (- o (R, AT _
we(oien) () e ()

(36)
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Figure 32: Histogram of the estimated cost of capital across simulations

Notes: The height of each bar is the relative number of observations in each bin. The red vertical line shows the
true cost of capital, which is 0.1.

Thus, capital is a function of parameters and the expectation of (transformed)
productivity, which we know conditional on the stochastic process of productivity.
When the log of productivity follows an AR(1) according to log A:y1 = po +

p1log Ay + &11 where the innovations &; are mean-zero normally distributed with

standard deviation o¢ then ]EtAtljf(i“” =e 0#;1—”/151 %e%(%)%g.

I simulate 100 times 1000 firms for two periods. For each sample I run the OLS
using the data from the second period (i.e., the baseline) and second I instrument
the capital-input ratio with the lagged capital-input ratio. As parameters I take

as discount factor 5 = and as depreciation rate § = 0.06 to obtain a cost of

1
1+0.04
capital of 0.1. I norrnaliz+e the input price P;X to 1. The demand elasticity o is set
such that the markup is 1.2. The output elasticity of capital o varies uniformly
between 0.1 and 0.4. I set the persistence of the AR(1) process for productivity p;
to 0.95, and set py to 0. To obtain a constant standard deviation of productivity
over time I set he standard deviation of the innovation to o¢ = 0,,/1 — p} where
0, is the standard deviation of log productivity that is used to draw the initial
distribution of productivity.

Figure 32 shows the resulting distribution of the cost of capital for both the
OLS and IV estimator. The true cost of capital is 0.1 in each simulation which
is indicated by the red vertical line. The OLS estimate is severely biased with
the average estimate being 0.0635 (note that in these simulations I do not use the
squared capital-input ratio as a control). The IV estimate deals fully with the bias
coming from productivity shocks. The average IV estimate is with 0.099 very
close to the true value of 0.1. Moreover, the dispersion of the IV estimate across
simulations is quite small. The IV estimate ranges between 0.095 and 0.105.
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That there is such a big difference between the OLS and IV estimate in the
simulated data but not in the Compustat data suggests that productivity shocks
are not important for my estimator. This could either be because productivity
shocks in the data are not sizable, or because it takes time for all inputs to respond
to productivity shocks and not only for capital.

Appendix] Correcting for First-Order Approximation
5 (R)

In the main text I used a first-order approximation for R= %}KW
"

such that
E (E) ~ R. Here I study the error induced by this first-order approximation and
show that it is small. For notational simplicity I assume constant returns to scale.
This does not affect the results.

Denote VMPK by z and i by y, such that R =

Taylor series expansion around the mean E(z) and E

. Taking the second-order
y) gives

< |

—~

R~
E(y)?

(y— E(y)) -

and subsequently taking the expectation gives

~ E(z) 1 E(z)
E(R)= — ——cov(z,y) + ——=var(y) .
(B) = B) ~ Bapee 0+ e
The last two terms are second order. Plugging z = VMPK and y = fi back into
the equation, and using that both are unbiased estimates of the marginal product
and markup, respectively, gives

E (}A%) ~ @ - %cov (VT/[?K,;?) + VMﬂ#VM(ﬁ) ,

where ~ represent averages. With R being common across firms, we have that
VMPK = iR, and hence E (ﬁ) = R up to a first-order approximation (Proposi-
tion 2). Using the regression output, it is straightforward to correct for the error
induced by the first-order approximation compared to the second-order approxi-
mation. The resulting estimate of the profit share is shown in Figure 33, and it is
identical to the baseline first-order approximation. Therefore, it is unlikely that

95



Estimating the Cost of Capital and the Profit Share

including higher order terms would lead to a substantially different estimate of
the profit share.

.05

1965 1975 1985 1995 2005 2015

‘— Baseline ==== Bias correction first order approx ‘

Figure 33: Profit share second-order approximation

Appendix K Growth Accounting

One frequently used way to estimate productivity growth is to calculate the Solow
residual (Solow, 1957). Doing so, productivity growth is found to be lower after
1970 than before 1970. This is the so-called productivity slowdown (Gordon,
2016). However, in order to calculate the Solow residual, perfect competition and
constant returns to scale are assumed. Here, I explore the effects on the Solow
residual when diverting from perfect competition and constant returns to scale,
using my estimates of the capital share and returns to scale.

Suppose there is an aggregate production function Y; = F(A,, K, H,), where
Y is real value added, A is productivity, K is real physical capital and H = hL is
human capital where L is hours of labor.”® Taking the derivative with respect to
time and dividing by Y gives

v, K

K W I

Y, K gh L OF, Ay A,
o +€t< DAY, A,

where X, = dﬁ‘ refers to the time derivative, and 6 and 6/ to the output
elasticity with respect to physical and human capital respectively. Some of the
growth in the capital stock is caused by growth in productivity. To credit such
growth to productivity growth I follow Klenow and Rodriguez-Clare (1997) and

subtract 6/ % from both sides in the above equation, subsequently divide by

73See Baqaee and Farhi (2020) for growth accounting in a network economy with imperfect competi-
tion.

96



Estimating the Cost of Capital and the Profit Share

1965 1975 1985 1995 2005 2015
| — Elasticity Capitd ===~ Elasticity Labor |

Figure 34: Output elasticities (value added production function)

1 — 6% and then subtract labor growth f—i from both sides to obtain a growth
decomposition of output per hour

Yi L _ 0f (K@ Y of @+0{’+9{<—15 1 OF A A,
Y, L, 1-0fF\K, Y,)T1-6Fh 1-0K L, 1-0K0A Y, A,
N—— ———
Growth output Contribution physical capital Contribution Scale effect Contribution productivity
per hour human capital
Note that ¥ — Lt s the growth in output per hour (¥i/L:) Growth in output
Y. ~ L¢ & putp Yi/L: P

per hour comes from capital deepening, improvements in human capital, changes
in labor supply in case of no constant returns to scale and changes to productivity
which is the Solow residual. The scale effect is non-standard as it is equal to zero
in the case of constant returns to scale (i.e., when 67 + 90X = 1). Suppose there
are decreasing returns to scale and that growth in the number of hours is positive.
Then the contribution of the returns to scale being different from one is negative.
This is because at the left-hand side is growth of average labor productivity. In
case of decreasing returns to scale the marginal product is lower than the average
product and therefore increasing the scale (i.e., increasing the total number of
hours) lowers average productivity.

The contribution of productivity is productivity growth, g4 = %, multiplied
by — I gii A7:. In case of productivity being Hicks-neutral the contribution of
productivity equals ﬁ ga, and when productivity is labor augmenting the

H
contribution of productivity equals ﬁ#tk gA.
Typically, perfect competition and constant returns are assumed such that
0 is approximated by the payments to labor as a share of value added, and

0K =1 — 0. Instead, I estimate the output elasticity using cost shares. Recall that
the output elasticity for capital is 6% = %d) and likewise for . Note that

I cannot use the estimate of the returns to scale, ¢, obtained in the main text as
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Table 8: Growth accounting

Contributions from

Period Output per hour Capital Labor comp Scale effect Solow res

A. Perfect competion and constant returns

1948-2015 24 0.1 0.3 0.0 1.9
1948-1973 3.3 -0.2 0.3 0.0 3.2
1973-1990 1.5 0.5 0.3 0.0 0.8
1990-1995 1.6 0.2 0.6 0.0 0.8
1995-2007 29 0.3 0.4 0.0 22
2007-2015 1.5 0.3 0.4 0.0 0.8

B. Imperfect competion and varying returns

1948-2015 24 0.1 0.3 -0.1 2.1
1948-1973 3.3 -0.1 0.2 -0.1 3.2
1973-1990 1.5 0.2 0.3 0.0 1.1
1990-1995 1.6 0.1 0.6 -0.1 1.0
1995-2007 29 0.1 0.3 -0.1 25
2007-2015 1.5 0.1 04 0.1 0.9

C. Imperfect competion and constant returns

1948-2015 24 0.1 0.3 0.0 2.0
1948-1973 3.3 -0.1 0.3 0.0 3.1
1973-1990 1.5 0.2 0.3 0.0 1.0
1990-1995 1.6 0.1 0.6 0.0 0.9
1995-2007 29 0.1 04 0.0 24
2007-2015 1.5 0.1 0.4 0.0 0.9

Notes: Average annual growth rates (in percent), the numbers in a row might not add up due to
rounding errors. Source: BLS, Compustat and own calculations.

here a value added production function is used while in the main text I estimate a
gross output production function. Therefore, I re-estimate the returns to scale in a
similar way as in equation (26), but replacing sales by value added and having
the input bundle only consist of labor and capital. This leads to similar returns to
scale as found before, and Figure 34 displays the output elasticities. Due to the
presence of markups the output elasticity with respect to labor is (much) higher
than what is found using the labor share (i.e., 0.8 vs 0.65). When doing the growth
decomposition I will take 6% and 67 to be the average across two subsequent
periods.

In order to do the above growth accounting decomposition I use the historical
multifactor productivity measures from the Bureau of Labor Statistics. This com-
prises data on output, hours worked, capital services and labor composition to
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approximate h, all for the private business sector from 1948 onwards. In order to
compare my growth decomposition with the literature, panel A of Table 8 shows
the decomposition when perfect competition and constant returns to scale are
assumed. I split the sample period in the same sub-periods as Jones (2016) does to
highlight the productivity slowdown. As is a stylized fact, the majority of growth
in output per hour for the period 1948-2015 comes from growth in the Solow
residual. In the period 1948-1973 the solow residual grows at 3.2% while it grows
only at 0.8% during 1973-1995. This is the productivity slowdown. After 1995 the
Solow residual increases rapidly again at a rate of 2.2% although not as fast as
pre-1973. After the financial crisis, productivity growth slows down again.

Panel B of Table 8 shows the decomposition of growth when allowing for
imperfect competition and the returns to scale being different from one, using
my estimates for the output elasticities. I only estimate the output elasticity from
1964 onward. I impute the output elasticities for the period 1948-1963 using the
averages for the period 1964-1973. The decomposition over the period 1948-2015
is very similar as in panel A although the Solow residual grows slightly faster in
panel B. The contribution of the returns to scale being different from 1 is small, but
negative because the returns to scale are less than 1. Furthermore, looking at the
difference between the periods 1948-1973 and 1973-1990 the drop in the growth
rate of the Solow residual between these two periods is in panel B not as big as in
panel A, although still substantial. The fall in the growth rate of the Solow residual
in panel B is with 2.1 percentage points 0.3 percentage points lower than in panel
A. Thus, allowing for imperfect competition and non-constant returns to scale
attenuates the productivity slowdown, but by no means makes the productivity
slowdown disappear.

To obtain the estimate of the output elasticity I estimate the returns to scale
at the firm level whereas for the growth accounting exercise the returns to scale
at the aggregate is needed. Both might not coincide with each other. Therefore,
panel C of Table 8 shows the decomposition when constant returns to scale are
assumed such that the output elasticities are simply the cost shares. The results in
panel C are very similar to the results in panel B.

99






Chapter 2
Profits and the Marginal Product of
Capital Around the World

When international capital markets are frictionless the marginal product of capital
will be equalized across countries.! When, on the other hand, the marginal product
of capital varies substantially across countries, this implies that there are severe
frictions. In the latter case, global output could be increased by reallocating capital
from countries with a low marginal product of capital to countries with a high
marginal product of capital.

It is well-known that the capital-labor ratio in rich countries is substantially
larger than the capital-labor ratio in poor countries.? All else equal, this implies
a larger marginal product of capital in poor countries. However, countries with
a low capital-input ratio might differ with respect to other factors as well, such
as the level of human capital and total factor productivity, which would affect
the marginal product of capital (Lucas, 1990). Caselli and Feyrer (2007) take
into account cross-country differences in endowments of natural resources and
differences in the price of capital relative to the output good, and find that the
marginal product of capital is not correlated with development. To estimate the
marginal product of capital, Caselli and Feyrer (2007) multiply the capital share
with the nominal output-capital ratio. The difficulty is in obtaining the capital
share. By assuming perfect competition and constant returns to scale, Caselli
and Feyrer (2007) estimate this as 1 minus the labor and natural resource shares.
However, when firms make profits, this would overestimate the capital share and
therefore overestimate the marginal product of capital.

Using the method developed in Chapter 1, I estimate the marginal product of
capital across countries while allowing for differences in the degree of competition
and in the returns to scale across countries. I find that the marginal product of

capital is lower in poor countries than in rich countries. Prima facie, this implies

To be precise, the return on capital is what is expected to be equalized across countries. The return
on capital is the marginal product of capital minus the depreciation rate, plus capital gains. I will take
into account heterogeneity in the depreciation rate.

2 An increase in GDP per worker of $1 is associated with an increase in capital per worker of $3.8 in
2013 (Penn World Tables 9.1).
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that global output could be increased by reallocating capital from poor to rich
countries.

One potential reason for getting this slightly surprising result compared to
the literature, is that poor countries have a higher profit share. However, when I
correlate development with profitability I find no relationship. Another potential
reason for why I estimate the marginal product of capital to be lower in poor
countries is lower data quality in poor countries as measurement error in the
capital stock leads to a downward bias of the marginal product of capital with my
method. Correcting for measurement error, I find that the relationship between
the cost of capital and development gets attenuated but is still weakly positive.

What explains the lower marginal product of capital in poor countries is that
the depreciation rate in poor countries is lower than in rich countries. This could,
for instance, be due to rich countries having more equipment relative to structures
than poor countries. When there is heterogeneity in the depreciation rate, the
marginal product of capital is no longer equalized across countries under efficient
markets. This is because investors take into account that if the depreciation rate is
higher, they will be left with less capital in the future, and therefore, demand a
higher marginal product of capital. That is, the return on capital—the marginal
product of capital net of depreciation—is equalized across countries when markets
are efficient.® I find that there is no relationship between development and the net
marginal product of capital. Thus, there are no severe frictions limiting the flow of
capital between rich and poor countries, and global output net of depreciation—
net domestic product (NDP)—cannot be increased by reallocating capital from
poor to rich countries or vice versa.

The second contribution of this paper is to estimate how the profit share has
evolved across different regions over time. I find that the profit share shows an
inverted U-shape in Europe between 1990 and 2015, with an overall increase of
around 2 percentage points. Profits have also been rising in Asia, Latin America
and North America. This does not mean that profits in all countries have been
increasing. For instance, the profit share has not increased in Canada. The global
profit share has been rising by around 2 percentage points from 1990 to 2015, which
is somewhat less than the increase in the United States. Finally, richer countries
have experienced a somewhat faster increase in profitability.

3For simplicity, and due to data constraints, I do not take into account differences in capital gains
across countries.
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I The Marginal Product of Capital

Caselli and Feyrer (2007) estimate the marginal product of capital by multiplying
the capital share with the inverse of the capital-output ratio. The difficulty is in
obtaining the capital share. They assume perfect competition and constant returns
to scale such that the capital share is 1 minus the labor and natural resource shares.
However, in the presence of profits, the profit share also needs to be subtracted in
order to obtain the capital share. This means that when the profit share is positive,
Caselli and Feyrer (2007) overestimate the marginal product of capital.

To estimate the marginal product of capital in the presence of profits, consider

a firm 4 that maximizes profits at time ¢,

M

E X ym K
P Y, Xr{laXXMK Pit(Yit)Yit_ Pit Xit _Ritpit K (1)
{ ity L ity <Ny it} m—1

st Yy = Fp (Xfy, ., X3 Ko, )

The firm uses as inputs capital, K, and M other inputs, X}, according to the
production function Y;; = Fy; (X}, ..., X}, K;;). These inputs could, for instance,
be (different types of) labor and materials. Different types of capital are also
allowed, but for notational simplicity I only consider one capital good here. The
firm internalizes that production affects the output price, P;;, while (domestic)
input markets are assumed to be competitive. That is, input prices P;X ", P and
R;; do not depend on the input quantity demanded.

The first-order condition with respect to capital gives that the marginal revenue
product of real capital, M RPK;;, divided by the price of capital, P/, equals the

cost of capital, R;¢,

MRPK;;

= Rit .
P

The marginal revenue product of real capital is the increase in revenue when the
real capital stock, K, increases by one. This marginal product divided by the
price of capital, %, is the increase in revenue when the nominal capital stock,
PX K, increases by one. The latter is predicted to be equalized across countries
when capital is fully mobile, and when the depreciation rate and the price growth
of the capital good is identical across countries. That is, an investor should get the
same compensation independent of whether it invests capital worth one US dollar
in the United States or in Indonesia. In what follows, I will refer to the marginal

product of nominal capital as the marginal product of capital.
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I here assume profit maximization while in Chapter 1 I assumed cost mini-
mization. The difference is that cost minimization gives a link between the valued
marginal product of capital and the cost of capital while profit maximization gives
a link between the marginal revenue product of capital and the cost of capital. In
this chapter I am interested in the capital allocation and therefore, I am interested
in the marginal revenue product. Nevertheless, when marginal revenue equals

marginal costs, the valued marginal product of capital and the marginal revenue

MRPK;, _ VMPK;
P 7If< T patP, zlf

where p;; is the markup.4 Therefore, the first-order conditions implied by profit

product of capital are closely related to each other, namely,

maximization are the same as under cost minimization, and the machinery de-
veloped in Chapter 1 can be used here as well. Estimating the marginal revenue
product of capital comes down to estimating the cost of capital R.

Thus, assuming in addition to profit maximization that the production function
is homogeneous of a constant degree gives a linear relationship between the sales-
input ratio and the capital-input ratio. The intercept equals the price-average cost
ratio while the slope equals the marginal revenue product of capital times the
price-average cost ratio (or, equivalently, the slope equals the valued marginal
product of capital divided by the returns to scale). Under the assumption that
the cost of capital is equalized across producers within a country, the slope and
intercept are identified by running a regression. Dividing the slope coefficient by
the intercept coefficient gives the cost of capital or the marginal revenue product
of capital, which is the object of interest. I refer the reader to Chapter 1 for details
on the estimation.

Note that to estimate the marginal revenue product of capital, I do not need to
make any assumptions about the returns to scale. This is different from Caselli
and Feyrer (2007) who assume constant returns to scale.” Furthermore, as I do
not have to specify (or estimate) the production function, I allow for differences
in technology across countries. This implies that countries can also vary in their

4This equality is easily obtained from the condition that marginal costs equal marginal revenue. The
marginal cost is by definition of the markup equal to the price divided by the markup, and marginal
dRev OY.
revenue is 2fev = 2y oK — MRPK
9K
that MRPK = W, where I have used that VM PK = P - M PK. Alternatively, one can use

the following derivation. Note that taking the derivative of revenue with respect to capital gives that
MRPK equals P’(Y)Yg—; +Pg—£ = (P’(Y) % + 1) VMPK. To get an expression for P’ (Y") % +1,
rewrite the profit maximization problem as maxy;, P;;(Yi¢)Yi: — Ci¢(Ys¢), where Cyy (Y5 ) is the cost
function. The associated first-order condition is P'(Y)Y + P = C/,(Yit) = mcy. Using that the
marginal cost, mc;¢, equals the price divided by the markup by the definition of the markup gives after
rewriting that P’(Y") % +1= i Plugging this into the earlier equation gives that M RPK = YMPK

. Equalizing this with the price divided by the markup gives

5Note that Caselli and Feyrer (2007) estimate the valued marginal product of capital but this concept
is identical to the marginal revenue product of capital when markets are competitive, which is the
assumption in their paper.
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human capital. The reason is that the factors of production, X™, could refer to
different types of workers in terms of their education level. And these different
types are allowed to enter the production function in an arbitrary way as long
as homogeneity is preserved. Nonetheless, for the estimation, only data on total
operating expenses is needed and no information on how many employees with a
certain education level each firm has is required.

An alternative method to estimate the marginal product of capital using micro
data would be to specify and estimate a production function using standard IO
techniques, of which then the analytic derivative could be taken. However, this
has as its downside that if one wants to allow for differences in human capital,
as is shown to be important by Lucas (1990), one has to know the educational
attainment of the employees of each firm. I am not aware of any such dataset
covering a wide range of countries and therefore, such an approach would be

infeasible.

Data

The data used in this paper comes from Compustat. Compustat collects data on
the balance sheet and income statement of a large number of firms across the world
from 1987 onwards. These are mainly publicly listed firms. I estimate the profit
share for each country-year pair separately, where I identify the country of a firm by
the location of its headquarters. As there are relatively few firms for each country, I
run the regression at the economy level and not at the industry level. See Chapter 1
that, for the United States, doing the estimation at the economy level gives similar
results as when the estimation is done at the industry level. As in Chapter 1, I
control for heterogeneity in the cost of capital. I use as controls the depreciation rate
and the capital-input ratio. These controls control for heterogeneity across firms
within a country, and do not control for heterogeneity in, let us say, depreciation
rates across countries. Since there are relatively few firms for some countries, I
decided to not include all possible controls, such as firm size and financial leverage,
as these controls did not seem to impact my estimate of the cost of capital for
the United States. Combining firms across all industries has as its downside that
the heterogeneity in the cost of capital might be larger due to differences in risks,
and therefore risk premia, across industries. To control for this, I include as an
additional control the standard deviation of the growth rate across firms within a
2-digit industry. I trim each variable that shows up in the regression by the bottom
and top percentile for each country-year pair.®

6T do not trim the ‘risk’ variable as this only differs across industries.
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Figure 1: Cost of capital R, 2013 Figure 2: Price-average cost ratio, 2013

The variables I use are identical to the variables I use in Chapter 1 for the
United States. The capital stock includes externally purchased intangibles, but not
internally developed intangibles. The costs for developing intangibles are fully
expensed and are therefore part of operating expenses. The depreciation rate is
constructed using data on the reported value of depreciation and the capital stock.

Results

Figure 1 shows how the cost of capital is correlated with GDP per capita in
2013, where the cost of capital (as do the other variables in this section) refers
to the 5-year average around 2013, and GDP per capita is normalized to the US
level.” There is a positive relationship between income and the cost of capital.
The coefficient of regressing the cost of capital on normalized GDP is around
0.05, which is substantial, although not significant at the 5% level. Figure 10 in
Appendix A shows that the pattern is very similar in 1998 for this figure and all
coming figures.

That there is a positive relationship between income and the marginal revenue
product of capital is somewhat surprising as the usual result is a negative rela-
tionship (Lucas, 1990) or no relationship (Caselli and Feyrer, 2007). One potential
reason for this discrepancy is that Caselli and Feyrer (2007) assume that profits
are zero. If poor countries have a higher profit share than rich countries, Caselli
and Feyrer (2007) would overestimate the marginal product of capital to a larger
extent in poor countries. However, Figure 2 shows that there was no relationship
between development and the price-average cost ratio.® And Figure 3 shows
that the reason why richer countries have a higher marginal revenue product of

’GDP per capita is obtained from the World Bank World Development Indicators.
8In 1998, poorer countries had a weakly larger price-average cost ratio than rich countries, but this
is not quantitatively large enough to explain the differences in the cost of capital.
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Figure 3: Valued marginal product of capital Figure 4: Cost of capital R (lag as instrument),
divided by the returns to scale, 2013 2013

capital is that they have a higher valued marginal product of capital divided by

VMPK
PKg

¢ are the returns to scale.

the returns to scale (i.e. this is the slope coefficient in the regression), where
Thus, these results suggest prima facie that in poor countries production is too
capital intensive and that global output would increase when capital is reallocated

from poor to rich countries.

Measurement Error

One possible reason for finding a lower cost of capital in poor countries is that
data quality is lower in poor countries. Classical measurement error of the capital
stock would lead to attenuation bias meaning that the cost of capital is downward
biased while the price-average cost ratio is upward biased. Thus, if there is more
measurement error in the capital stock in poor countries than in rich countries,
this could explain why I find the cost of capital to be smaller in poor countries.
To test this hypotheses, I instrument the capital-input ratio with the lagged
capital-input ratio. This instrument deals with measurement error of the capital
stock if the measurement error is not correlated across two periods. Figure 4
shows that, after taking measurement error into account, there is still a positive
relationship between the cost of capital and development. However, the strength
of this relationship is attenuated compared to the baseline. Increasing normalized
GDP per capita by 1 increases the cost of capital by 0.02, while in the baseline this

increase was 0.05.
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Depreciation Rate

Another reason for there being a positive relationship between development and
the marginal product of capital is that the composition of capital might differ
across countries. Firms in rich countries might use more equipment relative to
structures than firms in poor countries. Equipment has a higher depreciation
rate than structures and therefore, the depreciation rate might be larger in rich
countries. Figure 5 shows that rich countries indeed have a higher depreciation
rate.

If there is heterogeneity in the depreciation rate, then the marginal product
of capital would not be equalized across countries under efficient markets. The
depreciation rate is a cost as this leads to less capital in the future. Therefore, an
investor wants to be compensated for the higher depreciation rate by a higher
marginal product. Thus, under efficient markets, the marginal product of capital
net of depreciation would be equalized across countries.

Figure 6 shows that there is no relationship between development and the
cost of capital after subtracting the depreciation rate. This figure uses the cost
of capital corrected for measurement error. Thus, this implies that there are no
severe frictions limiting the flow of capital between rich and poor countries and
that NDP would not increase if capital is reallocated from rich to poor countries or

vice versa.

II Profits over Time and across Continents

I now turn to how profitability has changed over time across different continents.
For the interpretation of the results at the country level, it is problematic that
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Figure 7: Profit share across continents

the data mainly consists of publicly listed firms. These are mainly larger firms
that tend to be exporters and multinationals. For instance, Volvo is a Swedish
firm while only a fraction of its sales occur in Sweden. If Volvo charges a high
markup on its sales in other countries, this will lead to a high measured profit
share in Sweden while the actual profit share in Sweden might, in fact, be much
smaller. Hence, the results for small open economies in this paper are not reliable.
Therefore, I aggregate the profit share up to the continent level and this will be the
main focus here. This is under the assumption that the profitability of a firm to a
larger extent reflects the market conditions on its own continent than elsewhere.
Finally, I aggregate all countries and obtain the global profit share. As weights I
use the GDP of each country.’

Figure 7 shows the profit share for each continent. In Europe the profit share
displays an inverted U-shaped pattern over time with a peak in the mid-2000s.
Overall, profits as a share of sales in Europe seem to have increased from being
around 3% in the 1990s to being around 5% in the 2010s. There seems to be a
weakly increasing profit share in Asia and Latin America, although the series are
too erratic to tell with any certainty. For Oceania, there is only data for Australia
and profits have been increasing in Australia. South Africa is the only African
country with sufficient data to estimate the profit share, and profits have been
declining in South Africa. Finally, in North America the profit share has been

The results are similar when using sales in Compustat as weights, see Figure 15.
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increasing by around 3 percentage points from 1990 until 2015.

These numbers mask important heterogeneity across countries. Figure 11, 12,
13 and 14 in Appendix A show the profit share for the European, Latin American,
North American and Asian countries, respectively. Although profits have been
increasing at the European level, there are several European countries for which the
profit share has not been increasing or has even been declining, such as Belgium,
Ireland and Greece. That there is heterogeneity across European countries is
not surprising as there is also heterogeneity in the decline of the labor share
across Europe (Gutiérrez and Piton, forthcoming; Cette et al., 2019). Several Asian
countries show a decline in profits over time. The increase in profits in Latin
America is driven by Chile and Mexico while the profit share in Brazil and Peru
has been declining. Finally, profits in Canada have not been increasing.

Aggregating to the global level, Figure 8 shows the global profit share. The
global profit share has been increasing from around 4% of sales in 1990 to around 5-
6% of sales in 2015. The increase in global profits is about half of what is observed
for the United States where the profit share has increased by about 4 percentage
points during this period. This differs from De Loecker and Eeckhout (2019)
who estimate the global markup and find that it has been increasing at almost
the same rate as the markup in the United States.!® One potential explanation
for this difference in results between the two approaches is that De Loecker and
Eeckhout (2019) do not estimate the output elasticity (which is a crucial part of
their estimator of the markup) for each country separately but assume that it is the
same as in the United States. Instead, I estimate the cost of capital for each country
separately and do not assume that technology is the same across countries. If, for

19The baseline estimate in De Loecker and Eeckhout (2019) is the sales-weighted average markup
across countries, which has increased at a slightly slower pace than the US markup. When they weight
countries by GDP, the global markup has increased faster than the US markup.
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Figure 9: Change profit share

instance, labor costs differ across countries, this might lead to differences in factor
augmenting technologies, and hence output elasticities, due to directed technical
change.

Finally, Figure 9a shows that richer countries have experienced a somewhat
faster increase in profits than low-income countries between 1998 and 2013. How-
ever, there are several low-income countries that experienced a substantial increase
in profits as well. One reason for finding that low-income countries have experi-
enced a slower growth in profitability is measurement error. If measurement error
has been declining over time for low-income countries then I underestimate the
rise in profits for these countries. Figure 9b shows that this is indeed the case to
some extent since after using the lag as an instrument, the relationship between
income and the change in the profit share is attenuated.

Figure 16 in Appendix A shows that also the global profit share increases by 2-3
percentage points when using the instrument compared to 1-2 percentage points
when not using the instrument. But also the US estimate of the rise in the profit
share is larger when using the lag as instrument. Thus, it is still the case that the
global profit share has increased at a slower rate than the US profit share. Finally,
for most continents, the profit share looks roughly similar when comparing the
results with and without instruments, except for Asia, for which there is a more
clearly marked increase in the profit share when using the instrument compared
to the baseline (Figure 16).
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IIT Conclusions

This paper studies whether the marginal product of capital is related to develop-
ment and how the profit share has evolved globally over time. I find that richer
countries have a higher marginal product of capital, but that this is mainly driven
by richer countries having a higher depreciation rate. After subtracting the de-
preciation rate from the marginal product of capital, there is no relationship with
development. Thus, global NDP would not increase after reallocating capital from
rich to poor countries or vice versa.

Compared to the literature (Caselli and Feyrer, 2007), I allow for imperfect com-
petition and non-constant returns to scale. Thus, both the degree of competition
and the returns to scale are allowed to differ across countries in my framework.
(Caselli and Feyrer, 2007) find that the marginal product of capital is not related to
development and do not take into account differences in depreciation rates. In-
stead, I find that richer countries have a higher marginal product of capital, but that
the marginal product of capital net of depreciation is not related to development.

Furthermore, I find that the rise in profits is not only a US phenomenon but that
the profit share has also been increasing on other continents. This means that the
global profit share has been increasing, although at a lower rate than the increase
in the US. Finally, I find that richer countries have experienced a somewhat faster

increase in profitability than poorer countries.
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Chapter 3
The Life Cycle of Profits

Chapters 1 and 2 show that profits have been increasing during the last decades.!
At the same time firm entry has been declining (Decker et al., 2014). In this chapter,
I provide quantitative evidence for a new hypothesis that can explain both the
rise in profits and the fall in firm entry, namely, that profits have become more
back-loaded over the life cycle of the firm. Or, put differently, that the profits-firm
age relationship has become steeper over time.

An entrepreneur enters the market when the value of having a firm is larger
than the cost of entry. Thus, in equilibrium, entry costs equal the value of the firm,

ce=Vo =Y BT, )
where c. denotes the entry costs. The value of the firm upon entry is denoted by V4,
which equals the discounted sum of profits I1, over the life cycle of the firm, where
firm age is denoted by a and the discount factor is denoted by 5 < 1. Naturally,
profits might differ over the life cycle, and that is why profits are indexed by a.
Due to discounting, total profits earned over the life cycle generally do not equal
entry costs. And when profits are back-loaded, total profits exceed the discounted
sum of profits and therefore exceed the entry costs (Atkeson and Kehoe, 2005).
Consider the following thought experiment. Suppose that the economy is
initially in equilibrium, but that, over time, profits shift from a young firm age
to an old age, in such a way that total profits over the life-cycle remain constant.
That profits become more back-loaded lowers the value of entering the market
as profits that appear later are more heavily discounted than profits that arrive
early. Therefore, the entry condition (1) no longer holds as entry costs now exceed
the value of the firm. Thus, as a response, firm entry goes down and hence
competition goes down. This will, in turn, increase markups and the profits
firms are making, until the entry condition holds again. Figure 1 illustrates this
graphically. The blue solid line is an example of what profits over the life cycle
might look like initially. Older firms make more profits than younger firms but

I That profits have been increasing is also found by others in the literature (e.g., Barkai (2017) and
De Loecker et al. (2018)).
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Figure 1: Illustration of profits over the life cycle

the profits-age relationship is quite flat. The red dashed line shows what the
profits-age relationship might look like when profits become more back-loaded
but before the equilibrium response; young firms make less profits and old firms
make more profits, but the (undiscounted) sum of profits over the life cycle is the
same as in the initial equilibrium. The green dotted line shows what profits might
look like after the economy has moved to a new equilibrium. The discounted
sum of profits is the same in the new as in the initial equilibrium, but total profits
over the life cycle are larger in the new equilibrium than in the initial equilibrium.
Therefore, an econometrician that observes the cross-section, and therefore weights
all ages the same, concludes that aggregate profits have gone up. In Figure 1, it is
assumed that the equilibrium response takes the form of a parallel shift in profits,
but this does not necessarily need to be the case. Young and old firms might be
differentially affected by the decrease in competition.

Section I shows that the profits-age relationship has indeed become steeper
over time. Before 2000, older firms were only making moderately more profits
than young firms, while after 2000 older firms were making much more profits
than younger firms. Moreover, young firms after 2000 are making about as much
profits as they did during the 1980s and the 1990s. These results hold for different
estimates of the cost of capital, are not driven by changes in the industry composi-
tion over time and are not driven by the great recession. The results are also not
sensitive to outliers as the life cycle of profits has also changed for the median
firm. Thus, the hypothesis put forward in this chapter does not only apply to the
so-called superstar firms.

Next, I decompose the change in the life-cycle pattern of profits into three
components: the life-cycle patterns of i) profits as a share of sales, ii) firm size
measured by sales and iii) the covariance between the profit share and firm size. I
find that after 2000, firms younger than 15 years had a lower profit share, were
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about equally large and had a larger covariance term compared to firms younger
than 15 years before 2000. On the other hand, older firms have not experienced
any change in their (unweighted average) profit share, while they have become
much bigger, and only experienced a weak increase in the covariance between the
profit share and firm size.

To study the equilibrium response to a change in the profits-age relationship,
I'build a quantitative model in Section II. The model features oligopolistic com-
petition a la Atkeson and Burstein (2008) built into an overlapping generations
model with an occupational choice between being an entrepreneur or a worker.
Agents make the occupational choice at the beginning of their life, comparing
the present value of earning a wage in the labor market with the present value
of future profits. The present value of earning a wage is reminiscent of the entry
cost in (1). It is the opportunity cost of choosing to be an entrepreneur. Further-
more, oligopolistic competition ensures that there is a relationship between the
number of firms and profits. A result of the model is that a firm’s level of profits
depends on its productivity. I allow productivity to depend on age. And in order
to generate a changing profits-age relationship I vary how productivity changes
with age. I set the productivity-age relationship such as to match the observed
profits-age relationship at different points in time. When calculating the profits-age
relationship, I normalize profits such that average profits do not vary. I then let
the model find the level of profits for which agents are indifferent between being
an entrepreneur and a worker. Thus, in terms of Figure 1, I match the blue and red
line exogenously, but the green line (the new equilibrium) follows endogenously.

Section III shows that the changing profits-age relationship explains about
two-thirds of the rise in profits and more than fully accounts for the fall in firm
entry. These results are robust to changing parameter values.

Related literature This paper is foremost related to the recently emerging liter-
ature that studies why markups and profits have been increasing over the last
decades. Explanations include consumer inertia (Bornstein, 2018), an increase in
common ownership (Azar and Vives, 2019), IT improvements leading to a fall
in the firm-level costs of spanning multiple markets (Aghion et al., 2019), falling
interest rates (Liu et al., 2019) and a decline in knowledge diffusion between fron-
tier and laggard firms (Akcigit and Ates, 2019). I contribute to this literature by
quantitatively analyzing to what extent a changing life cycle pattern of profits can

explain the rise in profits.
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I Evidence

This section provides evidence on how the profits-age relationship has changed
over time among Compustat firms in the United States. To estimate profits, I use
the estimated capital costs from Chapter 1. In addition, I need firm age which
is not directly available in Compustat. I obtain the year at which the firm was
founded from Field and Karpoff (2002) and Loughran and Ritter (2004). They
have compiled a dataset of the founding year of all firms that went public between
1975 and 2018. Then, the age of the firm in a given year is simply the founding
year subtracted from the reporting year. The founding year refers to the year of
incorporation and it is not straightforward to measure the founding year due to
companies changing their names and there being mergers and acquisitions. In
case of a name change, these authors take the original year of cooperation and in
case of mergers and acquisitions, they take the founding age of the oldest entity,
or if there is a substantial difference in size, they take the founding year of the
largest entity. Companies for which they do not have a reliable founding year are
not included.

As the founding year is only available for a subset of firms, there is not enough
data for the years before 1980 to calculate the life-cycle pattern of profits.? I bin
firms into age bins of five years and I collapse the data into decades starting with
the 1980s and ending with the period 2010-2015. As an example, suppose that
I observe a firm that was founded in 1986 from 1990 onward. Then, in order to
calculate profits by age bin in the 1990s, that firm is used twice to calculate profits
of firms in the 0-5 years age bin (namely the observations for 1990 and 1991). The
observations of that firm for the years 1992 until 1996 are used to construct profits
among firms six to ten years old in the 1990s. And likewise for the years 1997
until 1999. The observations of this firm for the years 2000 and 2001 are used to
construct profits among firms 11-15 years old in the 2000s etc.

Figure 2 shows the resulting average profits by firm age for the four different
time periods. Profits are deflated by the GDP deflator and the vertical lines
denote 95% confidence intervals in this and all subsequent figures. The profits-age
relationship has become steeper over time. During the 1980s and the 1990s, old
firms were only making moderately more profits than young firms. But after
2000, old firms started to make much more profits while the profits of young firms
hardly changed. In 2005, firms younger than ten years old made essentially no
profits, while firms that were more than twenty years old made more than 150

million dollar of profits on an annual basis. Figure 10a in Appendix A shows that

2The firm age is observed for around 20% of the observations for which I have estimated profits
after 1980. This leaves me with around 25,000 observations.
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Figure 2: Profits over the life cycle by decade

the same pattern holds when considering median profits within an age-decade
bin, and therefore this changing life-cycle pattern of profits is not driven by only a
few firms becoming extremely profitable.

One possibility for this changing pattern is that the industry composition has
changed over time. For instance, nowadays there might be more tech firms than
there used to be, which might need to invest a great deal when young, which leads
to a steeper profits-age relationship. To see to what extent a changing industry
composition is driving the results, I weight 2-digit industries such as to keep
the industry composition equal to that of the 1990s. Figure 10b shows that the
same pattern emerges after correcting for the industry composition. Furthermore,
Figure 10c shows that the patterns do not change after correcting for the industry
composition within each age bin either. The latter industry correction deals with
the concern that there might, for instance, nowadays be relatively more younger
tech firms than in the earlier decades.

Moreover, the results are robust to using other estimates of the cost of capital.
Figure 10d shows the results when the cost of capital varies across firms within
an industry according to the controls I use in the regression. Figure 10e shows
that the result is also robust to estimating the cost of capital with the required
rate of return approach. Finally, the results are not driven by the great recession
affecting younger firms to a larger extent than older firms since there is also a
steeper life-cycle profile of profits for the period 2000-2005 (see Figure 10f).

One concern is that these results are for Compustat firms that tend to be older
than the typical firm. However, Figure 11 shows the distribution of firm age in
my sample (i.e., the firms after 1980 for which I observe firm age) and the majority
of firms are younger than 25 years, and the mode is at around ten years. Figure 2
shows that the slope of profits with respect to age has increased over time for
the age group six to thirty years. Therefore, for these results, it is not so much
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Figure 3: Covariance profit share and sales

of a concern that the typical Compustat firm is older than the typical firm in the
economy. Nonetheless, the results could, of course, be driven by sample selection
into Compustat and therefore, care should be taken into extrapolating these results
to the rest of the economy. However, for these results to be driven by a changing
sample selection, one would have to argue that firms that became public after
2000 (i.e., the relatively young firms that appear in the data for the later periods)
were less profitable than they used to be. This does not seem likely since after
2000 IPOs have declined and one would expect this to have led to selection into
more profitable firms among the young firms that decide to go public. However,
it could, of course, be that the most profitable firms decided to stay private for a
longer time. It is important to note here that Compustat also includes some firms
before they go public. For instance, the first year Facebook appears in the data is
2008 while it went public in 2012.

Finally, Figure 12 shows the age distribution by decade. Over time, the average
firm age has gone up. For the estimate of the oldest age bin in the 1980s there
are no firms older than 125, but during the 2010s there are several firms that are
around 150 years old.

Decomposition

Is the changing life-cycle pattern of profits due to a changing pattern of the profit
share or of firm size? Profits of a firm equal its profit share times its size in terms

of sales. Thus, average profits can be decomposed as

Profits = Profit Share - Sales + cov(Profit Share, Sales) . (2)
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Figure 3 shows that the covariance between the profit share and sales has grown
over time for all age bins, especially for the younger ages (note the different scale
for the youngest age bin). Sales are here deflated by the GDP deflator. Based on
equation (2) and that profits have not increased for the young firms, this means
that for the young firms, the average profit share and/or average sales must be
lower today compared to the 1980s and 1990s.

Figure 4 shows that the (unweighted) average profit share is much lower for
the youngest firms after 2000 compared to before 2000, while the average profit
share did not change much for the oldest firms. Figure 5 shows that the change in
the life cycle pattern of firm size is very different. Young firms today are about
equally large as young firms thirty years ago, but old firms are much larger than
they used to be. Also these results are not driven by outliers as the same patterns
hold when considering the median (see Figure 13).

That the covariance between the profit share and sales within an age bin has
increased over time could be due to an increase in the variance of the profit share
and/or sales, and/or due to an increase in the correlation between the profit share
and sales within an age bin. In Chapter 1, I found that the relationship between
firm size and the profit share has become larger over time, but this was without
controlling for firm age. Thus, this result could potentially been fully driven by
the life cycle profile of both firm size and the profit share. However, this is not the
case. Figure 14 shows that the relationship between profits and firm size within
an age bin has become stronger over time. However, this is only the case for the
youngest firms, while for firms older than twenty years, the relationship between
profits and firm size within an age bin has not changed. Thus, the increase in
the covariance for firms older than twenty years is driven by an increase in the
variance of the profit share and/or firm size. Moreover, these results are not driven
by any outliers since a quantile regression gives similar results as the OLS.
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Figure 6: The number of firms relative to the population. Source: Longitudinal Business
Database (US Census Bureau).

Firm Entry

It is well-known that firm entry has been declining over time. One way of illus-
trating this is by looking at the number of firms relative to the population, where
the population is defined as the number of employees in the private sector plus
the number of entrepreneurs.® The reason for using this statistic is that it gives a
clear mapping between the data and the model as will become clear momentarily.
Figure 6 shows that the share of entrepreneurs has been declining by around half
a percentage point from somewhat above 4.5% in the early 1980s to just above 4%
nowadays.

I Model

The model is an overlapping generations model with an occupational choice. The
economy is populated with N agents that live for 7" periods and, at birth, they
have the option to become either an entrepreneur or to become a worker that
supplies one unit of labor to the firms in a competitive market. For simplicity,
it is assumed that agents do not save and thus consume all their income within
each period, and that the agent’s utility is linear in consumption. Firms (or,
equivalently, entrepreneurs) only require labor for production. Firms engage in
imperfect competition in the product market a la Atkeson and Burstein (2008).
The amount of profits that firms make depends on productivity. Productivity is
taken to be exogenous, but varies over the life cycle. Thus, also profits depend on
age. Instead, for a worker, the wage w, and therefore consumption, is constant

— — T IS 53 .
over time, leading to Vwerker = ZGT:Ol Blw = L fﬁ w. In equilibrium the value of

51 take the number of entrepreneurs as the number of firms.

126



The Life Cycle of Profits

being an entrepreneur and a worker is equal to each other,

Vent —_ Vworker

I will specify the value of being an entrepreneur, V!, in more detail later.

Firms

Suppose that there is a continuum of sectors, indexed by i € [0, 1], that produce a
good y;. These sectoral outputs are used by a competitive firm to produce final
output, ¢, according to a CES production function with elasticity of substitution 7:

Uoga N\t
c—</0yi dz) . 3)

The first-order conditions of the competitive firm give the inverse demand func-
tions

NOM ®

which combined with the zero profit condition give that the price index, P, for

final consumption is given by

P = (/Olpj‘"dz)lln : ©)

Each sector consists of J firms, each producing a distinct variety in quantity
gi;- The output of a sector is given by the CES aggregate of these J varieties with
elasticity of substitution p:

P

p—1

J
p—=1
vi=| 2 ' (©)
j=1

As before, this gives as inverse demand function

-1
P _ (%5 /e @)
P Yi ’
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and as sectoral price index

L\
Pi - Z Pi%jip . (8)

Jj=1

In a given period each firm produces according to a constant returns to scale

production function with labor L as its only input:
¢ij = #ijLij. 9

Productivity, z;;, might vary by firm age.

As there is only a limited number of firms in a sector, firms do have market
power. I assume that firms engage in Cournot competition, where firms choose
their quantities, ¢;;, taken as given the quantities chosen by the other firms. Firms
do internalize that their quantity supplied affects the sectoral price, P;, and quan-
tity, y;. However, as each sector is infinitesimally small, firms take the wage, w,
and the price P and quantity c of final consumption as given. This is a static game
as there are no adjustment frictions.

The above implies that firm ij solves the following maximization problem
within a period
dij

max Pjiq;i —w—= 10
Py ij4ig 25 ( )

subject to the inverse demand function derived from (4) and (7):

RONCE

where the firm takes into account that its quantity, ¢;;, affects sectoral output, y;,

by (6).* Substituting out P;; from the objective, and taking the derivative with

* An alternative to Cournot competition would be Bertrand competition in which the firm takes the
prices, instead of the quantities, of other firms as given. This leads to the following constraint for the
maximization problem (where I have now combined (4) and (7) to substitute out y;, instead of P; as in

the case of Cournot):
Pij a5 (P
— == — . (12)
P c P
Using this equation to substitute out the quantity, g;;, in the objective, and taking the derivative with
respect to P;;, where the firm takes into account that changing its price affects P;, gives

e(s) =p(l —s)+ns. (13)
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respect to g;; implies

P = E(i(s)w_)lj) ,Where (14)
ij ij
-1
)= [zt (15)

and s;; is the market share of firm j in its sector i.°> Furthermore, using (7) and (8)

gives the following expression of the market share in terms of prices:

1—p
— Pij
- J 1—p "~
Zl:l Pil

Thus, (14) is a system of .J non-linear equations in the J equilibrium prices P;; for

(16)

Sij

each sector.

Discussion
The profit share at the firm level equals

Pijqij — wli;

Tij =
Pi;qij

= %(1 — 8i5) + %sij . (17)
Suppose that a firm has a monopoly in a sector, such that s;; = 1, then the profit
share equals %, the inverse elasticity of substitution between industries. This is
the same result as when one would have monopolistic competition with elasticity
of substitution 1 across goods. The opposite extreme is there being a continuum
of small firms within an industry such that s;; = 0. Then, the profit share equals
%, the inverse elasticity of substitution between varieties within an industry. For
intermediate cases, the profit share lies in between these extremes.

Equation (17) shows that in this model there is a linear relationship between
the profit share and firm size. This is consistent with the data, as larger firms tend
to have a higher profit share. However, this model is not able to capture the fact
that for younger firms there is a stronger relationship between firm size and the
profit share. Moreover, as I take p and 7 to be constant over time, this model will
not be able to capture that this relationship has become stronger over time.

1-1/p

Pijqij ij

> Puda yroe’
i

5The derivation uses that 855 = where I have used (7) to obtain the second

equality.
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Equilibrium

To solve for the equilibrium in which agents are indifferent between being an
entrepreneur and being a worker, we have to solve for the number of firms J.
For this purpose, I set the number of sectors I to 10,000 and assume that when
an agent decides to become an entrepreneur, it does not know in which sector
it will be active such that the number of firms in each sector is the same. Each
firm draws an age uniformly at random from 1 to 7" and subsequently draws a
productivity from a log-normal distribution with age-dependent mean z, and a
standard deviation that does not depend on age.® As an example, suppose that
the number of firms J per sector equals 7. Then, there are some sectors for which
there is one firm of each age, but there are also sectors for which all firms have the
same age etc.

Inormalize the wage to 1 and, given the age and productivity draws, I solve
for each sector the system of equations given by (14) to obtain P;;. Then (8) gives
the sectoral price P;, and the price P of the final good is obtained by (5), where the
integral is replaced by a sum as there is now a finite number of sectors. Now once
we have solved for prices, we have to solve for quantities. For this, we need to

obtain final consumption c¢. Labor market clearing gives that

Entrepreneurs I
P i
N— T.J = kiR (18)
Labor supply ==

Labor demand

Substituting out the quantity produced, ¢;;, as a function of ¢ and prices, using the
inverse demand functions (4) and (7) gives, after rewriting, that
N-I1-J
c= .
I J PP/ P\
Zi:l Zj:l : ( P:) (?)

Zij

S

Having c and prices in hand, sectoral output y; is given by (8), and the quantity
produced by each firm ¢;; is given by (7). The product market clears by Walras
law. Knowing quantity and prices, profits are given. As an agent does not know
in which sector it will be active when it decides to become an entrepreneur, the

value of being an entrepreneur equals

T-1

Vent — Z 6(11—[(“ (19)

a=0

%To be precise, the standard deviation of the log of productivity does not depend on age.
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Figure 7: Normalized profits according to Figure 8: Average productivity according to
data and model model

where II, corresponds to the average profits across all sectors of all firms with an
age a.

When for a guess of J the value of being an entrepreneur exceeds the value of
being a worker, I increase the number of firms and vice versa until I have found

an equilibrium.

Parametrization

I set the number of periods T equal to 9. Each period encompasses five years
and corresponds to an age bin in the above graphs. In order to study to what
extent the changing life-cycle pattern of profits explains the rise in profits and the
fall in entrepreneurship, I vary how productivity evolves over the life cycle. For
simplicity, I assume that average productivity increases linearly during the first
five periods and is constant thereafter. I set average productivity over the life cycle
equal to 1 and vary the slope of productivity during the first 5 periods in order
to match the observed life-cycle profile of profits after normalizing. I normalize
the observed profits to 1 on average over the life cycle and I set profits from age
bin 5 onward equal to average profits during the last 5 age bins. The solid lines in
Figure 7 show the normalized profits for the four periods.

When solving the model, I take the following parameter values. I set the
discount factor 3 between two periods equal to 0.935° to reflect an annual discount
factor of 0.935. At first, this might seem as agents being rather impatient but one
should note that this refers to the stochastic discount factor. Moreover, the model
does not take into account firm exit. Having a lower discount factor can be seen as
taking exit into account in a reduced form. Nonetheless, I will vary the discount
rate and the results are robust to taking a larger 5. I set the elasticity of substitution
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Table 1: Profit share and share being an entrepreneur according to data and model

Data Model I ModelII  Model III
B=0.935 B=0965 B=0.935

n=2 n=2 n=15
Profit share 1980s 0.056 0.084 0.082 0.093
Profit share 1990s 0.060 0.082 0.081 0.090
Profit share 2000s 0.068 0.094 0.088 0.10
Profit share 2010s 0.085 0.095 0.091 0.10
A profit share 0.017 0.011 0.0073 0.011
Entrepreneur share 1980s 0.046 0.065 0.070 0.065
Entrepreneur share 1990s 0.045 0.068 0.073 0.070
Entrepreneur share 2000s 0.042 0.053 0.065 0.058
Entrepreneur share 2010s 0.042 0.053 0.063 0.055
A entrepreneurs -0.0036 -0.014 -0.0072 -0.011

Notes: A profit share and A entrepreneurs refer to the differences in the average profit share and
the average entrepreneur share between 1980-1999 and 2000-2015.

p between different varieties equal to 50 and the elasticity of substitution 1 between
different sectors equal to 2. A rather high elasticity of substitution of 50 is taken as
the profit share will otherwise be (much) higher than the 6%, as it is observed in
the data on average during this time period (see (17)). I set the standard deviation
of log productivity (within an age bin) equal to 0.09 to roughly match the observed
variance of the log of sales within an age bin.

IIT Results

The dashed lines in Figure 7 show normalized profits according to the model
when the productivity profile is chosen to minimize the squared distance between
normalized profits in the model and the data. The model matches the data closely
for the last three decades. The model has a hard time matching the data for the
1980s as profits were then downward sloping during the first 4 periods. Moreover,
the model cannot generate negative profits. Figure 8 shows the life-cycle profiles of
productivity for the four different decades. It is inferred that productivity growth
over the life cycle of the firm has become much larger over time. In the 1980s and
the 1990s productivity was increasing by around 5% in total during the first five
periods, while after 2000 it was increasing by around 20%.

The profits according to the model as displayed in Figure 7 are equal to 1 by
normalization. Instead, the first five rows in Table 1 show how the profit share
has changed over time. According to the baseline model (model I) the profit share

132



The Life Cycle of Profits

0.07

0.06 [

o
=)
a

Profit share

o
=)
g

0.03

0.02

(a) Profit share (b) Sales

Figure 9: The profit share and firm size according to the model

has increased from 8.4% in the 1980s to 9.5% in the 2010s. The first column (data)
shows that observed profits have increased from 5.6% in the 1980s to 8.5% in
the 2010s. Observed profits refer to the average profit share for each period as
estimated in Chapter 1. The row ‘A profit share’ displays the difference in the
profit share between 1980-1999 and 2000-2015. The profit share has increased by
1.7 percentage points while according to the model, profits have increased by 1.1
percentage points. Thus, the changing life-cycle pattern of profits can account for
about two-thirds of the rise in profits.

The bottom part of Table 1 shows how the share of entrepreneurs has changed
over time. The share of entrepreneurs in the model is defined in the same way as
it is calculated in the data. Namely, it is calculated as the number of entrepreneurs
I - J divided by the total population N. The share of agents that decide to become
an entrepreneur falls more quickly according to the model than according to the
data. According to the model, entrepreneurship would have fallen, all else equal,
by 1.4 percentage points while in reality it fell by 0.4 percentage points.

The last two columns show that the results are robust to changing parameter
values. Model Il assumes that agents are more patient than in the baseline with
an annual discount factor of 0.96. The rise in profits is attenuated as compared
to the baseline but still substantial with 0.7 percentage points. Now the share of
entrepreneurs falls by 0.7 percentage points. The last column shows that when
the elasticity of substitution between sectors is 1.5, the results are very similar to
when this elasticity is 2.

The share of agents being an entrepreneur is larger in the model than in the
data. One reason is that there is no exit in the model while, in reality, not everyone

that starts a firm continues to be an entrepreneur.
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Figure 9 shows what the life-cycle profiles of profits and sales look like accord-
ing to the model. Both the firm size and the profit share relationship with respect
to age have become steeper over time. This is consistent with the data. However,
the model cannot replicate that the profit share has become negative for young
firms.

IV Conclusions

This chapter shows that the change in the life-cycle pattern of profits can account
for two-thirds of the rise in profits and more than fully explains the decline in
entrepreneurship. Nowadays, profits appear much later in the life cycle of the
firm compared to thirty years ago. As agents discount, this lowers the value of the
firm and therefore leads to less firm entry. This lowers competition and therefore
increases profits.

The model does not take into account firm exit and this might be one reason
why I overestimate the decline in entrepreneurship. Another reason why I find
that entrepreneurship declines faster in the model than in the data is that the
model only matches two-thirds of the observed rise in profits. This means there
has also been another force that has led to an additional increase in profits. This
could, for instance, be laxer antitrust regulation. An additional rise in profits
would make it more attractive to become an entrepreneur and would therefore,
lead to a slower decline in entrepreneurship.

I assume that parameters do not change over time. The risk free rate has been
declining during the last decades. If this implies that the discount rate has been
increasing over time, this would attenuate the rise in profits due to the changing
life-cycle pattern of profits. However, the risk premium might have increased over
time (Farhi and Gourio, 2018), and therefore, the stochastic discount factor might
not have increased.

The model cannot generate negative profits, whereas young firms do make
negative profits in the data. One reason is that the model does not take into account
overhead costs. Overhead costs might be relatively large for a young small firm.
In the data, total costs can be split up into three components: costs of goods
sold (cogs), selling, general and administrative expenses (sga), and capital costs.
Figure 15 shows these three separate costs as a share of sales over the firm life
cycle. Cogs as a share of sales used to be uncorrelated with age, but are nowadays
negatively correlated. The costs of goods sold do, on average, exceed the sales for
young firms. However, this could partially be driven by outliers as the median
cogs share of sales does not seem to be correlated with age. Sga as a share of
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sales has always been negatively related to age, and this relationship has become
stronger over time. This holds for both the average and the median. Capital costs
as a share of sales are not correlated with age and this has not changed over time.

One explanation for why sga as a share of sales is now larger than it used to
be for young firms is that intangibles have become more important over time. A
young firm has to invest heavily into sga to build up intangible stock, while old
firms already have a large intangible stock. This could explain why profits are
negative for young firms. This could potentially also explain why productivity is
nowadays steeper over the firm life cycle. I leave investigating what explains the
changing life-cycle pattern of productivity to future research.
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Appendix A Additional Figures

Median profits (million 2012 US dollar)
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Figure 10: Life cycle of profits - robustness

137



Fraction

Fraction

The Life Cycle of Profits

.15

Fraction

.05

0 v .

0 2 50 75 100 125
Firm age (years)

150

175

Figure 11: Histogram age distribution
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Chapter 4
Diffusion of Ideas in Networks and

Endogenous Search*

New ideas tend to spread gradually (Griliches, 1957) and agents that are directly
connected to early adopters are more likely to adopt these ideas (Coleman et al.,
1957).! These observations have led to an active literature studying the effects
of the network on diffusion. Furthermore, whether and at what rate ideas dif-
fuse depend on the effort agents put into searching for productivity-enhancing
technologies, while this effort depends on the distribution of productivity across
agents which, in turn, is a result of diffusion (Lucas and Moll, 2014; Perla and
Tonetti, 2014). Despite the importance of search effort for diffusion, much of the
literature has ignored how the network affects search effort.

In this chapter, I study which network properties are beneficial for diffusion
when the effort put into search (or, equivalently, learning) is endogenous and de-
pends on the network. In order to answer this question, I build a model in which
agents differ in terms of their productivity level. Agents have the option to engage
in costly learning. When an agent decides to pay the search (or learning) cost, it is
matched with one of its first-degree connections. If the productivity of this con-
nection is higher than the productivity of the searching agent, then the searching
agent adopts the corresponding technology, meaning that its own productivity
level will increase to the productivity level of the agent it is matched with.? The
decision to learn depends on the network and interacts with the productivity
distribution. The more productive an agent’s connections, the higher the expected

gains from learning and therefore, the higher its learning reservation productivity,

*This paper supersedes an earlier draft circulated under the title “Diffusion of Ideas and Network
Linkages.” I thank Mohammad Akbarpour, Timo Boppart, Ben Golub, Axel Gottfries, Matt Jackson,
Karin Kinnerud, Pete Klenow, Per Krusell, Hannes Malmberg, Kurt Mitman, Ezra Oberfield, Chris
Tonetti, Vincent Sterk, Marc Witte (discussant) and seminar participants at IIES Stockholm University,
SSE PhD workshop, Stanford, UCL, the European Meeting of the Econometric Society 2018 and
Warwick Economics PhD Conference 2018 for helpful comments. I thank Handelsbanken for providing
financial support.

1For more evidence that agents are more likely to learn from agents to which they are closely
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which is the productivity at which an agent is indifferent between engaging in
costly learning and not learning. Agents with a productivity below the reservation
productivity find it optimal to search for productivity-enhancing technologies.
Therefore, an increased reservation productivity compresses the support of the
productivity distribution, and leads to a higher average productivity.

The main contribution of this paper is that I reveal a novel mechanism through
which network density affects diffusion and therefore total factor productivity
(TFP), namely that network density affects learning effort. The denser the net-
work, the more links there are and the more agents are connected to the highly
productive agents. This increases their gains from learning which will increase
their reservation productivities (or their effort) and therefore their productivity
on average. This leads to their connections, in turn, being connected to more
productive agents, increasing their reservation productivities and so on. Hence,
TFP will be higher and because it are the least productive that adopt, inequality
will be lower with a dense network than with a sparse network.

Although productivity is higher in a dense network, the effect of network
density on the share of agents that learn in equilibrium is ambiguous. The network
affects the reservation productivity but there are two opposing effects on the share
of agents that learn. The first effect is that when agents get more connected to more
productive agents they become more willing to learn, thereby increasing the mass
of learners. However, as the reservation productivity increases, the opportunity
cost of learning also increases (as learning is disruptive to production) which has
a negative effect on the mass of learners. When the model is calibrated to match
moments of the firm-level distribution, these effects are approximately equally
large and therefore the effect of the network on the share of agents that learn is
negligible. This result has important implications for how one can empirically test
which network properties are beneficial for learning. Suppose that one would,
for different locations, have data on the network and the share of agents that
are adopting new technologies in equilibrium in each location. Then, regressing
the share of agents that is adopting on different network properties will not be
informative. Instead, one should study how the share of agents that adopts
changes during the transition to a new equilibrium after the network has changed.
This result is the second contribution of the paper.

The third contribution is on the modeling side. For there to be an opportunity
to learn, agents need to differ in their productivity levels. Most papers that study
diffusion on a network assume that there is a binary productivity state. Instead,
in the model presented here, the productivity state is continuous. To the best of
my knowledge, this is the first paper that builds a model with both a continuous
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productivity state and endogenous diffusion on a network. The advantages of a
continuous productivity state are that it makes it possible to relate networks to
aggregate productivity and other moments of the productivity distribution, and
that the model can be disciplined using data on the distribution of productivity or
income. Moreover, a continuous productivity state allows the gains from learning
to increase in the productivity gap. There is recent evidence that this is indeed
the case. Akcigit et al. (2018) find that the more productive the inventors are with
whom an inventor interacts, the higher is subsequent productivity. Nix (2016),
Jarosch et al. (2018) and Herkenhoff et al. (2018) find that learning from coworkers
increases with knowledge gaps.

In order to achieve a continuous productivity distribution, agents face an ex-
ogenous probability of improving their productivity (i.e., creating new ideas) and
this innovation intensity is allowed to differ across agents. Some agents are good
at creating new ideas while others are not. Agents that have a high probability of
innovating are more likely to have a high productivity than agents with a low prob-
ability of innovating. I take this heterogeneity in innovation intensities as given
(and estimate it using firm level data) and study how this heterogeneity combined
with the network structure affects the learning decision and the resulting produc-
tivity distribution. The presence of innovation leads to sustained long-run growth
without needing to impose an unbounded distribution of productivity as initial
condition. I analyze balanced growth paths in which the productivity distribution
is a traveling wave, meaning that all quantiles of the distribution grow at the same
rate. The model is an exogenous growth model in which the growth rate is given
by the exogenous innovation process and is not affected by the network. However,
the network affects the level of aggregate productivity. A network in which agents
tend to be connected to more-productive agents leads to higher expected gains
from learning, which increases the reservation productivities below which one
decides to learn. Thus, the network affects aggregate productivity by affecting the
learning decision of low productive agents.

Using the model, I investigate how different properties of the network affect
the productivity distribution. As already discussed above, I find that adding more
links increases TFP and reduces inequality (i.e., the variance of log productivity)
by affecting reservation productivities. The effect of the number of links on TFP
and inequality is especially strong for sparse networks while for already dense
networks the effect of adding links is negligible. It could be the case that the
increase in the number of links itself does not affect the equilibrium outcomes but
that the effect goes through another network property. For instance, increasing

the number of links also lowers the average path length, which is the average of
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the lowest number of links needed to pass to ‘travel’ between any pair of nodes.
Therefore, I also study networks that keep the number of links constant but vary
the average path length. I find that decreasing the average path length increases
TFP, while it has a negative effect on inequality. When the average path length
is low, many nodes are closely connected to the highly innovative agents (i.e.,
only a few steps away), which increases reservation productivities for the same
reason as why a high network density leads to higher reservation productivities.
Agents that are directly connected to the most innovative agents exert more effort,
thereby increasing their average productivity and, in turn, increasing the effort
of their connections. The further an agent is away from the most innovative
agents, the smaller is the effect on effort and therefore a low average path length is
associated with high productivity. The positive effect of network density on TFP
remains when controlling for the average path length, but the effect on inequality
disappears.

It is not a novel result that denser networks lead to faster diffusion, but the
mechanism through which it occurs here is novel. For instance, in the SIS model
(a widely used model in the epidemiological literature), a larger number of links
speeds up diffusion (see, e.g., Bailey, 1975; Jackson and Rogers, 2007) as is the
case for the model in Fogli and Veldkamp (2016). However, in these models, the
probability that an agent learns from each neighboring agent is exogenous and it is
hard-wired that the more neighboring agents one has, the more likely it is to learn
from a neighbor.® In my model, the decision to learn is instead endogenous, and
the reason that denser networks lead to higher productivity is that denser networks
increase the learning reservation productivities. Having more connections does not
affect the probability of learning since when agents decide to learn, they will only
learn from exactly one of their neighboring nodes. Shutting down the probability
effect highlights that a denser network also increases productivity by increasing
the gains from learning. If, in addition, the density were to also affect the number
of agents one learns from, the effect of network density on TFP would be higher.

Jackson and Yariv (2005) and Lépez-Pintado (2008) have models where the
decision to adopt is endogenous and the gains from adopting a given technology
depend on the number of neighbors that have already adopted. However, this
dependency is given exogenously, while here it is endogenous. Moreover, in
these papers, the gains of a given technology that depend on the number of
connections that are using it (think of the decision to use the QWERTY keyboard).
These gains are known before the decision to adopt is made, while here there are

3Denote the number of neighbors of an agent by d and suppose that all of them have a better
technology. Denote the probability of learning from each neighbor by p. Then, the probability of
learning from a neighbor in these models is 1 — (1 — p)? which is increasing in d.
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multiple technologies (i.e., productivity is a continuous variable) and the gains
are uncertain. A learning agent can be matched to a low productive agent, thus
leading to productivity only improving slightly which, in turn, leads to a negative
net gain (including the payment of the learning cost).

Related literature. My paper contributes to the following three strands of the
literature.

First, my paper contributes to the literature on the effect of network properties
on diffusion. Theory tends to originate from the epidemiological literature (Bailey,
1975) and therefore usually focuses on a binary state, i.e., either being sick or
healthy, or either adopting or not adopting a given technology (see, e.g., Ellison,
1993; Young, 2003; Montanari and Saberi, 2010; Acemoglu et al., 2011; Akbarpour
and Jackson, 2018). In these papers, the research question usually relates to how
the network affects the time it takes until most agents have adopted, or what the
probability is that everyone eventually adopts. I study diffusion when there is a
continuous productivity state and study the effect of the network on aggregate
TFP. In practice, there is a wide range of different technologies and, therefore, of
different productivities. Some agents might have adopted multiple technologies
and some technologies might have a larger effect on productivity than others. My
model captures that the returns to learning are higher if one is connected to more-
productive agents (Akcigit et al., 2018; Herkenhoff et al., 2018; Jarosch et al., 2018;
Nix, 2016). Furthermore, I use moments of the firm-level productivity distribution
to estimate parameters of my model. Most of the models in this literature take the
adoption rate to be exogenous (see, e.g., Bailey, 1975; Granovetter, 1978; Jackson
and Rogers, 2007; Acemoglu et al., 2011; Akbarpour and Jackson, 2018).4 1 study
the effect of the network on learning effort and adoption. Ellison (1993), Young
(2003) and Montanari and Saberi (2010) are examples of models in which adoption
is endogenous, but with a binary state. In these papers, the decision to take
an action follows from a coordination game with one’s neighbors. Fogli and
Veldkamp (2016) is a notable exception that has a continuous productivity state,
but it has an exogenous adoption rate.

Second, my paper contributes to the recently burgeoning literature on how the
decision to learn interacts with the distribution of productivity across firms.® Two
prominent examples are Lucas and Moll (2014) and Perla and Tonetti (2014).% In

4Kremer (1996) is a notable exception and studies the spread of HIV in a setting where sexual
activity is endogenous.

5There is a related literature where learning depends on the productivity distribution as well, but the
rate at which learning occurs is exogenous. An example is Luttmer (2012a). Furthermore, in Luttmer
(2007, 2012b), Sampson (2016) and Lashkari (2018) entrants learn from incumbent firms. Alvarez et al.
(2013), Buera and Oberfield (2020) and Cai et al. (2017) study the diffusion of ideas across countries.

6Other examples are Perla et al. (2015) and Konig et al. (2016). Hopenhayn and Shi (2017) incorporate
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these papers, agents pay a learning or search cost and are subsequently randomly
matched to another agent in the economy from which they will learn. The initial
productivity distribution is assumed to have a Pareto tail which ensures the
possibility of balanced growth. In a recent paper, Benhabib et al. (2017) study
learning and innovation jointly and, as a consequence, no longer need the initial
distribution to have infinite support to sustain long-run growth. In equilibrium,
productivity is Pareto distributed where the thickness of the tail depends on the
innovation intensity. I extend the model in Benhabib et al. (2017) to include a
network.” The existing models (e.g., Lucas and Moll, 2014; Perla and Tonetti, 2014;
Benhabib et al., 2017) can be interpreted in two ways, either as models of the entire
economy in which each agent is equally likely to learn from all other agents, no
matter whether that agent is located next door or at the other side of the country.
Or as models in which agents can only learn from agents that are similar (i.e.,
drawn from the same distribution) and have no possibility to learn from other
types of agents. My model seeks a middle ground between these two extremes.
Agents can learn from other types of agents as well as from agents with similar
characteristics. The extent to which this happens is governed by an exogenous
network.?

In this paper, search technology is modeled in a similar way as in Perla and
Tonetti (2014) and Benhabib et al. (2017). However, the implications for the pro-
ductivity distribution are somewhat different. First, in contrast to these papers,
my model does not imply that only the least productive agents in the economy
adopt. This is because the reservation productivities differ across nodes. Second,
in my model, the productivity distribution is hump-shaped, whereas in Perla and
Tonetti (2014) and Benhabib et al. (2017) the productivity distribution is downward
sloping.

Third, my paper contributes to the renewed interest in the effect of networks on
macroeconomic outcomes.” Based on the seminal works by Long and Plosser (1983)
and Hulten (1978), Carvalho (2010), Acemoglu et al. (2012), Acemoglu et al. (2016b),
Acemoglu et al. (2017) and Baqaee (2018) study the network origins of aggregate
fluctuations. In another strand of the literature, Jones (2011, 2013), Bigio and La’O
(2017) and Baqaee and Farhi (2020) study how sectoral distortions spill over to
the aggregate economy through the production network and affect aggregate TFP.

Liu (2019) studies the effect of industrial policy in a production network with

search frictions into a model of learning.

7 Appendix G discusses why including a network in Lucas and Moll (2014) and Perla and Tonetti
(2014) does not admit any interesting dynamics.

8For an example of how to endogenize the network, see Oberfield (2018).

9See Carvalho and Tahbaz-Salehi (2019) for a survey.
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distortions. In these papers, shocks or distortions affect the prices of intermediate
goods which, in turn, affect the input choices of downstream producers.!? In other
words, these papers study how distortions and shocks propagate through the
production network. I study how the network affects TFP through the decision
of firms to adopt existing technologies. Moreover, the above mentioned papers
study networks based on trade flows of intermediate goods while, in my model,
the network represents the network of idea flows which could indeed be based
on trade flows, but could also be based on geography or movements of workers,
for instance.!! Acemoglu et al. (2016a) find that the historical network based on
patent citations has a strong predictive power on innovation and Jaffe et al. (1993)
find that patent citations are correlated with geographic distance. As these papers
study patents, they focus on technology improvements at the frontier and not on
those that are far behind in the productivity distribution which constitutes the
focus of the present paper.

I Model

Time is continuous and there is a continuum of infinitely-lived agents which differ
in their productivity level Z. The focus of this paper is on how productivity
evolves over time. An agent’s productivity can increase in two ways: i) through
innovation and ii) through learning an existing technology. The decision to learn
will be endogenously determined whereas innovation will be exogenous.'? The
learning and innovation processes are governed by some parameters, which I
specify momentarily. I allow these parameters to vary across agents. Some agents
are good at learning and others are good at innovating. However, the variation in
these learning and innovating parameters across agents is assumed to be limited
such that there are V different types of agents and all agents of the same type
share the same parameter values. N is finite and types are indexed by n. Each type
is assumed to consist of a continuum of agents. Then, the network is specified at
the type level. Thus, the network says to which other types a type is connected.
The network is important for the learning decision. Agents of a type have the

190r the shocks and distortions affect input demand such that shocks travel upstream.

For instance, Ford adopted the assembly line in 1913 after an employee, William Klann, visited a
slaughterhouse in Chicago where he saw one person removing the same piece over and over while the
carcass moved along a moving line. Thus, the idea of the assembly line flowed from the meatpacking
industry to Ford based on personal connections and not based on trade flows.

121 do not endogenize innovation because the network will only have a limited effect on innovation.
If innovation is endogenous, it are mainly the most productive agents that are willing to innovate
because the value of learning is close to zero for them (see Benhabib et al., 2017). The network has
an effect on the learning value only and does therefore not affect the innovation decision of the most
productive agents which is what is relevant for aggregate outcomes.
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option to learn from the (types of) agents they are directly connected to (i.e., from
their first-degree connections).

Suppose that income equals productivity and that agents discount expected
future streams of income minus payments of the learning costs ©,,(t) by p such
that utility of an agent of type n at time ¢ with productivity level Z equals

Unt.2) =B { [ e 012(0) = Ol harming(rar | 2(0) = 2}
¢
With abuse of notation, the learning costs O,,(¢) only need to be paid when one
decides to learn, which is indicated by the indicator function and is such that
f:o On(T) Licarning(T)dT = >, ©n(tr) when one decides to learn at times .

Innovation

Innovation is modeled as follows. There are two innovation states i € {I,h}; a
low innovation state ! and a high innovation state 2. Agents switch from one
state to the other following a continuous-time Markov process with transition
intensities A!, > 0 for transitioning from state [ to state h and A" > 0 for the
opposite transition. Productivity of agents in state h grows at the rate v, whereas
those in state [ have a constant productivity level.!* Types with a high A}, and a
low A" are ‘innovative’ types since a relatively large number of agents of these
types will be in the high innovation state.

Vi(t, Z) denotes the continuation value function, which is the value of contin-
uing to produce at the current productivity level (i.e., the value of not learning),
of an agent of type n in innovation state 4 at time ¢ with current productivity Z.
The Bellman equations are as follows for being in states [ and h, respectively (see
Appendix A for the derivation):

PValt,Z) = Z+ X, [V;I(8, Z) = V(£ 2)] + BV, (t. Z), M
N—— v
Flow value Profits Gains/losses from transitioning Capital Gains from
to other innovation state gains innovating

where 9, denotes the partial derivative with respect to variable x which will
later on also be indicated by a prime when a function is univariate. The Bellman

equation equates the flow value to the instantaneous profits, plus the gain/loss

13 Appendix H discusses geometric Brownian motions as an alternative stochastic process for mod-
eling innovation. The results are similar to the Markov process. However, one difference is that the
density turns out to be discontinuous in the case of a GBM whereas it is continuous in the case of the
Markov process.
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from transitioning to the other innovation state, plus the increase in the value
function over time, plus the value from productivity growing at rate -, when in
the high innovation state. Note that these equations do not depend on the other
types and therefore, for each type, this is a system of two equations and can be
solved for each type separately.

Denote the mass of type-n agents with productivity less than Z and in innova-
tion state i at time ¢ by ®¢, (¢, Z). The technology frontier of a type is the highest pro-
ductivity available for that type: Z,,(t) = sup{support{®. (¢, )}, support{®" (¢,-)}}.
Furthermore, the maximum of support is equal across both innovation states since,
due to the assumption of a continuum of agents, a continuum of agents will transi-
tion from one state to the other in each period of finite length, including agents at
the frontier. For simplicity, suppose that the mass of agents of a type equals 1 such
that ®! (¢, Z,,(t)) + ®"(t, Z,(t)) = 1. Denote the minimum of support by M (t),
which is the largest productivity such that ®¢ (¢, M} (¢)) = 0. Furthermore, denote
the distribution unconditional on state i as ®,,(t, Z) = ®. (¢, Z) + ®"(t, Z).

Learning

Besides innovating, an agent can also increase its productivity by learning and
adopting an existing technology from another agent. When an agent decides to
adopt, it has to pay a learning cost ©,,(¢) and will draw one of its first-degree
connections at random.'* Learning is assumed to be perfect, meaning that if this
connection has a higher productivity than its own, it adopts the technology and
its productivity will instantaneously jump to this productivity level. To obtain
the results in this paper, it is not important that the learning technology is perfect
but it is important that the gains from learning are increasing in the productivity
gap, which is consistent with what is found in Nix (2016), Akcigit et al. (2018),
Jarosch et al. (2018) and Herkenhoff et al. (2018). Furthermore, random draws are
consistent with the assumption that agents know the distribution of productivity
across their connections but do not exactly know the productivity of each of their
connections individually.!®

Given the complexity of the system, I use a mean-field approximation which is
a standard technique in the networks literature. That is, I assume that all agents of
a certain type are connected to the same types of agents and that they are matched
with the actual productivity distribution. A type-n agent that decides to learn
will draw a productivity Z from the learning distribution &, (¢, Z), which is the

141 also sometimes refer to the learning cost as an adoption or search cost.
15This would, for instance, be the case if a connection represents a weak tie. There is evidence that a
substantial amount of learning goes through weak ties (Granovetter, 1973).
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probability that the productivity drawn is less than Z. This learning distribution
is a mixture of the productivity distributions of the neighboring types and is the
same for all agents within a type.!® I will define the learning distribution more
formally momentarily.

An agent decides to learn once the continuation value falls below the value
of learning, where the value of learning equals the expected value of the contin-
uation value associated with the productivity level drawn minus the learning
cost. The continuation value function is increasing in productivity while the value
of learning is independent of the productivity level of the learning agent. This
implies that only those below a reservation productivity M2 (¢) will decide to learn.
Furthermore, because learning is instantaneous, the minimum of support will
be equal to the learning threshold (i.e., M2(t) = M, (t)). Hence, only the least
productive of a type at a point in time will be learning since they have the most to
gain from learning. At the optimal reservation productivity (i.e., M, (t)), an agent
must be indifferent between continuing to produce at its current productivity level
and learning. This is summarized by the value matching condition,

Z(t)

VML) = [ V620, 0.2)- 0,) . V. ©)
_/_/ WY n (t) W—/
Value (of not learning) Learning
at threshold Gross learning value cost

Here, I have, for simplicity, assumed that a learning agent will be in the low
innovation state after learning. In what follows, I take the learning costs to equal
&, M, (t). This represents that learning is disruptive to the production process and
hence leads to a temporary loss of income. Moreover, this ensures that the learning
cost is growing at the same rate as M,,, which turns out to equal the growth rate of
the economy. That the learning costs grow at the same rate as the economy does is
needed to ensure a balanced growth path.

Furthermore, note that I have omitted the innovation state superscript 7 on the
minimum of support term (i.e., M,, and not M) because the minimum of support
is equalized across innovation states. To see this, first note that the net learning
value (i.e., the gross learning value minus the learning cost) does not depend
on the innovation state of the learning agent. Furthermore, it turns out that the
value functions at M, (t) are equalized across innovation states (see the proof of
Proposition 1 in Appendix C). Therefore, the learning thresholds are equalized
across innovation states.

16The latter is not restrictive since if, within a type, different agents are connected to different types
of agents, this type can be split up into multiple types such that all agents of a type have the same
connections. This works as long as there is a continuum of agents within a type.
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The Network The decision to learn depends on the productivity of an agent’s
connections and therefore on the network. The network is specified at the type
level and I will therefore also refer to types as nodes. Denote the set of types by
N ={1,...,N} and let H denote an N x N matrix representing the links between
agents. The graph (or network) is denoted by (N, H). As I will not vary N/, I will
usually refer to H as being the network. An entry h;; = 1 when type 7 is connected
to j and zero otherwise. The network can be directed, meaning that & ;; does not
necessarily need to equal h;;. Define the degree, d;, of type ¢ as the number of
types to which type i is connected, including a possible connection to agents of
the same type (i.e., d; = }_; h;;). Define the entries of the N x N learning matrix

Aas a;; = . By the definition of d;, the rows of A sum to one which means that

i

a learning agent will meet exactly one other agent (A is row stochastic).

An alternative modeling choice would have been that the number of draws
increases in the degree, and that the agent adopts the highest productivity drawn.
There are two reasons for not pursuing this approach. The first reason is that this
is a growth model and in order to obtain a stationary system of equations, the
economy needs to be normalized with a factor that is growing at the same rate
as the economy. This normalization factor should not depend on the network in
order to ensure that productivity distributions can be compared across networks,
which is the aim of this paper. As I will show in Section II, this is ensured when
the number of draws does not depend on the network but is not ensured when the
number of draws does depend on the network. The second reason is that the main
result of the paper is that more dense networks (with a higher average degree)
lead to a higher TFP by increasing learning effort. Showing that this is the case
even when the number of draws is independent of the degree highlights the role
of learning effort. If the number of draws were to depend on the number of links,
the relationship between network density and TFP would be even stronger.

Furthermore, I assume that there is directed search in the sense that learning
agents will only draw agents with a productivity that is at least as high as the
minimum of support of their own type M, (¢). This is consistent with Jarosch et al.
(2018) who find that having less-productive connections does not hinder learning
from others through congestion. This leads to the following truncated distribution
®,,(Z) from which a learning agent draws,

L X an (‘I’j(Z) - ‘I’J’(Mn))
q)n(Z) = Zj nj (1 —(I)j(Mn)) ,

where I have omitted the time subscripts for notational simplicity. It turns out to
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be convenient to write the model in matrix-vector notation. Define the CDF ®(Z2)
as a column vector where the n-th element represents ®,,(¢, Z) and similarly for
the learning distribution ®(Z). This leads to,

1-&(2) :X—lA(1 _q>(2)) , (4)

where 1 is a column vector of which each entry equals 1. The probability that an
agent draws a productivity larger than Z (i.e., 1 — ®(Z)) equals the mass of agents
with a productivity larger than Z (ie., 1 —®(Z)) times the learning matrix A times
X~ where X isan N x N diagonal matrix taking care of the truncation. Thus,
the n-th diagonal entry of X equals the probability that a learning agent of type n
draws a productivity larger than M,, in case the learning distribution would not
be truncated (i.e., X,,;, = ap— (1 — ®(M,,)) where a,,_ represents the n-th row of
A).

Equation (4) does not take into account that this is only well defined for type n
if Z > M,,. Therefore, define I 2>, A8 the matrix that has a 1 on the n-th diagonal
if Z > M,. Rewriting equation_(4), using that A1 = 1 and multiplying by I ,,
gives

B(2) = Iy, (1 +x1 (A@(Z) - 1)) 7 ©)

which ensures that the vector ®(Z) has a zero on the n-th element if Z < M,,.

The assumption that all draws have a productivity at least as high as the
minimum of support of the type of the learning agent can easily be relaxed.
However, also this assumption is needed for the specific application of the model
in this paper, namely comparing aggregate productivity across networks. Relaxing
this assumption would mean that learning agents could draw a lower productivity
than their own. If this occurs they decide to keep their own productivity and it
will be optimal for the agent to search again the next instant. This continues until
the agent draws a higher productivity. Due to adoption being instantaneous, it
will still be the case that all agents at the reservation productivity adopt. However,
some agents have to search multiple times and hence have to pay the search cost
multiple times. Therefore, the effective search cost is the expected number of
draws times the search cost per draw, that is X —19, where O is a column vector
with O,, as the entries. This could easily be incorporated in the model, but the
matrix X will depend on the network, and therefore, the effective search cost will
differ across networks. This will imply that the normalization factor also depends
on the network and will therefore not allow me to compare the productivity
distribution across networks.

152



Diffusion of Ideas in Networks and Endogenous Search

Having directed search is innocuous. The normalization factor is related
to the productivity distribution of the most productive type and it turns out
that the productivity distribution of the most productive type does not depend
on the network in the case of directed search and therefore, neither does the
normalization factor. A more dense network means that agents (except those of
the most productive type) are more productive and therefore, in case of no directed
search, it would become less likely for an agent of the most productive type to
draw an agent with a lower productivity, thus lowering the expected number
of times one needs to search. Hence, this would lower the effective search cost
for this type and therefore lead to a higher reservation productivity and a higher
TFP. Thus, incorporating undirected search would strengthen the result that more
dense networks lead to a higher TFP.

In this paper, I will only consider connected networks. A network is connected
when all pairs of nodes are connected by some path in the network where a path
=1
for each k € {1,2,...,K — 1}. Having a connected network means that each

between nodes i; and ix is a sequence of links iy, iz, ...,ix such that h;,;,

innovation can eventually reach all other nodes.

Lemma 1. Suppose that the network is connected, that the maximum of support is finite
and that a positive mass of agents of each type is learning, then the maximum of support is
equal across types (Z,(t) = Z(t) Vn) and grows at v = max,, V.

Proof. First show that Z,,(t) = Z(t) Vn. Since for each type, there is a continuum
of agents, there will also be a continuum of agents learning, drawing their pro-
ductivity from ®,,(t, Z) which has a maximum of support equal to the maximum
maximum of support of the types to which it is connected. As learning is instan-
taneous, the maximum of support of a type will be equal to the maximum of
support of its connections. The connections will, in turn, have the same maximum
of support as their connections etc. That the network is connected gives the result.

To show that the growth rate of the maximum of support equals max,, vy, first
suppose that there is no learning. Due to the continuum assumption, there are
some agents that are lucky and are always in the high innovation state while being
at the frontier. Therefore, if there were no learning, the maximum of support
would grow at v, for each type. However, if there is learning, by the previous
argument, the maximum of support is equal across all types at a given point in
time and hence, the growth rate of the maximum of support for each type will be
equalized to each other and be equal to v = max,, v,. O
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Evolution of the Distribution

To see how the productivity distribution evolves over time, consider an agent
with a productivity level just above its reservation productivity, and which is
in the low innovation state, such that its productivity is constant over time. As
long as this agent stays in the low innovation state, the gains from learning will
increase over time. This occurs for two reasons. First, the productivity of those
in the high innovation state grows over time and second, those that are at the
reservation productivity will learn and increase their productivity. Both forces
increase the productivity level of agents from which the original agent can learn,
thus increasing the gains from learning, and once these gains exceed the learning
cost, this agent will decide to learn. In other words, the learning threshold, and
therefore the minimum of support, is growing over time. Denote its growth rate
by g, (t). Now suppose that this agent would have been in the high innovation
state such that its productivity grows at rate ,, and suppose that g, (t) < vy,
then the reservation productivity is not catching up with the productivity level
of this agent and hence, it will not learn as long as it is in the high innovation
state. Only once it transitions to the low innovation state and falls back far enough
relative to the other agents will it decide to learn. Only when gy, (t) > 7, will
agents in the high innovation state learn.

Denote by S () the flow of type-n agents in state i that decide to learn and
by S, (t) the share of type-n agents that learn unconditional on the innovation
state (i.e., S, (t) = S (t) + S"(t)). Since only the least productive of a type that are
learning, the mass of learning agents of a type is equal to the mass of agents at the
minimum of support times the rate at which the minimum of support increases

faster than the growth of productivity in innovation state :

Sn(t) = M;,(£)829,, (1, My(t)) , if M, (t) >0,
S’Z(t) = (M’I{L(t) - ’YnMn(t)) aZ(I)Z(tv Mn(t)) ) if M’r/L(t) - ’VnMn(t) >0.

The Kolmogorov forward equations describe how the productivity distribu-

tions evolve over time for each n (see Appendix B for the derivation):

Transitioning to/from other Learners Learners that draw
innovation state of typel productivity below Z
—~ = -
8P, (1, 2) =X\ @ (t, Z) = X, @, (1, Z) = S, (1) + @u(t, 2) [S,, (1) + S5 ()], (6)
8P (1, Z) =X, Py, (1, Z) — Ny @y (t, Z) — S () = 7u Z02P, (¢, Z) . (7)
—_———
Innovation

The change in the mass of agents with a productivity below Z in state [ of type n
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equals the flow of agents transitioning from the high innovation state to the low
innovation state (at the rate A") and having a productivity below Z, minus the
flow of agents with a productivity below Z that transition from the low to the high
innovation state (at the rate \},), minus those that learn (recall that it are only the
least productive that decide to learn), plus those that learn and draw a productivity
below Z (according to ‘i),,,(t, Z)). The equation for the evolution of the CDF of the
high innovation state is similar except that the last term is omitted because I have
assumed that learning agents will be in the low innovation state after learning.
Furthermore, there is an extra term that takes into account that productivity grows
at the rate ,. Different from the Bellman equations, the Kolmogorov forward
equations for a type n depend on the other types through &, (¢, Z). Hence, this is
a system of 2N coupled differential equations.

Finally, the learning decision problem is equivalent to an optimal stopping
time problem and therefore, the following smooth pasting conditions must hold

as well:

AV, M,(t)) =0 if M/ (t)>0, Vn, 8)
A VI, M, (1)) =0 if M/ (t) — v, M,(t) >0, Vn. )

II Balanced Growth Path

The previous section has outlined the model. In this section, I will solve for the

(competitive) balanced growth path equilibrium defined as follows.!”

Definition 1. Recursive Competitive Equilibrium

A recursive competitive equilibrium consists of distribution functions ®: (t, Z), value
functions V,(t, Z), learning reservation productivity functions M,,(t) and initial distri-
butions ® (0, Z) such that

1. Given ! (t,Z), M, (t) are the optimal learning reservation productivity functions
and V,'(t, Z) are the associated value functions;

2. Given M,,(t), ®¢(t,Z) fulfill the Kolmogorov forward equations subject to the
initial condition ®¢ (0, Z);

Definition 2. Balanced Growth Path Equilibrium
A balanced growth path equilibrium is a recursive competitive equilibrium such that ag-
gregate output and the reservation productivities grow at constant rates. The productivity

7Note that agents, when deciding whether to learn, do not internalize that other agents might learn
from them in the future, thereby providing an externality.
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distribution functions are traveling waves: ®¢ (t,Z) = ®¢ (0, Ze=92%) where gz is the
growth rate of each quantile of ®,, and equal across types.

Lemma 2. On a balanced growth path the growth rate of the reservation productivities
equals the growth rate of average productivity.

Proof. This follows directly from the definition of a balanced growth path, namely

that the productivity distribution is a traveling wave. O

Denote the growth rate of aggregate productivity by g, which equals gz on
a balanced growth path by Lemma 2. Because each quantile of the productivity
distribution grows at the rate g, also the minima of support M, (t) grow at the
rate g. Therefore, to determine the growth rate it is only needed to determine
the growth rate of M, (t). First suppose that the support [M,(t), Z(t)] is of finite
length in equilibrium. Then, since all quantiles grow at the same rate and the
maximum of support grows at the rate y by Lemma 1, the minimum of support will
also grow at the rate . Hence, there is a unique constant growth rate consistent
with balanced growth if there is finite support. However, if the support of the
productivity distribution is infinite, i.e. Z(t) = oo, then this is no longer the case
and g can differ from ~y. The productivity frontier Z(t) can be infinite due to initial
conditions or as an equilibrium outcome. The case with unbounded support as
initial condition is studied by Lucas and Moll (2014) and Perla and Tonetti (2014),
who show that in such a case, even without innovation (so v = 0), there can still
be growth, thus essentially g > 7. In what follows, I will assume that the support
is of finite length as initial condition, so this case will not occur. However, even
with finite initial support, the economy can still converge to an equilibrium with
infinite support. It turns out that this will indeed be the case here. Moreover,
Benhabib et al. (2017) show that in this case there are multiple equilibria with
g < v. However, this result is knife-edge in the sense that it will only appear if
the length of the support goes to infinity. Adding Schumpeterian forces to the
model will, in fact, ensure that the support will be bounded, leading to a unique
equilibrium with g = ~.

Finally, when ¢ < +, the network does not affect the growth rate. This can be
seen as follows. In equilibrium, the productivity distribution has a Pareto tail that
is the same for each type and the growth rate is increasing in the thickness of the
Pareto tail (Benhabib et al., 2017). Suppose that the economy is in equilibrium and
that the network is changing. This will not affect the learning distribution of the
most productive type due to directed search and will therefore not change the
learning decision of this type. Hence, this type will still be in equilibrium and the
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thickness of the Pareto tail is not affected by the network, thus making that the
growth rate is not affected either.

The focus of this paper is on how the network affects aggregate productivity.
As the network does not affect the growth rate, I will only study the equilibrium
with g = v in order to keep the model as simple as possible.

Normalization

A stationary system of equations is needed in order to solve the model. In order
to achieve this, I normalize productivity using a normalization factor that grows
at the same rate as the economy. Because the goal of this paper is to compare the
effect of the network on aggregate productivity and because I will only be able to
solve for the stationary system of equations and not for the normalization factor, it
is necessary that the normalization factor does not depend on the network.
These conditions are fulfilled when the normalization factor is the reservation
productivity of the type with the largest reservation productivity, which is denoted
by M(t) = max,, M, (t). By Lemma 2, this grows at the same rate as the economy
and, as I will show momentarily, it does not depend on the network. All other
reservation productivities turn out to depend on the network and would therefore

not be adequate. Normalized productivity z becomes

2= log (Mz(t)> .

z can be negative for types that do not have the largest reservation productivity.
My (t)
M(t)
tion for each type. On a balanced growth path this will be independent of time

Define «,, = log ( ) as the minimum of support of the normalized distribu-

since on a balanced growth path M, (t) and M(t) grow at the same rate. Define
zZ = log (%) , the normalized maximum of support. Furthermore, define the

normalized productivity functions F! and value functions v/, as

Fi(t,z) = F! (t,log (MZ@» =d!(t,2),
vl (t,2) =), (t,log (]\/[Z(t))> = %

such that these do not depend on time on a balanced growth path. The productivity
distribution unconditional on the innovation state is denoted by F,, = F. + F.
When the index n is omitted, F(¢, z) denotes a column vector where the n-th entry
is Fy,(t, z). Thus, F'(t, ov,) is a vector of which the k-th entry is the CDF of type k
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evaluated at a,,: F (¢, ). On a balanced growth path, all time derivatives will
be set to 0 and we can omit all time indices. The normalized system of equations
looks as follows (for each type n):!

0=gd.F.(z) — ALFL(2) + NeFl(2) + (SL + S Fu(2) — S, (10)

0= (9 —m)0zF; () = Ny Fy (2) + A Fp(2) — Si (11)

0= F} () = Fli(ew), (12)
1=F.z)+ F'(z), (13)

Sl =gd.F (), ifg>0, (14)

Sy =(9—m)0:F)(an), ifg>n, (15)

(p = 9)vi(2) = € — gB.vl,(2) + Ay, (v (2) — v, (2)) (16)
(0 — 9o (2) = € — (g = ) B0} (2) + Al (v, (2) — v)(2)) 17)
d.vl (a,) =0, ifg>0, (18)
@vﬁ(an) =0, ifg>y,, (19)
o) = [ EE(E) - et 0)
F(2) = La, (1+ X1 (AF(2) = 1)) . 1)

Equations (10) and (11) are the Kolmogorov forward equations. Equations (12)
and (13) say that the CDF is 0 at the minimum of support and 1 at the maximum
of support for each type. The share of agents learning equals the mass of agents
at the reservation productivity times the growth rate of the economy relative
to productivity growth when innovating (equations (14) and (15)). Equations
(16) and (17) are the Bellman equations. Equations (18) and (19) are the smooth
pasting conditions. Equation (20) is the value matching condition and equation
(21) gives the expression for the normalized learning distribution. Equations
(10)-(20) hold for each type while equation (21) is in matrix-vector notation (and
therefore comprises N equations).

As explained above, I will solve for the equilibrium in which g = . Further-

18The following equations are useful when normalizing:

. I Z . . R
owit,z)  4F(blos () oria,2) _OFj(t,2) M'(t)
a dt T ot 0z M)’
o9}, (t, Z) _ dFi(t,z) dz _ dF}(t,2) 1
8z  dz dz = dz Z’
i dM (t)v? (t,log ( Z— - _ o i o i i
aVn(t’ Z) _ ( (Nf(t)>) _ <M/(t)) U:L(t,z) +M(t)8”n(tvz) _M(t)avn(t’z) ]K(t) )
ot dt ot 9z M(t)
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more, for simplicity, I set v,, equal to « for each type. This means that agents in
the high innovation state will not learn in equilibrium as those agents are not
falling back relative to the reservation productivity. Hence, S* = 0 and S,, = S.
Furthermore, the smooth pasting condition for the high innovation state will not
be needed. In what follows I assume, without loss of generality, that the types are
ordered based on their minimum of support (i.e., oy < s < ... < ay =0).

Proposition 1. Suppose that assumption 1 holds and p > g then the balanced growth
path equilibrium with g = - has the following productivity distribution functions for the
intervals indexed by k =1,...,N — 1,

1
_1 -1 _ _1 —17. o — v .
F(z) =1— ¢ ¢9% 1ehAG—aw) H (e g SX T i AA( 1 C“J))l, if a <2< g,
el

i 1

17F(ak)
(22)

l
:\\;; forming the diagonal entries, S is a diagonal

matrix with S, forming the diagonal entries and Iy, are matrices where the first k diagonal

where A is a diagonal matrix with 1 +

elements are 1 and the other elements are zeroes. For the final interval

1
F(Z) —1_ 6752 H (67§SX*11_7'AA(a_;’+1704j)) 1, lf O=any <2<z, (23)
j=N-1

1-F(an)

with

= 24
-9\
y, = P =9
9
_ PV
Ap = ——+1
SRS V.
and zZ — oo. The value functions are
An 1
’Ui,(z) e? + efzunJran(VnJrl) ,

gt (p— 9 (p—9)(vn +1)
B €z+>\,},ILU£L(Z)
pP=gt+AL
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S, and o, are such that

SXT'AAL - F(0) = p(1— F(0)) , (25)
(o) = vhan) = = [ @@ - e v @6)
pP—9g Qn
which implies Sy = H‘—;
Proof. See Appendix C. O

The products in this proposition are products of matrices and therefore the
order of taking the product matters. The order is indicated by the subscript. For
example, H;:kq Dj = Dy_1Dj—5 ... D;. Furthermore, H;:O(-) =1.

Proposition 1 shows that in a balanced growth path equilibrium, the nor-
malized frontier converges to infinity as time goes to infinity. Note that in the
expressions for the CDF (equations (22) and (23)), the matrix exponential shows up
whenever there is a matrix (i.e., a capital letter) in the exponent of the exponential
function. The matrix exponential is the exponential function applied to a matrix,
of which the result will be a matrix.!? In contrast to the scalar exponential, the
matrix exponential does not necessarily only have positive elements. Taking the
derivative of equation (22) with respect to z gives that the equilibrium density
function is a matrix exponential multiplied by a positive vector and therefore,
the pdf could be negative for a general matrix exponential.*® To ensure that the
pdf will be non-negative on the entire domain, an extra condition has to be ful-
filled. This condition is that the vector H;:N_l (e_%SX%Iﬂ\A(“"“_aJ)) lisan
eigenvector of the matrix SX ~'AA (see Lemma 3 in Appendix C). Equation (25)
in Proposition 1 ensures that this condition is met and y is the associated eigen-
value. Then, as a result, by the properties of the matrix exponential, the matrix
exponential can be replaced by the scalar exponential in the expression for the
CDF on the last interval (i.e., z > ax = 0).2! This is done to obtain equation (23)
and leads to the following result.

Corollary 1. The distribution of (unnormalized) productivity has a (right) Pareto tail for
each type and the shape parameter is the same for each type and does not depend on the
network.

19Suppose that D is a matrix, then the matrix exponential is defined as e” = I+ D + DQ—,Z + %,3 +...
20Tp see that this vector is positive, note that all entries of the matrices S, X, A and A are ‘non-n‘egative
as are the entries of 1 — F'(ay,).
21Suppose that v is the eigenvector of matrix D with the associated eigenvalue p. Then,
2 3
D

D? D3 w W
— =z 4= — Lol — oM
e"v=|(I+D+ 2!—1-3!+...}v—{1+u+2!+3!+...v—e v.
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. . . o
Proof. This follows directly from equation (23). The shape parameter is . O

A Pareto tail is consistent with the observed distributions of firm size and
income (see, e.g., Luttmer (2007) and Gabaix et al. (2016), respectively). The shape
parameter of the Pareto tail does not depend on the network. It depends on v, p, &,
Al'and A" of the type with the highest reservation productivity.?? From equation
(24) it follows that the shape parameter is decreasing in the learning cost . An
increase in the learning cost leads to a thicker Pareto tail because, in equilibrium,
there need to be more highly productive agents to ensure that agents of type IV
are willing to pay the increased learning cost {.

In the right tail (i.e., z > 0), the pdf is the same for each type up to a multi-
plication factor. This multiplication factor is the mass of agents of a type with a
productivity above 0, such that

fulz) = ge‘%z (1—F,(0)), ifz>0.

Recall that the n-th entry in X equals a,,— (1 — F(a,)), then the learning pdf for
type N becomes

Fn(z) = ge*%% if2>0.

The learning distribution and hence the learning decision of type-/V agents is
independent of the network. This is because for a type-N agent, it does not matter
from which type it learns, since from the perspective of that agent (i.e., only
considering agents with a productivity above 0), all types are statistically the same
since productivities follow the same Pareto tail.

That the network does not affect the type-/V agents means that it neither does
affect the normalization factor, max M, (t). This feature allows me to compare
the productivity distributions associated with different networks. As discussed
above, when changes to the network would change the effective learning cost or
the number of draws from the learning distribution this condition is violated. As
an example of when the network affects the normalization factor, suppose that the
number of draws equals the number of links d an agent has, such that the learning

22The network does not affect which type has the highest reservation productivity. To see this,
suppose that the two types with the largest reservation productivity are the same except that one has a
lower A" and/or a higher A! such that this type has more agents in the innovation state, call this type-I
and the other type-IL. It can be verified that this makes that v}, (z)/e®" is larger for type-I, and hence by
equation (26) type-I must have a larger reservation productivity than type-II. The only way in which
it is possible for type-II to get a higher reservation productivity is that its position in the network is
‘better” than for type-I (in the sense of being more likely to learn from a high productive type). But due
to all types having the same Pareto tail, this is not possible and therefore, no matter what the network
is, type-I will always have the highest reservation productivity.
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CDF becomes (F (2)) d. Then, more links would make it more likely to meet a
high productive agent, and would therefore increase the reservation productivity
of the most productive type, and thus the normalization factor.

Finally, o, and S,, need to be solved numerically such that equations (25)
and (26) hold and once these variables are known, the distribution can be calcu-
lated directly using equation (22) (see Appendix F for details on the numerical
algorithm).

Discussion

Having solved the model, I now discuss how the network affects the equilibrium
distribution.” Here, I study networks with only two nodes in order to highlight
the mechanisms present in the model and hence, changes to the network will only
be on the intensive margin. This is an illustration of the working of the model. In
the next section, I study networks with more nodes and do a serious calibration.

For now, suppose that the growth rate is v = 0.02 and the discount rate is
p = 0.03. Furthermore, take the learning cost and the transition rate from the
high to the low innovation state to be the same for both types (§; = £, = 25 and
A= A\b = 2) and that type-II agents are more likely to transition from the low
innovation state to the high innovation state such that more type-II agents are in
the high innovation state as compared to type-I agents (A} = 0.5 and A\, = 0.8).
This ensures that type-II has a higher reservation productivity and hence that the
second row of A will have no effect on equilibrium outcomes. I vary the intensity
at which type-I agents learn from type-I and type-II agents. Figure 1 shows the pdf
of normalized productivity z for four different cases of the learning matrix. In the
first panel, a type-I agent that decides to learn has a 95% probability of meeting a
type-I agent and a 5% probability of meeting a type-1I agent. In the second panel,
the probability of meeting a type-II agent increases to 80%, in the third panel the
probability is 50/50 and in panel (d) there is only a 5% probability that a type-I
agent meets an agent of its own type. The change of the learning matrix has three
effects.

The main effect is on the learning reservation productivities. When type-I
agents have a high probability of meeting an agent of their own type, the value of
learning is low because type-I agents are relatively unproductive (due to being less
likely to be in the high innovation state). Therefore, agents wait with paying the
learning costs until they have fallen back far enough relative to the other agents
such that, in expected value, their productivity will increase enough to make it

2See Appendix D for how the learning cost and the transition intensities between the low and the
high innovation states affect the productivity distribution.
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Figure 1: Pdf of normalized productivity z when having two types and the probability that
a type-I agent learns from a type-II agent is (a) 5%, (b) 20%, (c) 50% and (d) 95%.

worth paying the learning costs. That is why in panel (a) the least productive of
type I are much less productive than the least productive of type II. As it becomes
more likely to meet a relatively high productive type-II agent (panels (b) through
(d)), the gains from learning become larger and agents of type I do not need
to fall back as far to be willing to learn. Through its effect on the reservation
productivities, the learning matrix affects inequality and aggregate productivity.
In panel (d), low productive agents have decided to learn, leading to higher
aggregate productivity and less inequality than in panels (a) through (c).

The second effect is on the share of agents that decides to learn in equilibrium.
Recall that the mass of learners of a type equals the growth rate of the reservation
productivity times the mass of agents at the reservation productivity. First note
that this means that not only the least productive in the economy are learning,
which is an important difference from Perla and Tonetti (2014) and Benhabib et al.
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(2017). Here, also the least productive type-II agents are learning, and depending
on the network, these can have quite a high productivity compared to the least
productive agents in the economy. Hence, this model shows that it is possible
to have search at the extensive margin without having only the least productive
deciding to learn. Going back to Figure 1, the growth rate is constant across the four
panels and hence, the change in the mass that learns is proportional to the change
in the densities at the reservation productivities. For type II, the density does
not change and hence the mass of type-II learners is independent of the learning
matrix. For type I, the density at the minimum of support goes down moving from
panels (a) to (d). This gives the slightly surprising result that the more connected
type-I agents are with the high productive type of agents, the lower is the mass of
learners in equilibrium, although the effect is quantitatively small. Moreover, this
is not a general result as it does not necessarily hold for other parameter values.
The reason for this is that there are two opposing effects. The first effect is that if
agents get more connected to more productive agents, they become more willing
to learn, thereby increasing the mass of learners. However, this also increases the
reservation productivity and therefore increases the opportunity cost of learning
which has a negative effect on the mass of learners. That the share that learns goes
down in equilibrium is still consistent with a higher aggregate productivity. This is
because in the transition to an equilibrium with a higher reservation productivity,
learning goes up temporarily.

The third and final effect of the learning matrix on the distribution is that
when type-I agents are less likely to meet an agent of their own type, the more
flat the pdf becomes in the region [ag, o1 ). The reason for this is rather technical.
For the distribution to be in equilibrium, the inflow of agents at the normalized
productivity level z must be equal to the outflow at that productivity level. The
outflow consists of the agents falling back relative to the minimum of support at
the rate g times the slope of the pdf.?* The inflow is those that are learning and
drawing a productivity z. If the learning matrix becomes such that agents of type
I are less likely to meet an agent of type I, the inflow will fall on [ag, 7). Hence, in
equilibrium, the outflow must also fall, meaning that the slope of the pdf has to
become smaller.

Finally, with the current model, it is easy to generate a hump-shaped produc-
tivity distribution with a Pareto tail. One easy way of achieving this is to have the
learning cost vary across types while holding all other parameters fixed. The first

panel of Figure 2 shows the hump-shaped density across all nodes when there are

241t is the slope of the pdf that is relevant because those just above z will flow to z whereas those at 2
will flow to just below z. Hence the difference in the pdf between z and z + € (i.e., the slope) defines
the net outflow.
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Figure 2: (a) Pdf of normalized productivity z of the entire economy and (b) histogram of
those that are adopting when there is only variation in learning costs across types.

50 nodes with a complete network and the learning costs are uniformly distributed
between 20 and 30. This resulting distribution is different from the models in
Perla and Tonetti (2014) and Benhabib et al. (2017), which have the feature that
the productivity distribution is downward sloping. The second panel shows the
distribution of productivity of those that are adopting. As already noted above, it
are not only the least productive in the economy that are adopting.

IIT Results

The previous section has highlighted the mechanisms of the model. However,
since there were only two nodes, all nodes were connected to each other and
therefore changes to the network did only reflect changes in the intensity at which
agents met agents of the other type. In this section, I study economies with more
than two nodes and test how different network properties affect the distribution
of productivity and hence aggregate TFP.

To study the effect of the network, nodes need to differ ex ante, which is
achieved by having heterogeneity in the innovation intensity. In order to get
realistic outcomes, I estimate the innovation transition intensities using firm-
level data. For this purpose, I interpret each type as an industry.® The dataset
I use is the Amadeus dataset for France which covers private firms. France is
chosen to maximize the number of observations. My analysis uses manufacturing
firms for the period 2004-2016. I estimate the A parameters for each industry as
follows. The A parameters govern at which intensity firms transition between

25See Bernstein (1989) about there being knowledge diffusion across industries.
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the two innovation states. Suppose that a firm is in the high innovation state if
its detrended number of employees grows at a rate higher than 5% between two
years, where the detrending is done at the industry level,*°and that it is in the low
innovation state if the growth rate is less than 5%. In this way, I construct a time
series of the innovation state for each firm. Using this time series, I can determine
how often firms transition from one state to the other. Aggregating, I calculate the

transition probabilities at the industry level. For each industry n, I estimate A/,
and \" using these transition probabilities as follows

7/\l )\l
NE ] T ’

where P! is the probability of staying in the low innovation state etc. In the data,

il Lh
Pn Pn

hl lhh
Pn Pn

I do not want to mistake an adoption for an innovation. As it are only the low
productive firms that adopt, I calculate the transition probabilities excluding data
on firms below the 25th percentile of the firm size distribution within an industry.
There is quite some heterogeneity in the estimates. The values of A" are in general
quite high (ranging between 1.4 and 3.4), indicating that firms only spent a short
amount of time in the high innovation state, and \' ranges between 0.5 and 1.1
(see Figure 10 in Appendix E).

The remaining calibration is as follows. The productivity growth rate of those
in the high innovation state, -, is set to 0.02 to target an annual growth rate of
2%. The discount rate, p, is set to 0.03. Finally, the learning costs are set such that
the thickness of the Pareto tail matches the estimated Pareto tail of the firm size
distribution. Luttmer (2007) estimates a Pareto shape parameter of 1.06 for the size
distribution.?” However, this is not directly comparable to the shape parameter in
the model (i.e., L) as this is the shape parameter of the productivity distribution
and there is not necessarily a linear mapping between productivity and firm
size. Benhabib et al. (2017) show that in a monopolistic competition model, the
tail parameter of the size distribution needs to be multiplied by the elasticity
of substitution between varieties minus one to obtain the tail parameter of the
productivity distribution. Therefore, an elasticity of substitution of 3 makes that
the shape parameter of the tail of the productivity distribution is 2.12. Targeting
£ =2.12 gives a learning cost of 23.2503 which is taken to be the same for all types.

26Employment is used as a measure of productivity for the following reason. Suppose that marginal
costs are proportional to the inverse of productivity. Then a 1% increase in productivity will lead to a
1% drop in marginal costs. When markups are constant the price will drop by 1% as well. Then, if the
elasticity of demand is larger than 1 (which is the empirically relevant case for most products), the
number of items sold will grow by more than 1% and hence, there is also an increase in labor demand.

2’The Amadeus dataset cannot be used to estimate the tail parameter because it omits the largest
(public) firms.

166



Diffusion of Ideas in Networks and Endogenous Search

For the remainder of this paper, this calibration will be used. I replicate each of
the sixteen industries ten times such that each simulated network consists of 160

nodes.

Dense Networks Lead to High Aggregate Productivity and Low
Inequality

To study the role of different network properties, I first focus on the role of network
density, which is the proportion of potential links that are actual links. For this
purpose, I draw networks randomly and the probability of a link forming between
two nodes is independent of each other (i.e., an Erdos-Rényi random network). I
assume that the network is undirected which means that learning is symmetric;
if there is a link between two nodes, both nodes can learn from each other. In
addition, all agents are assumed to also be able to learn from agents of their own
type. To summarize, the network matrix h has the following properties: h;; = 1
and h;; = h;; where the probability that h;; = 1 is p.

To create variation in the density I vary p. If p is high, many links will be formed
such that the network density is high while a low p implies a sparse network. I also
refer to dense networks as networks with a high average degree. I only consider
networks that turn out to be connected. For each simulated network, I solve for the
equilibrium distribution of productivity using the numerical algorithm outlined
in Appendix F. The first panel of Figure 3 shows the relationship between the
network density and TFP across networks. When calculating network density,
the links between agents of the same node are not included. TFP is the average
productivity across agents: & > [ e*dF,(z). In all graphs, I normalize TFP such
that the average TFP within a graph equals 1.

Each dot in Figure 3 represents a different network. There is a positive rela-
tionship between network density and TFP.?® The return to adding more links is
high for sparse networks but decreases sharply as the average degree increases.?’
One thing that is apparent is that the variation of TFP across simulations is larger
for sparse networks than for dense networks. This reason for this is that when
there are few links, it is important how the types are distributed across nodes.
When a highly innovative type is centrally located, TFP will be large because all
nodes connected to this node will have a high reservation productivity. These

28The relationship between network density and income after subtracting the learning costs from
productivity is identical.

2 The effect of increasing the number of links for societies with a sparse network is, in fact, larger
than what is suggested by Figure 3. To construct Figure 3 I required the network to be connected for
each simulation. When there are only a few links, it is likely that the network is not connected and, in
that case, if an innovative type were isolated, TFP would be lower.
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Figure 3: Relationship between network density and (a) TFP and (b) the variance of
log productivity for simulated Erdos-Rényi random networks. Network density is the
proportion of potential connections that are actual connections. Each data point represents
a simulation and the line represents the best fit according to a local linear regression.

are the networks located at the left top of the figure. At the left bottom are the
sparse networks in which the low innovative types happen to be centrally located,
leading to low reservation productivities and a low TFP. When the network is
dense, the variation across simulations is lower because there is less variation in
centrality measures across nodes and therefore it matters less how the different
types are distributed across nodes. The second panel of Figure 3 shows that there
is a negative relationship between network density and the variance of log produc-
tivity (within a simulation), which is a measure of inequality. The reason for this
negative relationship is the same as why there is a positive relationship between
network density and TFP. When there are more links, agents are more likely to be
connected to the high innovative types which tend to have a higher productivity.
This increases the gains from learning for these nodes and therefore increases their
reservation productivity (or learning effort), which, in turn, increases TFP and
because it are the less productive types that increase their reservation productivity,
this also lowers inequality (recall that the network does not affect the most pro-
ductive type). The nodes connected to these nodes with an increased reservation
productivity will also increase their effort and so on.

An issue with simulating Erdos-Rényi random networks is that it does not
capture that the empirical degree distribution (across nodes) tends to have fat tails
(see Bernard et al. (2018) and Price (1965) for the degree distribution among firms
and scientific citations, respectively). To test whether this matters for learning
effort, I simulate networks using preferential attachment (Barabési and Albert,
1999) which generates more plausible degree distributions. The algorithm works
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Figure 4: Relationship between network density and (a) TFP and the (b) variance of log
productivity when networks are simulated using preferential attachment. Network density
is the proportion of potential connections that are actual connections. Each data point
represents a simulation.

as follows. The network starts with m0 nodes and all links between these nodes
are present. New nodes are added one-by-one and they form m links with existing
nodes. The probability that a link is formed with an existing node is proportional
to the number of links the existing node already has (this is why it is called
preferential attachment). This ensures that the nodes that were there from the
beginning have many links while nodes that were added at the end only have
a few links. I vary m0 between 3 and 15 and m between 2 and 14 to generate
differences in network density. Figure 4 shows that the resulting relationship
between network density and TFP and inequality is similar to what is found for
Erdos-Rényi random networks, namely a positive effect of network density on
TFP and a negative effect on inequality. When the degree distribution has fat tails,
the dispersion across simulations increases. This is because when there are nodes
with many connections, it matters whether these nodes are highly innovative since
the productivity of these nodes directly affects the learning decision of many other

nodes.

A Low Average Path Length Leads to High Aggregate Productiv-
ity and Low Inequality

Figures 3 and 4 show that higher degree networks are associated with a higher
TFP, but it is still unclear what the importance of different network properties

is, since changing the number of links also affects other network properties. For
instance, increasing the number of links lowers the average path length.
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Figure 5: Example Watts-Strogatz Algorithm. (a) Initialization of the algorithm, (b) 1 link
has been rewired and (c) 6 links have been rewired.

To study the effect of the average path length on the productivity distribution,
I simulate networks in which I vary the average path length while keeping the
number of links constant using the algorithm proposed by Watts and Strogatz
(1998). The algorithm works as follows. Start with a circle network in which each
node is connected to its four neighbors at both sides (so eight links per node in
total). Draw a node randomly and with probability ¢ break up the link with its
first neighbor to the right and form a new link with a randomly drawn node. Do
this for all nodes once. Then, do the same for all nodes again but now break up
the link with its second neighbor to the right with probability ¢ and do the same
for the third and fourth neighbor to the right. The advantage of this algorithm is
that it changes the average path length while keeping the total number of links
constant.?’ Figure 5 shows an example of how the algorithm works in case of
16 nodes and four links for each node. In this graph, an arrow originating from
a node means that that node is learning from the node to which the arrow is
pointing. The first network shows the circle network from which the algorithm
starts. The second network is the same as the first network except that the link
between node 1 and node 16 is broken up and replaced by a link between node 1
and node 8. This lowers the average path length as node 1 (and its neighboring
nodes) are now closely connected to node 8 and its neighboring nodes while the
average degree is not affected. The third figure shows the network when multiple
links have been broken up and this is the network with the lowest average path
length of the three networks displayed. This is an example of what the network
looks like once the algorithm has been finished. I differ the probability ¢ across
simulations to create dispersion in the average path length.

Figure 6 shows the resulting relationship between the average path length and

30The clustering coefficient (i.e., the fraction of neighbors that are directly connected to each other)
also changes.
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Figure 6: Relationship between average path length and (a) TFP and the (b) variance of log
productivity for networks simulated using the Watts and Strogatz algorithm. Each data
point represents a simulation and the line represents the linear best fit.

TFP and inequality. There is a decreasing relationship between the average path
length and TFP, while increasing the average path length increases the variance
of log productivity.>! When the average path length is low, nodes are closely
connected to each other. One might not be directly connected to an innovative
type but with a low average path length, it is likely that a neighboring node
is connected to an innovative type, thus making this neighboring node more
productive due to learning. This, in turn, increases the gains from learning for
the original node. This process increases the reservation productivities and hence
leads to higher productivity and lower inequality.

A low average path length is a property of what is called a ‘small world’
network.?> Duernecker and Vega-Redondo (2018) provide a theory for how ‘small
worlds” develop and argue that ‘small worlds’ are beneficial for economic growth
as they increase the opportunities for collaboration. My model highlights another
positive effect of ‘small worlds’, namely the enhancement of the diffusion of ideas
by increasing the effort agents put into learning.

Finally, Table 1 projects TFP and inequality on network density and average
path length, and confirms the earlier result that network density has a positive
effect on TFP while the average path length has a negative effect on TFP. However,
controlling for the average path length makes the effect of network density on
inequality disappear.

31The relationship between the diameter, which is the maximum distance between any pair of nodes
in a network, and TFP and the variance is similar.

32Small worlds’ is a typical property found in real world networks (see Travers and Milgram (1969)
for an example).
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Table 1: Effect of network properties on TFP and inequality (variance of log productivity).

1) )
TFP Inequality
Network Density 0.24*** -0.0068
(0.048) (0.0046)
Average path length -0.013*** 0.0032***
(0.0011) (0.00031)
Mean dependent variable 1.54 0.23
Observations 271 271
R? 0.53 0.68

Robust standard errors in parentheses. Based on simulations of Erdos-
Rényi, Watts-Strogatz and preferential attachment networks.

*p <0.05 " p <0.01, *** p < 0.001

Closeness Centrality is Important for Productivity

In the above I have discussed the effect of network properties on aggregate TFP.
Here I will discuss how the location of a node within the network affects the
productivity of that node. For instance, is it the case that having more connections
leads to a higher productivity? To this end, I construct the following centrality
measures that are standard in the literature. Degree centrality is the degree of a
node divided by the maximum degree possible (159 in this case). Eigenvector cen-
trality is the eigenvector of the network h associated with the largest eigenvalue.®
The eigenvector is normalized such that the sum is 1. The eigenvector centrality
takes into account the centrality of the connections of a node. Closeness centrality
measures the relative distance to other nodes: Closeness; = &Wﬁi@hgmj The
shorter the distances the higher the closeness centrality. Bonacich centrality gives
each node a base value equal to the degree of that node and then adds all nodes
that are distance 1 away times b times the base value of those nodes. This continues
subsequently with all nodes that are distance 2 away times b? times the base value
of those nodes etc. (i.e., Bonacich centrality is (I — bh)~1h1). 1 use a value of
b=0.05.

In addition, I add a centrality measure based on the model. Recall from
Proposition 1 that 1— F(0) is an eigenvector of SX ~'AA. 1—F(0) is a vector where
the n-th entry denotes the share of type-n agents with a normalized productivity
above 0. In other words, the larger an entry in this eigenvector, the more highly
productive agents a type has. Ignoring the equilibrium matrices SX !, I propose
the eigenvector of AA as an alternative centrality measure. This centrality measure

33The largest eigenvalue is chosen to ensure that the eigenvector only consists of positive entries (by
Perron-Frobenius).
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Table 2: Effect of centrality measures on TFP of a type

(1) (2)
TFP TFP
Degree centrality -0.0040*** -0.0040***
(0.00068) (0.00065)
Closeness centrality 0.045*** 0.045**
(0.0010) (0.00096)
Eigenvector centrality -0.00045 -0.00036
(0.00044) (0.00043)
Bonacich centrality 0.00024 0.00024
(0.00022) (0.00022)
Eigenvector centrality AA 0.041***
(0.00085)
Type fixed effects X X
Mean dependent variable 1.54 1.54
Observations 43360 43360
R? 0.50 0.56

Robust standard errors in parentheses. Point estimates denote the effect of
a one standard deviation increase. Based on simulations of Erdos-Rényi,
Watts-Strogatz and preferential attachment networks.

*p <0.05 ** p<0.01, *** p < 0.001

weights connections by their innovation intensity.

Table 2 shows the results from projecting TFP of each type on the centrality
measures. The point estimates shown indicate the effect of a one standard devia-
tion increase in the centrality measure on TFP. Since the eigenvector of AA needs
more information than only the network, the first column omits this centrality
measure while it is included in the second column. Furthermore, type fixed effects
are included. The closer a type is to all other types, the higher is its productiv-
ity. The reason why closeness centrality is important for productivity is that a
high closeness centrality means that a node is closely connected to many types
and is therefore likely to be connected to some highly productive types, thereby
increasing the learning value. There is a negative effect of degree centrality on
productivity. The reason is that degree centrality is highly correlated with close-
ness and eigenvector centrality. Including the centrality measures separately, all of
them have a significant positive effect on TFP. The innovation intensity weighted
eigenvector has a strong positive effect, as should have been expected from the
model.

The results from Table 2 are consistent with what is found in Duernecker
et al. (2016). They construct the country-level network based on trade flows and
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show that a higher closeness centrality is positively correlated with economic
growth. They argue that to study the effect of openness, one should not only
need to take into account the intensity of trade with a country’s connections but
should also take into account the higher-order connections (i.e., the full network).
Here I provide a theoretical foundation for taking the network into account when
studying the effect of openness on TFP. If only the first-degree connections had
mattered, there would have been no effect of closeness centrality on TFP, and
degree centrality would have been the only significant variable. Instead I find that
having a higher closeness centrality has a large and positive effect on TFP. One
does not only want to be connected to many nodes but ideally, these nodes are
also connected to many other nodes themselves. Increasing closeness centrality by
1 standard deviation increases TFP for that node by 3%.

Share of Agents Learning Unaffected by Network

That denser networks have a larger TFP does not necessarily imply that these
networks have more agents learning in equilibrium, as was already indicated
in the discussion following Figure 1. Figure 7 plots the relationship between
the network density and the share of agents that learn, and although there is
a positive relationship the effect is negligible. In a network where 30% of the
potential links are active, agents are less than 0.01 percentage points more likely to
be learning during a year than in a network where 3% of the links are formed. At
first this seems contradictory to the result that a dense network has a 5% higher
TFP than a sparse network. The reason is that the density of the network affects
the reservation productivity, and in a dense network, agents do not need to fall
back as far to make it advantageous to learn. This leads to a rightward shift of
the productivity distribution of a type and therefore, it hardly affects the mass
of agents at the reservation productivity, which is what determines the share of
agents that are learning.

This result has implications for empirical studies studying the effect of the
network on learning. Suppose that one has a data set where, for each observation,
the full network is known and it is known when agents adopt a new technology.
By the above result, regressing the share of agents that decides to adopt in a given
period on properties of the network will find a zero effect even though there might
be a large effect of the network on productivity through diffusion. Instead, one
can run a regression of productivity on network properties, but the problem with
this approach is that it is contaminated by initial productivity differences across
observations. Therefore, to empirically study how networks affect diffusion, one
needs to focus on economies that are not in equilibrium and study whether a
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change in network properties temporarily affects the share of adopters.

IV Conclusions

In this paper I study how the decision to learn depends on the network. I find that
the more dense the network is, the more learning effort agents apply, thus leading
to a higher TFP and a lower inequality. The effect of adding links is especially
strong in networks with a small number of links. This suggests that in economies
where the network is sparse, TFP and equality could be increased substantially
by adding links to the network. For economies in which the network is already
highly connected, the gains from adding more links are much lower. In addition
to the number of links, a low average path length is beneficial for the diffusion of
ideas. A low average path length means that agents are closely connected to all
other agents. Then, the innovation of agents spill over more easily to the rest of
the economy.

Empirically it is known that the dispersion of productivity across firms is
large (Syverson, 2004) and tends to be larger in low-income countries (Hsieh and
Klenow, 2009). One possibility for this difference in dispersion is that different
network structures emerge in different countries. This paper shows that if low-
income countries have a more sparse network, then this can explain part of the
differences in the dispersion of productivity and in the level of TFP. However, the
effect is modest and network differences therefore do not have the potential to
explain all of the cross-country differences in TFP and dispersion. One important
remark, though, is that the effect of network density on TFP and the distribution
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of productivity I found here is a lower bound. If, for instance, having more links
were to imply having multiple draws from the learning distribution, this would
provide an additional force, making dense networks have a higher TFP and a
lower dispersion. In addition, I have only considered connected networks. A
sparse network makes it more likely that some nodes are isolated, such that their
innovations would never spill over to the rest of the economy.

There are several reasons for why the network could be more sparse in low-
income countries. One reason is having lower trust which would prevent the
formation of links along which ideas diffuse. Consistent with this, Algan and
Cahuc (2010) show that trust is positively associated with economic development
and Knack and Keefer (1997) find that trust is negatively correlated with inequality.
An alternative reason is differences in institutions. Boehm and Oberfield (2018)
document that in Indian states with a low formal contract enforcement, there is
more vertical integration which implies a sparser network.

In order to study whether network differences can indeed explain part of the
cross country variation in income, one needs to have network data for a large
set of countries, which is generally unavailable. However, Fogli and Veldkamp
(2016) provide a promising first step. Based on data from immigrants to the US,
they construct a network index for 69 countries and find that a higher index of
network quality leads to faster diffusion. Their index of network quality consists
of measures of the degree, average path length and clustering and their results are
therefore consistent with the results of my model.

The model is also consistent with the observed negative relationship between
aggregate productivity and inequality across countries. Here it is not the case that
less inequality causes higher productivity or the reverse, but a third factor, namely
the density of the network, causes both a higher TFP and a lower inequality.
For this reason, in a cross-country analysis studying the relationship between
inequality and development, one should control for the network to avoid omitted
variable bias.

One final remark is that the networks studied here are formed exogenously. If
agents tend to predominantly connect to highly productive agents, the effect of
network density on TFP will be lower than what is suggested above since when
agents are already connected to the most productive nodes, there is no gain from
adding more links (unless this leads to multiple draws from the productivity
distribution). However, if the decision to form links is orthogonal to productivity,
then studying exogenous networks is adequate. Plausibly, ideas diffuse along all
kinds of connections, being both formed exogenously and endogenously taking

learning into account. The results from this paper mainly relate to diffusion over
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links that are formed orthogonal to productivity. It would be interesting to study
what types of networks are formed endogenously, in order to study how policies
can affect the network and therefore development. However, in order to do this, a
stance needs to be taken on along what type of links ideas flow (e.g., do agents
learn from agents they trade with, that are geographically close or that have similar

personal traits etc.?).
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Appendix A Derivation of the Bellman Equations

This appendix derives the value functions V;(¢, Z) of continuing, i.e. not learning.
To do so, approximate the continuous time limit by taking time steps of A and let
A go to zero. Agents value their stream of current income plus the discounted ex-
pected future value. Agents discount at rate Ap. For agents in the low innovation
state [, the value function looks as follows

Vi, Z) = AZ+ (1 - Ap) [(1 = AN)VEIE+ A, Z) + AN VIt + A, Z)]

where the expected future value takes into account transitioning from the low
to the high innovation state occurring at the rate A\, during time interval A.
Subtracting (1 — Ap)V\(t, Z) from both sides and dividing by A subsequently
gives

Vl
pVit, Z) =Z + (1 — Ap) (A? (VEt+A,Z) = Vit + A, Z)] + 2

(t+A,2) -Vt 2)
)

Taking the limit of A — 0 gives the Bellman equation:
PVia(t, Z) = Z + N [Vil(t, Z) = VL(t, 2)] + BV (t, Z).

Doing similarly for agents in the high innovation state %, the value function
Vit Z)is

VMG Z)=AZ + (1 —Ap) [1 = AMNYVI(t+ A Z + Ay, 2) + ANVt + A, Z)] .

This takes into account that agents that continue to be in the high innovation state
during the time period A experience improvements in their productivity at the
rate 7,,. Again, subtracting (1 — Ap)V,*(¢, Z) from both sides and dividing by A
gives

Vit + A, Z + Ay Z) — VI'(t, Z)
A

pEL2) =2+ (1= )| .

M(VEE+D,Z) = Vit + A, Z + Ay, 2)) |

Adding and subtracting (1 — Ap) Vo X’Z) on the right-hand side gives

Vit+A,2) =V, 2)  VIE+AZ+Av.2) -Vt + A, Z)
A + A +

L2 =2+ (1= 89)|

NV E+ A Z) = VIt + A, Z + Ay, 2))] .
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Taking the limit of A — 0 gives the Bellman equation for type h:

pVIt,Z2)=Z+ N[Vt Z2) - VIt Z2)] + 8Vt Z) + 4" 282V, (t, Z) .

Appendix B Derivation of the Kolmogorov Forward

Equations

This appendix derives the Kolmogorov forward equations. Similarly as for the
Bellman equations, approximate the continuous time limit by taking time steps of
A and let A go to zero. The evolution of the distribution over time looks as follows
for the low innovation state /. Denote the CDF by ®(-) and the pdf by ¢(-).

@' (t + A, Z) =P(productivity below Z at t and no adoption higher than Z plus
p y P g p

remained in [ or transitioned from h to ! during time period A)

zZ
— [ Gt = AN + (e DAN: - ASLO [1 - e+ A2)] +
My (t)

ASH() G (t+ A, 2)dz

=@ (1, Z)(1 = AX,) + Dli(L Z)AN: — ASL (1) + AdL (L + A, Z) [S1() + S -
Subtracting ®!, (¢, Z) and dividing by A gives

D, (t+A,7) - 0,(t,7)
A

= = AL (t, Z) + NiDL(L Z) — SL() + Bt + A, 2) [Sa(t) + St®)]

B (t, Z) = = N OF (£, 2) + Xi@L (1, 2) — Sh(t) + ®iu(t, 2) [Sh(t) + ST(t)]

where I took the limit of A — 0 to obtain the last expression. For the high
innovation state h, the evolution of the distribution looks as follows.

Z
h _ .
@, (t + A, Z) =P(productivity below T

remained in h or transitioned from [ to h during time period A)

at ¢t and no adoption higher than Z plus

_ z h < h l l
_/ Ot T ) (1= AN 0l (1 2)AN, -

M (t)
ASK() [1 = Bt +A,2)] + ASLOS(E+ A, 2)dz
h Z h ! l h
= - -A
D T ) (1= AN + 841, Z)AN, — AS) 1)+

A (t+A,2) [SL(0) + Siw)]

ht+A,2) -t 2) _Pnltms) — WD) ., 2
A - A "1+ Ay

@i+ A,2) [Sh(0) + Sh0)]

A+ @ (t, Z)An — Sh(t)+
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QD (t, Z) = — ynZBz P (t, Z) — N2 (L, Z) + Ny ®ly (8, Z) — Sh(t)+
(1, 2) [Sh(t) + Sh(0)]

where again the last expression follows from taking the limit of A — 0.

Appendix C Proof of Proposition 1

The following lemma will be needed for the proof of proposition 1.

Lemma 3. Suppose that B is an n x n diagonalizable matrix of which all entries are
positive and v is an n x 1 vector with all entries positive. Then e=Ptv > 0 Vt > 0 if and
only if v is an eigenvector of B.

Proof. Since B is diagonalizable, we have B = PDP~! where D is a diagonal
matrix containing the eigenvalues ordered from high to low and each column of P
contains the associated eigenvectors. By the properties of the matrix exponential
the following holds.

-1
o—Bty — ,~PDP't,

= Pe Ptp~ly.

Because B is a positive matrix, the Perron Frobenius theorem applies and hence,
there is a unique largest eigenvalue (denoted by D) and the associated eigenvector
has positive entries, call this eigenvector P;. All other eigenvectors have at least
one negative entry.

If-statement: Suppose v is an eigenvector of B. Because v is assumed to have

all entries positive we have v = P, then

Pe Ptp=1ly = pe~Ptp-1p;

— Pe*Dt 0

0
=ePDitp > 0.

This proves that v being an eigenvector is a sufficient condition.

Only-if-statement: I prove this by contradiction, suppose that v is not an an
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eigenvector. So v # P;, then

Z1

Dt p—1 pt |72
Pe " 7*P~ v = Pe™

Ln

—Dit —Dst —Dyt
=x1e VP +age TPy + ...+ xpe TR,

where at least two of the x; are non-zero (since v would otherwise equal an
eigenvector). By Perron Frobenius there is at least one positive and one negative
element in P;, i # 1. Suppose that D; > Dy > ... > D,. Then the largest ¢
for which z; # 0 will dominate and taking ¢ large will give that the pdf equals
z;e~Pit P; which has at least one negative element and hence e~ B'v % 0 V.
Therefore, we need v = P;.

Here I have assumed that all eigenvalues are unique but Perron Frobenius
only guarantees that the largest eigenvalue is unique (therefore, the above proof
is complete for n = 2 but not necessarily for n > 2). So what happens if two
eigenvalues are equal? Suppose that D,,_; = D,, and suppose that v is such that
r; =0Vi <n—1. Thene B = (z,_1P,_1 + x,P,)e P»'. Then z,, and z,,_;

could potentially be chosen such that e~ 5"

v has all entries positive. However,
the choice of z,, and z,,_1 is not free since + = P~'v where v is positive. If
the eigenvalue with multiplicity 2 has a unique eigenvector, then the solution
becomes: ((z,,_1 + Znt) Py, + t) e~ Pt where ¢ solves (B — D,, 1)t = P, and due to
the presence of ¢, the x,,t P, term will dominate for large ¢ and hence at least one

element is negative making e~ 5% # 0 V. O
Now I turn to the proof of proposition 1.

Proof. 1start by studying the Kolmogorov forward equations to get expressions
for the distribution functions. These CDFs will depend on some variables, namely
Sy, and o, for which I will solve using the value matching condition.

Using that g = v, S" = 0 and S!, = S,,, equation (11) becomes

Fl(z) = 22 Fl(2) = M FL(2), (27)

where ), = ;il Plugging this into equation (10) gives

0=g0.F\(2) + SpFn(z) — S, . (28)
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It will be easier to work with vectors and matrices. Therefore, stack all distri-
bution functions F)(z) in the column vector Fj(z). Similarly for F"(z) and F,,(z).
Then equation (27) becomes:

Fu(2) = AFi(z),
where A is a diagonal matrix with ), forming the diagonal entries. And
F(2) = Fu(2) + Fi() = (A+ DE(2) = AR(2), (29)

where A is a diagonal matrix with 1 + ), on the diagonal entries. And equation
(28) becomes:

0=gF/(z)+S (F(z) — 1) :

where S is a diagonal matrix with S,, on the diagonal entries, and 0 and 1 are
vectors where all elements are zero and one, respectively. Note that this differential
equation is only well defined for o, < z < 7 as it is the Kolmogorov forward
equation on the interior. For z < «,,, we have F,(z) = 0 and for z > Z, we have
F,(z) = 1. Incorporating this gives the following linear ordinary differential
equation:

Fi(2) = 2T, <28 (1= F(2)) (30)

where I,,, <.<z is a diagonal matrix such that the n-th diagonal entry is 1 if o, <
z < 7 and 0 otherwise.

Plug the expression for the learning distribution (21) into equation (30) and
use equation (29) to get

1
Fi(2) = Slo,<:ceX 7 (1= ANEL(2)) (31)

Now I will solve this differential equation interval by interval. Define the matrix
Ij; as a matrix where the first £ diagonal entries are a 1 and all other elements are a
0 (to represent I,, <.<z). Furthermore, define oy 11 = Z. Then, the solution of this
34

linear ODE, for each interval [ay, ag41)°%, is

1 —1 .
Fi(z) = e dSX kAN 4 A1, ifay <z <apgr,

34 will denote different types, whereas k will denote different intervals. However, they are related

as only the first n = k types are active on the k-th interval.
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where C}, are constant vectors such that the CDF is continuous at the «, (i.e., there
is no point mass anywhere) and the initial condition holds. Fj(a1) = 0 gives
Cy = —A~'1 and hence

Fi(z) = (1 - e*%SX”hAM) AT, Hf0< 2 < as. (32)
In general:
—Llsx 1, AN (z—ay) : —Llox7 1 AN (ajp1—ay) -1 .
Fi(z)=|I—-¢e5 H (ey J it J) A1 ifap <z <agyr.
j=k—1
(33)

The product is denoted as H;: x_1 to indicate that the matrix multiplication goes
from high to low, i.e., Hjl':k_1 B; =By_1Bi—2...B1. Andif k =1, Hjl':k_1 B; =
I

Evaluating equation (33) at the maximum of support Z and using equation (29)

gives

F(z)=AF(Z)
1
— 1 — Ae 35X TAAGE—an) H (e—ésxflszA(ajH—aJ)) A,
j=N-1

which needs to equal 1 by the definition of Z. In other words, Z needs to be such
that H}:Nq (efisx_lijA(o‘j“*“j)) A~'1isin the null space of e 3 SX T AAG-aN)
Note that the matrix exponential is always invertible (for finite Z) and therefore, by
the invertible matrix theorem, the null space of a matrix exponential only contains
the zero vector. However, we have that H;:Nfl (efésx_lIJAA(aj“*o‘f) A1
equals A~!'1— Fj(ay) which does not equal the zero vector since the last element of
F(ay) is zero by equation (12). Therefore, Z cannot be finite and the only possibil-

1 —1
Lsx—1AN(

ity for F'(Z) = 1 to hold is if the matrix exponential e~ Z=aN) becomes the

zero matrix as zZ — oo. Define 4, = %SX 11 AA. Momentarily it will be shown
that [T,_y_, (e’Aj (af“’o‘-f)) A~'1 is the eigenvector of SX ' AA and therefore
only the eigenvalue associated with the eigenvector with only positive values
needs to be positive to guarantee that F(Z) = 1. Since Ay is a positive matrix,
the Perron-Frobenius theorem guarantees that there is a unique eigenvector with

positive values and that the associated eigenvalue is always positive.®
All of the above has only used equations (10)-(13) and (21). Now continue with

_l1gx-1 o
35Define v = H}:A_l (e g SX T AN a4 a’)) A~11 and for the moment, assume that v is

the eigenvector of An,s50 Anv = po. Since v = A~11 — Fj(ay), all entries of v are positive as Ay is
positive. By Perron-Frobenius there is only one eigenvector with all entries positive and the associated
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equation (14). First take the derivative of equation (33) with respect to z to get the
pdfonay <z < agy1,
1

filz) = 767%SX*llkAA(zfak)SXfllkAA H (67%SX’II]'AA(O&]‘+1*O{7‘)) Al (34)
g .
j=k—1

Evaluating equation (14) for type n gives

1
S = enSX AN T (739X A=) A for1<n < N,
j=n—1

(35)

where e,, is a row vector with a 1 on the n-th position and zeroes otherwise. By
the definition of X, we have that equation (35) always holds. To see this, move
X~ to the right of I,, (which is allowed because both are diagonal), then by the
definition of X we have that everything on the right-hand side of I,, is a vector
with a 1 on the n-th position, because X is such that X 14 (1 — F(a,)) hasa 1
for the n-th element. I,, times this vector will still be a vector with a 1 on the n-th
position. Multiplying by S and taking the n-th element gives S,,. Hence, equation
(14) holds.

The pdf in equation (34) is only well-defined if its values are non-negative
for all z. However, note that the elements of e—ArM(z=a%) gre not necessarily all
positive and therefore f;(z) is not necessarily non-negative. Therefore, I will now
derive the necessary and sufficient conditions such that f;(z) is non-negative.

Define v = H;:N_l (e*Aj(aHl*aJ’)) A7'1. Since v = A1 — Fi(ay), all
entries of v are positive. Then, by Lemma 3, f is non-negative on the last interval
if and only if SX~'AAv is an eigenvector of SX'AA. Because v is positive,
Perron-Frobenius gives that the associated eigenvalue is the largest eigenvalue of
SX1AA, which I call u. So we have:

SXTANSX 'AAv = uSX 1 AAv, (36)

1 1
SX1AA H (e_Aj(ajﬂ—aJ)) A=y H (e—Aj((Xj+1—(lj)) A1, (37)
j=N-1 j=N-1

eigenvalue, p, is positive. By the properties of the matrix exponential we have that
e~ ANG—an)y — ¢—r(E—an), ,

which goes to zero as z — oo.
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—u| |, (38)

1+5\N

where the vector on the left-hand side follows from the property that 1 — F'(ay) =
A H;:N_l (e_é*‘;)(71147"“[‘(‘3“ﬂ'+1 _"7‘)) A~11 and, by the definition of X, (i.e. the last
element in X is such that X 'A (1 — F(ay)) has a 1 as its last element), and
the right-hand side follows because Fy(ay) = 0.3% Thus, the condition that is
required to have f;(z) positive for z > ax implies that

I
Sy = —. 39
¥ (39)

An expression for p will be given later.

Furthermore, the pdf for the final interval becomes:

mazgfﬁ%mm,iuzam
where e is no longer the matrix exponential but the regular (scalar) exponential
which is, indeed, positive everywhere.

Now that I have established that the pdf is positive on the final interval, I
still have to show that it is positive on all other intervals. First, note by taking
the derivative of equation (34) with respect to z that the slope of the pdf will be
negative whenever the pdf is positive. Furthermore, note that the pdf is continuous
at oy,.% Imagine that you are walking from z towards ;. We know that for the
last interval, the pdf is positive and hence the derivative will be negative. Once
you are in a neighborhood around «y, the pdf is positive and the derivative is
negative, so the further you walk to the left, the larger becomes the pdf and hence
the pdf remains positive. This continues until you reach «;. Hence, the pdf will be

36Furthermore, note that 1 — F(ay) is the eigenvector of ASX ~1 A, so the measure of agents
with productivity in a sector higher than « v is related to eigenvector centrality. Types with a higher
eigenvector centrality will have more highly productive agents.

371iszak+1 f1(z) = fi(ak41) (for the first k elements) because

1

1 _lgx-—1 _ _lgx-—1p. o —aus
lim  fi(2) = SL,SX~LANe 35X kAN @k 1 —an) 1—[ (e LSX 11 AA(ajta a3)> A-l1
ztag4a g j=k—1

1
= lnsx—tan ] (e*%”‘ 1’1'AA(D‘J‘+1*°‘J‘)) AT,
g !
j=k

1 -1 . —_—a
while fi(ag+1) = %Ik+1SX71AA H;:k (6753)( LjAb (et %)) A~11 is identical for the first

k elements.
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positive everywhere.

To finalize the expression for the distribution function, I need to solve for «,
and S,,. Those will be pinned down by the eigenvalue condition and the value
matching condition. First get expressions for the value functions. Solve equation
(17) for vy (2):

e* + Aqvn(2)

h —
() = e

Plugging this into equation (16) and solving for v!,(z) gives:

(p - g)v'iL(Z) =¢ - TBZ’UL(Z) )

where )\, = p_;\% + 1. The value function of one type does not depend on the
value function of the other types and therefore this is a 1-dimensional ordinary
differential equation. Solving it subject to the smooth pasting condition (18) gives:
A 1
l — n z —2zUn 40 (Vn+1)
v, (2) = —e” + 2 ) (40)
g+=9r  (p=g)vn+1)

where v,, = %. Evaluating at «,, gives:

e%n

Uil(an) = —g = UZ(CWL)'

Plugging this into the value matching condition (20) gives for each n

S | :
— n __¢? + ezuy,LJran(unle)) fn Ndz — gnea” .
pP—g /a <g+(p—g)An (p—9)(vn+1) (2)
(41)

Now investigate the value matching condition for type N. For this purpose,
we only need to consider the learning distribution on the last interval and hence
we can leverage the result that due to the eigenvector, the matrix exponential

disappears for this interval. The learning distribution for type-N becomes:

N = eNHX_lAAefg(Zfo‘N)v.
g

Hence, the value matching condition for type N becomes (recall ay = 0)

1 ,u/oo< S\N 1 — > — £z —1
- =£ — % + e N e  sfeny X T AAvdz
N p=9 9Jo \g+(p—9An (p—g)(vn +1) N
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L /Oo < Aw e* + 1 eZ”N) e 9%dz

gJo \g+(p—glv  (p—g)lvn+1) ’
where the last equality holds because ey X ~' AAv = 1 by the definition of X (ey
is a row vector with its last element 1 and all others are 0). Solving the integral

gives (note that L needs to be larger than 1 for the integral to be well defined. See
footnote 38 that this holds):

1
(p—29)

AN 1 1 1

+ - _ i ;
& PN P o R V[ e e

s
g

This equation is a quadratic equation in y (the only unknown). To see that it is

quadratic, rewrite it with z = £, b = ﬁm andc=(p—g)(vny +1):
1 1 1 1
ot —a b i @)
p—9g l—-z cuvn+zx
1 1
(£N+p_g>(l—x)(l/N—i—x):x[—b(VN—i-x)—kc(l—x)}. (43)

Collecting terms gives:

(fN‘FL—b—l)J)Q“F((&N“FL) (VN—l)“l‘l_bVN)x—(£N+L>VN:0~
pP—g c p—g c p—g

This can be simplified by noting that b+ = pi—g, b—lyy =0and L -bvy = — %}1
(can be seen by using the definition of vy):
2 N 1

Solving gives:

1—VNi\/(1—VN)2+4&VZ;gVN
2

Hi2 =49

First of all note that the term in the square root is positive and therefore 1 »
is real. Second, note that one of the solutions is positive and one is negative
(because 4%7;%9u ~ > 0). By Perron-Frobenius, the eigenvalue associated with
the eigenvector with only positive entries is positive and therefore, the solution to
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p is unique:*®

1
1—I/N+\/(1—VN)2+4EN;F;QVN
p=g 5 :

And we get:

1I/N+\/(1I/N) +4£N+
Sy=g
2(1+)\N)

For the other types, it is not possible to get closed form expressions for S,, be-
cause the integral cannot be solved analytically due to the presence of the matrix

exponentials.
The value matching condition (41) can also be written in matrix notation:

diag(e®™) (piigl-i- diag(&,ﬂ) 1=

1L [okt A 1

- di " o) 4+ di ( 7zvn+an(vn+1)>).

gg (‘ag(gﬂp—g)xne) -9+ 1)°

X~ 1ANe" 55X AN o) g1 Ap f[ (e*.%sx_”j“wﬁl "ﬁ) A~11dz.

j=k—1
(45)

The first part of the integral can be explicitly solved for, using A; = ;SX AN
1 QL pews A
- / diag <" )IkX LANe™ 58X IkAMG=on) g x =11 AN
9= Jay g+ (=9

1
H (67§SX’1IjAA(aj+lfozj)) A_l].dz

j=k—1

3Furthermore note that . > g (to ensure that the integral is well defined) is always fulfilled

2 EN+io
L 1—vny + (171/]\] +4$l/1\]
—>1& > 1
+
<~ l—l/N +4 3 vN > 14+vy
Env + 51
I—VN)2+ #VN>( +I/N)2
EN
4 ! >0
— N .
(p—9)én
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N —

b R R

= dia (” - )IleAA(Ak —I)7t (efor — emArlonr—an) Hlar )

2 diag g+ (p—9)An ( )
1

Ay, H (e_Aj(aj+1_aj)> A-l1.

j=k—1

The second part of the integral cannot be solved explicitly and has to be solved
numerically. The unknowns in equation (45) are S and «,,. This means there
are 2N — 2 unknowns (because we know that oy = 0 and Sy). There are N — 1
remaining equations in equation (45) (because we have used the value matching
condition for the last type to pin down p). The remaining N — 1 conditions come
from the eigenvector condition (where up until now I only used the last equation
to pin down Sy). Thus, o, and S,, are such that equations (37) and (45) hold.
Knowing «,, and S,,, equation (33) gives the CDF. O

Appendix D The Learning Cost and Innovation In-

tensity

This appendix discusses the effect of the learning cost and the transition intensities
between the low and high innovation states on the productivity distribution.

Effect of the Learning Cost

Figure 8 shows how the distribution depends on the learning cost when both
types are the same except for their learning cost.* In panel (a) both have the

z z

(@ (b)

Figure 8: Pdf of normalized productivity z when (a) both types have a learning cost of 15
and (b) type I has a learning cost of 20 while type II has a learning cost of 15.
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Figure 9: Pdf of normalized productivity z when (a) the intensity to go from the low to the
high innovation state is 1 for both types and (b) when it is 0.5 for type I and 1 for type II

same learning cost and hence the distributions are identical. In panel (b) the
learning cost increases from 15 to 20 for type I while staying at 15 for type II. The
increase in learning costs for type I makes that the gross learning value for type
I has to increase in equilibrium to ensure that learners are indifferent between
learning (and paying the learning costs) and continuing to produce at their current
productivity level. This is achieved by type-I agents falling back relative to type-II
agents. Furthermore, the increase in learning costs lowers the mass of agents

learning in equilibrium.

Effect of the Innovation Intensity

Figure 9 shows the density for different parameter values governing the intensity
at which type-I agents transition from the low innovation to the high innovation
state. In panel (a), for both types this intensity is 1 and in panel (b), this intensity
changes to 0.5 for type-I. For both graphs and both types, the intensity at which
agents transition from the high to the low innovation state is 2, and the network
consists for 70% of agents of their own type. The learning costs are 25 for both
types. This implies that in panel (b) there are fewer type-I agents in the high
innovation state than in panel (a). Due to this exogenous innovation process,
average productivity, ignoring learning for the moment, will be lower for type-I
agents. This means that the value of learning goes down for type-I agents (nothing
changes for type-II agents because the shape parameter of the Pareto tail is not
affected) and hence the minimum of support for type I goes down relative to the

¥Ah =2, Al = 0.6 and, for both types, the network consists of 70% of agents of their own type .
Furthermore, v = 0.02 and p = 0.03.
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minimum of support for type II. Also the mass of learners goes down.

Appendix E Additional Figures
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Figure 10: Estimated transition intensities between low and high innovation states by
industry (Source: Amadeus). See Section III for details.

Appendix F Numerical Algorithm

oy, and Sy, need to be solved numerically such that equations (25) and (26) hold,
and once these variables are known, the distribution can be calculated directly
using equation (22). This section describes how the numerical algorithm works
(superscripts and subscripts denote the iteration steps).

Step 0. Make the initial guess for the vector a! and matrix S}. Then, for ¢t =
1,2,..., do the following.
Step 1. Update S for j = 1,2,..., J as follows.

Step 1a. Calculate the entries of X using the guesses o’ and S} _,.

Step 1b. Calculate S} using equation (25), iterate until convergence.
Step 2. Using equation (26), update o' using the S and X found under step 1. If
o't is close to o' stop, otherwise return to step 1 with S5 = S%.

To calculate the entries of X under step 1a, note that X; = 1 by definition
(because there are no agents with a productivity below «;). Then X, will be
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calculated as follows:
X2 = ag2— (6_%SX7111AA((X2_(“)) 1 . (46)

Due to the presence of I;, the only element of X that shows up in this equation
is the first element of X which we already know to be 1. Hence, given the guess
for S and «, X3 can be directly calculated. Likewise, the expression for X3 only
depends on X; and X»,. Hence, given X5, X3 directly follows. This way, the entire
matrix X can be calculated in N — 1 steps.

To update S under step 1b equation (25) is used. This is done as follows.
Calculate F'(0) using the S from the previous iteration. Then X "1AA (1 — F(0))
and p (1 — F'(0)) are two vectors based on the guessed a and S. Because S is
a diagonal matrix, the entries of the updated S are found by the elementwise
division of these two vectors.

In step 2 « is updated using equation (26). First calculate the integral for each
type using the «a resulting from the previous iteration. Then update o element
by element by dividing this integral by &,, + ﬁ and taking the logarithm subse-
quently. In both step 1 and step 2, homotopy is used to update the guess for S and

Q.

Appendix G Modelling Choices

My model is based on the model proposed by Benhabib et al. (2017). The main
differences of this model compared to the models in Lucas and Moll (2014) and
Perla and Tonetti (2014) is that there is innovation besides learning and that the
initial distribution does not need to be unbounded in order to make long-run
growth possible. As I show here, incorporating a network into the models of Lucas
and Moll (2014) and Perla and Tonetti (2014) would not lead to any interesting
dynamics.

In Lucas and Moll (2014) and Perla and Tonetti (2014), the only dimension in
which agents differ is their productivity level. The thickness of the Pareto tail of the
productivity distribution determines the growth rate. Suppose that there would
be a network present in Lucas and Moll (2014) or Perla and Tonetti (2014) similar
to the main text here with each node reflecting a type containing a continuum of
agents. If each type were the same (i.e., having the same tail parameter) then it
does not matter for the learning decision to which types a certain node is connected
since the learning distribution is the same. To make this clear, suppose that there

are two types of agents and the distribution of productivity across agents is the
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same for both types. Then, whether a learning agent has a 50% probability of
meeting an agent from each type or a 100% probability of meeting one type and
0% for the other type does not matter because the distribution from which the
learning agent is going to draw will be the same for both networks. Therefore,
types need to differ ex ante for the network to be relevant.

Lucas and Moll (2014) assume that the initial support of the productivity
distribution is unbounded and follows a Pareto tail. The natural way to extend
this model to multiple types would be to assume that the initial distribution for
each type has a Pareto tail with the thickness of the tail differing across types. It
turns out that this extension admits no interesting dynamics in equilibrium. To
see this, suppose for simplicity that each type is connected to each other type,
potentially with the weights differing across types. Then, the tail of the learning
distribution, for each type, will be a Pareto tail of which the thickness equals
the maximum thickness of the original distributions. Hence, no matter what the
network is, the tail of the distribution of each type will converge to a Pareto tail
with the same thickness, namely equal to the thickness of the tail of the distribution
of the type with the thickest tail. Since in both Lucas and Moll (2014) and Perla
and Tonetti (2014) the Pareto tail is what affects the decision to learn, the network

has no interesting role.

Appendix H Model the Innovation Process as a GBM

In this paper, I model innovation as following a two-state Markov Process. Here 1
discuss another possible stochastic process, namely a geometric Brownian motion.
The technical appendix of Benhabib et al. (2017) contains a version of their model
where the Markov innovation state is replaced by a geometric Brownian motion.
Here, I solve the model with a geometric Brownian motion in case there are two
types and I discuss why I chose the Markov Process as the model in the main text.
Without loss of generality, suppose that the second type has the largest reservation
productivity. The productivity of a single agent evolves according to a geometric
Brownian motion: dZ = ~v,,Z + 0, ZdW where dW is a standard Brownian motion.
The drift ,, and the variance o, are allowed to vary by type. The normalized
Kolmogorov forward equation for type n in steady state is as follows

2
n 2

0= (g - 'Yn)FrlL(Z) + ) F’I’/L/<Z) + SnFn(z) — S, (47)

where g is the economy-wide growth rate. The difference with respect to the main
text is that there are no longer two innovation states and that the second derivative
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shows up in the KFE. The expression for the learning distribution is the same as in
the main text (using matrix-vector notation):

F(z) = Lo, (14+ X (AF(2) — 1)) . (48)

Start by considering the first interval [a1, 0) at which only agents of the first type
are active. Hence, the KFE on this interval is a single second-order differential
equation. Solving this subject to the initial condition Fi (a1 ) = 0 gives

Ty

2
_ a _
\/(g 31) —2g, 121 g 271 (r—ar)
o o o
1 1 1 1 1
Fi(z) = — — —e , fora; <2<0,
a1l ai1

(49)

where a;; is the probability that a learning type-I agent learns from another type-I
agent. Evaluating equation (49) at z = 0 gives the initial condition needed to solve
the differential equation for the second interval:

1 1
Fi(0) = — — —¢ 1o, (50)

aii ail

The solution to the KFE (47) for z > 0 is
F(z)=1-¢€P*C, z>0, (51)

for some matrix B and where C' is a vector such that F'(0) = [F;(0) 0] holds.
Hence, C = [1 — F1(0) 1]'. Taking the derivative gives that the pdf is —e5?*BC.
Suppose that all entries of B are non-negative, then by Lemma 3, it is needed that
C is an eigenvector of B for the density to be positive for all z > 0. Denote the

associated eigenvalue by p. Then, the calculation rules of the matrix exponential

imply
F(z)=1-¢e"C, 22>0. (52)

Taking the first- and second-order derivatives and plugging these back into the
KFE (47) gives

1
(m + 52% + SX—lA) c=0, (53)
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where I' is a diagonal matrix with g — v, as its entries and X is a diagonal matrix
with o on the diagonal. Equation (53) is a system of two equations in three
unknowns (i, 51 and S2). Suppose that S; is known, then the first equation pins
down p and the second equation pins down Ss. Using the definition of X, rewrite
the second equation

1

Sy =—(9—12)n— 508", (54)

which is the same expression as could have been obtained by evaluating the KFE
at z = 0 for type 2. The first equation of (53) can be rewritten as

<(g )+ ;gw) (1= Fi(0)) + $1(1 — Fy(0)an) =0, (55)

which gives S; as a function of 1 and «; (o is hidden in Fy(0)).4
In case of the geometric Brownian motion, the normalized Bellman equation
becomes
2

(b= 9)vn(2) = € + (1 — 9)u(2) + F0i(2). (56)

with the smooth pasting condition

vy, (an) =0. (57)
Solving gives
1 1
onlz) = ———— ( - e—"n”a’*"ﬁ”) , (58)
P12 % Vn
with
T — 9 g7 ? r—49g
vn="5+ < " >+2 poa (59)

The value matching condition for type Il is

1+ L oo
o0) = —2 = [ ez - & (60)
pP—"2— 3 0
—p(vn + 1) (e —p—1
- a & 1) L 6 e
(== Doz — p)(r —v2 — F)
“0Note, that evaluating equation (47) at z = a1 is not informative about S given the first and second
order derivatives of equation (49).
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Solving this for v, equating to equation (59) and rewriting gives an expression
for the growth rate in terms of

g=_ ((p+Dpg2 (292 +03) +2) ((—p = Déa(—po3 +272) +2) —4(u +1)*Gp°
2(u+1)262((—p — 1)é2(=272 + 2p — 03) — 2)
2(pu +1)é2p (—(p + Dé2((1* + 1)o3 +2(1 — p)y2) +4)
2(p + 1)262((—p — Dé2(—272 + 20 — 03) — 2)

The value matching condition for type I becomes

(62)

LVTQ ar _%ﬂe*ﬂal {1(1 _ e(T1+1)0¢1)+
pm—% p—m— G nitl
1
al(lllJr]) o eal(TlJrl) :|+
vi(Ty —vy) )

1 1 1
——— (1 — F1(0)a11) [ + et _gem
p—m— % pt1 o v(p—n)

(63)

There are 5 unknowns: ay, g, i1, S2, 51 and 4 equations: (54), (55), (62) and (63)
meaning that there will be multiple equilibria in terms of the growth rate. A fatter
tail leads to a higher growth rate. Note that given . the growth rate does not
depend on the network. Suppose that the economy is in an equilibrium for a
certain p. Then, equation (62) determines the growth rate and equation (54) gives
S2 where both do not depend on the network (this is for similar reasons as in the
two-state Markov model). Equations (55) and (63) determine S; and «; and these
equations do depend on the network. Now, suppose that the network changes.
Since this will not affect the second type, 11 and g will not be affected. This is the
reason why I focus on the effect of the network on TFP and not on the growth rate
in the main text.

Figure 11 shows the distribution of productivity as an illustration. The param-
eter values are as follows: 7; = 0.005, 72 = 0.01, 07 = 02 = 0.1, & = & = 25,
p =0.04 and g = 0.02. The network differs across the two panels of the figure. The
distribution looks very similar as for the model in the main text (see Figure 1). The
more connected type-I agents are to the type-II agents, the higher is the reservation
productivity of type I and the flatter is the density of type I on [ay,0). Therefore,
it seems plausible that the effect of the network in the GBM model is similar to
the effect in the model of the main text. However, one difference between the two
models is that the pdf is not continuous here whereas it is continuous in the main
text. At z = 0 there is a jump in the pdf for type 1. It turns out that this jump
depends on the growth rate of the economy. If the growth rate of the economy,

g, were 90% instead of 2% then the discontinuity would (almost) be gone. Both
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Figure 11: Pdf of normalized productivity z when innovation is modeled as a geometric
Brownian motion when the probability that a type-I agent learns from a type-II agent is (a)
20% and (b) 50%.

a growth rate of 90% (while the largest drift is only 1%) and the discontinuities
observed in Figure 11 seem implausible, providing a justification for using the
two-state Markov chain as the main model.
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Sammanfattning

Den hir avhandlingen bestar av fyra kapitel med det gemensamma temat fore-
tagsdynamik. I de tva forsta kapitlen dokumenterar jag att foretag har blivit mer
lénsamma 6ver tiden och i det tredje kapitlet studerar jag vad som skapar denna
lonsamhetsokning. I det fjarde kapitlet studerar jag hur innovationer sprider sig
mellan foretag.

Det forsta kapitlet, Att berdikna kapitalkostnaden och vinstandelen (Estimat-
ing the Cost of Capital and the Profit Share), berdknar hur stora vinster foretagen
gor. Vinsterna é&r lika med produktion minus samtliga kostnader. Emellertid s&
observeras inte kapitalkostnaderna direkt da de inte rapporteras i foretagens re-
sultatrakning. Darfor behover vi forst berdkna kapitalkostnaderna for att kunna
berdkna de ekonomiska vinsterna. I det hir kapitlet s& utvecklar jag en ny metod
for att kunna berdkna kapitalkostnaderna. Den hidr metoden anvéander det faktum
att foretags val av insatsvaror visar kapitalkostnaden nér foretagen minimerar
kostnaderna och producerar i enlighet med en homogen produktionsfunktion.
Genom att anvdnda den hir metoden sa finner jag att kapitalkostnaderna som en
del av produktionen har varit svagt avtagande i USA under de senaste 50 aren.
Genom att dra av dessa berdknade kapitalkostnader, tillsammans med alla andra
observerade kostnader, frdn produktionen finner jag att vinsterna ungefarligen
har férdubblats fran att vara ca 4% av produktionen pa 1960-talet till att utgora ca
8% av produktionen i dag.

Att veta hur stora vinster féretagen gor ar avgorande for att forstd ojamlikhet.
Under de senaste artiondena har arbetstagarnas andel av inkomsterna minskat
i USA. Detta innebér att en ldgre andel av inkomsterna tillfaller arbetstagarna
och en storre andel tillfaller de som dger foretagen och aktiekapitalet. Denna
minskning i arbetskraftens andel kan antingen bero pa att kapitalet blivit viktigare
i produktionen (exempelvis till foljd av automatiseringen) eller till f6ljd av en
Okning av foretagens marknadskraft. Att kapitalandelen har minskat medan
vinstandelen har 6kat innebar att minskningen i arbetskraftsandelen beror pa en
okning i foretagens marknadskraft och inte pa att kapitalet blivit viktigare for
produktionen.

Nir jag beaktar lonsamhetsfordelningen mellan foretagen sa finner jag att hela
fordelningen har flyttats till hoger. Sdlunda &r det inte enbart de mer lonsamma

foretagen som har blivit mer lonsamma, medianforetaget har ocksa blivit mer
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lonsamt over tiden. I vilket fall sa beror vinstokningen pa att den ekonomiska
aktiviteten flyttas fran foretag med en lag vinstandel till foretag med en stor
vinstandel. Jag finner dven att storre foretag har en hogre vinstandel dn sma
foretag och att detta samband har blivit starkare over tiden.

Det andra kapitlet, Vinster och marginalprodukten av kapital virlden 6ver
(Profits and the Marginal Product of Capital around the World), anvinder den
metod som utvecklats i det forsta kapitlet for att studera hur vinstandelen har
utvecklats vérlden 6ver. Jag finner att vinstandelen visar en inverterad U-kurva i
Europa mellan 1990 och 2015, med en total 6kning uppgdende till cirka 2 procen-
tenheter. Vinsterna har dven okat i Asien, Latinamerika och Nordamerika. Detta
betyder inte att vinsterna i samtliga ldnder har okat. I exempelvis Kanada har
vinstandelen inte kat. Den globala vinstandelen har 6kat med ca 2 procentenheter
fran 1990 till 2015, vilket &r ndgot mindre d4n dkningen i USA. Slutligen har rikare
lander upplevt en ndgot snabbare lonsamhetsokning an fattiga lander.

Vidare sa studerar det hér kapitlet i vilken omfattning som marginalproduk-
terna av kapital dr utjgmnade lander emellan. Detta ar viktigt for att forsta hur de
internationella kapitalmarknaderna fungerar. Nar marginalprodukten av kapital
skiljer sig mellan linder, fungerar inte de internationella kapitalmarknaderna vil,
och den globala produktionen skulle kunna 6ka genom att omallokera kapital fran
lander med en ldg marginalprodukt av kapital till linder med en htg marginalpro-
dukt av kapital. Jag berdknar marginalprodukten av kapital mellan lander med
hénsyn tagen till imperfekt konkurrens, och att stordriftsféordelarna kan avvika
fran ett. Jag finner att rikare linder har en hogre marginalprodukt av kapital
an fattigare lander men att detta enbart drivs av skillnader i avskrivningstakten.
Salunda verkar internationella kapitalmarknader fungera vél och det finns ingen
vinst, i termer av produktionen efter avskrivningar, av att omallokera kapital fran
fattiga till rika ldnder och vice versa.

I det tredje kapitlet, Vinsternas livscykel (The Life Cycle of Profits), doku-
menterar jag att 6ver tiden har vinsterna kommit att skjutas fram mer 6ver ett
foretags livscykel. Ett foretag som dr yngre &n tio ar i dag gor lika stora vinster
pa arsbasis som ett ungt foretag gjorde for trettio r sedan. Emellertid sa gor ett
gammalt foretag i dag mycket storre vinster dn vad ett gammalt foretag brukade
gora for 30 &r sedan. Det finns tva skl till detta &ndrade livscykelmonster for
vinster. Unga foretag i dag dr bara aningen storre i termer av forséljning dn vad
de brukade vara, medan &ldre foretag har blivit mycket storre jamfort med aldre
foretag for trettio ar sedan. For det andra har unga foretag borjat gora mindre
vinster i forhéllande till sin storlek medan gamla foretag i dag har en vinstandel

som dr ungefdr densamma som den brukade vara.
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Jag bygger sedan en kvantitativ modell for att forstd i vilken utstrackning detta
forandrade livscykelmonster for vinster forklarar vinstokningen. En foretagare
kommer att starta en foretagsverksamhet nir viardet av att ha denna foretagsverk-
samhet (dvs den diskonterade summan av vinster) 6verstiger intradeskostnaderna.
Allt annat lika sa uppstar vinsterna i dag i ett senare skede dn vad de brukade
gora, foretagets véarde ar lagre till foljd av diskontering. Detta gor det mindre
tilltalande att starta en foretagsverksamhet och kommer darfor att leda till ett
lagre foretagsintrade. Detta minskar konkurrensen foretag emellan och leder i
sin tur till en vinstokning. Jag finner att den observerade skillnaden i vinsternas
livscykelmonster forklarar ungefar tva tredjedelar av de vinstokningar som jag
fann i kapitel 1 och detta kan mer &n helt férklara den minskning i foretagsintrade
som observeras.

Slutligen studerar det fjarde kapitlet, Spridningen av idéer i nidtverk och
endogen sokning (Diffusion of Ideas in Networks and Endogenous Search),
spridningen av teknologi. Nya idéer tenderar att spridas gradvis och aktdrer som
ar direkt relaterade till de som tidigt antar tekniken dr mer sannolika att sjdlva
anta tekniken. Detta innebér att hur nitverket av interaktioner mellan aktorer ser
ut paverkar hur snabbt spridningen sker. Vidare sa beror sokanstrangningen pa
nétverket och produktivitetsfordelningen. Nar man &r knuten till hogproduktiva
aktorer sd dr man villig att anstranga sig mer eller mindre for att ldra sig och anta
de teknologier som dessa hogproduktiva aktorer anvander jamfort med nar man
enbart dr knuten till lagproduktiva aktorer. Det hér kapitlet studerar teoretiskt
vilka nétverksegenskaper som dr fordelaktiga for spridningen nér beslutet att leta
efter produktivitetshdjande teknologier beror pa nitverket av interaktioner mellan
aktorerna.

Aktorer har optionen att involvera sig i kostsamt ldrande av sina forstagrad-
skontakter. Ju mer produktiva en aktors forbindelser &r, desto villigare &r denne att
lara. Salunda paverkar nitverket den reservationsproduktivitet vid viken aktorer
véljer att ldra sig och det paverkar darfor den aggregerade produktiviteten. Jag
finner att ju tatare nitverket dr (dvs ju fler férbindelser som finns mellan foretag),
desto storre dr anstrangningen att ldra sig och darav den hogre totala faktorpro-
duktiviteten och den ldgre ojamlikheten. Emellertid sa ar natverkets effekt pa den
andel aktorer som lar sig i jamvikt tvetydig. Vidare sa finner jag att noder som ar
centrala i termer av deras nérhet till andra noder tenderar att anvénda en storre

anstrangning vid inldrning och ha en hogre produktivitet.
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