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Abstract 

Feature selection is an important step regarding Electroencephalogram (EEG) classification, for a Brain-Computer 

Interface (BCI) systems, related to Motor Imagery (MI), due to large amount of features, and few samples. This 

makes the classification process computationally expensive, and limits the BCI systems real-time applicability. 

One solution to this problem, is to introduce a feature selection step, to reduce the number of features before 

classification. The problem that needs to be solved, is that by reducing the number of features, the classification 

accuracy suffers. Many studies propose Genetic Algorithms (GA), as solutions for feature selection problems, with 

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) being one of the most widely used GAs in this regard. 

There are many different configurations applicable to GAs, specifically different combinations of individual 

representations, breeding operators, and objective functions. This study evaluates different combinations of 

representations, selection, and crossover operators, to see how different combinations perform regarding accuracy, 

and feature reduction, for EEG classification relating to MI. In total, 24 NSGA-II combinations were evaluated, 

combined with three different objective functions, on six subjects. Results shows that the breeding operators have 

little impact on both the average accuracy, and feature reduction. However, the individual representation, and 

objective function does, with a hierarchical, and an integer-based representation, achieved the most promising 

results regarding representations, while Pearson’s Correlation Feature Selection, combined with k-Nearest 

Neighbors, or Feature Reduction, obtained the most significant results regarding objective functions. These 

combinations were evaluated with five classifiers, where Linear Discriminant Analysis, Support Vector Machine 

(linear kernel), and Artificial Neural Network produced the highest, and most consistent accuracies. These results 

can help future studies develop their GAs, and selecting classifiers, regarding feature selection, in EEG-based MI 

classification, for BCI systems. 
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1. Introduction 

Brain Computer Interface (BCI) is a communication interface between a brain and an external device [1]. Since 

brain activity produces electrical signals that are measurable from the outside of a person’s head, we can feed the 

signals to a BCI, that translates the electrical signals and converts them to commands for the external device. A 

person can then interact said electrical device with their mind. It is commonly used in medicine as aid, or treatment 

for different disabilities and disorders. An example being NeuroFeedback (NF) [2], where a BCI system is used in 

combination with Motor Imagery (MI) to measure, and display brain activity in real-time on a screen, or as audio 

feedback. MI, being defined as a mental simulation of a motor action, has proven to share similar neural activity 

to an actual motor action [3], and when recorded, can be recognized by the BCI, and visualized on a screen in real-

time for a patient to view [2]. This can be used to train your brain and gain control over involuntary activities. In 

paper [2], they highlight some experiments done to try NF as treatment for Attention Deficit Hyperactivity 

Disorder (ADHD), and to help with rehabilitation after stroke. For people with ADHD it has been observed that 

they have higher amplitudes of low frequency (theta and delta waves) in their resting state, which are associated 

with relaxation. NF can be used to try and gain control, and lower these frequencies by looking at a screen with 

real-time feedback, and try to alter them. Thus, NF relies heavily on giving feedback in real-time, which is proven 

in [4], where they explain that delay between the neural activity, and the feedback from NF decreases the learning 

and rehabilitation capabilities. 

 

The most common technology to measure, and record brain signals is Electroencephalography (EEG) [5].  

This is because the equipment is not to expensive compared to other methods. Multiple electrodes are placed 

directly on the scalp of a person, unlike other methods where they have to be inserted by surgery. EEG is therefore 

seen as the most non-invasive method. The electrodes record the electrical activity over a period of time, which 

can then be stored in computer memory [5]. A drawback off EEG is that a sample recorded with this method often 

consist of a large number of features from multiple recording channels, and due to fatigue of the user, only a 

limited number of samples can be recorded [6], [5], [7]. This combination is not good when used as input for 

classification due to over-fitting problems (i.e when a model has “memorized” the noise and will perform well on 

its training data, but very poorly on novel data). EEG also record a lot of noise due to a problem called volume 

conduction [8]. In [7], and [9], they use Support Vector Machine (SVM) as classifier, because it works well with 

lots of features and few samples. Unfortunately, it takes a long time to compute, and as explained earlier, 

applications like NF need to have the data in real-time. Therefore, a feature selection step is required, which is a 

method of reducing the number of features, and only use a small subset that provide relevant and non-redundant 

information to the classification, and as a result, reduces the computational time [6], [7]. Feature selection is not 

an easy task since you need to find the features that are important to the classification, and distinguish them from 

the noise, otherwise the prediction accuracy will decrease [6], [7]. 

 

To find the important features, other studies have found that Evolutionary Algorithms (EA) are a good choice, and 

the most common algorithm used, is Genetic Algorithm (GA) [6]. This is a metaheuristic optimization algorithm 

based on biological evolution, with breeding operators such as selection, crossover, and mutation. It modifies a 

population of individual solutions over generations, with the goal of evolving the solutions over time, towards an 

optimal solution. The problem with a regular GA, or any other regular EA, is that it only works well for one 

objective, and feature reduction in this case have multiple objectives, reduce features, and not lower the accuracy. 

These two objectives are conflicting in the sense that if we reduce the features too much, the accuracy decreases, 

and if we focus only on the solutions with high accuracy, then the number of required features will rise. Therefore, 

a special version of EA must be used, a multi-objective evolutionary algorithm (MOEA), which can optimize 

multiple conflicting objectives simultaneously.  

 

In [10], the research team did a comparison between a MOEA, and two single-objective algorithms, for a feature 

reduction problem related to EEG classification. The MOEA used was Non-Dominated Sorting Genetic Algorithm 

II (NSGA-II), and the single-objective GAs were, Steady Sate GA (SGA), and a regular GA. They showed that 

NSGA-II both had higher accuracy, and feature reduction, in comparison to the other two, with a slight drawback 

of being much slower to converge compared to SGA. In [6], another team created a novel version of NSGA-II, to 

solve a similar feature selection problem. The algorithm was compared to two other proven methods, and did 

produce a very promising result. Christoffer Parkkila continued the work from [7] in his bachelor thesis [9], where 

they had used a novel single-objective GA called Hierarchical Genetic Algorithm (HGA) for feature selection. He 

implemented a MOEA to be used instead of the HGA used previously. The MOEA he implemented was NSGA-

II [9], and it was able to improve the result of the previous study. Many studies have used NSGA-II for similar 
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problems [6], [9], [10], [11], showing that the algorithm is a good choice for a feature selection problem related to 

EEG classification. However, there is still room for improvement, as explained earlier, to make NF efficient we 

need to keep the computational time as low as possible, since NF relies on giving feedback in real-time [2], [4], 

[7]. A low computational time requires a fast classification system, which requires good feature selection.  

 

Since NSGA-II have proven to be a great solution to this problem, the purpose of this study is to improve the 

algorithm even further. NSGA-II has not yet been evaluated with different combinations of individual 

representations and different breeding operators, which this study aims to evaluate, in hopes of improving the 

prediction accuracy, for a smaller number of used features, which in turn will decrease the computational time. 

Three different individual representations, three selection, and three crossover operators will be tested for the 

original NSGA-II, and compared to the modified NSGA-II from [6], which will also be tested with the 

implemented selection operators. All combinations will be tested with three different objective-function pairs, 

Pearson with Feature Reduction (Pearson-FR) from [7], Pearson with k-nearest neighbor (Pearson-kNN) from 

[9], and Training-validation percentage with kNN, from [6]. To evaluate the results, five different classifiers will 

be used. 

 

The paper is organized as follows: In Section 2, all necessary theory is presented, that is needed to understand this 

study. In Section 3, some of the related works in this field are presented, and discussed. Section 4 describes the 

problem more thoroughly, and the research questions are defined. In Section 5, the methods of research are 

provided, and in Section 6, the ethical considerations are presented. In Section 7, the system design, and 

implementation, are described, with the experiment settings being provided in Section 8. In Section 9, the 

experiment results are provided, and in Section 10, the results are discussed. Finally, Section 11 concludes the 

work, and future work is provided in Section 11.   
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2. Background 

In this section, all the necessary theory, regarding the study are presented, and it is organized as follows: In Section 

2.1, supervised learning, and related algorithms are described. In Section 2.2, the concept of feature reduction is 

explained, and in Section 2.3, the concept of evolutionary algorithms are described. In Section 2.4, a specific type 

of evolutionary algorithms is explained, namely, Genetic Algorithm. Finally, in Section 2.5, Multi-Objective 

problems are described, with NSGA, and NSGA-II being highlighted as solutions.  

2.1. Supervised Learning 

Supervised Learning is a subcategory of Machine Learning, commonly used for prediction problems [12]. The 

algorithms are building a mathematical model, by learning from known, labeled data. A supervised learning 

algorithm can either be classified as Parametric, or Non-Parametric [13]. Parametric algorithms try to simplify 

the structure of the problem according to a set of finite parameters, no matter how much data you input, the 

parameters will always be of the same amount. Usually, these parameters involve the mean, and standard deviation 

of normal distribution. A non-parametric algorithm does not have a fixed number of parameters. The complexity 

of the mathematical model depends on the amount of input data, by increasing the amount of input data, the amount 

of parameters required also increases. For parametric models, you only need to know the parameters of the 

mathematical model to classify new data, while non-parametric methods instead use the training data directly in 

the classification, by finding similar patterns between the input data, and the labeled training data. This means that 

a non-parametric algorithm always needs to keep the training data, while a parametric algorithm doesn’t [13]. 

 

A supervised learning algorithm learn by classifying training data, which consists of sets of input features, and the 

correct outputs (labels) for each set [12].  By classifying the training data, they then have the ability to look at the 

correct label, and use that information to tune the underlying mathematical model. The goal of the training process 

is to improve the mathematical model so they later can classify novel data (i.e data they have not seen before, 

without correct labels). A set of features can also be called a data point, instance, or sample, which can be defined 

as 𝑋 = {𝑓1, 𝑓2, … , 𝑓𝑛}, where 𝑓𝑖 is a feature belonging to sample X, and n is the total number of features [12].   

 

To calculate an algorithms prediction accuracy for novel data, cross-validation is commonly used [12]. The input 

data sets are divided into groups, where one group is used for training, and the other is used for validation [12]. 

Usually, this is done in multiple rounds, called a fold, where the dataset is divided in groups differently each time.  

 

Some common supervised learning algorithms are k-Nearest Neighbor (KNN), Support Vector Machines (SVM), 

Linear Discriminant Analysis (LDA), and Artificial Neural Network (ANN) [12]. 

 

2.1.1. K-Nearest Neighbor 

K-nearest neighbor (KNN) is a non-parametric, supervised learning algorithm [12]. A non-parametric algorithm 

uses the training sets directly to classify novel data. The algorithm considers a sample to be point in a n dimensional 

space, where the number of dimensions (n) corresponds to the number of features that constructs the sample. This 

algorithm is based on the assumption that similar data points exist close to each other. When assigning a class to 

an input sample x, it finds the 𝑘 ∈ ℕ closest points to x in the training data sets, and assign x the class that is most 

common between the k closest points.  

 

There are multiple ways to calculate the distance between two samples, with the most common method being the 

Euclidean Distance (ED) [12]. It is defined as follows:  

 

 𝐸𝐷(𝑋, 𝑌) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 
( 1 ) 
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Where X, and Y, are two samples, n is the number of features in each set, 𝑥𝑖 is a feature from X, and 𝑦𝑖 is a feature 

from Y. Figure 1 shows an activity diagram over the algorithm:  

 

 

The algorithm starts by initializing k, the number of neighbors to use [12]. Then it goes through all training samples 

𝑌𝑖, and calculates the distances between them, and the input sample X. When all distances have been calculated, 

they get sorted in an ascending order. Then the algorithm takes the first k samples, and look at what their labels 

are. The most common label will get assigned to X. Figure 2 illustrates how it can look with  k = 5, and two 

features. The red circle looks at the 5 closest instances, and since four of them are blue, it will be assigned class 1.  

 

 

2.1.2. Support Vector Machine 

Support Vector Machine (SVM) is a non-parametric, supervised learning algorithm [12]. This algorithm is able to 

classify between two different classes, making it a binary classifier. It works by dividing the training samples with 

a hyperplane, which is placed in the middle of two classes, with as much margin between the classes, and the 

hyperplane as possible [13]. This is calculated by using support vectors, which are vectors that defines the 

maximum space between the two classes. The support vectors are essentially the samples from each class, that are 

closest to the opposing class. With these vectors, the hyperplane can be calculated, and placed in the middle of the 

Figure 2: Example of KNN with k=5, and 2 features. 

Figure 1. KNN activity diagram. 



 

 

 

 
                9   

 

Robin Johansson Mälardalen University 

resulting area, which will give the maximum margin to both classes. The algorithm can then use this plane to 

assign new samples a class, depending on which side of the hyperplane the point lands on. The dimension (n) of 

the hyperplane depends on the number of features (k) in a sample, where 𝑛 = 𝑘. In a 2-dimensional space the 

hyperplane becomes a line, this is illustrated by Figure 3. 

 

 

To then classify a new sample, the algorithm can use the following equation [13]: 

 

 
𝑓(𝑋) = 𝜔0 + 𝜔1𝑥1 + ⋯ 𝜔𝑛𝑥𝑛 

 
( 2 ) 

 

Which simply is a linear equation, that works for any number of features and dimensions (n) [13]. In EQ. ( 2 ),  𝜔𝑖 

are the coefficients of the hyperplane, and 𝑥𝑖 represents a feature of sample X. Since it’s a binary classifier, only 

two labels are needed, the label (𝑦) for a sample, 𝑋𝑖, is therefore defined as: 𝑦𝑖 ∈ {−1,1}. To know what class X 

belongs to, the algorithm only has to look at the sign of EQ. ( 2 ), if 𝑓(𝑋) > 0, it belongs to class 2 (𝑦𝑖 = 1), and 

if 𝑓(𝑋) < 0 it belongs to class 1 (𝑦𝑖 = −1). To determine the distance of sample X from the hyperplane, it can 

calculate |𝑓(𝑋)|, which can be used as a confidence measure, where the algorithm is more confident the further 

away from the hyperplane X resides. However, this approach only works if the boundaries between the two classes 

are linear. 

 

As previously mentioned, the hyperplane should be placed in a way that it is in the perfect middle of the two 

classes, with as much margin between them as possible [13]. To find this plane, we have to solve an optimization 

problem, where we want to maximize the margin width (M). M then relates to the hyperplane vector 𝜔⃗⃗ , where it 

is placed, and in what direction it points towards, which means that to maximize M, the algorithm needs to find 

the optimal hyperplane coefficients 𝜔𝑖 . At the same time, we want to keep the constraints of 𝑓(𝑋) > 0, and 

𝑓(𝑋) < 0, which are used to differentiate between the two classes. This gives the optimization problem:  

 

Figure 3. Simple illustration of a 2-dimensional hyperplane, 

highlighting the margin, support vectors, and the hyperplane. 

The samples on the smaller lines, are the support vectors. 
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             𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑀 
𝜔0, 𝜔𝑖 , … , 𝜔𝑛, 𝜇1, 𝜇2, … , 𝜇𝑝 

( 3 ) 

 

 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝜔𝑗

2

𝑛

𝑗=1

= 1, ( 4 ) 

 

 

𝑦𝑖 (𝜔0 + ∑𝜔𝑗𝑥𝑗

𝑛

𝑗=1

) ≥ 𝑀(1 − 𝜇𝑖), 
( 5 ) 

 

 

𝜇1 ≥ 0,∑𝜇𝑖 ≤ 𝐶

𝑝

𝑖=1

 
( 6 ) 

 

In this optimization problem, EQ. (3) tells us what we are optimizing, which is the margin (M) [13]. M is optimized 

by tuning the parameters 𝜔𝑖, and 𝜇𝑖, where 𝑤𝑖  are the hyperplane coefficients, and 𝜇𝑖 are slack variables, which 

corresponds to the distance of sample 𝑋𝑖 relative to the margin (M). EQ. ( 4 ) together with EQ. ( 5 ) ensures that 

most of the training samples will be on the correct side of the hyperplane, with a minimum distance of M. In EQ. 

( 5 ) we can see the linear equation from EQ. ( 2 ) inside the parentheses. Variable 𝑦𝑖  will be the resulting class 

label, 𝑦𝑖 ∈ {−1, 1}, and from 𝑀(1 − 𝜇𝑖), we can see that some solutions will be allowed on the wrong side of the 

margin (if the corresponding slack variable 𝜇𝑖 > 0). To find the optimal plane, all samples have to pass the criteria 

of EQ. ( 5 ), which means that a sample with label 𝑦𝑖 = −1 need to have a negative distance from the plane, where 

𝜔0 + ∑ 𝜔𝑗𝑥𝑗
𝑛
𝑗=1  produces a negative number . This means that if a solution is on the wrong side of the hyperplane, 

the equation criteria will not be met, and the position of the plane have to be changed [13]. The slack term in EQ. 

( 5 ) ensures that some terms will be allowed inside of the margin area, since 𝜇𝑖 will be > 1, and 𝑀(1 − 𝜇𝑖) will 

be smaller than the margin itself (M), and because of this, samples closer to the plane will be allowed since the 

right side of EQ. ( 5 ) will be smaller. EQ. ( 6 ) is the penalty of misclassification,  𝜇1 ≥ 0 ensures that the slack 

variable will be positive, and ∑ 𝜇𝑖 ≤ 𝐶
𝑝
𝑖=1  is the amount of penalty, which is the sum of all slack variables. It also 

limits the amount of slack to C, which is a tuning parameter, commonly chosen by cross-validation. If a sample is 

on the correct side of the margin, the slack term 𝜇𝑖 = 0. If 𝜇𝑖 > 0 the sample is on the wrong side of the margin, 

and if 𝜇𝑖 > 1, then it is on the wrong side of the hyperplane, which will penalize even more [13]. With C you can 

therefore decide how much classification error the algorithm should allow, and a bigger C will result in a bigger 

margin, with higher bias. A small value for C will result in a narrow margin, with lower bias probability, but higher 

variance. EQ. ( 3 )-( 6 ) can be written in a more compact equation, similar to a linear regression problem:  

 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝜔0, 𝜔𝑖 , … , 𝜔𝑛
{∑𝑚𝑎𝑥[0, 1 − 𝑦𝑖𝑓(𝑋𝑖)] + 𝐶 ∑𝜔𝑗

2

𝑛

𝑗=1

𝑝

𝑖=1

} 
( 7 ) 

 
𝑓(𝑋𝑖) = 𝜔0 + ∑ 𝜔𝑘𝑥𝑘

𝑛

𝑘=1

 
( 8 ) 

 

Where 𝑚𝑎𝑥[0,1 − 𝑦𝑖𝑓(𝑋𝑖)] is called a hinge loss function, which is 0 if the sample is on the correct side of the 

margin, otherwise the value is related to the distance from the margin [13]. The second term 𝐶 ∑ 𝜔𝑗
2𝑛

𝑗=1  

corresponds to the penalty, where a large C results in smaller 𝜔𝑘, with more misclassifications allowed. EQ. ( 8 ) 

is the linear equation from EQ. ( 2 ), which is used both for the optimization of the hyperplane, and when we want 

to classify new samples. The above optimization is called a Quadratic Programming (QP) problem. This is a 

complex area in itself, and won’t be described in this paper. One can solve such optimization problem with for 

example Platt’s Sequential Minimal Optimization algorithm (SMO). For a detailed explanation of this algorithm, 

and how to solve these problems, I refer you to [14]. 

 

For a non-linear boundary, where samples are mixed in a way where no straight line can divide the two classes, 

the method gets more complicated [13]. In a case such as this, the algorithm uses kernels. A kernel is a method of 

transforming the feature space to a higher dimension, where the two classes now can be divided by a hyperplane 

of a higher dimension. The hyperplane itself is of dimension n-1, which in a 2D feature space is a line (1D), and 

in a 3D feature space it is a 2D plane. When transforming back to the original feature space, the hyperplane will 
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look non-linear, and may be curved in different ways. To solve this, we need to change the linear equation, and 

give it the ability to enlarge the feature space, using higher-order functions. This is done by using kernels. 

 

By looking at the behavior of EQ. ( 7 )( 8 ) , it has been found that only the inner products between the samples  

are needed, and only from the samples that act as support vectors. Therefore, the linear classifier from EQ. ( 8 ) 

can be rewritten as:  

 

 
𝑓(𝑋𝑖) = 𝜔0 + ∑ 𝛼𝑘〈𝑋, 𝑌𝑘〉

𝑛

𝑘=1

 
( 9 ) 

 

Where 𝛼𝑘 are parameters that will be found, and optimized when inserting EQ. ( 9 ) into the optimization equation  

EQ. ( 7 ). These parameters will be 0 for all solutions on the right side of the hyperplane, which indicates that only 

the support vectors affect the optimization, both for the hyperplane, and when classifying new samples. Lastly,  
〈𝑋, 𝑌𝑘〉 is the inner product between samples, X, and Y, defined as: 

  

Linear Kernel 〈𝑋, 𝑌𝑘〉 = ∑ 𝑥𝑖𝑦𝑖

𝑝

𝑖=1
 

( 10 ) 

 

Putting EQ. ( 9 ) and ( 10 ) together gives us the same linear classifier as EQ. ( 8 ). A kernel is actually the inner 

product part, and EQ. ( 10 ) is the linear kernel. A kernel K(X, Y), is in fact:   

 

 𝐾(𝑋, 𝑌) =  〈𝑋, 𝑌〉 ( 11 ) 

 

The equation used for inner product calculation is therefore known as the kernel. Two other popular kernels are 

the Polynomial Kernel (PK), and the Radial Basis Function Kernel (RBF): 

 

Polynomial Kernel 𝐾(𝑋, 𝑌𝑖) = (1 + ∑𝑥𝑗

𝑛

𝑗=1

𝑦𝑗)

𝑑

 
( 12 ) 

 

Radial Basis Function Kernel 𝐾(𝑋, 𝑌𝑖) = 𝑒𝑥𝑝 (−𝛾 ∑(𝑥𝑗𝑦𝑗)
2

𝑛

𝑗=1

) 
( 13 ) 

 

The polynomial kernel is almost identical to a linear kernel, in fact, if parameter d is equal to 1, it is a linear kernel. 

Otherwise, using 𝑑 > 1 transforms the feature space to a higher dimension, and involves polynomials of degree 

d. The optimal value for this parameter is usually found by cross-validation. 

 

Radial basis function kernel calculates the relationship between two samples in a higher dimension, without 

actually transforming it. This process is also referred to as Kernel Trick, which avoids the math of actually 

transforming, and saving some computations needed. In this kernel, 𝛾  is the parameter, which is a positive 

constant. An interesting behaviour of this kernel, is that it works somewhat similar to KNN, where only the closest 

samples have an effect on the classification process, when classifying a new sample X. 

 

In summary, EQ. ( 7 ) is used to find the optimal hyperplane, and support vectors, where the function 𝑓(𝑋) defines 

the hyperplane, and is used when classifying new samples. That function is defined as:  

 

 
𝑓(𝑋𝑖) = 𝜔0 + ∑ 𝛼𝑘𝐾(𝑋, 𝑌𝑘)

𝑛

𝑘=1

 
( 14 ) 

 

Where 𝐾(𝑋, 𝑌𝑘) can be either of EQ. ( 10 ), ( 12 ), or ( 13 ). 

 

2.1.3. Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a parametric, supervised learning algorithm [12]. This method tries to find 

the linear combination of features that best separates multiple classes. LDA works both as a binary classifier, and 
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a multiclass classifier. The algorithm makes the assumptions that all samples within a class are drawn from a 

multivariate normal distribution, and that each sample in a given class use the same mean vector [13]. It also 

assumes that all classes share the same covariance matrix (i.e a matrix giving the joint variability between each 

pair of elements). The algorithm looks for patterns in feature space between the different samples, and classifies 

new samples based on similar training samples. 

 

LDA is based on Bayes’ Theorem, and to understand it you need to know the terms used in the equations [13]. 

First you need to know how to calculate the prior probability (𝜋) of a given class (k). This is calculated by dividing 

the number of training samples of class k, with the total number of training samples:  

 

 

Then LDA use mean vectors of each class [13], which simply is the mean of all samples belonging to class (k), 

where p is the number of features, 𝑛𝑘 is the number of samples in class k, and 𝑥𝑖 is feature i of each sample: 

 

 

Lastly, LDA calculates a covariance matrix, which can be seen as a weighted average of sample variances for each 

of the K classes [13]. In the equation, K is the total number of classes, p is the number of features, and 𝑥𝑖 is feature 

i of each sample: 

 

  

These prior variables all have to be estimated before use in the following equations [13]. Bayes’ Theorem is then 

defined as:  

 

 
𝑓𝑘(𝑋) =

𝜋𝑘𝑔𝑘(𝑋)

∑ 𝜋𝑖𝑔𝑖(𝑋)𝐾
𝑖=1

 
( 18 ) 

 

Where X is the sample to be classified, 𝜋 is the prior probability of class k, and 𝑔(𝑋) is the density function [13]. 

Since, the algorithm assumes multivariate normal distribution, the density function is defined as:  

 

 
𝑔(𝑋) =

1

(2𝜋)
𝑝
2|Σ|

1
2

exp (−
1

2
(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)) ( 19 ) 

 

Where p is the number of dimensions (features in sample X), Σ is the covariance matrix, and 𝜇 is a mean vector of 

all training samples belonging to class k [13]. The final LDA classifier is then the combination of EQ. ( 19 ), and 

( 18 ). After some simplification of the equation, the resulting equation will look like his: 

 

 
𝑓𝑘(𝑋) = 𝑋𝑇Σ−1 𝜇𝑘 −

1

2
𝜇𝑘

𝑇Σ−1𝜇𝑘 + log (𝜋𝑘) 
( 20 ) 

 

Which is a linear function, and as a result, will compute the linear combination of the features [13]. However, 

before the algorithm can be calculated, the algorithm has to estimate the variables 𝜋, 𝜇, and Σ.  

 

The algorithm then classifies each sample according to EQ. ( 20 ), where it calculates 𝑓𝑘(𝑋) for each class k, and 

the class that returns the highest value will be assigned to sample X [13]. This LDA is only the binary classification 

version, for classifying more than two classes, I refer you to [13]. 

 

2.1.4. Artificial Neural Network 

Artificial Neural Networks (ANN), is a parametric, supervised learning algorithm [15]. This algorithm works very 

well for both linear, and non-linear data. It is based on a very simple biological brain, mimicking the human 

 𝜋 =
𝑛𝑘

𝑛
 

( 15 ) 

 

 𝜇𝑘 =
1

𝑛𝑘

∑ 𝑥𝑖

𝑝

𝑖:𝑦𝑖=𝑘

 
( 16 ) 

 

Σ =
1

𝑛 − 𝐾
∑ ∑ (𝑥𝑖 − 𝜇𝑘)

2

𝑝

𝑖:𝑦𝑖=𝑘

𝐾

𝑘=1

 
( 17 ) 
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nervous system. It consists of a network of artificial neurons, where a neuron simply is a container with a single 

number between 0 and 1, called a neurons activation. The simplest form of a neural network is called a Perceptron. 

 

2.1.4.1. Perceptron 

The perceptron is a binary classifier, only capable of classifying linear separable problems [15]. It consists of 

multiple input signals, connected to a single neuron. Each connection between an input signal (𝑥𝑖), and the neuron 

(y), is called a weight (𝑤𝑖), which represents how important that particular input is to the neuron. The weight is 

also a number, where a bigger value corresponds to a higher importance of the connected input. The neuron also 

has a single output signal, which is based on the weighted sum of input signals, and their associated weights. 

Calculating the output of a neuron is done by an activation function. Since the perceptron is a linear (binary) 

classifier, the activation function also has to be linear, usually the inner product between the input signals, and the 

associated input weights. If that sum is bigger than a certain threshold, the neuron will fire (i.e activated), and 

output a 1, otherwise it will output a 0 [15]. The linear activation function can then be defined as:   

 

 

𝑦 = {

1,   𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖 ≥ 𝑏
𝑛

𝑖=1

0,   𝑖𝑓 ∑ 𝑤𝑖𝑥𝑖 < 𝑏
𝑛

𝑖=1

 
( 21 ) 

 

Where n is the number of input signals, and b is the bias. The bias is the activation threshold, also connected to 

the neuron [15]. 

2.1.4.2. Multilayered Perceptron 

A multilayered perceptron (MLP) is, as its name suggests, a network of multiple perceptrons, divided into layers 

[15]. This is what is called a neural network, and the algorithm is a non-binary classifier, which is able to classify 

non-linearly separable problems.  

    

The structure of a neural net consists of layers (L) of neurons, where you have an input layer (𝐿 = 0) of (𝑛𝑖𝑛𝑝𝑢𝑡) 

neurons, multiple hidden layers of (𝑛ℎ𝑖𝑑𝑑𝑒𝑛) neurons [15]. They are called hidden because they are in between the 

input, and output layer, where it’s output, or input, is hidden from the user. Lastly, an output layer of (𝑛𝑜𝑢𝑡𝑝𝑢𝑡) 

neurons. Each neuron in the input layer is connected to the first hidden layer. The neurons in the first hidden layer 

is then connected to all neurons in the next hidden layer, and the last hidden layer is all connected to all output 

neurons. This structure with multiple layers of neurons is called a Multilayered Perceptron. Figure 4 illustrates a 

simple multilayered perceptron, with three input neurons, one hidden layer of four neurons, and two output 

neurons: 

Figure 4. Illustration of a simple, multi-layered perceptron. 
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In a structure like this, all neurons (except those in the input layer) have their own associated bias, and each layer 

can have their own activation function [15]. MLP is slightly more complex than a normal perceptron, and is usually 

divided into two parts, Forward Step, and Backpropagation. 

 

To understand forward step, and backpropagation, you first need to know about the available activation functions. 

There are a number of activation functions that can be used [15]. Some of the most common are Sigmoid, Softmax, 

and Rectified Linear Unit (ReLU): 

 

Sigmoid  𝜎𝑗(𝑥) =
1

1 + 𝑒−𝑥
 

( 22 ) 

 

Softmax 𝜎𝑗(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑘𝑘∈𝐿

 
( 23 ) 

 

ReLU 𝜎𝑗(𝑥) = {
𝑥        𝑖𝑓 𝑥 > 0
0        𝑖𝑓 𝑥 ≤ 0

 
( 24 ) 

 

In these equations, x is a vector of all the input signals, while 𝑥𝑖 is one of them.  

 

• Forward Step is where the algorithm calculates the output from the input data, and making a prediction 

[15]. Essentially, it calculates the activations for each neuron, one layer at a time, until it has calculated 

the activation for the output neurons. Since MLP are able to classify non-linear problems, the activation 

function from EQ. ( 21 ) is not enough, since it only outputs either a 0 or a 1. Instead, it takes the weighted 

sum, which is the inner product between the input signals, and the associated weights, added with the 

bias. Then it feed that result through a non-linear activation function, that compresses the result into a 

number between 0 and 1. The resulting equation to calculate the output from neuron j is therefore defined 

as EQ. ( 25 ), where 𝜎 is an activation function, and L is the layer where neuron j belongs to. 

  

 
𝑦𝑗 = 𝜎 (∑ 𝑤𝑖𝑥𝑖

𝑖∈𝐿−1
+ 𝑏) 

( 25 ) 

 

• Backpropagation is how the network learns [15]. This is done by updating all the weights and biases 

relative to the observed cost of the prediction, to minimize the cost. This is done using a cost function, 

the correct label, and gradient descent. The cost function (C) calculates the cost, relative to the output, 

and the desired output (correct label of the training data), then by using gradient descent the algorithm 

calculates how much each weight or bias should change to minimize the cost. This process starts from 

the output layer (𝐿𝑜𝑢𝑡𝑝𝑢𝑡), and moves backwards in the network to update the weights in each layer.    

 

A number of different cost functions exists [15], with three of the most common methods of calculating the cost 

for neuron j are the Squared Error, Mean Squared Error, and the Euclidean Distance: 

 

Squared Error 𝜑𝑗 = ∑ (𝑦𝑘 − 𝑜𝑘)
2

𝑘∈𝐿𝑜𝑢𝑡𝑝𝑢𝑡

 ( 26 ) 

   

Mean Squared Error 𝜑𝑗 =
1

𝑛𝑜𝑢𝑡𝑝𝑢𝑡

∑ (𝑦𝑘 − 𝑜𝑘)
2

𝑘∈𝐿𝑜𝑢𝑡𝑝𝑢𝑡

 ( 27 ) 

 

Euclidean Distance 𝜑𝑗 = ∑
1

2
(𝑦𝑘 − 𝑜𝑘)

2

𝑘∈𝐿𝑜𝑢𝑡𝑝𝑢𝑡

 ( 28 ) 

 

 

The error term (𝛿𝑗), is for each neuron in the output layer calculated by using the derivatives of the cost, and 

activation function [15]. For a neuron (j) in the hidden layer, it also uses the derivative of the activation function, 

but instead of the cost function, it uses the weights, and the error term of the neurons it is connected to in the layer 
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in front of itself (𝐿 + 1).  EQ. ( 29 ) is the resulting equation, of calculating the error term for a neuron, where 𝑡𝑖 
is the desired output of neuron j, and 𝑦𝑗 is the actual output.  

 

 

𝛿𝑗 = {

   𝜑′(𝑡𝑗 − 𝑦𝑗)𝜎
′(𝑦𝑗)                     𝑖𝑓 𝑗 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛

( ∑ 𝑤𝑗ℓ𝛿ℓ

ℓ∈𝐿+1

)𝜎′(𝑦𝑗)                𝑖𝑓 𝑗 𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛
 

( 29 ) 

 

The error term is then used to update the weights, and biases [15]. It is updated according to the following rule, 

which use a learning rate (𝜂), an error term (𝛿), and (𝑥𝑗𝑖), which is the output of neuron (i), and input to neuron (j). 

The rule is defined as:  

 

 Δ𝑤𝑗𝑖 = 𝜂𝛿𝑗𝑥𝑗𝑖  ( 30 )  

 

The result Δ𝑤𝑗𝑖 , is the new weight between neuron (j) and neuron (i) [15]. The learning rate (𝜂) is controlled by 

the user, and is a positive number that controls the step size of the weight tuning. This is how a basic neural 

network works. In summary, first initialize the weights to random, small values. Then, for each training example 
{𝑥1, 𝑥2, … , 𝑥𝑛}, and the corresponding labels {𝑡1, 𝑡2, … , 𝑡𝑛}, do the following:  

 

i) Use the training example as input signals to the network 

ii) Compute the outputs for each layer (Forward Step) 

iii) Compute the error terms in the output layer (Backpropagation) 

iv) Update the weights between the last hidden layer, and the output layer 

v) Compute the error terms in the hidden layers (From the layer closest to the output, and backwards) 

vi) Update the weights of the hidden layers 

vii) Repeat until the cost function returns a low value of overall error  

2.2. Feature Reduction 

Feature Reduction is used in the pre-processing stage of a classifier, for reducing the number of features in a large 

dataset [16]. This is to make the classifier more efficient regarding performance. Unfortunately, features often 

depends on each other, thus the prediction accuracy of the classifier may suffer if wrong features are removed. 

Therefore, feature reduction depends on removing only the irrelevant and redundant features, also called noise, 

and keep only those relevant to the classification. That is to increase the speed of the classifier, and to reduce 

overfitting, which is a problem where a classifier contains more parameters with a relationship to noise, thus 

making decisions based on said irrelevant, and redundant features. Two of the main methods of solving feature 

reduction problems are filters, and wrappers [16].  

 

• Filters make use of statistical applications, which are independent of the final classifier. They often 

rank the features with correlation coefficients, with two examples being the Pearson Correlation 

Coefficient (PCC) [6], [16], and Spearman Correlation Coefficient (SCC) [6]. This makes this 

method computationally fast, but it usually has a lower prediction accuracy compared to other 

methods. 

 

• Wrappers depends on the classifier, which is used to evaluate a subset of features, that have been 

selected by a search algorithm, like an Evolutionary Algorithm (EA), or a Particle Swarm 

Optimization (PSO) based algorithm [6], [16]. The classifier needs to go through the whole process 

of cross-validation on each of the feature subsets, making this method more accurate, but require 

more time, compared to a filter method.  

2.3. EA 

Evolutionary algorithms (EA) are a set of algorithms in the area of Artificial Intelligence [17]. They are 

metaheuristic optimization algorithms, based on biological evolution, first explained in the book “On the Origin 

of Species” by Charles Darwin, 1859. The theory commonly known as Darwin’s theory of evolution, or Darwinism, 

explains the natural selection, and evolution of species. Sometimes described as “Survival of the fittest”, where 

only the organisms who are best adapted to the environment and its conditions, survive long enough to reproduce 

[17]. Fitness in this case refers to the organism’s ability to survive the environments conditions. The diversity of 
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all living organisms is also explained by natural selection, where only the strongest genetics gets carried over 

during reproduction, with small variations. These variations are called mutation, and it’s where some of the original 

genetics have a small chance of being randomly changed [17], [18]. 

 

Evolutionary algorithms mostly work the same way, with reproduction, selection, recombination and mutation all 

based on biological evolution [17], modifying a population of individual solutions over generations, with the goal 

of evolving the solutions over time, towards an optimal solution. The difference being the environment, and the 

conditions surrounding it. Fitness refers to the quality of a solution, how good a solutions perform at a given 

problem [17], [18]. The selection operator, then considers each solutions fitness, when selecting individuals to 

reproduce [13]. There are a many different types of evolutionary algorithms, and each type is good for different 

kinds of problems, and different complexities [18]. Many mathematical problems can be solved by EAs, they will 

however need to be tailored to that specific problem [19]. Some common EAs are Genetic Algorithm (GA) [19], 

Differential Evolution (DE) [20], and Genetic Programming (GP) [21]. Off them, the most popular EA is GA, 

which also is most relevant to this paper, and is therefore described in the next section [18].  

2.4. GA 

Genetic Algorithms (GA) are a subcategory of the EA family [19], first introduced by John Holland in 1975, and 

extended further in 1989 by one of his students, David E. Goldberg [19]. GA make use of natural selection to 

evolve a population of individuals during iterations, creating new improved populations each generation, and the 

solutions represented by the individuals moves towards a global optimum. This section describes the key parts of 

a general GA. 

 

In GAs, an individual is commonly called a chromosome, and its data points are called genes [19]. They are a 

representation of a solution to the given problem. A chromosome can be represented in many different ways, most 

commonly binary strings, real number array, binary trees, character strings, parse trees, or directed graphs [19], 

the most common for a classic GA being a binary string [19]. Usually, the algorithm consists of six different key 

components: Initialization, Selection, Crossover, Mutation, Replacement, and Termination [19]. 

 

2.4.1. Initialization 

Usually, the algorithm starts by initializing a population of randomly generated chromosomes [19]. In a binary 

encoded chromosome this would be a string with randomly placed zeroes and ones. Both the number of 

chromosomes (k) in a population, and the length (L) of a chromosome, is predefined. 

 

2.4.2. Selection 

In the selection operator, the algorithm chooses which of the chromosomes in the population that gets to reproduce, 

and generate the chromosomes for the next iteration [19]. The algorithm selects the best fitted chromosomes to 

make sure that the next generation of chromosomes won’t go down in fitness after recombination, and hopefully, 

the recombined chromosomes can be even better than its predecessors. But at the same time you want to select 

some of the less fitted chromosomes to keep the diversity, since the main goal is to find a better solution than what 

it already have found, and it doesn’t know if some parts of the less fitted chromosomes, together with some parts 

of the best fitted chromosomes can result in even higher fitness. If it always were to choose the highest fitted 

chromosomes, not much would change when they are combined, since they may look very similar, and as a result, 

the solutions will stop improving. Thus, selection methods often introduce some kind of randomness to this process 

to stop that from happening. That randomness gives a small probability of lesser fitted individuals to get selected, 

which keeps the diversity in the next generation of chromosomes. There are many different operators that can be 

used for selection, but they all follow the same principle. Parents are randomly selected in a way that favours the 

fittest chromosomes [22]. Some of the most common selection operators are: Roulette Wheel Selection (RWS), 

Stochastic Universal Sampling (SUS), Linear Rank Selection (LRS), Exponential Rank Selection (ERS), 

Tournament Selection (TOS), and Truncation Selection (TRS) [23], where RWS, SUS, and TOS are described 

further, since they are most relevant to the study.  

 

• Roulette Wheel Selection (RWS) assigns every chromosome (𝐶𝑖) a probability (𝑝𝑖) of being selected [23]. 

The probability is calculated by the following formula: 

 

 
𝑝𝑖 =

𝑓𝑖
∑ 𝑓𝑗

𝑘
𝑗=1

 ( 31 ) 
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 Where k is the size of the population, and ∑ 𝑓𝑗
𝑘
𝑗=1  is the fitness sum of all chromosomes in the population. 

Then it randomizes a number 𝑟 ∈ {0, 1}. The algorithm then starts adding the fitness values (f) of each 

chromosome, until it reaches r. The last chromosome to be added is the one who gets selected. The time 

complexity of this algorithm is 𝑂(𝑛2) because it requires n iterations to fill the population. With this 

method, a fitter solution has a much greater probability of being selected.  

 

• Stochastic Universal Sampling (SUS) is a further developed version of RWS that aims to reduce the risk 

of premature convergence [23]. It is very similar to RWS, but instead of using one fixed point r, it uses as 

many as there are chromosomes to be selected. All chromosomes are mapped continuously on a line, where 

the size of an individual’s segment is its assigned fitness value. Each fixed point is then evenly distributed 

across the line, spaced by a distance of 𝑓̅  between them, where 𝑓̅  represent the mean value of the 

population’s total fitness, and it is calculated by Eq. ( 32 ). This approach makes it so that higher fitted 

individuals have a higher probability of being selected, since their segments are bigger. But since the fixed 

points are distributed across the whole line, some of the lesser fitted individuals will always be selected, 

giving the lesser fitted individuals a higher probability of being selected, compared to RWS. 

 

 

𝑓̅ =
1

𝑘
∑𝑓𝑖

𝑘

𝑖=1

 
( 32 ) 

 

 The algorithm then generates a uniformly distributed random number as a starting point, 𝑅 ∈ [0, 𝑓]̅. It then 

start by assigning the initial point 𝑟1 = 𝑅, and for the rest, keep adding the mean value 𝑓 ̅to the previous 

fixed point 𝑟𝑖 = 𝑟𝑖−1 + 𝑓̅ 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ {2, 3, 4, … 𝑘}, where k is the number of individuals to select. This will 

generate a set of fixed points 𝑃{𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑘} that is equally spaced by the mean value 𝑓,̅ where the initial 

point 𝑟1 = 𝑅. Figure 5 illustrates a simple SUS selection, with 8 individuals, where 10 of them will be 

selected. Distance in Figure 5 refers to 𝑓,̅ and pointer 1 through 10 is the set of fixed points (P). For each 

fixed point, a normal RWS is done to find the chromosomes. When all chromosomes have been selected, 

the set can be divided into two subsets. Then each individual of one set, can be paired with an individual 

from the second set. This is to reduce the chance of pairing two of the same chromosome. Another way is 

to shuffle the initial selected set, but the chance of pairing the same individuals is higher. With this 

approach, all parents will be generated in one pass, making the time complexity of this algorithm O(n), 

while also encouraging a more diverse selection, since less fitted chromosomes have a higher probability 

of being selected by the equally distributed pointers [23].  

 

 

• Tournament Selection (TOS) selects k random chromosomes from the population, compares their fitness, 

and selects the best of that group as parent. This process is repeated n times until all parents have been 

selected. By choosing its competitors randomly, the algorithm puts a pressure on the selection, and the 

pressure can be increased by selecting a bigger number for k. The random selection also improves the 

diversity of succeeding generations. The time complexity of this operator is 𝑂(𝑛) , since there are n 

iterations, and each requires a constant number of selections k. 
 

2.4.3. Crossover 

After the selection is done, all chosen parent chromosomes moves on to the reproduction stage [19], [22]. This is 

where all parents recombine in some way to create a new generation of chromosomes to be used in the next 

Figure 5. Illustration of a SUS selection 



 

 

 

 
                18   

 

Robin Johansson Mälardalen University 

iteration. Normally, two parents are combined to make one or two offspring. This is done by combining a randomly 

selected subset of the two parents. The process of combining two parent chromosomes is what is often referred to 

as crossover. The combination can be done in many different ways, and some of the most common crossover 

operators are: Single-Point Crossover, N-Point Crossover, and Uniform Crossover.  

 

• Single-Point Crossover (SPC) [24], is done by selecting a random index (k) between 1 and the length of a 

chromosome (L), where k represents the crossover point, and is calculated by 𝑘 ∈ {1, 𝐿}. Then, you take all 

the genes from indices 1, through k, from the first parent 𝑃1, and add them to the offspring at the same 

indices. The missing indices are then taken from the second parent 𝑃2, from indices k+1, through L. Single-

Point Crossover creates two offspring this way, the second offspring is created by reversing the order of 

the parents, taking indices 1 through k from 𝑃2, and the rest from 𝑃1. This is illustrated by Figure 6, where 

the green genes come from 𝑃1, and blue from 𝑃2. 

 

• N-Point Crossover (MPC) is similar to Single-Point Crossover, the difference is that it uses N crossover 

points [24]. For a Two-Point Crossover, N=2, it selects the two random indices, 𝑘 ∈ {1, 𝐿 − 1}, and 𝑗 ∈
{𝑘 + 1, 𝐿}. Then it creates the first offspring by taking the genes from indices k through j from 𝑃1, and the 

rest from 𝑃2. For the second offspring, as done in Single-Point Crossover, you reverse the order of the 

parents, giving it indices k through j from 𝑃2, and the rest from 𝑃1. This process is illustrated by Figure 7. 

 

• Uniform Crossover (UC) selects the genes at random from one parent, and takes the rest from the other 

[24]. This works by creating a string (R) of uniformly distributed random numbers, where the length of R 

is equal to the number of genes in a chromosome. Then, by using a predefined probability value 𝑝 ∈ {0,1}, 
the algorithm goes through the generated string R, and if the value 𝑅𝑖 > 𝑝, the first offspring get the gene 

at index i from 𝑃1, and the second offspring get the same index from 𝑃2.  If  𝑅𝑖 ≤ 𝑝, the first offspring get 

index i from 𝑃2, and the second offspring get index i from 𝑃1. Each gene of the two offspring can therefore 

be calculated by Eq. ( 33 ), and Eq. ( 34 ), and this process is illustrated by Figure 8.  

 

 
𝐶1

𝑖 = {
𝑃1

𝑖     𝑖𝑓 𝑅𝑖 > 𝑝

𝑃2
𝑖     𝑖𝑓 𝑅𝑖 ≤ 𝑝

 
( 33 ) 

 

 
𝐶2

𝑖 = {
𝑃1

𝑖     𝑖𝑓 𝑅𝑖 ≤ 𝑝

𝑃2
𝑖     𝑖𝑓 𝑅𝑖 > 𝑝

 
( 34 ) 

Figure 6. A simple illustration of Single-Point Crossover 

Figure 7. A simple illustration of Two-Point Crossover 
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2.4.4. Mutation 

The final step during recombination is mutation [19], [22]. Mutation exists to maintain a diversity between all 

chromosomes, and as a result, help preventing premature convergence. It is applied to each offspring after they 

are created in the crossovers step. Mutation usually have a very small probability (𝑝𝑚) to occur for each individual 

gene of an offspring. This step also has a number of different operators to use, but for a binary encoded 

chromosome only one are worth mentioning, Bit Inversion.  

 

• Bit inversion works by simply inverting the selected bits [19], [22]. As stated earlier, a predefined 

probability value (𝑝𝑚) is used to select genes for mutation. A random number 𝑟𝑖 ∈ {0,1} is calculated for 

each gene, and if 𝑟𝑖 ≤ 𝑝𝑚 the gene at index (i) will be mutated, and the bit will be flipped from a 1 to a 0, 

or the other way around. Therefore, bit inversion can be represented by Eq. ( 35 ), and a visual example can 

be seen in Figure 9.  

 

 
𝐶𝑖 = {

𝑚𝑜𝑑(𝐶𝑖 + 1, 2)  𝑖𝑓 𝑟𝑖 ≤ 𝑝𝑚

𝐶𝑖                             𝑖𝑓 𝑟𝑖 > 𝑝𝑚
 

( 35 ) 

 

 

2.4.5. Replacement  

When the recombination stage is done, you end up with two different groups of chromosomes, the initial 

population, and the offspring generated during crossover and mutation [19], [22]. During replacement, the 

algorithm replaces the old population with the new. There are multiple ways of doing this, two being: 

 

• Generational: A generational approach would be to replace all the chromosomes from the past generation 

with all offspring. All chromosomes from the past generation will therefore be discarded each iteration. 

 

Figure 8. Simple illustration of Uniform Crossover 

Figure 9. Simple illustration of Bit Inversion 
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• Elitism: This approach keeps the h best fitted chromosomes from the previous generation (unchanged), and 

replace the h worst fitted offspring, which result in a combined population of old and new. The second 

approach is called elitism [25], and its intension is to make sure that the fitness of the population doesn’t 

decrease over generations, and not waste time finding solutions that previously has been discarded.   

 

2.4.6. Termination 

When the new generation of chromosomes have replaced the old, the whole process repeats itself, and this process 

keep on going until a predefined, termination criteria is met [22]. There are different termination criteria depending 

on the problem the algorithm is supposed to solve, but in general, you have two options. One can be a predefined 

number of iterations the algorithm should run, the other, is that the algorithm stops when the population has fully 

converged. A population is said to have converged when 95% of the population share the same genes [22]. The 

phrase premature convergence has been used in earlier sections, and it means that the population have converged 

too early, and the solution quality end up being lower than expected, which gives the impression that the algorithm 

has gotten stuck since the solutions doesn’t improve anymore.   

2.5. Multi-Objective Optimization 

In the previous section, Evolutionary Algorithms were presented, specifically Genetic Algorithm. A problem with 

the canonical GA introduced by Holland, is that it only solves one objective [26]. In reality, problems typically 

consist of multiple objectives, that may even be conflicting [26]. When objectives are conflicting, there are no 

solution where all objectives can be fully optimized at the same time. An example used in [26], is a real-world 

problem, where you want to minimize cost, and maximize both performance, and reliability. This is called a multi-

objective optimization problem (MOP). This would be a hard problem for Holland’s GA to solve, however it is 

possible to modify it to solve some of the more trivial MOPs, by combining the multiple objective functions, and 

using a weighted sum method to calculate the fitness. The problem with this method is that it can be hard to select 

the proper weights, and the algorithm would return a single solution rather than multiple solutions that can be 

examined for trade-offs.  

 

For a more nontrivial MOP, we want the algorithm to return a set of Pareto optimal solutions [26], which are a set 

of solutions where none of the objective functions can be improved without decreasing the value of another, it also 

means that the solutions in this set are not dominated by any other solution. A non-dominated solution must meet 

the following requirements: a solution 𝑠𝑖 dominates another solution 𝑠𝑗 when it performs better than 𝑠𝑗 on at least 

one objective, and doesn’t perform worse on any of the remaining objectives. The following two equations 

describes what is needed for solution 𝑠𝑖 to dominate solution 𝑠𝑗: 

 

 𝑓𝑘(𝑠𝑖) > 𝑓𝑘(𝑠𝑗) 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑘 ∈ {1, 2, 3, … , 𝑛} ( 36 ) 

 

  𝑓𝑥(𝑠𝑖) ≥ 𝑓𝑥(𝑠𝑗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 𝑥 ∈ {1, 2, … , 𝑘 − 1, 𝑘 + 1,… , 𝑛} ( 37 ) 

 

Where n is the number of objectives. If solution 𝑠𝑖 is not dominated by any other solution, it is defined as non-

dominated [26]. Figure 10 shows an example of a MOP, and the pareto optimal solutions. The blue circles, placed 

on the black line are the Pareto optimal solutions, and as illustrated by the image, they are non-dominated. All the 

red circles are solutions that are dominated by the pareto optimal solutions. This is shown by the blue lines from 

solution A, where the resulting area is showing which solutions that are dominated by A. The black line going 

through all pareto optimal solutions, and separates them from all other solutions, is called the pareto frontier, and 

is the set of pareto optimal solutions.    
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To solve these kinds of problems, we need specialized algorithms, made for MOPs [26]. There are several versions, 

some of them being: Vector Evaluated GA (VEGA), Multi-Objective GA (MOGA), Niched Pareto GA (NPGA), 

Non-dominated Sorting GA (NSGA), Fast Non-dominated Sorting GA (NSGA-II). There are of course algorithms 

that are not based on GA, like Strength Pareto Evolutionary Algorithm (SPEA), and Region-based Selection in 

Evolutionary Multi-Objective Optimization (PESA-II), to name a few. The following section describes two of 

them, NSGA, and NSGA-II.  

 

2.5.1. NSGA 

Non-dominated Sorting Genetic Algorithm (NSGA) was introduced by Srinivas, and Deb, in [27], as a solution to 

MOPs. It is based on a previous Multi-Objective algorithm called Vector Evaluated GA (VEGA), by J. David 

Schaffer [28], and the idea of non-dominated sorting procedure, suggested by David E. Goldberg in [29].  

 

The difference between Holland’s GA, and NSGA, is the fitness distribution, and the selection operator [27]. 

Before selection, the population is being sorted based on Pareto optimality, into a hierarchy of subsets, called 

fronts, and follows the following structure:  

 

i) Go through population and find all non-dominated solutions  

ii) Move all non-dominated chromosomes to the current front (𝐹𝑖) 

iii) Set current front to 𝐹𝑖+1 

iv) Repeat until the population is empty, and all chromosomes has been sorted into a front 

 

The fronts then follow a hierarchical structure [27], front 𝑓1 will contain the current Pareto optimal solutions, and 

𝐹2 the second best etc. Following this, a fitness value will be assigned to each front. The solutions in the best front 

𝐹1 will get a very large fitness value, and all solutions in the same front get the same value, to give each solution 

an equal probability of getting selected for reproduction. Each solution will also get a shared fitness value, which 

is calculated by dividing initial fitness value it got, by their niche count. Niche count is a value indicating how 

many solutions a solution has in the area surrounding it, within a maximum distance of 𝜎𝑠ℎ𝑎𝑟𝑒 . If solution 𝐶𝑗 is in 

that area of solution 𝐶𝑖, it is said to be member of 𝐶𝑖’s niche. The niche count for solution 𝐶𝑖 is calculated by using 

Eq. ( 38 ), on every other solution in its assigned front, where j represents the index of another solution in the front, 

and 𝑑𝑖𝑗  is the distance between 𝐶𝑖, and 𝐶𝑗 [30]. 

Figure 10. Illustration of the pareto front, and the pareto optimal solutions. All 

red circles in the area, or on the lines produced by the blue area, are solutions 

that are dominated by solution A. 
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𝑆ℎ(𝐶𝑖𝑗) = {1 − (
𝑑𝑖𝑗

𝜎𝑠ℎ𝑎𝑟𝑒

)

2

,       𝑖𝑓 𝐶𝑖𝑗 < 𝜎𝑠ℎ𝑎𝑟𝑒

0,                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
( 38 ) 

  

The purpose of the shared fitness value is to give a more diverse selection, and favor the less crowded areas [30]. 

This fitness distribution process, is repeated for every other front 𝐹𝑖 to 𝐹𝑛, except that the initial fitness value all 

solutions in a front get, has to decrease for each front, and be smaller than the smallest fitness value in the previous 

front 𝐹𝑖−1, where 𝑖 ∈ {2, 𝑛}, and n is the number of fronts [27].  

 

When all chromosomes have been sorted into a front, and gotten their fitness values, the parent selection process 

begins. NSGA use a stochastic reminder selection, and since the chromosomes in the best front 𝑓1 have the highest 

possible fitness, they will be selected more frequently, and with shared fitness, chromosomes residing in less dense 

areas will be favored more [27]. The recombination operators works just as Holland’s GA does, as described in 

sections 2.4.3 and 2.4.4. Lastly, NSGA uses a generational replacement method, which is one of the differences 

with NSGA-II [27], [31]. 

 

2.5.2. NSGA-II 

Non-dominated Sorting Genetic Algorithm – II (NSGA-II) is an improved version of NSGA, introduced by Deb 

[31], in 2000. Some of the biggest drawbacks of the original NSGA have been improved, and the three main points 

addressed are as follows:  

 

• High computational cost: The original NSGA has a time complexity of 𝑂(𝑚𝑁3), where m is the number 

of objectives, and N is the population size. For NSGA-II, this has been improved to 𝑂(𝑚𝑁2). 

• Need of sharing parameter: The need for a sharing parameter, 𝜎𝑠ℎ𝑎𝑟𝑒 , has been removed, and NSGA-II 

instead relies on a new way of calculating the density around each solution, namely Crowding Distance. 

• Generational replacement method: After NSGA was introduced, scientists showed that an elitist method 

could be superior to a generational one, regarding performance, and as explained in section 2.4.6, elitism 

help making sure fitness doesn’t decrease during generations, which is good for convergence. For those 

reasons, an elitist method has been introduced instead of the generational.  

 

A number of things have been changed with the algorithm, to improve the criticisms stated above. An activity 

diagram of the algorithm can be seen in Figure 11: 

 

 

The algorithm starts by generating the initial population, as done by Holland’s GA. Then it calculates the multiple 

objectives for every chromosome in the population. Before the algorithm enters the main loop, it sorts the 

population into fronts with Fast Non-dominated Sorting (NDS), and later calculates the Crowding Distance (CD) 

for each chromosome in the fronts. The remainder of this section is organized as follows: In Sections 2.5.2.1 and 

2.5.2.2, NDS, and CD are explained, respectively. Finally, in Section 2.5.2.3, the main loop is explained.  

 

Figure 11. Activity diagram of NSGA-II 
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2.5.2.1. Fast Non-dominated Sorting 

  

The non-dominated sorting, that happens in the pre-selection stage, has been changed from the original NSGA, 

and relies on a completely different method [31]. The pseudo code is described by Algorithm 1. In the algorithm, 

𝑆𝑥 is a set belonging to chromosome x, where it stores all chromosomes it dominates. Variable 𝑛𝑥 is an integer 

which represents how many solutions x is dominated by.  

 

Algorithm 1 [31]: Fast non-dominated sorting 

Input: a population 𝑃 = {𝑐1, 𝑐2, … , 𝑐𝑛} where c is a chromosome, and n is the total number of chromosomes 

for each 𝑥 ∈ 𝑃 

     for each 𝑦 ∈ 𝑃 

          if x dominates y then 

               𝑆𝑥 = 𝑆𝑥 ∪ {y} 

          else if y dominates x then 

               𝑛𝑥 = 𝑛𝑥 + 1 

     if 𝑛𝑥 = 0 then 

          𝐹𝑟𝑜𝑛𝑡𝑠1 = 𝐹𝑟𝑜𝑛𝑡𝑠1 ∪ {x} 

i = 1 

while 𝐹𝑟𝑜𝑛𝑡𝑠𝑖  ≠ [] 

     H = [] 

     for each 𝑥 ∈ 𝐹𝑟𝑜𝑛𝑡𝑠𝑖  

          for each 𝑦 ∈ 𝑆𝑥 

               𝑛𝑦 = 𝑛𝑦 – 1 

               if 𝑛𝑦 == 0 then 

                    H = H  ∪ {y} 

      i = i + 1 

      𝐹𝑟𝑜𝑛𝑡𝑠𝑖  = H 

 

The algorithm saves time by only having to do the domination calculation once [31]. By using the set S, and integer 

n, it always knows which chromosomes dominates which, and how many solutions it is dominated by. When the 

current non-dominated chromosomes get moved to a front, the algorithm looks at the non-dominated 

chromosomes’ S sets, to find all chromosomes that will be evaluated for next front. Then it decreases the n variable 

for chromosomes in S, and look for the solutions which are not dominated anymore (n = 0). In comparison the 

original NSGA have to exclude the current non-dominated solutions, and then recalculate which chromosomes 

that dominates which each iteration. 

 

When this is done, it returns all fronts [31], where 𝐹1 contains the non-dominated chromosomes, and 𝐹2 the second 

least dominated chromosomes, etc. Each chromosome will be assigned a rank value, which is the number of the 

front it’s assigned to, better solutions will therefore have a lower rank value, with 1 being the best. 

2.5.2.2. Crowding Distance 

Crowding distance is a part of NSGA-II where it calculates how many chromosomes there are in a particular 

chromosome’s surrounding area [31]. It is calculated for each chromosome, by finding the two closest solutions 

in its assigned front, and calculating the average distance to them along the objective axis. This is illustrated by 

the pseudo-code in Algorithm 2. 

 

Algorithm 2 [31]: Crowding Distance 

Input: a front 𝐹 = {𝑐1, 𝑐2, … , 𝑐𝑛} where c is a chromosome, and n is the number of chromosomes in that front 

for each 𝑐 ∈ 𝐹 

     𝑐𝑐𝑑 = 0 

for each objective 𝑜 ∈ 𝑂 

     𝐹 = sort(𝐹, 𝑜)  sort F according to objective o 

     𝐹[1]𝑐𝑑 =  ∞ 

     𝐹[𝑒𝑛𝑑]𝑐𝑑 =  ∞ 

     for i = 2 to (|F| - 1) 

          𝐹[𝑖]𝑐𝑑 = 𝐹[𝑖]𝑐𝑑 +
(𝐹[𝑖+1]𝑜−𝐹[𝑖−1]𝑜)

𝐹[𝑒𝑛𝑑]𝑜 – 𝐹[1]𝑜
 

 

 



 

 

 

 
                24   

 

Robin Johansson Mälardalen University 

The area calculated by Crowding Distance is shown in the following figure: 

 

 

2.5.2.3.  Main loop 

As seen in Figure 11, when the initial NDS and CD have been calculated, the algorithm, enters the main loop. This 

is started by the breeding operators. For the selection process, it now uses the tournament selection operator [31], 

which is slightly modified to make use of both the rank value, and the crowding distance. In the tournament, the 

solution with lower rank gets selected, and if two solutions share the same rank, the crowding distance will 

determine the selection, where the algorithm favors a larger crowding distance (less dense area). That is, to make 

the new generation converge towards the lower ranked chromosomes, with the bigger crowding distance (less 

dense area).  

 

After all parent chromosomes are selected, the recombination works just as NSGA and Holland’s GA, with the 

crossover, and mutation operators [31]. The last difference is the recombination part, which now uses elitism 

instead of the generational replacement method ,which means that the top chromosomes from last generation will 

be carried over to the next one [31]. This can be seen in Figure 11, where the parents are combined with the 

offspring, then after NDS and CD have been calculated, the lowest ranked chromosomes gets removed until the 

number of chromosomes is the same as initially. When the algorithm terminates, the current Pareto frontier, front 

𝐹1, will be returned [31].   

Figure 12. Crowding distance for chromosome i, where the blue circles are 

assigned to the same font. The dotted area is the calculated bounds of the 

crowding distance. 
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3. Related Work 

Feature selection is an important step regarding the speed of classification. But searching for combinations with 

smaller amount of selected features, directly conflicts with the objective of keeping a high accuracy. Multiple 

studies have been done to solve this problem, to find a search algorithm that can balance the two objectives 

efficiently. This section describes some of the related studies on the subject, and how they relate to this study. 

 

The following section is organized as follows: In Section 3.1, the related studies, and the used algorithms are 

introduced. In section 3.2, the different individual representations used, are presented. In Sections 3.3-3.4, the 

breeding operators, and objectives used in the related studies, are presented, respectively. Finally, in Section 3.5, 

the classifiers used in the related studies are presented.  

3.1. Related Studies 

In [7], they conducted an experiment where they classified EEG readings between an MI activity, and resting state. 

For feature reduction, they created a novel representation of an individual for a single-objective GA, called 

Hierarchical Genetic Algorithm (HGA). They represent the channels, frequencies and their corresponding time 

steps in a layered structure, <channel, frequency, time step, power-value>. A feature is the power-value recorded 

from one of the channels, at one of its frequencies, at a given time step. The EEG data were recorded from six 

healthy subjects. For each subject, 42 channels, 30 frequencies, and 40 time steps were used in the classification, 

in total, 50400 features. The team proposed a method of reducing the number of time steps, by averaging 

consecutive time steps, into time windows. Instead of using all 40 time steps for each frequency, they could have 

a window size of 40, which would average all 40 time steps into only one time window, and result in only 1260 

features. This method was tested with different window sizes, 40, 20, 10, and 5. Then they applied HGA on that 

number of features to reduce the number even further. They found that by using HGA-SVM they could lower the 

computational time by 98.92% compared to SVM without feature reduction, with a feature reduction of between 

77%, and 91%. This, while still maintaining a high prediction accuracy, between 69.03%, and 76.04%, compared 

to the 79.45% without feature reduction.  

 

A continued study of [7] was done in [9], where the author implemented a MOEA, instead of the single-objective 

HGA, as feature selection algorithm. The MOEA chosen was NSGA-II, which he modified to fit the individual 

representation from [7]. More objective functions were also added, and the study compared their performance 

regarding feature reduction, and accuracy. The MOEA, and the implemented objectives, were all tested with the 

same dataset as in [7], and the results found was compared to their results. The author found that NSGA-II, 

regarding features selected, used considerably less features, which is expected since a MOEA is more efficient 

than a single-objective algorithm at optimizing multiple objectives [26]. However, the average accuracy was lower 

than what was reported in [7]. 

 

In [11] the authors did a comparison between a MOEA and two Single-Objective Evolutionary Algorithms 

(SOEA), for feature reduction related to EEG classification. They studied the relationship between the algorithms, 

and the proposed objective functions, with a focus on the benefit of using a MOEA. The experiment was done on 

data recorded from 20 undergraduate students, where they classified between resting state, and three memory 

tasks. They used NSGA-II as MOEA, and classic GA as SOEA, with a vectorized individual representation. The 

results they found were that both SOAEs used a similar number of features, but many more than NSGA-II. NSGA-

II also preserved most of the accuracy with its selected features, which the SOEAs didn’t. They found that the 

SOEAs seemed to not balance the objectives efficiently, especially when compared to the result of NSGA-II, most 

likely because NSGA-II is able to optimize the two objectives simultaneously, without combining them with linear 

combination [26]. 

 

Another study, [6], also used NSGA-II for feature selection. However, they proposed a different individual 

representation compared to the other studies. Because of the representation, they had to make a lot of changes to 

the breeding operators, which is discussed in Section 3.3. In the experiment they were classifying between three 

MI activities of right hand, left hand, and left foot, movements. The EEG data was recorded from 12 healthy 

subjects. The result they found was that their wrapper, compared to a baseline given by 240 LDA classifiers (no 

feature selection), and a filter method called FOPT* [32], outperformed them both in execution time, accuracy, 

and feature reduction. 

 

Although the average accuracy was lower with NSGA-II in [9], compared to [7], the algorithm seems promising 

for a feature selection problem when considering the results in [6], and [11]. Regarding features used, [9] still 

shows promising results since NSGA-II used less features than HGA.  
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3.2. Individual Representation 

Three different individual representations have been used in these previous studies, two binary encoded 

representations, and one encoded with integers. One representation is the vectorized version from [11], where all 

features were represented in a binary array, where a 1 is a selected feature, and a 0 is a non-selected feature. A 

solution can therefore be expressed as: 𝐶 = {𝑥1, 𝑥2, … 𝑥𝑀} , where C is an individual, 𝑥𝑖  is a binary number 

representing whether a feature is selected or not, and M is the number of features. 

 

Both [7] and [9] make use of the layered individual representation, originally created for HGA by the authors in 

[7]. It consists of three layers, channels, frequencies, and time windows (which contains the averaged power-

value). These layers are each represented in binary. The first layer is all the channels, and are represented as 𝑋 =
{𝑥1, 𝑥2, … 𝑥𝑛} where n is the number of channels, and 𝑥𝑖 ∈ {0, 1}, which corresponds to whether a channel is 

selected or not. Each channel then has a set of frequencies, represented as 𝑌 = {𝑦1, 𝑦2, … 𝑦𝑚}, where m is the 

number of frequencies for each channel, and 𝑦𝑗 ∈ {0, 1}. All frequencies have an additional layer of time windows, 

which are represented as 𝑍 = {𝑧1, 𝑧2, … 𝑧𝑡}, where t is the number of time windows for each frequency, and 𝑧𝑘 ∈
{0, 1}.  
 

A drawback with the above representations is that they have to store all features, selected or not. Since the 

classification usually only need a small subset of features, most of the data won’t be selected, and will be 

represented by zeroes. This will take up a lot of unnecessary memory. This problem is addressed in [6], where 

they have created a novel individual representation, and used it together with a modified version of NSGA-II. 

Instead of representing all features as binary numbers, the team in [6], only store the indices of selected features, 

with integers pointing to a specific index of a feature, instead of binary numbers. They have also added a limit to 

the features, where an individual never can have more selected features than the predefined limit. This is to both 

reduce the memory usage even further, and to speed up the evaluation since only a limited number of features will 

be processed. An individual can then be described as 𝐼 ⊂ {𝑥 ∈ [0, 𝑛) ∩ ℕ},       |𝐼| ≤ 𝑠, where n is the number of 

features, and s is the maximum number of features an individual can have. 

 

The vectorized representation from [11], and the hierarchical version from [7] and [9], have both been used for 

SOEAs and MOEAs. The authors from [11], tested their representation for both NSGA-II, and Holland’s GA, 

while the authors from [7] proposed the hierarchical representation for their SOEA, HGA. Lastly, the author from 

[9], continued the hierarchical solution by implementing it for a MOEA, NSGA-II.  

 

3.3. Breeding Operators 

The breeding operators are used to create the new population for next iteration. It is a process that consists of three 

different parts, selection, crossover, and mutation. There are different algorithms that can be used for each part, 

and each of the previous studies talked about in this paper, used a different combination of breeding operators. 

 

• Selection: The authors of [7] used RWS to select the parents in their HGA, while the team in [11] used 

SUS for their SOEAs. What’s interesting is that all of the MOEAs have been using the same selection 

method [6], [9], [11], which is Tournament Selection, and it is the selection method used in the original 

NSGA-II algorithm in [31].  

 

• Crossover: For the SOEAs, Uniform Crossover was used in [7], and Multi-Point Crossover was used in 

[11]. The MOEAs in [9], and [11], both used Uniform Crossover, while the MOEA in [6], used a novel 

method. Their novel crossover operator uses a pair of two parents to generate two offspring. This works 

by taking all common features of the two parents, and copy the full subset to both offspring. Then they 

take all the non-common features from both parents, and distributes them randomly to each offspring, so 

that |𝑝1| = |𝑜1| and |𝑝2| = |𝑜2| where p represents the parents, and o the offspring. 

 

• Mutation: Since all but one study uses a binary encoding for their representations, they all use the same 

mutation operator, Bit-Inversion. The only exception is in [6], where they created their own novel 

operator. The mutation operator works by selecting a small subset of features, as you do normally with a 

slight probability of selecting a feature. Then they divide this subset into two smaller subsets, where one 

subset of features will get removed from the individual, and the others are replaced with new random 

features that currently aren’t selected by this individual. In addition to that, they’ve added a small 
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probability of appending an additional random, non-selected feature. This is to give each individual an 

opportunity to increase their selected features. 

 

All the different breeding operators were of course modified slightly to work with their different representations. 

The authors in [6] proposed new crossover, and mutation operators, because their representation doesn’t work for 

the more commonly used techniques. As with the different representations, breeding operators are also an 

interesting topic, whether different combinations produce a noticeable difference in the results when used for 

feature selection. Some operators were only tested with one representation, and some operators like RWS, SUS, 

and Multi-Point crossover haven’t been evaluated for a MOEA.  

3.4. Objectives  

To guide the selection algorithms towards small sets of relevant features, many different objective functions have 

been studied. Most noticeable in [9] where the author evaluated 6 combinations of objectives for the proposed 

hierarchical NSGA-II.  

 

The authors in [7], proposed a fitness function which combines percentage of feature reduction (FR), with a 

correlation between the selected features (CFS), using Pearson’s Correlation Coefficient (PCFS). Since HGA is a 

single-objective algorithm, the two objectives had to be combined using linear combination. That resulting 

combination was then called PCFS + FR. 

 

Two other objectives were proposed in [11], Most Relevant Features (MR), and Number of Features (NF). They 

are calculated by the following two equations:  

 

 
𝑀𝑅(𝐶𝑖) =

𝑁 − 𝐶𝐶(𝐶𝑖)

𝑁
 

( 39 ) 

 

 
𝑁𝐹(𝐶𝑖) = ∑ 𝑥𝑖

𝑀

𝑗=1
 

( 40 ) 

 

Where 𝑁 is the number of samples, and CC(𝐶𝑖) is the number of correct classified patterns with an SVM classifier 

with RBF kernel, and one vs one mechanisms [33], and M is the number of features in subset 𝐶𝑖. EQ. ( 39 ) guides 

the solutions towards higher accuracy, while EQ. ( 40 ) guides them towards smaller numbers of features. For the 

two SOEAs used, one only optimizes EQ. ( 39 ), and was called SOO-ER, the other was named SOO-AG, and it 

worked with the linear combination between EQ. ( 39 ), and EQ. ( 40 ). 

 

All three objectives above have also been evaluated with NSGA-II. In [11], they used ER, and SF, without linear 

combination, since NSGA-II is a MOEA, and can optimize both EQ. ( 39 ), and EQ. ( 40 ), simultaneously. 

Regarding PCFS + FR from [7], it was evaluated for NSGA-II in [9], where the author also added more objective 

functions to the algorithm to compare against the previous PCFS + FR combination. Since he also changed from 

SOEA to MOEA, he could change PCFS + FR, and evaluate the two objectives respectively, without linearly 

combining them. He added another CFS, with Spearman’s Correlation Coefficient (SCFS), and he added wrapper 

objectives using SVM as classifier. Since two objectives are used, he could combine all the objectives, to six 

different pairs, PCFS + FR, PCFS + SVM, PCFS + SCFS, SCFS + FR, SCFS + SVM, and SVM + FR. 

 

In [6], the authors used two objective functions for their version of NSGA-II, calculated with Cohen’s Kappa [34], 

and they calculate the Kappa index from EQ. ( 41 ):  

 

 
𝜅 =

𝑝𝑜(ℓ, 𝐷) − 𝑝𝑒(ℓ, 𝐷)

1 − 𝑝𝑒(ℓ, 𝐷)
 

( 41 ) 

 

Where 𝑝𝑜(ℓ, 𝐷) is the classification accuracy between the classifier ℓ, and the labeled data in D, and  𝑝𝑒(ℓ, 𝐷) is 

the probability that a correct classification happened by chance [6]. The Kappa index is then used to calculate the 

two objectives. One of the objectives (𝑜1), guides the solutions towards the global optimum, and the second (𝑜2), 

prevents over-fitting. The original set (D) is randomly divided into two subsets, training (𝐷𝑡𝑟𝑎𝑖𝑛), and validation 

(𝐷𝑣𝑎𝑙𝑖𝑑), where the size of 𝐷𝑣𝑎𝑙𝑖𝑑  is a predefined percentage (𝑝𝑣𝑎𝑙) of D. The classifier (ℓ) is then trained on the 

data from 𝐷𝑡𝑟𝑎𝑖𝑛, before calculating the two objectives with EQ. ( 42 ), and EQ. ( 43 ): 
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 𝑜1 = 𝜅(ℓ, 𝐷𝑡𝑒𝑠𝑡) ( 42 ) 

 

 𝑜2 = 𝜅(ℓ, 𝐷𝑣𝑎𝑙𝑖𝑑) ( 43 ) 

 

 

All objective functions have been evaluated for NSGA-II, but not compared with different individual 

representations, and breeding operators. Much like [9], this study aims to evaluate multiple objectives. The author 

from [9] found that the highest average accuracy came from using PCFS – SVM, a combination of a filter, and a 

wrapper objective. Regarding feature reduction, SVM – FR achieved the highest average reduction with 94%, with 

a window size of 5. But at higher windows sizes (40, and 20), PCFS – FR, and SCFS – FR achieved the highest 

reduction with 91%. With the Kappa index from [6], they found that KNN, LDA – KNN, and LDA - NBC achieved 

similar results regarding accuracy. All tested objectives were able to find feasible solutions with sub 30 features 

selected.       

3.5. Classifiers 

After feature selection the selected subset of features gets classified with a ML algorithm using Supervised 

Learning. Different feature selection algorithms, and objective functions can produce different results for different 

classifiers. Because of this, multiple classifiers have to be considered, and evaluated. 

 

The most common classifier used in these studies were SVM [7], [9], [11], because it works well with noisy data, 

and it doesn’t require any parameters when used with linear kernel as in [7], [9]. However, in [11], they used a 

different kernel, namely RBF. They also used a second classifier, Random Forest (RF), which were used together 

with SVM for their objective function. They reported that the mix produced a very high accuracy, compared to 

using SVM post-feature selection, and for objective functions.  

 

In [6], they tested their wrapper with Linear Discriminant Analysis (LDA), k-nearest Neighbors (KNN), Naive 

Bayesian Classifier (NBC), LDA + KNN, and LDA + NBC. As stated in Section 3.4, they found that KNN, LDA 

– KNN, and LDA - NBC achieved similar results regarding accuracy. When looking at the stability scores, KNN 

achieved the highest, and was very close to perfect stability. However, KNN had the worst performance regarding 

execution time. They further concluded that KNN is a good choice for MI classification [6].  
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4. Problem Formulation 

Feature selection is an important step for classifying EEG data [6]. We want the classification system to be able 

to classify the input data as fast as possible, but we also want the accuracy of the classification to be as high as 

possible. This is especially important for real-time applications, where the speed of the classification is of big 

importance. To solve the speed problem, we want to feed the classifier only a small sub-portion of the original 

input data. By doing that, the classification system will have less data to process, and will therefore classify it 

quicker. The problem is that the right data have to be selected, in order to not make the prediction accuracy suffer 

when classified. We want to remove all data that is not relevant to the current classification.  

NSGA-II has shown to be a promising EA for feature selection [6], [7], [9]. But as it belongs to the GA family 

there are a number of different ways it can be implemented. The representation of an individual, parent selection 

method, and breeding operators can all be interchanged to a number of different combinations. So far, there hasn’t 

been a comparison between the different combinations, and how they affect the different classifiers.  

The purpose of this study is to find what representation, parent selection method, breeding operator, and classifier 

is the best combination for NSGA-II, when it comes to least number of features used, and best prediction accuracy. 

The study considers prediction accuracy, and number of features used, as measure of performance, where we want 

to maximize the prediction accuracy, with as small of a feature-set as possible. That is because the computational 

time we want to minimize depends on number of features used [6], [7]. We also need to test all these combinations 

with the different objective functions that have been used in the previous studies [7], [9], since new representations, 

and breeding operators have not previously been examined for those functions. For that we need to investigate, (1) 

how each combination of individual representation, breeding operators, and objective functions, affect the 

prediction accuracy and feature reduction, (2) how do the different combinations compare to each other, (3) what 

combination of objective functions are best suited for each individual representation, regarding prediction accuracy 

and feature reduction, (4) how does each classifier perform, for each of the combinations. The research questions 

are therefore defined as: 

• How will the different combinations of individual representation, breeding operators, and objective 

functions, perform regarding prediction accuracy and number of used features as feature selection in 

classifying EEG oscillations in MI? 

  

• How will the different classifiers affect the performance for each of the NSGA-II combinations when 

classifying EEG oscillations in MI?  

 

4.1. Limitations 

This study will only research the algorithm NSGA-II for feature reduction, and together with the EEG data itself, 

they will both put limitations on how an individual can be represented. Also, each individual representation won’t 

work with every breeding operator, the representation from [5] will for example need two special breeding 

operators to work correctly. This will limit the amount of combinations that can be evaluated. The same goes for 

all the objective functions, and classifiers. Previous studies in [35], explains that the EEG samples are subject-

specific, and we only have samples from six people which can limit the conclusion. 
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5. Method 

This is mostly an empirical study. Initially, it will be a literature study to find information regarding NSGA-II, the 

different individual representations, and what breeding operator techniques that can work for each representation. 

The González paper [6], will especially need to be studied since it outlines one of the individual representations, 

with its corresponding breeding operators that will be implemented, and tested.  

 

After the literature study, the implementation will start, and all chosen individual representations, breeding 

operators, and selection methods will be implemented. Then, the process off testing all the combinations of 

individual representations, breeding operators, and selection methods will start. Each of those combinations are 

going to be tested for each of the objective functions, and classifiers. The objective functions will be: 

 

• Pearson – FR (PCFS-FR) 

• Pearson – KNN (PCFS-KNN) 

• Training-validation percentage with KNN (KNN_tra-KNN_val) 

And the evaluated classifiers are: 

• Linear Discriminant Analysis (LDA) 

• Support Vector Machine, with linear kernel (SVML) 

• Support Vector Machine, with polynomial kernel (SVMP) 

• Artificial Neural Network (ANN) 

• K-Nearest Neighbors (KNN) 

Each combination will be tested on six data sets, provided by the authors in [7], which are recorded EEG data from 

six different subjects. This will also add to the complexity of the testing phase, since every combination have to 

be run on all of the data sets. It is a lot of combinations to work through, which will take a lot of time to test since 

each individual test is estimated to run for a long time. Each test will go through the classification process, and 

generate prediction accuracy, number of features used, and computational time, which will be compared to each 

other, and compared with the results from both reference papers [7], [9]. The result of the data comparisons will 

answer both research questions. To ensure validity of the test results a 10-fold cross validation will be used.  
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6. Ethical and Societal Considerations  

The EEG data used are recorded from real people and are provided by [7]. The samples are completely anonymous, 

there are no information that can be tied to the subjects, names are replaced with “Subject A-F” before I get the 

data. No other confidential data will be dealt with.  
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7. Design and Implementation 

In this section, a description of the design, and implementation is presented. Each subsection will describe one 

part of the algorithm. It is organized as follows: In section 7.1, the design regarding the four representations are 

presented, including the pseudo-code for the algorithms. In section 7.2, a description of the used breeding 

operators, with corresponding pseudo-codes, are presented. In section 7.3, the tested objective functions are 

presented, and finally, in section 7.4, the used classifiers, are motivated, and presented.  

 

The data used in this study was recorded, and processed by the team in [7]. It is recorded from six healthy subjects, 

and each sample consists of 42 channels, 42 ∙ 30 frequencies, and 42 ∙ 30 ∙ 40 time steps, in total, 50400 features. 

As described in section 3.1, they use a method of reducing the number of time steps, by averaging consecutive 

time steps, into time windows. Since this study is a continuation of their study, I’ve also used that processing step, 

with a window size of 40. This window size will average all 40 time steps into only one time window, and result 

in only 1260 total features.  

 

In this study, the classifiers are classifying between two classes, which is the same two classes as the reference 

studies, [7], and [9]. The two classes are: 

 

• MI Activity:  The MI activity consists of either opening, or closing their hand. 

• Resting State: The state before, and between the MI activities, where the subject didn’t perform any MI 

activities. 

 

7.1. Representations 

In this section, the four different individual representations are presented, with their corre. In section 7.1.1, the 

Hierarchical Representation (HR), and its corresponding pseudo-code is described. In section 7.1.2, the Non-

Hierarchical Representation (NHR), is described, and motivated, and finally, in section 7.1.3, a description of the 

design, and pseudo-code, regarding the two González representations (G30, & G600) are presented. 

 

7.1.1. Hierarchical Representation (HR) 

The hierarchical representation is proposed in [7]. Here the channels, frequencies, and time windows are placed in 

different layers. The first layer represents the channels, and are implemented as a vector. The frequencies are 

represented in a matrix, where each row contains a specific channel’s frequencies. The same goes for all the time 

windows, which is also represented by a matrix, where each row is a specific frequency’s, associated time 

windows. Figure 13 illustrates this representation, and the corresponding layers:  

 

 

 

 

 

 

 

Figure 13. Illustration of the hierarchical representation 
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As explained in section 3.1, the hierarchical can be illustrated in vectorized form as:  

 

Layer 1  𝑋 = {𝑥1, 𝑥2, … 𝑥𝑛} 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ {0, 1}, 𝑎𝑛𝑑 𝑛 = 42 ( 44 ) 

Layer 2  𝑌𝑖 = {𝑦1 , 𝑦2, … 𝑦𝑚} 𝑤ℎ𝑒𝑟𝑒 𝑦 ∈ {0, 1}, 𝑎𝑛𝑑 𝑚 = 1260  

Layer 3 
 𝑍𝑖𝑗 = {𝑧1, 𝑧2, … 𝑧𝑡} 𝑤ℎ𝑒𝑟𝑒 𝑧 ∈ {0, 1}, 𝑎𝑛𝑑 𝑡 = 1260  

 

Where 𝑋 is the channel vector, 𝑌𝑖 is the frequency vector, for the 𝑖th channel, and lastly 𝑍𝑖𝑗 is the time window’s 

vector, for the 𝑖th channel, and 𝑗th frequency. In summary, this representation requires a vector of 42 channels, 

and two matrices of 1260 frequencies, and 1260 time windows. In total, 42 + 1260 + 1260 = 2 562 binary 

values need to be stored, for each individual. 

 

7.1.2. Non-hierarchical Representation (NHR) 

In the non-hierarchical representation, all features are represented in a single, continuous space. A feature in this 

representation is essentially a frequency, represented by a binary number, that corresponds to whether it is selected, 

or not. Since I use a window size of 40, and all frequencies have one power value, the number of features that this 

representation needs to store for each individual, is only the number of frequencies, 1260. The Non-Hierarcical 

representation is therefore implemented using a single, binary vector, which stores all the features for an individual. 

A non-hierarchical individual (𝐼𝑖) can therefore be defined as EQ. ( 45 ). 

 

 

  𝐼𝑖 = {𝑥1, 𝑥2, … 𝑥𝑛} 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ {0, 1}, 𝑎𝑛𝑑 𝑛 = 1260 ( 45 ) 

 

7.1.3. Gonzalez Representation (G30 & G600) 

In [6], the representation only stores the indices of selected features, with integers pointing to a specific index of 

a feature, instead of a binary number for every single feature. Just like the non-hierarchical one, it only stores the 

frequencies, which can be represented by a vector of integers in this case. But since this vector only stores the 

selected indices, it doesn’t require as much memory as the other representations, since it doesn’t have to store any 

data about non-selected features. Similar to the non-hierarchical representation, it can be defined as EQ. ( 46 ). 

 

 

  𝐼𝑖 = {𝑥1, 𝑥2, … 𝑥𝑚} 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ {1, 𝑛} ( 46 ) 

    

In EQ. ( 46 ) 𝑛 is the total number of features, which is 1260, and 𝑚 is the current number of selected features for 

individual 𝐼𝑖 .  
 

Two versions of the González representation have been designed for this study, the difference is how many features 

one individual can select as a maximum. The original algorithm from [6], uses a maximum of 30 features (G30), 

while the other version in this study is using a maximum of 600 selected features (G600). 

 

7.2. Breeding Operators 

In this section, the three different breeding operators are presented. Section 7.2.1 presents the selection operators, 

section 7.2.2 the crossover methods, and finally, section 7.2.3 describes the mutation operators.  

  

7.2.1. Selection 

To select individuals, three selection methods were implemented, and evaluated. Those were RWS, SUS, and 

Tournament Selection. The theory required for each of them is explained in section 2.4.2. In this section I will 

present the pseudo code, as they are implemented. 

 

Tournament selection is implemented according to the original NSGA-II implementation from [31], and is used 

in both [7], and [9]. Therefore, I refer the reader to [31] for an in-depth read on the implementation of this 

algorithm. 
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Since NSGA-II normally is rank-based, both RWS and SUS has to be modified to make use of the front rankings. 

For this reason, RWS has two roulette wheels, one to select the front, and one to select an individual from the 

selected front. A fitness value can be calculated from the rank of a front, or individual, by calculating:  

 

 
2

𝑟𝑎𝑛𝑘

𝑁(𝑁 + 1)
 

( 47 ) 

 

The modified RWS algorithm initially calculates the fitness of each front, from their respective rank. Then it goes 

in to the main loop, where it does an RWS to select a front, based on the initial fitness values of each front. When 

a front is selected, it calculates a fitness value for each individual in the selected front, with the same equation. 

Then another RWS selection is done, to select one of the individuals from the previously selected front, and it later 

adds the selected parent to the parent vector. Since each couple of parents, will create one offspring, I had to select 

2 ∙ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 parents. The modified RWS selection, and the pseudo-code is presented in Algorithm 3: 

 

Algorithm 3: Roulette Wheel Selection 

Input: all fronts 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑛} 𝑤ℎ𝑒𝑟𝑒 𝑓𝑖 = {𝑐1, 𝑐2, … , 𝑐𝑛} 𝑎𝑛𝑑 𝑐𝑖  𝑖𝑠 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙  

for each 𝑓 ∈ 𝐹 

     𝑓𝑟𝑜𝑛𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖  =
𝑓𝑟𝑎𝑛𝑘∙2

𝑛𝑢𝑚𝐹𝑟𝑜𝑛𝑡𝑠 ∙ (𝑛𝑢𝑚𝐹𝑟𝑜𝑛𝑡𝑠 + 1)
 

 

for k = 1 to (2 ∙ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

     𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑟𝑎𝑛𝑑(0, 1) 

     for each 𝑓𝑓 ∈ 𝑓𝑟𝑜𝑛𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

          if 𝑓𝑓𝑖 < 𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑓𝑓𝑖+1 > 𝑛𝑢𝑚𝑏𝑒𝑟 

               𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑛𝑡 = 𝐹𝑖 

 

     for each 𝑐 ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑜𝑛𝑡 

          𝑠𝑜𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =
𝑖 ∙ 2

𝑛𝑢𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ∙ (𝑛𝑢𝑚𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 + 1)
 

 

     𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑟𝑎𝑛𝑑(0, 1) 

     For each 𝑠𝑓 ∈ 𝑠𝑜𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠 

          if 𝑠𝑓𝑖 < 𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑠𝑓𝑖+1 > 𝑛𝑢𝑚𝑏𝑒𝑟 

               𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑜𝑛𝑡𝑖  
 

return 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 

   

 

For SUS, I assigned each individual a personal rank, where the best individual at the top of the first front, has rank 

1, and the last individual in the last front gets rank 15 (since I use a population of 15). Then calculate the rank 

fitness with EQ. ( 47 ), and the cumulative sum of those results. The algorithm calculates a pointer for each 

individual to be selected, then does an RWS selection on all pointers, to select every parent in one pass. The 

pseudo-code for this SUS version is described in Algorithm 4:  
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Algorithm 4: Stochastic Universal Selection 

Input: all fronts 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑛} 𝑤ℎ𝑒𝑟𝑒 𝑓𝑖 = {𝑐1, 𝑐2, … , 𝑐𝑛} 𝑎𝑛𝑑 𝑐𝑖  𝑖𝑠 𝑎𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙  

for 𝑖 = 1 to 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 

     𝑝𝑜𝑝𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖  =
𝑖 ∙ 2

𝑝𝑜𝑝𝑆𝑖𝑧𝑒 ∙ (𝑝𝑜𝑝𝑆𝑖𝑧𝑒 + 1)
  

 

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑆𝑢𝑚 = 𝑐𝑢𝑚𝑠𝑢𝑚(𝑝𝑜𝑝𝐹𝑖𝑡𝑛𝑒𝑠𝑠) 

 

𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑠𝑢𝑚(𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑆𝑢𝑚)

2 ∙ 𝑝𝑜𝑝𝑆𝑖𝑧𝑒
 

 

𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∙ 𝑟𝑎𝑛𝑑(0, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

 

for 𝑖 = 1 to (𝑝𝑜𝑝𝑆𝑖𝑧𝑒 ∙ 2) 

      𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + (𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∙ 𝑖) 

 

for each 𝑝 ∈ 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 

      for each 𝑐 ∈ 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑆𝑢𝑚 

            if 𝑐 < 𝑝 

                  𝑝𝑎𝑟𝑒𝑛𝑡𝑠𝑖 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗  

 

return 𝑠𝑢𝑓𝑓𝑙𝑒(𝑝𝑎𝑟𝑒𝑛𝑡𝑠) 

 

 

 

7.2.2. Crossover 

The four crossover methods used are Uniform (UC), Single-Point (SP), Multi-Point (MP), and the special case for 

the González representation (GC). The theory behind the first three is described in section 2.4.3, while the 

Gonzalez one is described in section 3.3. In this section I present the pseudo code to the algorithms. 

 

The UC algorithm generates two offspring from a single set of parents. A random number is generated for each 

feature index i. If the number is bigger, or equal, to the crossover probability, the feature at index i of offspring1 

will be inherited from parent A, and offspring2 will inherit feature i from parent B. If the random number is less 

than the crossover probability, offspring1 will inherit i from parent B, and offspring2 from parent A. The pseudo-

code for UC is presented in Algorithm 5: 

 

Algorithm 5: Uniform Crossover 

Input: two parents, 𝐴 and 𝐵  

for i = 1 to 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

      if rand() >= 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

            𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1𝑖  = 𝐴𝑖 

            𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2𝑖  = 𝐵𝑖  

      else 

            𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1𝑖  = 𝐵𝑖  

            𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2𝑖  = 𝐴𝑖      

 

 

The SP algorithm initially chooses a point, to decide what part of each parent to give to each offspring. The point 

is chosen between index 2, and the number of features. Offspring1 then gets all features between indices 1, and 

the chosen point - 1 from parent A, and offspring2 gets the same indices from parent B. The rest of the features are 

then inherited from the second respective parent, where offspring1 inherits them from parent B, and offspring2 

from A. The pseudo-code for SP is presented in Algorithm 6: 
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Algorithm 6: Single-Point Crossover 

Input: two parents, 𝐴 and 𝐵  

point = rand(2, 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

 

for i = 1 to point-1 

      𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1𝑖  = 𝐴𝑖 

      𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2𝑖  = 𝐵𝑖  

 

for i = point to 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

      𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1𝑖  = 𝐵𝑖  

      𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2𝑖  = 𝐴𝑖             

 

MP crossover is similar to SP, and is simply using more points to divide the parents. In this study I used two points, 

where two parts of an offspring will be inherited from one parent, and one part from the second parent. Otherwise 

it is identical to the single-point implementation. The pseudo-code is presented in Algorithm 7:  

 

Algorithm 7: Multi-Point Crossover 

Input: two parents, 𝐴 and 𝐵  

point1 = rand(2,   
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

2
) 

point2 = rand(
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

2
,   𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 − 1) 

 

for i = 1 to point1-1 

      𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1𝑖  = 𝐴𝑖 

      𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2𝑖  = 𝐵𝑖  

 

for i = point1 to point2 

      𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1𝑖  = 𝐵𝑖  

      𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2𝑖  = 𝐴𝑖 

 

for i = point2+1 to 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

      𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1𝑖  = 𝐴𝑖 

      𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2𝑖  = 𝐵𝑖              

 

 

Algorithm 5-7 can run directly for the non-hierarchical representation. However, for the hierarchical 

representation, each crossover algorithm has to run multiple times for each layer, once for the channel vector, and 

once for each row in the frequency, and window matrices.   

 

Lastly, the González representation need a special crossover, due to it using integers to store selected features. It 

distributes the selected features that are common in both A, and B, to both offspring. It then distributes the features 

they didn’t have in common randomly to both offspring, so that offspring1 ends up with the same length as parent 

A, and offspring2 with the same length as parent B. The pseudo-code is presented in Algorithm 8: 

 

Algorithm 8: Gonzalez Crossover 

Input: two parents, 𝐴 and 𝐵  

C = 𝐴 ∩ 𝐵   % Get the selected features they have in common 

R = (𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)  % Get the selected features they don’t have in common 

 

𝑜1_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = |𝐴| − |𝐶|  % How many more features to reach the same length as A 

𝑅1 = shuffle(R)   % Shuffle R to get a random order of the non-common features 

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1 = 𝐶 ∪ 𝑅11−𝑜1_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔  % Add the common, and some of the non-common features 

   % to reach the same length as parent A 

 

𝑜2_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = |𝐵| − |𝐶|  % Do the same for the second offspring, but with parent B  

𝑅2 = shuffle(R)    

𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2 = 𝐶 ∪ 𝑅21−𝑜2_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔              
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7.2.3. Mutation 

Two mutation methods are evaluated in this paper, Bit-Inversion (BM), and the one proposed in [6], which is the 

special case for the González representation (GM). In section 2.4.4, the pseudo-code for BM is presented, and in 

section 3.3, a description, and pseudo-code of GM is presented. 

 

The BM algorithm simply flips the bits, if a random number for the current index is less than the mutation 

probability. However, as the crossover methods, it has to run multiple times for the hierarchical representation, 

once for the channel vector, and once for each row in the frequency, and window matrices. The difference between 

each run is the mutation probability, which has a different value for each layer. The settings used in this study can 

be found in section 8. The pseudo-code for BM is presented in Algorithm 9: 

 

Algorithm 9: Bit-Inversion Mutation 

Input: One offspring, O  

for i = 1 to length(O) 

      if rand() < 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

            𝑂𝑖  = mod(𝑂𝑖  + 1,  2)  % Flip the bit from 0 to 1, or from 1 to 0 

 

 

The GM algorithm selects some features to mutate according to a mutation probability. These features are saved 

in a set (M), which is then divided into two new sets, those that will be replaced with other non-selected features 

(MS), and those that will be removed without any replacements (MR). The set (NS), is simply the non-selected 

features that will substitute those in MS. The last part of the algorithm makes it so that an individual has a chance 

of growing the number of selected features. At most one feature can be added each iteration, as long as it has less 

selected individuals than the maximum size, which is defined by the user (30 & 600 in this study). The pseudo-

code for GM is presented in Algorithm 10: 

 

Algorithm 10: Gonzalez Mutation 

Input: One offspring, O  

for i = 1 to |𝑂|   % Select which features to mutate 

      if rand() ≤ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

            𝑀 = 𝑀 ∪ 𝑂𝑖  

 

for i = 1 to |𝑀|   % Select which of those features to substitute 

      if rand() ≤ 0.5 

            𝑀𝑆 = 𝑀𝑆 ∪ 𝑀𝑖 

 

𝑀𝑅 = 𝑀 ∖ 𝑀𝑆    % The rest of the mutated features will be removed 

 

𝑛𝑜𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = [1, 𝑛] ∖ 𝑂  % Get all features that aren’t selected 

𝑛𝑜𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = shuffle(𝑛𝑜𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑) % Shuffle the order 

for i = 1 to |𝑀𝑆| 
      𝑁𝑆 = 𝑁𝑆 ∪ 𝑛𝑜𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑖   % Save indices to substitute those in MS 

 

𝑂′ = (𝑂 ∖ 𝑀) ∪ 𝑁𝑆  % Remove all features in M from O, and add the substitutes 

 

if rand() ≤ 0.5 and |𝑂′| < 𝑚𝑎𝑥𝑆𝑖𝑧𝑒 % Chance of adding 1 additional feature  

      𝑛𝑜𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = [1, 𝑛] ∖ 𝑂′ 
      𝑖𝑛𝑑𝑒𝑥 = rand(1, |𝑛𝑜𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑|) 
      𝑂′ = 𝑂′ ∪ 𝑛𝑜𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑖𝑛𝑑𝑒𝑥 
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7.3. Objective Functions 

The objective functions evaluated in this study are PCFS (Pearson), FR, KNN, and training-validation percentage, 

and all objectives are described in this section.  

 

• FR: Feature Reduction (FR) is an objective, proposed in both [7], and [9], which reduces the amount of 

features selected. It is calculated by the following equation:  

 

 
𝐹𝑅 = 1 −

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 

( 48 ) 

 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏𝑠𝑒𝑡 are the features that have been selected by NSGA-II during the feature selection 

process, and 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is equal to the maximum number of features.  

 

• KNN: K-nearest neighbor (KNN) is a supervised learning algorithm, making this a wrapper objective. 

The algorithm is fully explained in section 2.1.1. The reason this objective was chosen is because of the 

good results it produced together with Cohen’s Kappa in [6].  

 

• Training-validation-percentage: Training-validation percentage is the method used in [6], where they 

used Cohen’s Kappa, together with LDA, NBC, and KNN. A full explanation of the equations used to 

implement this objective is done in section 3.4. Together with KNN it produced a good result across all 

subjects in [6], it is included to do a comparison between it, and the top performing objectives from the 

other studies.   

 

• Pearson: Pearson correlation of selected features (PCFS) [36], measures the linear correlation between 

two variables x, and y, in the range of [-1, 1]. When both variables increase in value simultaneously, there 

is a correlation, and if one increases, and one decreases, no correlation is present. A perfect linear 

correlation results in a value of 1, while a 0 represents no correlation at all. It is calculated by the following 

formula:  

 

 𝑘 ∙  𝜏𝑐,𝑓

√𝑘 + 𝑘 ∙ (𝑘 − 1) ∙ 𝜏𝑎,𝑓

 ( 49 ) 

 

Where k is the subset of selected features, 𝜏𝑠,𝑓 is the average value of the pearson’s correlation coefficient, 

regarding the subset of features, and the classes. Lastly, 𝜏𝑎,𝑓  is the average value of the Pearson’s 

correlation coefficient, regarding all selected features.  

 

   

 

Since I use a multi-objective algorithm, I can optimize two objectives at once, therefore I’ve selected the most 

promising objectives from the related studies, to compare with the different combinations of NSGA-II. The 

combinations are as follows:  

 

• Pearson – FR  

• Pearson – KNN 

• Training-validation-percentage, with KNN as classifier 

 

The combination of Pearson – FR is included because it performed well in both [7], and [9]. The reason for using 

KNN as a wrapper objective, is because it always performed good in [6], with the training-validation-percentage. 

A prior test was done that where KNN was combined with the objectives from [9], and it was found that it 

performed best together with Pearson, which is why I also included that combination.  

7.4. Classifiers 

In [7], and [9], they used SVM with a linear kernel to classify. In this study I expanded the classifier options, to 

find out how different combinations of NSGA-II, and different classifiers work together. For SVM, the linear 

kernel was included, to be able to compare results with the two reference studies, [7], and [9]. I also included the 

Polynomial kernel, described in EQ. ( 12 ), in section 2.1.2. The reason being that it is a good, well known kernel. 
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Both [7], and [9], used SVM due to it not requiring many samples to be efficient. In [6], they proposed LDA, and 

KNN as classifiers, measuring good results. Therefore, I chose to include them in this study, to compare them 

against the SVM solutions. Lastly, I included ANN, since it’s also a very well known, good performing classifier. 

 

In summary, the evaluated classifiers were: 

  

• SVML 

• SVMP 

• LDA 

• KNN 

• ANN 

 

All of which, are implemented as described in section 2.2.  
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8. Experiment Settings 

In this section, the settings used in the study, regarding NSGA-II, and the classifiers, are presented. I used the same 

parameters as [7], and [9], to be able to compare the result to their studies. The parameters are slightly different 

between the representations. In section 8.1, the settings between the different representations, regarding NSGA-

II, are presented, and in section 8.2, the settings regarding the classifiers are presented.  

 

8.1. NSGA-II Settings 

In this section, all settings regarding NSGA-II, and the different representations, are presented.  

 

8.1.1. Hierarchical settings:  

 

• Population size: 15 

• Maximum generations: 3000 

• Crossover probability: 0.5 

• Mutation probability 1: 0.05      (Layer 1) 

• Mutation probability 2: 0.01      (Layer 2) 

• Mutation probability 3: 0.1        (Layer 3) 

• Window size: 40 

 

8.1.2. Non-Hierarchical settings:  

 

• Population size: 15 

• Maximum generations: 3000 

• Crossover probability: 0.5 

• Mutation probability: 0.05 

• Window size: 40 

 

8.1.3. González settings:  

Two versions were tested, where the only difference were the maximum selected features. This was because I 

wanted to test both the one they used in [6], which was a maximum size of 30, and compare it to a larger size of 

600, to see how that would affect the end result.   

 

• Population: 15 

• Maximum generations: 3000 

• Mutation probability: 0.01 

• Maximum selected features: 30 & 600 

• Window size: 40 

 

8.2. Classifier Settings 

In this section, the settings for all five classifiers are presented. All classifiers have been implemented using 

Matlab. 

 

8.2.1. Support Vector Machine settings: 

Two SVM classifiers were implemented, with two different kernels. Both were implemented using Matlab’s 

fitcsvm function. Below are the settings used for the kernels. 

 

• Linear Kernel (SVML): Default values. No other settings required.  

• Polynomial Kernel (SVMP): Default values, where the order variable 𝑑 = 3. 
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8.2.2. Linear Discriminant Analysis settings: 

LDA was implemented using Matlab’s fitcdiscr function, with default parameters, except for an additional 

automatic optimization of both delta, and gamma, using Bayesian optimization. 

 

8.2.3. Artificial Neural Network:  

ANN was implemented using the Matlab toolbox Adam (adaptive moment estimation) optimizer. The 

configuration was set as follows:  

 

• Learning rate: 0.01 

• Minimum epochs: 300 

• Input layer number of neurons: Number of selected features 

• Hidden layers: 1 

• Hidden layers number of neurons: 0.2 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

• Hidden layers activation function: ReLU 

• Output layer number of neurons: 2 (two classes to classify) 

• Output layer activation function: Softmax 

 

8.2.4. K-Nearest Neighbour Settings: 

KNN was implemented as explained in section 2.1.1, with the only parameter k set equal to 5.  
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9. Results 

In this section, the results found in the study are presented. The remainder of this section is organized as follows: 

In section 9.1, a comparison between the best performing combinations are presented. In section 9.2, the 

correlation between the objectives, and the classifiers, for the three best combinations of each representation, are 

presented. In section 9.3, a statistical validation between the objectives, and classifiers are presented, and finally, 

in section 9.4, a comparison with the results found by this study, and the reference studies, [7], and [9], are studied.  

 

To better format the tables, the following abbreviations are used:  

 

• HR: Hierarchical Representation 

• NHR: Non-Hierarchical Representation 

• G30: González Representation, with a maximum limit of 30 selected features 

• G600: González Representation, with a maximum limit of 600 selected features 

• GC: González Crossover 

• UC: Uniform Crossover 

• SPC: Single-Point Crossover 

• MPC: Multi-Point Crossover 

• GM: González Mutation 

• BM: Bit-Inversion Mutation  

• RWS: Roulette Wheel Selection 

• TOS: Tournament Selection 

• SUS: Stochastic Universal Selection 

• KNN_tra - KNN_val: Training-validation-percentage with KNN 

 

Each NSGA-II combination is listed in the following format: 

  

• Representation-Selection-Crossover-Mutation-[Objective 1-Objective 2] 

 

9.1. Comparison between representations & objectives 

In this section, the different combinations, and objective pairs are presented, regarding accuracy and feature 

reduction. The following data includes the mean accuracy, and mean feature reduction percentage, of all subjects. 

In Table 1, the three best combinations from each representation are presented. In Table 2, the three best 

combinations from each objective are presented. Finally, in Table 3, the single best combination from each 

representation are presented. 

 

In Table 1, the Hierarchical representation, together with stochastic selection, uniform crossover, bit-inversion 

mutation, and PCFS-KNN objective, resulted in the highest average accuracy, across all subjects, and classifiers. 

It was able to classify MI-activity with 73.5% accuracy on average, with an average feature reduction of 97%. 

Best average feature reduction came from all three González_30 representations, most likely due to them having 

a maximum limit of 30 features selected per individual. However, the average accuracy isn’t far from the best 

hierarchical representation, only about 1-2% off. Similarly, the best HR representation with highest average 

accuracy, only has 1% lower feature reduction than the González_30 combinations. Taking all three combinations 

into account, for each representation, we can see that the HR representation has a consistent average accuracy, 

with all three predicting around 73% of the input data correctly, while still maintaining a high feature reduction. 

The Non-Hierarchical representation seems to perform the worst, with the three best combinations only achieving 

an average of 50% feature reduction, considerably less than the others. Even though they use more features, they 

still achieve less accuracy than all the other representations. The González representation with a limit of 600 

features, performs worse than the other with a limit of 30 features, on both accuracy, and feature reduction. Lastly, 

10/12 of the best performing combinations, came from using PCFS-KNN as objective pair.  
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Table 1. Three best performing NSGA-II combinations, from each representation. 

Combination 

Classifier Accuracy 
Feature 

reduction 

LDA SVML SVMP ANN KNN Average Average 

G30-RWS-GC-GM-[PCFS-KNN] 0.747 0.738 0.71 0.74 0.675 0.722 0.977 

G30-SUS-GC-GM-[PCFS-KNN] 0.745 0.737 0.7 0.734 0.676 0.718 0.977 

G30-TOS-GC-GM-[PCFS-KNN] 0.751 0.737 0.702 0.738 0.662 0.718 0.977 

G600-TOS-GC-GM-[PCFS-FR] 0.763 0.714 0.718 0.743 0.583 0.704 0.935 

G600-RWS-GC-GM-[PCFS-FR] 0.762 0.722 0.703 0.746 0.578 0.702 0.893 

G600-TOS-GC-GM-[PCFS-KNN] 0.778 0.749 0.581 0.769 0.628 0.701 0.667 

HR-SUS-UC-BM-[PCFS-KNN] 0.755 0.752 0.722 0.754 0.693 0.735 0.969 

HR-RWS-MPC-BM-[PCFS-KNN] 0.755 0.744 0.719 0.75 0.695 0.733 0.968 

HR-TOS-UC-BM-[PCFS-KNN] 0.757 0.744 0.706 0.745 0.698 0.73 0.971 

NHR-TOS-SPC-BM-[PCFS-KNN] 0.776 0.752 0.567 0.768 0.621 0.697 0.556 

NHR-TOS-UC-BM-[PCFS-KNN] 0.779 0.747 0.569 0.77 0.618 0.697 0.573 

NHR-SUS-SPC-BM-[PCFS-KNN] 0.778 0.753 0.561 0.767 0.614 0.695 0.555 

 

 

In Table 2, we can see that PCFS-KNN achieves the highest average accuracies, with a high, consistent feature 

reduction. However, the highest average feature reduction comes from using PCFS-FR, with the Gonzáles_30 

representation. It seems like PCFS-FR works best as objective function for both González representations, since 

they occupy all the spots for that objective pair. Both PCFS-KNN, and KNN_tra-KNN_val only consists of the 

hierarchical representation, while no non-hierarchical representation seems to dominate any objective pair. We 

can also see that the KNN_tra-KNN_val objective pair perform well on both feature reduction, and accuracy. 

However, it still performs worse than PCFS-KNN for all three combinations, regarding both accuracy, and feature 

reduction.  

 

 
Table 2. Three best performing NSGA-II combinations, of each objective pair. 

Combination 

Classifier Accuracy 
Feature 

reduction 

LDA SVML SVMP ANN KNN Average Average 

G600-TOS-GC-GM-[PCFS-FR] 0.763 0.714 0.718 0.743 0.583 0.704 0.935 

G30-SUS-GC-GM-[PCFS-FR] 0.746 0.747 0.69 0.742 0.595 0.704 0.988 

G600-RWS-GC-GM-[PCFS-FR] 0.762 0.722 0.703 0.746 0.578 0.702 0.893 

HR-SUS-UC-BM-[PCFS-KNN] 0.755 0.752 0.722 0.754 0.693 0.735 0.969 

HR-RWS-MPC-BM-[PCFS-KNN] 0.755 0.744 0.719 0.75 0.695 0.733 0.968 

HR-TOS-UC-BM-[PCFS-KNN] 0.757 0.744 0.706 0.745 0.698 0.73 0.971 

HR-TOS-UC-BM-[KNN_tra-KNN_val] 0.76 0.725 0.693 0.747 0.577 0.7 0.908 

HR-SUS-SPC-BM-[KNN_tra-KNN_val] 0.76 0.73 0.681 0.746 0.582 0.7 0.902 

HR-RWS-UC-BM-[KNN_tra-KNN_val] 0.76 0.724 0.686 0.748 0.572 0.698 0.903 

 

 



 

 

 

 
                44   

 

Robin Johansson Mälardalen University 

Table 3 summarizes the other two tables, by displaying the top performing combinations from each representation. 

We can once again, see that the hierarchical representation achieves the best, average accuracy, while maintaining 

the second highest feature reduction (1% lower). At the same time, González_30 achieves similar accuracy (1.3% 

lower), with slightly more feature reduction, with PCFS-KNN as objective pair. Once again, it is clear that the 

non-hierarchical representation suffers in regard to feature reduction. However, it still performs better than the 

other combinations, with LDA, SVML, and ANN as classifiers, possibly due to it using more features. Although, 

it still achieves less accuracy in average, across all the classifiers, than every other representation. 

 

 
Table 3. The single, best performing NSGA-II combinations, from each representation. 

Combination 

Classifier Accuracy 
Feature 

reduction 

LDA SVML SVMP ANN KNN Average Average 

G30-RWS-GC-GM-[PCFS-KNN] 0.747 0.738 0.71 0.74 0.675 0.722 0.977 

G600-TOS-GC-GM-[PCFS-FR] 0.763 0.714 0.718 0.743 0.583 0.704 0.935 

HR-SUS-UC-BM-[PCFS-KNN] 0.755 0.752 0.722 0.754 0.693 0.735 0.969 

NHR-TOS-SPC-BM-[PCFS-KNN] 0.776 0.752 0.567 0.768 0.621 0.697 0.556 

 

9.2. Correlation between objectives & classifiers 

In this section, the correlation between the objectives, and the classifier algorithms, are studied. Only the most 

significant combinations are studied, which are the three best combinations from each representation, found in 

Table 1. The correlation model used is Pearson’s correlation coefficient. The data tables referred to in this section, 

can be found in Appendix A, section A.2.  

 

The three combinations using the HR representation, HR-TOS-UC-BM, HR-RWS-MPC-BM, and HR-SUS-UC-

BM (Table A5-Table A7), all have similar p-values, even though they are using different combinations of breeding 

operators. All three combinations have little, to no correlation between objective FR, and the two classifiers SVMP, 

and KNN. However, there are weak, negative correlations between the objective, and the other classifiers, LDA, 

SVML, and ANN, for all three combinations. None of the combinations have any correlation between the two 

objectives in the pair KNN_tra-KNN_val. However, they do have positive correlations between the objectives, 

and the classifiers. The objective PCFS-KNN can be observed to have moderate, positive correlation between the 

two objectives, and all the classifiers, possibly correlating with the higher average accuracy, and feature reduction 

across all classifiers, as seen in Table 1-3. 

 

Regarding the three NHR combinations, NHR-TOS-UC-BM, NHR-TOS-SPC-BM, and NHR-SUS-SPC-BM 

(Table A9-Table A11), the p-values are similar to HR. FR has slightly weaker correlations between the two 

objectives, FR, and PCFS. The correlations observed, are also weaker between the objective pair, and the 

classifiers, with FR having little, to no correlation between it, and the classifiers. However, PCFS has identical 

correlations to HR, between the objective and the classifiers. Another similarity with the HR combinations, is that 

PCFS-KNN have moderate correlations between the two objectives, and the classifiers. The last objective pair 

KNN_tra-KNN_val, also have similar correlations as HR, only slightly higher between the two individual 

objectives. But the difference is too small to ensure a correlation.   

 

The three combinations using G30, G30-RWS-GC-GM, G30-SUS-GC-GM, and G30-TOS-GC-GM (Table A12-

Table A14), has similar correlations to NHR regarding PCFS-FR, where the correlations are weak, between the 

two objectives, except for G30-TOS-GC-GM, where the correlation is slightly higher, and more similar to HR. 

The correlations between PCFS-FR, and the classifiers are also identical to NHR, where the correlations are either 

very weak, or none existent in the case of G30-RWS-GC-GM. Regarding PCFS-KNN, the correlations look 

identical to both HR, and NHR, with moderate correlations between PCFS, and KNN, moderate correlations 

between KNN and the classifiers, and strong correlation between PCFS and the classifiers. Regarding KNN_tra-

KNN_val, G30 has slightly higher correlation between the two objectives compared to both HR, and NHR, while 

also having the correlation being negative (opposed to the positive correlation the other representations had). For 

the G30-RWS-GC-GM, and G30-SUS-GC-GM combinations, a weak correlation between KNN_tra, and 
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KNN_val can be concluded. KNN_tra has weaker correlations to the classifiers, while KNN_val has similar 

correlations to HR, and NHR.  

 

Regarding the three G600 combinations, G600-TOS-GC-GM, G600-RWS-GC-GM, and G600-TOS-GC-GM 

(Table A15-Table A17), similarly to most NHR, and G30 combinations, it can be observed that they have little, to 

no correlation between PCFS and FR,  while having moderate to strong correlations between PCFS, and the 

classifiers. FR has similarly very weak, to no correlation between the classifiers. As all other observed 

combinations, KNN has positive correlations to PCFS, although slightly weaker than the others. Simultaneously, 

it has moderate correlation to all classifiers, except to the classifier KNN, which is strong.  

 

The most consistent objective pair is PCFS-KNN, which for all representations, have positive correlations between 

the two objectives in the pair, and between the objectives, and all the classifiers. This is the case for all tested 

combinations, including those not mentioned in this section. FR has no, to weak, correlations (negative) between 

it, and the classifiers, while also having moderate correlation to PCFS for HR combinations, and between weak, 

and no correlation at all, to PCFS for the other representations. KNN_tra-KNN_val always has positive 

correlations in regards to the classifiers, with moderate strength. In the same regard, PCFS and KNN both have 

positive correlations to all classifiers, while PCFS’s being strong, and KNN’s being moderate. 

 

Analyzing the results, it seems like breeding operators doesn’t have a big impact on the correlations. The 

differences are too small between combinations using the same representation, while one operator doesn’t produce 

the same small differences every time it appears in a combination. This makes it impossible to conclude whether 

one operator has any impact on the correlations. However, big differences can be seen between the objectives, 

with PCFS having a constant moderate, or strong correlations between it, and the classifiers. FR has weak, to no 

correlations to all classifiers, and KNN have moderate correlations to PCFS, and the classifiers. Lastly, the 

correlation between the objectives KNN_tra, and KNN_val, are weak, to none existent, while having moderate 

correlations to the classifiers.    

9.3. Statistical validation 

In this section, a statistical validation between the objectives, and between the classifiers are presented. Wilcoxon’s 

signed rank test was used to evaluate whether two groups has the same continuous distribution. The statistical 

validation between the three pairs of objectives, finds whether one objective pair is statistically better than another 

pair of objectives, for that specific combination. The same is true for the statistical validation between the 

classifiers, whether one classifier is statistically better than another. The statistics analyzed in this section 

corresponds to the most significant combinations, which are the three best performing combinations from each 

representation, presented in Table 1. The data tables analyzed in this section, can be found in Appendix A, section 

A.3.  

 

The data in the analyzed tables, are interpreted as follows:  

 

• p ≥ 0.05: No statistical significance. 

• p < 0.05: Weak statistical significance. 

• p < 0.01: Moderate statistical significance. 

• p < 0.001: Strong statistical significance. 

 

 

Meaning that the null-hypotheses of one algorithm (alg1) being better, or equal to another (alg2), can be rejected, 

at a statistical significance of 0.1% (p < 0.001), 1% (p < 0.01), and 5% (p < 0.05). A smaller p-value results in one 

pair of objectives, or one classifier, being statistically better than another pair of objectives, or classifier. If the p-

value ≥ 0.05, the null-hypotheses is true, and alg1 is worse, or equal to alg2.  

 

The HR representations seem to always have PCFS-KNN dominate the other objective pairs (p < 0.001), with no 

other pair having any statistical significance. Regarding classifiers, LDA is clearly statistically better then all 

others, for every combination. SVML and ANN is statistically similar, and is better than both SVMP, and KNN. 

It could indicate that LDA is the most viable choice for this combination, with ANN, and SVML being second. 

KNN is dominated by all other classifiers, for all combinations, indicating that it could be the worst choice 

regarding the HR representation.  
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Regarding NHR, it is no longer a clear choice between the objective pairs. PCFS-KNN is statistically better than 

KNN_tra-KNN_val, for NHR-TOS-UC-BM, but only with a p-value < 0.05, while no statistical difference can be 

observed between PCFS-KNN, and PCFS-FR. For NHR-TOS-SPC-BM, PCFS-KNN is slightly better than PCFS-

FR (p < 0.05). For the last combination, NHR-SUS-SPC-BM, no objective pair is statistically different than 

another. Regarding the classifiers, the results are similar to those found with HR. The only difference is that ANN 

was observed to be better than SVML, which it wasn’t for any HR combination.  

 

Taking Table 2 into account, it seems like G30, and G600, works well with PCFS-FR as objective. Together they 

achieve the three best results using that objective pair. G30’s statistical validations, are observed to be the only 

representation to have a strong statistical significance regarding PCFS-FR, possibly indicating that PCFS-FR could 

work very well paired with that representation. However, PCFS-KNN has a strong significance over both PCFS-

FR, and KNN_tra-KNN_val, when using TOS, or RWS as selection operator. Using SUS as selection, seems to 

result in no statistical difference between PCFS-FR, and PCFS-KNN. Regarding classifiers, this representation 

has identical results to NHR, and HR. The G600 representation, is observed to have no statistical differences 

between the objectives, while also having identical classifier results as the other three representations.  

 

The statistical significance regarding objectives, seems to not differ much between combinations that are using the 

same representation, possibly indicating that the representation has a bigger impact regarding which objectives to 

use. All representations have similar results regarding classifiers, where LDA always dominate all other classifiers, 

and KNN being the worst one in every test. 

9.4. Comparison to reference studies 

In this section, a comparison between the results in this study, and the two reference studies are made. To be able 

to do the comparison, the same parameters as the reference studies was used, with a window size of 40, and SVML 

as classifier. The best performing combination, regarding average accuracy, and feature reduction was chosen 

from the reference papers, while the best of each representation is used from this study, presented in Table 3. The 

results are the average result, after a 10-fold evaluation, also averaged from all subjects. In Table 4, the four best 

combinations from this study, is compared to the combinations used in the reference papers [7], [9].  

 

Since this study use a window size of 40, the results with that windows size are only considered, and compared. 

In [7], they used HGA, explained in section 3, with SVML as classifier, and PCFS-FR as objectives. In [9], they 

used NSGA-II, with TOS, UC, and BM as breeding operators, and HR as representation (giving the combination 

HR-TOS-UC-BM), while also using SVML as classifier. As for objective functions, they found that for a window 

size of 40, PCFS-FR gave the best feature reduction, and accuracy.  

 

In Table 4, it can be observed that some of the combinations from this study outperformed both reference 

algorithms. HR-SUS-UC-BM have the best result of all, with the highest average accuracy (same as NHR-TOS-

SPC-BM) of 0.752, and the highest feature reduction of 0.995. It can also be observed that both G30, and G600 

have higher feature reduction than the reference algorithms. However, only G30 have a higher accuracy, but not 

by much. It is likely that the good classification accuracy, for the combinations used in this study, comes from 

using PCFS-KNN as objective pair. 

 
Table 4. Comparison with reference studies, for a window size of 40, using SVML as classifier. The best combination is 

taken from the reference papers, while the best of each representation is used from this study. The results are the average 

result, after a 10-fold evaluation, where the result from all subjects are averaged. 

Combination 
Classifier 

Feature 

reduction 

SVML Average 

HGA-[PCFS-FR] [7] 0.69 0.783 

HR-TOS-UC-[PCFS-FR] [9] 0.729 0.909 

G30-RWS-GC-GM-[PCFS-KNN] 0.738 0.977 

G600-TOS-GC-GM-[PCFS-FR] 0.714 0.935 

HR-SUS-UC-BM-[PCFS-KNN] 0.752 0.995 

NHR-TOS-SPC-BM-[PCFS-KNN] 0.752 0.667 
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10. Discussion 

In this section, the results from the previous section are discussed, and the most significant results are highlighted. 

The section is divided into five subsections, and is organized as follows: In section 10.1, the results found regarding 

the tested individual representations are discussed. In section 10.2, the breeding operators, and their results, are 

discussed. In section 10.3, the three pairs of objective functions used, and how the results relate to the 

representations, and classifiers, are discussed. Section 10.4 goes more into detail regarding the classifiers, and how 

their results relate to the other components. Finally, in section 10.5, the contributions made by this paper, and the 

most significant results, are presented.   

10.1. Representations 

From Table 1, we can see that most representations performed relatively well, except for NHR since it only 

obtained between 55%-57% feature reduction. It is likely that the high accuracy for LDA, SVML, and ANN comes 

from using considerably more features than the others. This amount of feature reduction can be observed for all of 

the NHR combinations in Appendix A. The two most effective representations are HR, and G30, where the 

resulting feature reductions, and accuracies are similar. G30 obtains slightly more feature reduction, likely due to 

having the hard limit of 30 selected features per individual. However, it doesn’t suffer much in accuracy, when 

comparing it to HR, which obtained the highest average accuracy. The difference is only about 1-2%, for both 

accuracies regarding individual classifiers, and the average accuracy. When comparing HR’s feature reduction to 

G30, we can see that it only has about 1% less, where HR doesn’t have any max limit on features selected. 

Therefore, I believe the two representations to be very similar in strength, regarding this type of problem. G600 is 

not too far behind, but it seems like the González representation gets worse when we increase the maximum 

features used, since it clearly performs worse on both average accuracy, and feature reduction, as low as 67% for 

the combination G600-TS-GC-GM-[PCFS-KNN]. Both HR, and G30 seems very consistent, G30 has 7% between 

its worst accuracy, and its best, while the difference is only 2% regarding feature reduction. HR has a difference 

of 7% between its worst, and its best feature reduction, and a 5% difference for average accuracy. With these 

results, I conclude that HR, and G30 are two good choices for NSGA-II, regarding a feature reduction problem. 

 

10.2. Breeding Operators 

From Tables 1-3, it can’t be concluded whether one breeding operator is better than another. In Table 1, TOS 

appears 6 times, while SUS, and RWS appears 3 times.  In Table 2, each selection method appears three times. 

The results don’t differ much between the different selection operators either. While SUS results in the best 

observed accuracy (for combination HR-SUS-UC-BM-[PCFS-KNN]), it is not clear whether it is by chance, since 

it doesn’t produce the best accuracy for any other representation. When looking at the results from all combinations 

(Appendix A, section A.1), all results look similar when focusing on the different breeding operators. The only 

noticeable difference between results, is when the objective functions, and representations change. Looking at the 

correlation, and validation tables from sections A.2, and A.3 respectively, it can be observed that they don’t change 

much, if at all, when comparing different breeding operators, within each representation. In conclusion, it seems 

like the breeding operators have too small of an impact to be noticeable by the accuracy, and feature reduction.   

10.3. Objectives 

Regarding objective functions, it’s interesting to see in Table 1, that all but two combinations, have PCFS-KNN 

as objectives for their best results. It appears that this pair obtains the best results regarding accuracy, and it doesn’t 

suffer much loss regarding feature reduction. In Table 2, we can see that PCFS-KNN once again achieves the 

highest average accuracies, with a high, consistent feature reduction. This coincide with the statistical validation 

in section 9.3, where for most combinations, PCFS-KNN was found to be statistically better than the other two 

objectives. In Table 2, it is observed that all top results, with KNN being present in the objective pair, is occupied 

by HR combinations, also coinciding with section 9.3, where all HR combinations had PCFS-KNN as statistically 

better than the other two. Taking the correlations into account, all tested combinations have a correlation between 

the two objectives in the pair PCFS-KNN, while simultaneously having correlations to all classifiers. This is the 

case for all tested combinations. The results show that PCFS-KNN is a very good objective pair, combined with 

NSGA-II, for feature reduction problem. The objective KNN_tra-KNN_val seem to always result in slightly worse 

average accuracy, and feature reduction than the other two (Tables 1-3), while always being statistically worse 

than the other pairs. 
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In Appendix A, section A.1, all combinations are listed, by looking at those tables, we can see that the combinations 

with G30 as representation, and PCFS-FR as objectives, never go below 98.7% feature reduction, while HR 

combined with PCFS-FR always has a reduction of 99%. However, they suffer a bit regarding accuracy, with both 

representation unable to predict accurately above 70%. But looking at Table A1, we can see that the difference 

between PCFS-FR, and PCFS-KNN regarding feature reduction is about 3%, which is also the difference in 

accuracy, where PCFS-KNN has the highest average. From Table 2, the best combinations using PCFS-FR, were 

from the González representations (G30, and G600). Observing their tables in Appendix A, section A3, we can 

see that for G30, PCFS-FR has also become statistically better than the third objective, KNN_tra-KNN_val, 

possibly indicating that PCFS-FR is more viable for that representation. However, for G600, no objective is 

statistically better than another. FR seems to have no correlations to the classifiers. However, it doesn’t make the 

objective bad, since it still produces very good results together with PCFS. Further, PCFS produce good results, 

regardless whether the correlations between it, and its paired objective (FR, and KNN) is positive, or negative. 

However, negative correlations between the objectives (PCFS-FR) seem to relate to higher feature reduction, while 

positive correlations (PCFS-KNN) could relate to higher accuracy. 

 

In conclusion, PCFS-FR is the best objective regarding feature reduction, which coincide with what was reported 

in [9]. PCFS-KNN instead produced slightly better accuracy, while still performing well regarding feature 

selection. It can be concluded that both PCFS-KNN, and PCFS-FR are two viable options regarding feature 

selection, where PCFS-FR has higher feature reduction (3%), and PCFS-KNN has higher accuracy (3%).  

 

10.4. Classifiers 

In Table 1, we can see that the best performing classifiers are LDA, SVML, and ANN. LDA have slightly better 

results overall, somewhere between 1-5%, compared to SVML, and ANN. This also coincide with the statistical 

validations, where LDA always dominated the other classifiers, while both SVML, and ANN dominated SVMP, 

and KNN. In addition to that, ANN can be observed to be statistically better than SVML for some representations, 

namely NHR, G30, and G600, while achieving 1-2% better accuracy than SVML. For all combinations, all 

classifiers have strong, positive correlations with PCFS, and moderate, positive correlation with the three KNN 

objectives. The only objective having little, to no correlation to the classifiers, are FR, which is true for all 

combinations.  

 

Combining those results, it can be concluded that KNN, and SVMP doesn’t perform as well as the other classifiers. 

Instead, I conclude that LDA, ANN and SVML are all fitting classifiers for feature selection, in regards to 

accuracy, and feature reduction, with LDA producing the highest accuracies. However, ANN seems more viable 

than SVML for NHR, and G30 representations, due to it being statistically better for those representations.  

10.5. Contributions 

The purpose of this study, was to evaluate NSGA-II, together with different combinations of individual 

representations, breeding operators, objective functions, and classifiers. The focus was placed on prediction 

accuracy, and feature reduction, and how the different combinations perform in those regards. The results are 

presented in section 9, and Appendix A, which answers both research questions asked in section 4. With the results 

found, one could decide what combination they deem to fit their needs, regarding feature reduction. G30, and HR 

showed very promising results, regarding representations, while both PCFS-KNN, and PCFS-FR showed 

promising results regarding objective functions. However, different breeding operators seemed to not have a big 

impact on the performance, which makes objective functions, and classifiers more important. Finally, LDA, ANN, 

and SVML produced the best results of all tested classifiers, with LDA being the best.   
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11. Conclusions 

This study evaluated multiple combinations of individual representations, breeding operators, objective functions, 

and classifiers, for feature reduction in EEG classification, regarding MI activity. The algorithm used for feature 

reduction was NSGA-II, for which the operators were implemented, and tested. The purpose was to evaluate how 

these different combinations would affect the feature reduction, and classification. Initially, all combinations were 

compared to each other, and between the results in the reference papers. Then, using Pearson’s correlation 

coefficient, correlations between objectives, and classifiers, and were calculated, for each NSGA-II combination. 

Later, using Wilcoxon signed-rank test, a statistical validation was done, also between objectives, and classifiers, 

for each combination. Three individual representations, three selection operators, four crossover methods, two 

mutation operators, and three pairs of objective functions were evaluated. The classification was then done with 

five different classifiers, to also analyse how they would affect the different combinations. The data was recorded 

from 6 subjects, using 42 channels, with 30 frequencies each.  

 

It was found that the Hierarchical (HR), and one of the two González (G30 & G600) representations resulted in 

the highest accuracies, with the lowest amount of features used. One of the most promising objective functions 

were a combination of correlation feature selection, with Pearson’s correlation coefficient (PCFS), combined with 

k-Nearest Neighbour (KNN), with k = 5, resulting in the objective PCFS-KNN. When pairing that with either HR, 

or G30 the best results were produced, regarding accuracy, and feature reduction. When looking at the correlations 

between the objectives, and the classifiers, it was found that PCFS-KNN had positive correlations to all classifiers, 

through all combinations. Similar results were found by the statistical validation, where PCFS-KNN was observed 

to be statistically better than the other two objectives, for HR, Non-hierarchical (NHR), and G30. However, 

combining PCFS with Feature Reduction (FR), resulting in the objective PCFS-FR, also achieved high accuracy, 

and feature reduction (about 3% lower accuracy than PCFS-KNN, but 3% higher feature reduction). Both 

objectives are concluded to be viable options, but the statistical validation favours PCFS-KNN, since was 

statistically better than PCFS-FR for all combinations. 

 

Regarding breeding operators, it was found that they didn’t have any big significance on the results, instead, 

different individual representations, and objective functions produced the only noticeable changes, regarding the 

results. This significance was also confirmed by the correlations, and by the statistical validations between the 

objectives, and classifiers. The correlations, and validations barely changed between different breeding operators, 

while changing noticeably between different individual representations.  

 

LDA, SVML, and ANN were found to be the most significant classifiers, producing the highest accuracies, when 

combined with either HR-[PCFS-KNN], or G30-[PCFS-KNN]. This significance was also confirmed when 

comparing the statistical validations between the classifiers. LDA dominated all other classifiers according to the 

statistical validation, for every combination tested. But ANN, and SVML are also good options, and were found 

to be statistically better than SVMP, and KNN. For NHR, G30, and G600 combinations, ANN was statistically 

better than SVML too, which could indicate it being the second-best classifier with those representations. Overall, 

SVML, and ANN produced similar accuracy as LDA, only a few percentages lower.   
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12. Future Work 

In this study, multiple individual representations, and breeding operators, were studied for NSGA-II. There are 

many more breeding operators that can be studied, and evaluated for NSGA-II. More breeding operators can be 

found in the following two papers:  In [37], they bring up many different selection methods, that could be 

interesting to evaluate for this kind of problem, and in [38], they present many different crossover operators, for 

both binary, and integer, representations. It could be very interesting to modify one of the integer crossover 

operators, to work together with González individual representation from [6]. Also, this type of problem is not 

limited to NSGA-II, there are many more MOEAs that could be tested, and also evaluated with multiple 

representations, and breeding operators. To further evaluate this study, the algorithms could be studied regarding 

execution time, whether some combinations of representation, breeding operators, objective functions, and 

classifiers, is faster when it comes to reducing the features. Even required memory could be studied, and compared. 

In [6], they claim to have a faster, and more memory efficient feature selection algorithm, it would be interesting 

to compare the memory requirement, and speed of their solution, to the combinations having Hierarchical, and 

Non-Hierarchical representations. The results found in this study, could also be compared to other studies, where 

other combinations, or objective functions are evaluated. 
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Appendix A 
This appendix includes all data analyzed in section 9, and is structured as follows: In section A.1, the results 

regarding average accuracy, and feature reduction, for all combinations are presented. Section A.2 covers the 

correlation tables, for the most significant combinations. Lastly, section A.3 includes the statistical validation 

tables. 

 

A.1 Comparison between representations & objectives 
This subsection of the appendix presents the average accuracies, and feature reductions, for every combination 

studied. In this section, the average accuracy, and feature reduction, across all subjects, and classifiers, are 

presented. 

 

The section is organized by representation, where every subsection includes a table of all average results, for every 

combination with that specific individual representation.  

 

A.1.1 Hierarchical representation 

 
Table A1. Results regarding average accuracy, and feature reduction, for all combinations using the HR representation. 

Representation LDA SVML SVMP ANN KNN Accuracy 
Feature 

reduction 

HR-TOS-UC-BM-[PCFS-FR] 0.741 0.741 0.7 0.725 0.593 0.7 0.995 

HR-TOS-UC-BM-[PCFS-KNN] 0.757 0.744 0.706 0.745 0.698 0.73 0.971 

HR-TOS-UC-BM-[KNN_tra-KNN_val] 0.76 0.725 0.693 0.747 0.577 0.7 0.908 

HR-TOS-SPC-BM-[PCFS-FR] 0.735 0.739 0.697 0.724 0.595 0.698 0.995 

HR-TOS-SPC-BM-[PCFS-KNN] 0.749 0.731 0.72 0.74 0.696 0.727 0.966 

HR-TOS-SPC-BM-[KNN_tra-KNN_val] 0.756 0.718 0.684 0.731 0.585 0.695 0.904 

HR-TOS-MPC-BM-[PCFS-FR] 0.729 0.733 0.695 0.713 0.593 0.692 0.995 

HR-TOS-MPC-BM-[PCFS-KNN] 0.752 0.741 0.717 0.736 0.688 0.727 0.968 

HR-TOS-MPC-BM-[KNN_tra-KNN_val] 0.761 0.714 0.682 0.749 0.57 0.695 0.899 

HR-RWS-UC-BM-[PCFS-FR] 0.729 0.733 0.697 0.715 0.597 0.694 0.995 

HR-RWS-UC-BM-[PCFS-KNN] 0.744 0.735 0.718 0.739 0.683 0.724 0.969 

HR-RWS-UC-BM-[KNN_tra-KNN_val] 0.76 0.724 0.686 0.748 0.572 0.698 0.903 

HR-RWS-SPC-BM-[PCFS-FR] 0.736 0.738 0.708 0.716 0.595 0.699 0.996 

HR-RWS-SPC-BM-[PCFS-KNN] 0.754 0.736 0.725 0.737 0.687 0.728 0.965 

HR-RWS-SPC-BM-[KNN_tra-KNN_val] 0.755 0.717 0.68 0.742 0.58 0.695 0.892 

HR-RWS-MPC-BM-[PCFS-FR] 0.723 0.73 0.705 0.712 0.593 0.692 0.995 

HR-RWS-MPC-BM-[PCFS-KNN] 0.755 0.744 0.719 0.75 0.695 0.733 0.968 

HR-RWS-MPC-BM-[KNN_tra-KNN_val] 0.755 0.707 0.667 0.735 0.584 0.689 0.89 

HR-SUS-UC-BM-[PCFS-FR] 0.731 0.736 0.7 0.717 0.591 0.695 0.995 

HR-SUS-UC-BM-[PCFS-KNN] 0.755 0.752 0.722 0.754 0.693 0.735 0.969 

HR-SUS-UC-BM-[KNN_tra-KNN_val] 0.757 0.716 0.678 0.737 0.582 0.694 0.909 

HR-SUS-SPC-BM-[PCFS-FR] 0.738 0.743 0.702 0.721 0.607 0.702 0.995 

HR-SUS-SPC-BM-[PCFS-KNN] 0.752 0.739 0.715 0.748 0.683 0.728 0.966 

HR-SUS-SPC-BM-[KNN_tra-KNN_val] 0.76 0.73 0.681 0.746 0.582 0.7 0.902 

HR-SUS-MPC-BM-[PCFS-FR] 0.737 0.737 0.705 0.72 0.598 0.7 0.995 

HR-SUS-MPC-BM-[PCFS-KNN] 0.748 0.738 0.722 0.74 0.688 0.727 0.966 

HR-SUS-MPC-BM-[KNN_tra-KNN_val] 0.743 0.702 0.676 0.728 0.575 0.685 0.907 
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A.1.2 Non-Hierarchical representation 

 
Table A2. Results regarding average accuracy, and feature reduction, for all combinations using the NHR representation. 

Representation LDA SVML SVMP ANN KNN Accuracy 
Feature 

reduction 

NHR-TOS-UC-BM-[PCFS-FR] 0.773 0.749 0.585 0.767 0.578 0.69 0.701 

NHR-TOS-UC-BM-[PCFS-KNN] 0.779 0.747 0.569 0.77 0.618 0.697 0.573 

NHR-TOS-UC-BM-[KNN_tra-KNN_val] 0.773 0.753 0.575 0.764 0.564 0.686 0.502 

NHR-TOS-SPC-BM-[PCFS-FR] 0.778 0.749 0.565 0.766 0.574 0.686 0.667 

NHR-TOS-SPC-BM-[PCFS-KNN] 0.776 0.752 0.567 0.768 0.621 0.697 0.556 

NHR-TOS-SPC-BM-[KNN_tra-KNN_val] 0.769 0.756 0.573 0.767 0.558 0.685 0.502 

NHR-TOS-MPC-BM-[PCFS-FR] 0.774 0.749 0.573 0.768 0.571 0.687 0.672 

NHR-TOS-MPC-BM-[PCFS-KNN] 0.775 0.752 0.561 0.768 0.616 0.694 0.558 

NHR-TOS-MPC-BM-[KNN_tra-KNN_val] 0.775 0.76 0.576 0.763 0.557 0.686 0.501 

NHR-RWS-UC-BM-[PCFS-FR] 0.771 0.748 0.586 0.764 0.577 0.689 0.704 

NHR-RWS-UC-BM-[PCFS-KNN] 0.775 0.741 0.562 0.766 0.627 0.694 0.576 

NHR-RWS-UC-BM-[KNN_tra-KNN_val] 0.78 0.761 0.58 0.773 0.565 0.692 0.502 

NHR-RWS-SPC-BM-[PCFS-FR] 0.778 0.752 0.565 0.769 0.577 0.688 0.671 

NHR-RWS-SPC-BM-[PCFS-KNN] 0.772 0.747 0.563 0.764 0.619 0.693 0.558 

NHR-RWS-SPC-BM-[KNN_tra-KNN_val] 0.779 0.756 0.571 0.77 0.56 0.687 0.505 

NHR-RWS-MPC-BM-[PCFS-FR] 0.779 0.748 0.568 0.769 0.574 0.687 0.677 

NHR-RWS-MPC-BM-[PCFS-KNN] 0.774 0.752 0.563 0.767 0.616 0.695 0.559 

NHR-RWS-MPC-BM-[KNN_tra-KNN_val] 0.767 0.753 0.573 0.759 0.572 0.685 0.503 

NHR-SUS-UC-BM-[PCFS-FR] 0.772 0.749 0.584 0.765 0.575 0.689 0.702 

NHR-SUS-UC-BM-[PCFS-KNN] 0.77 0.749 0.564 0.762 0.619 0.693 0.574 

NHR-SUS-UC-BM-[KNN_tra-KNN_val] 0.767 0.743 0.574 0.759 0.555 0.68 0.5 

NHR-SUS-SPC-BM-[PCFS-FR] 0.779 0.753 0.57 0.767 0.575 0.689 0.672 

NHR-SUS-SPC-BM-[PCFS-KNN] 0.778 0.753 0.561 0.767 0.614 0.695 0.555 

NHR-SUS-SPC-BM-[KNN_tra-KNN_val] 0.769 0.754 0.573 0.757 0.561 0.683 0.505 

NHR-SUS-MPC-BM-[PCFS-FR] 0.778 0.746 0.568 0.763 0.566 0.684 0.675 

NHR-SUS-MPC-BM-[PCFS-KNN] 0.776 0.753 0.559 0.763 0.617 0.694 0.559 

NHR-SUS-MPC-BM-[KNN_tra-KNN_val] 0.773 0.748 0.58 0.761 0.562 0.685 0.501 
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A.1.3 González_30 representation 

  
Table A3. Results regarding average accuracy, and feature reduction, for all combinations using the G30 representation. 

Representation LDA SVML SVMP ANN KNN Accuracy 
Feature 

reduction 

G30-TOS-GC-GM-[PCFS-FR] 0.731 0.739 0.664 0.728 0.586 0.69 0.99 

G30-TOS-GC-GM-[PCFS-KNN] 0.751 0.737 0.702 0.738 0.662 0.718 0.977 

G30-TOS-GC-GM-[KNN_tra-KNN_val] 0.704 0.695 0.645 0.681 0.557 0.656 0.976 

G30-RWS-GC-GM-[PCFS-FR] 0.732 0.731 0.675 0.725 0.583 0.689 0.987 

G30-RWS-GC-GM-[PCFS-KNN] 0.747 0.738 0.71 0.74 0.675 0.722 0.977 

G30-RWS-GC-GM-[KNN_tra-KNN_val] 0.684 0.684 0.642 0.664 0.548 0.645 0.976 

G30-SUS-GC-GM-[PCFS-FR] 0.746 0.747 0.69 0.742 0.595 0.704 0.988 

G30-SUS-GC-GM-[PCFS-KNN] 0.745 0.737 0.7 0.734 0.676 0.718 0.977 

G30-SUS-GC-GM-[KNN_tra-KNN_val] 0.695 0.687 0.643 0.68 0.553 0.651 0.976 

 

 

A.1.4 Gonzalez_600 representation 

 
Table A4. Results regarding average accuracy, and feature reduction, for all combinations using the G600 representation. 

Representation LDA SVML SVMP ANN KNN Accuracy 
Feature 

reduction 

G600-TOS-GC-GM-[PCFS-FR] 0.763 0.714 0.718 0.743 0.583 0.704 0.935 

G600-TOS-GC-GM-[PCFS-KNN] 0.778 0.749 0.581 0.769 0.628 0.701 0.667 

G600-TOS-GC-GM-[KNN_tra-KNN_val] 0.784 0.762 0.565 0.763 0.556 0.686 0.54 

G600-RWS-GC-GM-[PCFS-FR] 0.762 0.722 0.703 0.746 0.578 0.702 0.893 

G600-RWS-GC-GM-[PCFS-KNN] 0.772 0.751 0.579 0.767 0.627 0.699 0.651 

G600-RWS-GC-GM-[KNN_tra-KNN_val] 0.773 0.76 0.566 0.763 0.568 0.686 0.539 

G600-SUS-GC-GM-[PCFS-FR] 0.759 0.719 0.71 0.741 0.574 0.701 0.911 

G600-SUS-GC-GM-[PCFS-KNN] 0.776 0.742 0.575 0.757 0.628 0.696 0.657 

G600-SUS-GC-GM-[KNN_tra-KNN_val] 0.772 0.754 0.567 0.76 0.567 0.684 0.538 
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A.2 Correlation between objectives & classifiers 
In this section, all correlation tables are presented, for the most significant combinations, which are the top three 

performing combinations regarding average accuracy, and feature reduction. These combinations were chosen 

from Table 1, and are analysed in section 9.2. Values in bold represents a p-value of < 0.05, which indicates a 

correlation between the algorithms. Values not in bold, have a small, to no correlation at all. The section is divided 

into subsections, where each subsection presents the correlation table for one of the combinations. 

 

A.2.1 HR-TOS-UC-BM 

 
Table A5. Correlation between objectives, and classifiers, for the HR-TOS-UC-BM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - -0.39 0.67 0.68 0.58 0.62 0.4 

FR -0.39 - -0.19 -0.2 -0.06 -0.24 -0.06 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.32 0.63 0.6 0.66 0.6 0.51 

KNN 0.32 - 0.38 0.36 0.39 0.35 0.64 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - 0.04 0.42 0.41 0.42 0.41 0.26 

KNN_val 0.04 - 0.5 0.5 0.47 0.53 0.32 

 

 

A.2.2 HR-RWS-MPC-BM 

 
Table A6. Correlation between objectives, and classifiers, for the HR-RWS-MPC-BM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - -0.31 0.66 0.69 0.58 0.64 0.41 

FR -0.31 - -0.12 -0.14 0.01 -0.22 0.01 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.32 0.64 0.62 0.61 0.6 0.55 

KNN 0.32 - 0.36 0.38 0.41 0.33 0.65 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - 0.07 0.44 0.39 0.33 0.43 0.29 

KNN_val 0.07 - 0.55 0.49 0.41 0.51 0.33 
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A.2.3 HR-SUS-UC-BM 

 
Table A7. Correlation between objectives, and classifiers, for the HR-SUS-UC-BM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - -0.35 0.67 0.69 0.61 0.62 0.42 

FR -0.35 - -0.21 -0.2 -0.06 -0.27 -0.03 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.32 0.65 0.63 0.64 0.64 0.55 

KNN 0.32 - 0.41 0.34 0.39 0.35 0.68 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - 0.07 0.4 0.4 0.38 0.41 0.29 

KNN_val 0.07 - 0.57 0.51 0.49 0.53 0.4 

 

A.2.4 HR-RWS-SPC-BM 

 
Table A8. Correlation between objectives, and classifiers, for the HR-RWS-SPC-BM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - -0.38 0.71 0.73 0.67 0.65 0.43 

FR -0.38 - -0.18 -0.2 -0.11 -0.26 -0.03 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.35 0.68 0.66 0.64 0.64 0.55 

KNN 0.35 - 0.41 0.4 0.4 0.37 0.63 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - 0.08 0.44 0.38 0.38 0.43 0.28 

KNN_val 0.08 - 0.58 0.49 0.51 0.55 0.31 
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A.2.5 NHR-TOS-UC-BM 

 
Table A9. Correlation between objectives, and classifiers, for the NHR-TOS-UC-BM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - -0.14 0.63 0.67 0.38 0.67 0.25 

FR -0.14 - -0.08 -0.05 0.1 -0.06 0 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.2 0.65 0.64 0.41 0.65 0.39 

KNN 0.2 - 0.29 0.37 0.43 0.26 0.75 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - 0.08 0.44 0.48 0.23 0.44 0.16 

KNN_val 0.08 - 0.55 0.57 0.37 0.54 0.31 

 

 

A.2.6 NHR-TOS-SPC-BM 

 
Table A10. Correlation between objectives, and classifiers, for the NHR-TOS-SPC-BM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - -0.12 0.63 0.65 0.36 0.67 0.21 

FR -0.12 - -0.01 -0.03 0.09 -0.01 0.02 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.2 0.64 0.67 0.4 0.68 0.37 

KNN 0.2 - 0.3 0.38 0.5 0.25 0.73 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - 0.13 0.44 0.44 0.35 0.46 0.18 

KNN_val 0.13 - 0.56 0.59 0.41 0.59 0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
                59   

 

Robin Johansson Mälardalen University 

A.2.7 NHR-SUS-SPC-BM 

 
Table A11. Correlation between objectives, and classifiers, for the NHR-SUS-SPC-BM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - -0.11 0.65 0.65 0.42 0.68 0.2 

FR -0.11 - 0.09 0.07 0.08 0.1 0.1 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.24 0.62 0.64 0.42 0.65 0.41 

KNN 0.24 - 0.29 0.36 0.55 0.31 0.74 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - 0.1 0.4 0.42 0.28 0.4 0.2 

KNN_val 0.1 - 0.59 0.58 0.4 0.59 0.34 

 

 

A.2.8 G30-TOS-GC-GM 

 
Table A12. Correlation between objectives, and classifiers, for the G30-TOS-GC-GM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - -0.24 0.66 0.63 0.63 0.64 0.35 

FR -0.24 - -0.21 -0.2 -0.16 -0.23 -0.07 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.37 0.71 0.7 0.63 0.72 0.55 

KNN 0.37 - 0.39 0.4 0.41 0.39 0.66 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - -0.14 0.27 0.25 0.21 0.25 0.26 

KNN_val -0.14 - 0.49 0.49 0.46 0.49 0.32 
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A.2.9 G30-RWS-GC-GM 

 
Table A13. Correlation between objectives, and classifiers, for the G30-RWS-GC-GM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - -0.05 0.64 0.6 0.57 0.62 0.31 

FR -0.05 - -0.02 0 -0.02 -0.02 -0.03 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.38 0.66 0.63 0.69 0.63 0.54 

KNN 0.38 - 0.38 0.32 0.39 0.36 0.62 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - -0.23 0.24 0.24 0.29 0.23 0.27 

KNN_val -0.23 - 0.49 0.43 0.43 0.49 0.24 

 

 

A.2.10 G30-SUS-GC-GM 

 
Table A14. Correlation between objectives, and classifiers, for the G30-SUS-GC-GM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - 0.13 0.63 0.63 0.55 0.62 0.31 

FR 0.13 - 0.22 0.18 0.14 0.2 0.14 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.35 0.64 0.62 0.67 0.64 0.51 

KNN 0.35 - 0.37 0.37 0.38 0.35 0.57 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - -0.21 0.23 0.24 0.26 0.23 0.27 

KNN_val -0.21 - 0.52 0.5 0.43 0.5 0.31 
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A.2.11 G600-TOS-GC-GM 

 
Table A15. Correlation between objectives, and classifiers, for the G600-TOS-GC-GM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - -0.03 0.58 0.53 0.61 0.57 0.22 

FR -0.03 - -0.08 -0.1 -0.04 -0.11 0.1 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.18 0.62 0.6 0.49 0.66 0.39 

KNN 0.18 - 0.24 0.32 0.54 0.17 0.75 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - 0.09 0.4 0.43 0.21 0.37 0.29 

KNN_val 0.09 - 0.58 0.58 0.37 0.6 0.33 

 

 

A.2.12 G600-RWS-GC-GM 

 
Table A16. Correlation between objectives, and classifiers, for the G600-RWS-GC-GM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - 0.13 0.63 0.57 0.68 0.61 0.26 

FR 0.13 - -0.03 0.01 0.12 0.03 -0.1 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.15 0.62 0.69 0.5 0.64 0.43 

KNN 0.15 - 0.21 0.2 0.54 0.12 0.76 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - 0.02 0.37 0.33 0.29 0.35 0.26 

KNN_val 0.02 - 0.58 0.53 0.37 0.56 0.25 
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A.2.13 G600-SUS-GC-GM 

 
Table A17. Correlation between objectives, and classifiers, for the G600-SUS-GC-GM combination. 

Objectives Objective algorithms Classifier algorithms 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS -  FR 

PCFS - 0.07 0.64 0.57 0.69 0.63 0.28 

FR 0.07 - 0.09 0.12 0.13 0.03 0.1 

Obj 1 - Obj 2   PCFS FR LDA SVML SVMP ANN KNN 

PCFS - KNN 
PCFS - 0.21 0.64 0.68 0.48 0.69 0.46 

KNN 0.21 - 0.23 0.17 0.5 0.18 0.75 

Obj 1 - Obj 2   KNN_tra KNN_val LDA SVML SVMP ANN KNN 

KNN_tra - KNN_val 

KNN_tra - 0.06 0.37 0.35 0.22 0.39 0.21 

KNN_val 0.06 - 0.54 0.56 0.41 0.55 0.33 

 

 

 

A.3 Statistical validation 
This section presents a statistical validation, where Wilcoxon’s signed rank test is used, to evaluate whether two 

groups have the same continuous distribution. The section is divided into multiple subsection, where each 

subsection represents one NSGA-II combination. The statistics presented in this section corresponds to the most 

significant combinations, which is the three best performing combinations from each representation, presented in 

Table 1. Each subsection contains two tables, where the first table represents a statistical validation between each 

pair of objectives, which objectives that is statistically better than another pair of objectives for that combination. 

The second table has the statistical validation between the classifiers, which classifier is statistically better than 

another, for the specific combination. 

 

Each table will use the following format: 

 

• p ≥ 0.05: blank space 

• p < 0.05:   * 

• p < 0.01:   ** 

• p < 0.001: *** 

 

Meaning that the null-hypotheses of one algorithm (alg1) being better, or equal to another (alg2), can be rejected, 

at a statistical significance of 0.1% (p < 0.001), 1% (p < 0.01), and 5% (p < 0.05). A smaller p-value results one 

pair of objectives, or one classifier, is statistically better than another pair of objectives, or classifier. If the p-value 

≥ 0.05, the null-hypotheses is true, alg1 is worse, or equal to alg2. 

 

A.3.1 HR-TOS-UC-BM 

 
Table A18. Statistical validation between the objectives, for combination HR-TOS-UC-BM. 

  
Obj 1-Obj 

2 

Obj 1-Obj 

2 

Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-

KNN 

KNN_tra-

KNN_val 

PCFS-FR -     

PCFS-KNN *** - * 

KNN_tra-KNN_val     - 
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Table A19. Statistical validation between the classifiers, for combination HR-TOS-UC-BM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - ** *** *** *** 

SVML   - ***   *** 

SVMP     -   ** 

ANN     *** - *** 

KNN         - 

 

 

A.3.2 HR-RWS-MPC-BM 

 
Table A20. Statistical validation between the objectives, for combination HR-RWS-MPC-BM. 

  
Obj 1-Obj 

2 

Obj 1-Obj 

2 

Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-

KNN 

KNN_tra-

KNN_val 

PCFS-FR -     

PCFS-KNN *** - *** 

KNN_tra-KNN_val     - 

 

 
Table A21. Statistical validation between the classifiers, for combination HR-RWS-MPC-BM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN     *** - *** 

KNN         - 

 

 

A.3.3 HR-SUS-UC-BM 

 
Table A22. Statistical validation between the objectives, for combination HR-SUS-UC-BM. 

  
Obj 1-Obj 

2 

Obj 1-Obj 

2 

Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-

KNN 

KNN_tra-

KNN_val 

PCFS-FR -     

PCFS-KNN *** - *** 

KNN_tra-KNN_val     - 
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Table A23. Statistical validation between the classifiers, for combination HR-SUS-UC-BM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN     *** - *** 

KNN         - 

 

 

 

A.3.4 NHR-TOS-UC-BM 

 
Table A24. Statistical validation between the objectives, for combination NHR-TOS-UC-BM. 

  
Obj 1-Obj 

2 

Obj 1-Obj 

2 

Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-
KNN 

KNN_tra-
KNN_val 

PCFS-FR -     

PCFS-KNN   - * 

KNN_tra-KNN_val     - 

 

 
Table A25. Statistical validation between the classifiers, for combination NHR-TOS-UC-BM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN   * *** - *** 

KNN         - 

 

 

A.3.5 NHR-TOS-SPC-BM 

 
Table A26. Statistical validation between the objectives, for combination NHR-TOS-SPC-BM. 

  
Obj 1-Obj 

2 
Obj 1-Obj 

2 
Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-

KNN 

KNN_tra-

KNN_val 

PCFS-FR -     

PCFS-KNN * -   

KNN_tra-KNN_val     - 
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Table A27. Statistical validation between the classifiers, for combination NHR-TOS-SPC-BM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN   ** *** - *** 

KNN         - 

 

 

A.3.6 NHR-SUS-SPC-BM 

 
Table A28. Statistical validation between the objectives, for combination NHR-SUS-SPC-BM. 

  
Obj 1-Obj 

2 
Obj 1-Obj 

2 
Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-

KNN 

KNN_tra-

KNN_val 

PCFS-FR -     

PCFS-KNN   -   

KNN_tra-KNN_val     - 

 

 
Table A29. Statistical validation between the classifiers, for combination NHR-SUS-SPC-BM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN   *** *** - *** 

KNN         - 

 

 

 

A.3.7 G30-TOS-GC-GM 

 
Table A30. Statistical validation between the objectives, for combination G30-TOS-GC-GM. 

  
Obj 1-Obj 

2 
Obj 1-Obj 

2 
Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-
KNN 

KNN_tra-
KNN_val 

PCFS-FR -   *** 

PCFS-KNN ** - *** 

KNN_tra-KNN_val     - 
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Table A31. Statistical validation between the classifiers, for combination G30-TOS-GC-GM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN   *** *** - *** 

KNN         - 

 

 

A.3.8 G30-RWS-GC-GM 

 
Table A32. Statistical validation between the objectives, for combination G30-RWS-GC-GM. 

  
Obj 1-Obj 

2 
Obj 1-Obj 

2 
Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-

KNN 

KNN_tra-

KNN_val 

PCFS-FR -   *** 

PCFS-KNN *** - *** 

KNN_tra-KNN_val     - 

 

 
Table A33. Statistical validation between the classifiers, for combination G30-RWS-GC-GM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN   *** *** - *** 

KNN         - 

 

 

A.3.9 G30-SUS-GC-GM 

 
Table A34. Statistical validation between the objectives, for combination G30-SUS-GC-GM. 

  
Obj 1-Obj 

2 
Obj 1-Obj 

2 
Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-

KNN 

KNN_tra-

KNN_val 

PCFS-FR -   *** 

PCFS-KNN   - *** 

KNN_tra-KNN_val     - 
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Table A35. Statistical validation between the classifiers, for combination G30-SUS-GC-GM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN   *** *** - *** 

KNN         - 

 

 

A.3.10 G600-TOS-GC-GM 

 
Table A36. Statistical validation between the objectives, for combination G600-TOS-GC-GM. 

  
Obj 1-Obj 

2 
Obj 1-Obj 

2 
Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-

KNN 

KNN_tra-

KNN_val 

PCFS-FR -     

PCFS-KNN   -   

KNN_tra-KNN_val     - 

 

 
Table A37. Statistical validation between the classifiers, for combination G600-TOS-GC-GM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN   *** *** - *** 

KNN         - 

 

 

A.3.11 G600-RWS-GC-GM 

 
Table A38. Statistical validation between the objectives, for combination G600-RWS-GC-GM. 

  
Obj 1-Obj 

2 
Obj 1-Obj 

2 
Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-

KNN 

KNN_tra-

KNN_val 

PCFS-FR -     

PCFS-KNN   -   

KNN_tra-KNN_val     - 
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Table A39. Statistical validation between the classifiers, for combination G600-RWS-GC-GM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN   *** *** - *** 

KNN         - 

 

 

A.3.12 G600-SUS-GC-GM 

 
Table A40. Statistical validation between the objectives, for combination G600-SUS-GC-GM. 

  
Obj 1-Obj 

2 
Obj 1-Obj 

2 
Obj 1-Obj 

2 

Obj 1-Obj 2 PCFS-FR 
PCFS-

KNN 

KNN_tra-

KNN_val 

PCFS-FR -     

PCFS-KNN   -   

KNN_tra-KNN_val     - 

 

 
Table A41. Statistical validation between the classifiers, for combination G600-SUS-GC-GM. 

  Algorithm Algorithm Algorithm Algorithm Algorithm 

Algorithm LDA SVML SVMP ANN KNN 

LDA - *** *** *** *** 

SVML   - ***   *** 

SVMP     -   *** 

ANN   *** *** - *** 

KNN         - 

 


