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Point Set Registration for 3D Range Scans
Using Fuzzy Cluster-based Metric and Efficient

Global Optimization
Qianfang Liao, Da Sun, and Henrik Andreasson

Abstract—This study presents a new point set registration method to align 3D range scans. In our method, fuzzy clusters are utilized
to represent a scan, and the registration of two given scans is realized by minimizing a fuzzy weighted sum of the distances between
their fuzzy cluster centers. This fuzzy cluster-based metric has a broad basin of convergence and is robust to noise. Moreover, this
metric provides analytic gradients, allowing standard gradient-based algorithms to be applied for optimization. Based on this metric, the
outlier issues are addressed. In addition, for the first time in rigid point set registration, a registration quality assessment in the absence
of ground truth is provided. Furthermore, given specified rotation and translation spaces, we derive the upper and lower bounds of the
fuzzy cluster-based metric and develop a branch-and-bound (BnB)-based optimization scheme, which can globally minimize the metric
regardless of the initialization. This optimization scheme is performed in an efficient coarse-to-fine fashion: First, fuzzy clustering is
applied to describe each of the two given scans by a small number of fuzzy clusters. Then, a global search, which integrates BnB and
gradient-based algorithms, is implemented to achieve a coarse alignment for the two scans. During the global search, the registration
quality assessment offers a beneficial stop criterion to detect whether a good result is obtained. Afterwards, a relatively large number of
points of the two scans are directly taken as the fuzzy cluster centers, and then, the coarse solution is refined to be an exact alignment
using the gradient-based local convergence. Compared to existing counterparts, this optimization scheme makes a large improvement
in terms of robustness and efficiency by virtue of the fuzzy cluster-based metric and the registration quality assessment. In the
experiments, the registration results of several 3D range scan pairs demonstrate the accuracy and effectiveness of the proposed
method, as well as its superiority to state-of-the-art registration approaches.

Index Terms—point set registration, fuzzy clusters, registration quality assessment, 3D range scans, branch-and-bound.
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1 INTRODUCTION

1.1 Background

POINT set registration, also known as point cloud match-
ing or scan registration, defines a task of finding the

spatial transformation to correctly align two sets of points.
It is an important technology in various applications, in-
cluding computer vision, pattern recognition, medical im-
age processing, and robotics. Point set registration can be
utilized to build a coherent 3D model from a group of
partial scans [1], to recognize text for optical readers [2],
to fuse magnetic resonance or computed tomography scans
for medical analysis [3], [4], and to realize simultaneous
localization and mapping for robots [5], [6]. In this study, we
focus on rigid point set registration of range scans, where
the spatial transformation consists of 3D rotation and 3D
translation.

Several challenges exist in the development of an ef-
fective registration method. The primary challenge is the
selection of a metric to measure the similarity between
two point sets. A proper metric is robust to noise and
easily optimized. More importantly, it provides accurate
alignments. Different types of metrics have been proposed.
The most widely applied metric is the iterative closest point
(ICP) metric [7], which minimizes the nearest point-to-point
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Euclidean distances to realize registration. Various modifica-
tions and extensions of this metric have been developed [2],
[8]–[10]. Some methods preprocess point sets via different
techniques and take the properties of the processed sets
as the similarity metric, such as probability-based methods
[11]–[16], which describe point sets by probability distribu-
tions and take the probability-based errors as the metric,
and neural network-based methods [17]–[20], which utilize
learning skills to encode point clouds and match them
based on the encoded information. Other existing metrics
include geometric regularity in the frequency domain [21]
and mutual information [4], [22]. The algorithm used to op-
timize the metric is another key factor for registration. The
algorithm should be computationally efficient, be capable of
treating the nonlinearity of the metric, and produce optimal
solutions instead of being trapped in local optima. So far,
diverse optimization algorithms can be found. For local
convergence, there are expectation-maximization (EM) [13],
[23], gradient-based methods [2], [10], [12], [14], [15], etc.
For global search, there are genetic algorithms [24], particle
filtering [25], simulated annealing [26], branch-and-bound
(BnB) [27]–[29], etc. Moreover, several schemes are available
to enhance computational efficiency and improve registra-
tion quality, such as the kd-tree and distance transform [2],
[29], which speed up the nearest neighbor search for ICP; the
trimming strategies [30], which reduce the negative effects
of outliers; and the techniques of local feature correspon-
dence construction for accurate alignments [31]–[34].
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One important aspect of point set registration is registra-
tion quality assessment without knowing the ground truth.
However, to the best of our knowledge, basically no study
in this area has been proposed. In practice, a ground truth
transformation against which to compare the registration
solution is often unavailable. Consequently, it is difficult
for the existing methods to automatically assess whether a
solution derived in the optimization process is good or not.
As a result, the methods may need user intervention, such
as requiring the user to constantly check the accuracy of the
solution during optimization, or they may have to spend
extra time and computational cost in optimization, such as
choosing a large number of iterations in the calculation to
guarantee that the final solution is correct. These methods
are inconvenient and lead to loss of efficiency. Therefore, it
is necessary to develop a registration quality assessment in
the absence of ground truth.

1.2 Related Work

There are a large number of published studies about point
set registration, and we only review some that are relevant
to ours. Comprehensive surveys can be found in [35], [36].

ICP [7] is the most well-known registration method.
Starting with an initial transformation, it employs a direct
and intuitive method that iteratively minimizes the nearest
points’ distances between the two point sets until conver-
gence. The extensions of ICP include revised metrics, such
as the approach considering normals [37], the generalized
expression [8], and the Lp error of sparse ICP for treating
noise [9]; different convergence schemes, such as the EM al-
gorithm [23] and the Levenberg-Marquardt algorithm (LM-
ICP) [2]; and soft assignment of correspondence [10], [38]
and outlier trimming [30] for greater robustness and higher
accuracy.

The traditional ICP may converge to a local minimum
and yield a misalignment if it does not have a good initial-
ization. To address this issue, a number of global optimiza-
tion methods have been developed, including stochastic
techniques [24], [39] and deterministic BnB schemes [27]–
[29]. Compared to stochastic methods that do not guarantee
that the optimal solutions will be found, deterministic meth-
ods, which can always locate the global optima, are more
attractive. Among the existing deterministic BnB schemes,
Go-ICP [29] is outstanding: It reveals the upper and lower
bounds of the traditional ICP metric in SE(3) and combines
BnB with the traditional ICP to give a globally optimal
solution up to the expected accuracy. Moreover, Go-ICP
builds a 3D distance transform to speed up the nearest
correspondence search. In addition, unlike the BnBs in [27],
[28], which either need the two point sets to be equal
size or require a known correspondence, Go-ICP can be
implemented without any unrealistic assumptions.

Another type of registration method has a preprocessing
step that represents the point sets using different models,
and then, the model-based metric is optimized to realize reg-
istration. Gaussian mixture models (GMMs) and the normal
distributions transform (NDT) are popular models of this
type. Myronenko and Song propose the coherent point drift
[13], which takes one point set as the GMM centroids and
the other point set as the elements and then aligns the two

sets in a point-to-distribution matching way using EM. This
method requires the user to set the ratio of noisy outliers and
may incur a high computational cost. Jian and Vemuri [12]
describe both point sets by GMMs and align the two sets in
a distribution-to-distribution matching way by minimizing
the L2 distances between the two GMMs. In [1], a groupwise
method called JRMPC is developed to simultaneously regis-
ter multiple point sets based on GMM. Magnusson et al. [14]
preprocess one point set using NDT and take the other set as
the elements, and they then apply the point-to-distribution
matching method to realize registration using Newton’s
algorithm. In [15], Stoyanov et al. combine NDT and the
distribution-to-distribution matching method of [12]: Both
point sets are preprocessed by NDT, and the registration
is achieved by minimizing the L2 distance between the
two normal distribution groups. Compared to ICPs, these
methods yield a piecewise smooth cluster representation for
one or both of the point sets, which can alleviate the impact
of noise, increase the robustness to poor initialization, and
largely reduce the memory storage and computational cost
because a few parameters instead of a large number of
points are included in the optimization. In addition, these
cluster representations have analytic expressions of deriva-
tives such that standard gradient-based algorithms can be
applied to optimize the metric.

Apart from the probability-based clusters, neural net-
works have recently been utilized to preprocess the point
sets. Aoki et al. [17] describe the point sets via PointNet,
which is a learnable structured representation, and apply a
modified L&K algorithm for optimization. Gojcic et al. [18]
propose 3DSmoothNet, which is a deep learning method
with fully convolutional layers to match point clouds. In
[19], 3DFeat-Net is used to learn both a feature detector and
descriptor for point set registration under weak supervision.
In [20], Elbaz et al. employ a deep neural network to encode
local 3D geometric structures and construct the correspon-
dence between the two point sets for a coarse alignment;
they then apply ICP for fine-tuning. The main problems
of these methods are that they require a lengthy training
phase, need to manually select a relatively large number
of parameters for the training, and cannot guarantee the
generalization of the trained neural network to match any
type of point set.

A common issue facing all the methods stated above
is that they lack a registration quality assessment to auto-
matically evaluate whether a solution is good during their
optimization when no ground truth is available.

1.3 Proposed Work and the Innovations
In this paper, we propose a new point set registration
method. The innovations are as follows:

i). Fuzzy clusters are leveraged to describe a point set,
and the registration of two given point sets is achieved by
minimizing a fuzzy weighted sum of the distances between
their fuzzy cluster centers. This fuzzy cluster-based metric
is developed based on the fuzzy c-means algorithm [40]. It
employs a fuzzy weighted one-to-all correspondence, which
offers a broad basin of convergence and a precise alignment.
Compared to ICPs, this metric does not search for the
nearest correspondence and has the advantages of clus-
ter representations stated above. Compared to the existing
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probability-based clusters, fuzzy clusters are more robust
to noise. Unlike the neural network-based approaches, our
method neither requires any training phase nor suffers from
the generalization issue.

ii). With the fuzzy cluster-based metric, simple and
effective outlier handling strategies are developed for better
alignment. To treat noisy outliers, we design a noniterative
pruning method using the robust fuzzy c-means method
proposed in [41]. To address the nonoverlapping part of par-
tially overlapping scans, we propose a trimming approach
inspired by the trimmed ICP in [30].

iii). Two indexes, which describe the points’ disposition
and dispersion with respect to fuzzy cluster centers, are
proposed to assess registration quality without requiring
knowing the ground truth. To the best of our knowledge,
this is the first work involving registration quality assess-
ment in the absence of ground truth for rigid point set
registration. This assessment can greatly improve the com-
putational efficiency of global optimization and is one of our
key contributions.

iv). Given specified rotation and translation spaces,
we derive the upper and lower bounds of the fuzzy
cluster-based metric and develop a BnB-based optimization
scheme, which can locate the global minimum of the metric
regardless of the initialization. This scheme is performed
in an efficient coarse-to-fine fashion. First, fuzzy cluster-
ing is applied to describe each of the point sets using a
small number of fuzzy clusters. Then, the global search,
which integrates the BnB and gradient-based algorithms,
is implemented to coarsely align the two scans. During
the global search, the registration quality assessment offers
a beneficial stop criterion that keeps detecting if a good
solution is achieved. Afterwards, a relatively large number
of points of each scan are directly taken as the fuzzy cluster
centers, and then, the gradient-based local convergence is
executed to refine the coarse alignment and attain an exact
alignment. This optimization scheme is related to Go-ICP
[29] but has the following advantages: Our method does not
need to build a distance transform and possesses increased
robustness to noise. Moreover, our method requires fewer
steps to converge owing to the broad convergence basin
of the fuzzy cluster-based metric. Furthermore, by means
of the registration quality assessment, our method is more
cost-effective.

2 PROBLEM STATEMENT

Given two 3D scans/point sets that have overlaps, where
one is the fixed set PF = {pFi, i = 1, · · · , NPF

} and the
other is the moving set PM = {pMj , j = 1, · · · , NPM

},
where pFi,pMj ∈ R3 are point coordinates, the registration
must find a parameter vector λ of a transformation function
T (λ) such that the transformed moving set, denoted by
T (λ,PM ) = {T (λ,pMj), j = 1, · · · , NPM

}, can be correctly
aligned with PF . We define λ = (r; t) ∈ R6, where r, t ∈ R3

are rotation and translation parameters in 3D space, respec-
tively. T (λ,pMj) can be expressed as

T (λ,pMj) = R(r) · pMj + t (1)

whereR(r) ∈ SO(3) is the rotation matrix. We express r by
the axis-angle representation, where the axis is r/ ‖r‖ and

the angle is ‖r‖. The registration results are prone to being
less accurate if the overlapping regions occupy a small part
of the point sets. In practice, a 50% overlap is critical [42]. In
this study, we apply the following assumption:

Assumption 1. The overlapping regions of the two point
sets for registration are at least 50%.

When designing a metric for registration, a proper cor-
respondence is an important factor to obtain accurate trans-
formations. Standard ICPs [7], [29] and the NDT in [15] uti-
lize binary nearest-point/-component correspondence. This
one-to-one fashion makes the metric simple and direct but
generally leads to a narrow convergence basin and causes
the algorithm to be easily trapped in local optima. GMMs in
[1], [12], [13] employ one-to-multiple correspondence with
equal weights. Compared to the one-to-one fashion, this
one-to-multiple correspondence has a broader convergence
range and is more robust to noise since it considers neigh-
borhood information. However, the equal weights may not
correctly reflect the neighborhood relationship. Some softas-
sign methods for ICP using one-to-multiple correspondence
with varying weights can be found in [10], [38]. The robust
point matching method in [10] uses Gaussian weights in
the metric and applies an annealing process to the variance.
This method can be time-consuming, especially for aligning
high-resolution point sets. In [38], a linear distance-based
weighting and a normals’ compatibility-based weighting are
utilized. However, the linear weighting may degrade the
registration performance in some cases [14], and the normals
of a scan are not always available and are generally sensitive
to noise.

Regarding optimization, many existing registration
methods, such as the ICPs in [2], [7], [23], [37], the GMMs in
[1], [12], [13] and the NDTs in [14], [15], are only applicable
for local convergence and will fall into local optima without
a good initialization. Global optimization, which can ad-
dress the local optima issue, is more appealing. Go-ICP [29]
is the first deterministic global optimization for rigid point
set registration of 3D ICP. However, some problems exist in
Go-ICP: Its 3D distance transform construction is relatively
time-consuming, and it may take many steps to converge in
the global search due to the narrow convergence basin of the
ICP’s metric. Moreover, Go-ICP inherits the ICP’s sensitivity
to uncertainties and may fail when noisy outliers appear to
cause false correspondence.

Another problem in Go-ICP, and other global optimiza-
tion schemes as well, is that it is difficult to automatically as-
sess the registration quality during optimization without the
ground truth alignment against which to compare. Gener-
ally, the global search stops and produces the final solution
when reaching a predefined criterion, such as the maximum
number of iterations, the minimum size of the remaining
search space, or a certain threshold. However, proper values
for these stop criteria are not easy to choose. With a loose
choice, the final solution may be erroneous. With a strict
choice, the algorithm has to run for a relatively long extra
period of time to meet the stop criterion after the optimal
solution is found. If a registration quality assessment is
available, those stop criteria can choose arbitrarily strict
values, and then, the global search will automatically detect
when a good solution is derived and stop in time to save the
unnecessary costs. Therefore, developing a good registration
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Fig. 1. The means/centers of NDT, GMM and fuzzy clusters (denoted
by “x”s, “o”s and “∗”s, respectively) for the full bunny model with and
without noisy outliers. This model has 35947 points, and the number of
components of each representation is 64. The number of noisy outliers
is 20% that of the original points, and they are uniformly distributed in a
cuboid centered by the original model and with length, width and height
1.5 times those of the original bounding box.

quality assessment in the absence of ground truth can be an
important contribution for point set registration.

3 FUZZY CLUSTERING FOR POINT SETS

A fuzzy cluster is an extension of the classical notion of
set. Unlike the binary membership of the classical set, the
membership grade of an element in a fuzzy cluster is be-
tween 0 and 1, and one element can belong to multiple fuzzy
clusters with different membership grades. The “soft” fuzzy
membership grade provides a more natural and reasonable
method to characterize elements and is more robust to un-
certainties [43]–[46]. In this study, we utilize fuzzy clusters
to represent each of the 3D point sets for registration.

Given a 3D point set P = {pj , j = 1, · · · , NP }, we
suppose that it is described by NC fuzzy clusters, whose
centers are denoted by C =

{
ci ∈ R3, i = 1, · · · , NC

}
, and

we employ the popular fuzzy c-means algorithm [40] to
perform the fuzzy clustering. Fuzzy c-means determines C
by iteratively minimizing the following objective function
[40]:

min
C
J(P,C) = min

C

NP∑
j=1

J(pj ,C)

= min
C

NP∑
j=1

NC∑
i=1

µci(pj)
m ·D(pj , ci)

2

(2)

where D(pj , ci) = ‖pj − ci‖; J(pj ,C) is the distance loss
of pj in J(P,C); m > 1 determines the level of the clusters’
fuzziness: The partition is fuzzier with a greater m, and
m = 2 is a widely accepted choice; and µci(pj) is the fuzzy
membership grade of pj in the fuzzy cluster centered at ci,
which satisfies 0 ≤ µci(pj) ≤ 1 and

∑NC

i=1 µci(pj) = 1, and
is calculated as follows [40]:

µci(pj) =


1, if D(pj , ci) = 0
0, if ∀k 6=iD(pj , ck) = 0
1∑NC

k=1

(
D(pj ,ci)

D(pj ,ck)

) 2
m−1

, else

(3)
The details of fuzzy c-means clustering can be found in [40].

Remark 1. NC must not exceed NP . When choosing
NC = NP , each pj is a fuzzy cluster center. The selection of
NC for registration will be elaborated in the next section.

Fig. 2. Fuzzy clustering and noisy outlier pruning results for the partial
bunny scan “bun090” with different degrees of noise. The first to third
rows show the cases with the number of noisy outliers to be 20%, 30%
and 50%, respectively, of that of the real points (the number of real
points is 30379). The noisy outliers are distributed in the same way as
in Fig. 1. For each case, NC = 60, and each “∗” denotes a fuzzy cluster
center. (a.1), (b.1) and (c.1) show the clustering results using fuzzy c-
means [40], and (c.2) shows the result using robust fuzzy c-means [41].
The rest shows the results of the pruning method introduced in Section
4.2, where (a.2), (b.2) and (c.3) are the pruning results of the first step
and (a.3), (b.3) and (c.4) are the pruning results of the second step by
removing 15% of the points with the largest distance losses. “AFPCD” is
an index related to the registration quality assessment defined in Section
4.3.

Compared to the probability-based clusters, such as
GMM and NDT, fuzzy clusters are more robust to noisy
outliers. A comparison using the Stanford bunny model [47]
is shown in Fig. 1. The noisy outliers significantly change the
positions of the means of NDT and GMM, which is likely to
result in misalignment (see Fig. 8 in Section 5.2). In contrast,
the fuzzy cluster centers remain on or are very close to the
scanned object’s surface. The reason for this fact is that in
many scenarios, noisy outliers have lower densities than
real points do, and fuzzy cluster centers will be placed at
the “dense” area. Other examples using a partial Stanford
bunny scan are shown in Figs. 2(a.1) and 2(b.1), where
“AFPCD” is an index related to the registration quality
assessment and will be introduced in Section 4.3.

The existence of noisy outliers may impair the regis-
tration performance. Moreover, some fuzzy cluster centers
may be misplaced due to serious noise pollution, such as
the example shown in Fig. 2(c.1), where one center (in the
red ellipse) is placed in the noise area. For this issue, some
filtering techniques can be applied to preprocess the noisy
point sets, such as the structure-aware data consolidation
[48] iteratively moving noisy outliers towards underlying,
lower-dimensional structures. In this study, for simplicity,
we use a different method to address this issue: The robust
fuzzy c-means method in [41] is applied to postprocess the
results of fuzzy c-means and drag the misplaced center(s)
to the real point area; afterwards, a simple and noniterative
pruning method is performed to remove noisy outliers. The
result of robust fuzzy c-means for the case of Fig. 2(c.1) is
shown in Fig. 2(c.2), where all the centers are placed in the
real point area. Compared to the filtering method in [48],
robust fuzzy c-means is a simpler implementation. In addi-
tion, a functioning depth camera is unlikely to give point
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sets with serious noise pollution. Therefore, in most cases,
fuzzy c-means can work with satisfactory performance, and
the postprocessing step using robust fuzzy c-means is not
necessary. In the next section, we present the details of the
noniterative pruning method and introduce the rest of Fig.
2.

4 REGISTRATION BASED ON FUZZY CLUSTERS

This section presents the main contributions of our study.
First, a fuzzy cluster-based metric for point set registration
is introduced. Afterwards, we describe the strategies to filter
out noisy outliers and trim the nonoverlapping part of
partially overlapping scans. Next, two fuzzy cluster-based
indexes are defined to provide a registration quality assess-
ment. Finally, an efficient deterministic global optimization
scheme for minimizing the metric is presented.

4.1 Fuzzy Cluster-based Metric
Given PF and PM , by respectively applying fuzzy clus-
tering to them, we have NCF

fuzzy cluster centers CF =
{cFi, i = 1, · · · , NCF

} of PF andNCM
fuzzy cluster centers

CM = {cMj , j = 1, · · · , NCM
} of PM . When PF and PM

are aligned by T (λ), there are two cases: i). One scan is
fully overlapped by the other, as in the examples shown
in Figs. 3(a) and 3(b); and ii). The two scans partially
overlap each other, as in the example shown in Fig. 3(c).
For both cases, in the overlapping region, the points as well
as the fuzzy cluster centers of T (λ,PM ) can be regarded
as the elements of PF ’s fuzzy clusters, since they describe
the same spatial properties as pFi’s do. We denote the
fuzzy cluster centers of the overlapping part of PM as
C′M =

{
c′Mj , j = 1, · · · , NC′M

}
. Note that when PM is fully

overlapped by PF , C′M equals CM , and when PM is partially
overlapped by PF , C′M is a subset of CM . Since T (λ, c′Mj)s
can be regarded as the elements of PF ’s fuzzy clusters, they
can minimize the corresponding fuzzy c-means objective
function with respect to CF . Therefore, we leverage the
following objective function revised from Eq. (2) to be the
metric of registration and minimize it to derive the transfor-
mation λ:

min
λ,C′M

J(λ,C′M ,CF ) = min
λ,C′M

NC′
M∑

j=1

J(λ, c′Mj ,CF )

= min
λ,C′M

NC′
M∑

j=1

NCF∑
i=1

µcFi
(T (λ, c′Mj))

m ·D(λ, c′Mj , cFi)
2

(4)

where D(λ, c′Mj , cFi) =
∥∥∥T (λ, c′Mj)− cFi

∥∥∥, and
J(λ, c′Mj ,CF ) is the distance loss of T (λ, c′Mj) in
J(λ,C′M ,CF ). We will state how to pick out C′M from CM

for partial overlap registration in Section 4.2.
The fuzzy cluster-based metric J(λ,C′M ,CF ) in Eq. (4)

utilizes a one-to-all correspondence with dynamic fuzzy
membership grades as the weights. Unlike the binary near-
est one-to-one correspondence used by ICP and the NDT in
[15], this one-to-all fashion has a broader convergence basin
since it includes neighborhood information. Compared to
the one-to-multiple fashion with equal and fixed weights
used by the GMM-based methods [1], [12], [13], the dynamic

Fig. 3. Some examples of point set registration. The fixed sets and the
moving sets are in yellow and blue, respectively. In the rightmost column,
the yellow “∗”s and the blue “+”s are their fuzzy cluster centers.

weights describe the neighborhood relationship more accu-
rately. Moreover, our dynamic weights are more reasonable
and attainable than those stated in [38].

Note that for any case of registration, we will first select
the scan/point set with a larger area and then take its fuzzy
cluster centers as CF to calculate the fuzzy membership
grades in Eq. (4). We will state how to perform this selection
in Section 4.3. This method can guarantee that more spa-
tial information is included to calculate the neighborhood
relationships, and consequently, a better alignment can be
achieved. Therefore, if PM has a larger area than PF does,
such as if PM is the full model of an object and PF is
only a partial scan of the same object, we swap them
to proceed with the optimization. Afterwards, the inverse
transformation is taken as the final solution.

4.2 Outlier Handling
There are two types of outliers that we need to address.
One type is the noisy outliers that are incorrectly measured
points, such as the examples shown in Figs. 1 and 2, and the
other is the correctly measured points in the nonoverlapping
part of partially overlapping point sets [30].

Noisy outliers may degrade registration performance.
Thus, we need to filter out as many as possible. In this study,
a simple two-step pruning method is used to remove these
unwanted elements. Given a point set P with noisy outliers,
in the first step, the following equation from robust fuzzy c-
means [41] is employed to identify noisy outliers by defining
a parameter ηi for each fuzzy cluster:

η2i =

∑NP

j=1 µci(pj)
m ·D(pj , ci)

2∑NP

j=1 µci(pj)
m

, i = 1, · · · , NC (5)

If pj satisfies D(pj , ci) > ηi for all i = 1, · · · , NC , then it is
regarded as a noisy outlier and is removed. If a relatively
large number of noisy outliers near the real points still
exist after performing the first step due to serious noise
pollution, a further pruning based on the per-point distance
loss J(pj ,C) of Eq. (2) is applied as the second step: A
small subset of P that contains the elements with the largest
distance losses J(pj ,C)s is removed. According to our
experimental experience, the ratio of the elements of this
subset to that of P can be selected between 10% and 15%.
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Fig. 2 shows some examples. For different degrees of noise
pollution, the two-step pruning method can clean most of
the noisy outliers.

Regarding the nonoverlapping part of partially over-
lapping scans, inspired by the trimmed ICP [30], a trim-
ming strategy based on the per-element distance loss
J(λ, c′Mj ,CF ) of the metric in Eq. (4) is developed to pick
out C′M from CM . Given a trimming ratio ξ, we have
NC′M

= NCM
· (1 − ξ). Afterwards, at each computation

of a new spatial transformation, C′M is chosen as the subset
of CM with NC′M

elements having the smallest per-element
distance losses J(λ, cMj ,CF )s, where λ is the current trans-
formation. The convergence proof of this trimming strategy
is similar to that of the trimmed ICP [30] and thus is omitted
here. The selection of ξ is discussed in Section 4.4.3.

4.3 Average Fuzzy Point-to-Center Distance and Aver-
age Fuzzy Center-to-Center Distance

In this section, we introduce two useful indexes to enhance
the accuracy and efficiency of our method. Given a point set
P and its fuzzy cluster centers C, the distance loss J(pj ,C)
in Eq. (2) is a weighted sum of the distances between pj
and all centers using the fuzzy membership grades µci(pj)s
as the weights. According to Eq. (3), µci(pj) is inversely
proportional to the distance between pj and ci. Therefore,
in J(pj ,C), a longer/shorter point-to-center distance has
a smaller/larger weight. With this property, J(pj ,C) can
be analogously regarded as the “center of gravity” of pj ’s
point-to-center distances. This “center of gravity” indicates
a character of pj ’s position with respect to C. The average
of the “center of gravity” values of the elements of P is an
index that can reflect the points’ disposition and dispersion
related to the topology of this point set described by fuzzy
clusters. We name this index average fuzzy point-to-center
distance, abbreviated as “AFPCD” and denoted by J(P,C).
The AFPCD of a point set can be easily calculated from
J(P,C) in Eq. (2) after fuzzy clustering is completed:

J(P,C) =
1

NP
· J(P,C) (6)

Several examples of AFPCD using the Stanford bunny
point sets are shown in Figs. 2, 4 and 5. In Fig. 2, the
first column and (c.2) show that the noisy outliers severely
change the values of AFPCD. After pruning by the two-
step method, the AFPCDs become close to the original value
shown in Fig. 4(b.2). In addition, Fig. 4(a.2) and Fig. 5 show
that the four full models, which are described by different
resolutions but use the same NC , have AFPCDs close to one
another. This fact demonstrates that when the resolution of
a point set is reasonable and can clearly reflect the object’s
spatial properties, its impact on AFPCD can be neglected.

On the other hand, in each row of Fig. 4, asNC increases,
the fuzzy cluster centers become more crowded, and the
point-to-center distances decrease to give a gradually re-
duced AFPCD. In each column of Fig. 4 using the same NC

for different point sets, compared to the partial scans, the
full model has a larger surface area of the object (bunny),
and thus, its fuzzy cluster centers are distributed more
sparsely, which leads to longer point-to-center distances and
a larger AFPCD. By virtue of this property, AFPCD can be

Fig. 4. Examples of AFPCD using bunny point sets. Each ‘∗’ denotes
a fuzzy cluster center. The first to the third rows are “bun zipper” (full
model), “bun090”, and “ear back”, respectively.

Fig. 5. The AFPCDs of three full bunny models with different resolutions.
Each “∗” denotes a fuzzy cluster center. (a). “bun zipper res2”; (b).
“bun zipper res3”; (c). “bun zipper res4”.

used to compare the scanned surface area of two point sets,
and we have the following strategy:

Strategy 1. Given two point sets described by equal
numbers of fuzzy clusters, the point set with a larger AF-
PCD is chosen as PF and the other as PM for the metric in
Eq. (4) to proceed with the optimization for registration.

Given two point sets PF and PM with fuzzy cluster
centers CF and CM and given a transformation λ, we define
another index, called the average fuzzy center-to-center dis-
tance, abbreviated as “AFCCD”, denoted as J(λ,C′M ,CF ),
and calculated from J(λ,C′M ,CF ) of Eq. (4):

J(λ,C′M ,CF ) =
1

NC′M

· J(λ,C′M ,CF ) (7)

By comparing the AFCCD J(λ,C′M ,CF ) in Eq. (7) with the
AFPCD J(P,C) in Eq. (6), we know that AFCCD quantifies
the disposition and dispersion of T (λ,C′M ) with respect to
CF . The variation of AFCCD in a registration process is as
follows: At the beginning, the two point sets are misaligned,
and thus, J(λ,C′M ,CF ) has a relatively large value, as
does AFCCD. During the optimization, AFCCD is gradually
reduced as J(λ,C′M ,CF ) decreases. Since the AFPCD of
PF , denoted as J(PF ,CF ), is derived after fuzzy clustering
minimizes the points’ distance losses with respect to the
same centers CF , it can be taken as the goal for AFCCD
to achieve the following: When the AFCCD J(λ,C′M ,CF )
equals the AFPCD J(PF ,CF ), the disposition and disper-
sion of T (λ,C′M ) with respect to CF are very close to that
of the points in PF with respect to CF . In this case, we
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can consider that the two point sets are aligned or at least
coarsely aligned.

Note that the minimum of AFCCD is generally less than
the AFPCD since AFPCD is an average value: When a point
pj is near a fuzzy cluster center/relatively not close to any
centers, its distance loss J(pj ,C) is less/greater than the
AFPCD J(P,C). On the other hand, when the two scans are
registered by T (λ), their fuzzy clusters of the overlapping
part describe the same spatial properties of the object. Since
a fuzzy cluster center is at the most representative position
of its fuzzy cluster, in the overlapping region, the fuzzy
cluster centers are located at the representative places of the
scanned object’s surface, and thus, there is a small likelihood
that a T (λ, c′Mj) is not close to any cFi. Therefore, when the
two scans are aligned, the AFCCD, which is the average of
T (λ,C′M )’s distance losses with respect to CF , will be gen-
erally lower than the AFPCD J(PF ,CF ). A more detailed
analysis is given in the supplementary material. Therefore,
we have the following:

Strategy 2 (registration quality assessment). We define a
variable ρλ, which is the ratio of AFCCD to AFPCD. The two
point sets PF and T (λ,PM ) can be considered as aligned or
coarsely aligned if they satisfy the following:

ρλ =
AFCCD

AFPCD
=
J(λ,C′M ,CF )

J(PF ,CF )
≤ 1 (8)

Remark 2. Although the value of AFPCD J(PF ,CF )
depends on the number of fuzzy clusters NCF

, the com-
parison between AFPCD and AFCCD is always reasonable
under different choices for NCF

since the two indexes are
calculated based on the same fuzzy cluster centers CF . Note
that Strategy 2 may not be valid in the following cases: i).
The overlapping ratios of the two point sets are too small; ii).
The size difference between the two point sets is too large;
iii). NC′M

is chosen to be too small; and iv). The trimming
ratio ξ for partial overlap registration is chosen to be too
large. We can ignore cases i) and ii) in this study since our
method works well for the point sets satisfying Assumption
1. For case iii), according to our experience from extensive
experiments, a generally safe choice is NC′M

≥ 50. The
user can also freely choose a proper value for NC′M

in a
certain application. For the problem of case iv), we present
a discussion about the selection of ξ in Section 4.4.3.

4.4 Optimization Methodology
In this section, we present a deterministic optimization
scheme that integrates the BnB and gradient-based algo-
rithms to globally minimize the fuzzy cluster-based metric
for registration. This scheme is related to Go-ICP [29] but
has the following advantages:

i). Our method does not search for the nearest correspon-
dence. Thus, it does not need to build a distance transform.

ii). Our method is more robust to poor initialization
in local optimization and can converge to the optimum
using fewer steps in global optimization owing to the broad
convergence basin of the fuzzy cluster-based metric.

iii). Our method can handle uncertainties better and is
less sensitive to the trimming ratio’s variation.

iv). Our method has a registration quality assessment,
which yields a beneficial stop criterion for the global search
and can greatly reduce the computational time and cost.

Fig. 6. Initial SE(3) space for BnB, which is same as the domain param-
eterization of Go-ICP [29]. Left: the initial rotation cube Cr , [−π, π]3.
Right: the initial translation cube Ct, [−L,L]3, which is supposed to
include the optimal solution of translation. The small pink boxes give
the examples of octant subcubes for rotation and translation.

4.4.1 Branch and Bound

The BnB algorithm in our method utilizes the same domain
parameterization as that in Go-ICP [29] (shown in Fig. 6).
With the axis-angle representation, the whole 3D rotation
space can be compactly described by a solid ball of radius
π centered at the origin. To facilitate the BnB, this solid ball
is enclosed by the cube [−π, π]3, as shown in the left part of
Fig. 6. For translation, we suppose that the optimal solution
lies in the cube [−L,L]3, as shown in the right part of Fig.
6, which is easily realized by choosing a large value for L.
We denote these initial rotation and translation cubes as Cr
and Ct, respectively. For branch, the BnB employs the octree
structure that recursively divides the subcubes into octants.

The upper and lower bounds of J(λ,C′M ,CF ) in spec-
ified rotation and translation cubes are key factors for the
BnB-based optimization. The following lemma of uncer-
tainty radii from Go-ICP [29] is used to derive the bounds.

Lemma 1. Given a 3D point pj , a rotation cube Cr of
side-length 2σr centered at r0, and a translation cube Ct of
side-length 2σt centered at t0, for ∀r ∈ Cr, t ∈ Ct, we have
the following:

‖R(r)pj −R(r0)pj‖ ≤ 2sin(min(

√
3σr
2

,
π

2
)) ‖pj‖

.
= γr(pj)

‖(pj + t)− (pj + t0)‖ ≤
√

3σt
.
= γt

This lemma means that given a λ = (r; t) ∈ Cr × Ct,
T (λ,pj) will lie in a sphere of radius γr(pj) + γt centered
at T (λ0,pj), where λ0 = (r0; t0) [29]. Note that γr(pj) is
point-dependent. For convenience, we denote γr(c′Mj) by
γrj and use a vector γr to denote all γrjs.

According to [29], the upper bound of the per-element
distance loss can be set as J(λ0, c

′
Mj ,CF ), while finding

a suitable lower bound is much more difficult. Compared
to the metric of Go-ICP, which is the sum of binary L2

errors between the nearest points, the fuzzy cluster-based
metric in Eq. (4) has a much more complex form. Hence, the
task to find its lower bound is harder. We submit the fuzzy
membership calculation in Eq. (3) to Eq. (4) and obtain a new
expression for our fuzzy cluster-based metric as follows:

J(λ,C′M ,CF ) =

NC′
M∑

j=1

J(λ, c′Mj ,CF )

=

NC′
M∑

j=1

NCF∑
i=1

D(λ, c′Mj , cFi)
2

1−m

1−m (9)
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where the per-element distance loss J(λ, c′Mj ,CF ) becomes

J(λ, c′Mj ,CF ) =
0, if ∀

i=1,··· ,NCF

D(λ, c′Mj , cFi) = 0(∑NCF
i=1 D(λ, c′Mj , cFi)

2
1−m

)1−m
, else

(10)

Based on Eqs. (9) and (10), we have the following theorem,
whose proof is included in the supplementary material:

Theorem 1 (bounds of the metric). For a given region
Cr × Ct centered at λ0 = (r0; t0) with the uncertainty
radii γrj and γt, the upper and lower bounds of the dis-
tance loss J(λ, c′Mj ,CF ), denoted by Jupp(λ, c′Mj ,CF ) and
Jlow(λ, c′Mj ,CF ), respectively, can be selected as follows:

Jupp(λ, c′Mj ,CF ) = J(λ0, c
′
Mj ,CF ) (11)

Jlow(λ, c′Mj ,CF ) =
0, if ∀

i=1,··· ,NCF

D(λ0, c
′
Mj , cFi)− (γrj + γt) ≤ 0(∑NCF

i=1

[
D(λ0, c

′
Mj , cFi)− (γrj + γt)

] 2
1−m

)1−m

, else

(12)
As a result, the upper and lower bounds of the fuzzy cluster-
based metric J(λ,C′M ,CF ), denoted by Jupp(λ,C′M ,CF )
and Jlow(λ,C′M ,CF ), respectively, are obtained as follows:Jupp(λ,C′M ,CF ) =

∑NC′
M

j=1 Jupp(λ, c′Mj ,CF )

Jlow(λ,C′M ,CF ) =
∑NC′

M
j=1 Jlow(λ, c′Mj ,CF )

(13)

4.4.2 Gradient-based Local Convergence
The gradient of J(λ,C′M ,CF ) with respect to λ, denoted as
OλJ(λ,C′M ,CF ), can be expressed as follows:

OλJ(λ,C′M ,CF ) =

NC′
M∑

j=1

∂J(λ, c′Mj ,CF )

∂λ
(14)

To obtain each ∂J(λ, c′Mj ,CF )/∂λ, according to Eq. (10),
we need to calculate ∂D((λ, c′Mj , cFi)/∂λ ∈ R6 for i =
1, · · · , NCF

. The details are presented in the supplementary
material. When having an estimate for λ, the standard
gradient-based optimization algorithms, such as the BFGS
quasi-Newton [49], can be applied to the metric to refine λ
through a further convergence in the local area.

4.4.3 Global Optimization Scheme
Before presenting the optimization scheme, we introduce
a trade-off in our method: When using a large number of
fuzzy clusters to describe each point set, for example, more
than 1000, the registration can achieve high accuracy but is
likely to be computationally expensive and time-consuming
in global search and local convergence, as well as in fuzzy
clustering; when the numbers of the fuzzy clusters are small,
say, less than 100, both fuzzy clustering and optimization
can be completed in much less time, but the registration may
not be sufficiently satisfactory since the two point sets will
generally be only coarsely aligned. To resolve this problem,
we design the following coarse-to-fine strategy:

Coarse registration: In this step, fuzzy clustering is
applied to describe each of the two point sets by a relatively
small number of fuzzy clusters (if noisy outliers exist, we

Algorithm 1 The main algorithm of global optimization for
the fuzzy cluster-based metric

Input: PF , PM , CF , CM and AFPCD J(PF ,CF ); trimming
ratio ξ; threshold ε; side-length 2σmin r of the minimum
cube; initial cubes Cr and Ct.

Output: optimal transformation λ∗ = (r∗; t∗).
1: Initialize a queue Qr with only one element Cr.
2: λ∗ = (r∗; t∗) ← local convergence with zero as the

initial estimate λ(0).
3: start loop
4: Quit the loop if Qr is empty.
5: Quit the loop if ρλ∗ =

J(λ∗,C′M ,CF )

J(PF ,CF )×NC′
M

≤ 1.

6: Pick out a cube with the lowest Jlow r from Qr .
7: Quit the loop if J(λ∗,C′M ,CF )− Jlow r < ε or the side-

length of this cube is smaller than 2σmin r .
8: Divide the cube into 8 subcubes (octants).
9: for each subcube Cr do

10: Calculate Jupp r for Cr and the translation t̂ through
Algorithm 2 with r0, zero γr and λ∗.

11: if Jupp r < J(λ∗,C′M ,CF ) then
12: λ∗ ← local convergence with λ(0) = (r0; t̂).
13: end if
14: Calculate Jlow r for Cr and the translation ť through

Algorithm 2 with r0, γr and λ∗.
15: if Jlow r ≥ J(λ∗,C′M ,CF ) or Jlow r

J(PF ,CF )×NC′
M

≥ 1 then

16: Discard Cr .
17: else Place Cr into Qr.
18: end if
19: end for
20: end loop
21: λ∗ = (r∗; t∗)← fine registration with λ(0) = λ∗.

use the pruning method introduced in Section 4.2 to remove
them). Note that NCF

and NCM
should be equal such that

we can select the point set with a larger area according to
Strategy 1, and the value of NC′M

should be greater than a
lower limit to make Strategy 2 valid. Specifically, NC′M

can
be selected between [50, 100]. Afterwards, the BnB-based
global search is performed to obtain a coarse alignment.

Fine registration: In this step, each point set is described
by a relatively large number of fuzzy clusters. According
to Remark 1, the points can be directly taken as the fuzzy
cluster centers. Generally, a range scan contains a very large
quantity of points. To ease the computational burden, we
downsample each point set to an appropriate size. After-
wards, taking the coarse alignment as the initialization, the
gradient-based local convergence is performed on the fuzzy
cluster-based metric, which uses the downsampled points
as the fuzzy cluster centers, to achieve a precise alignment.
According to the experimental experience, a good choice is
to downsample PF to approximately 1000-1500 points and
downsample PM to approximately 1500-2000 points, which
can provide a satisfactory performance with an acceptable
time cost.

In the coarse registration, both fuzzy clustering and
optimization require low costs in time and calculation since
the numbers of fuzzy clusters are small. In the fine regis-
tration, the points are directly taken as the fuzzy cluster
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Algorithm 2 Inner search for optimal translation

Input: CF , CM , and AFPCD J(PF ,CF ); trimming ratio ξ;
threshold ε; side-length 2σmin t of the minimum cube;
Ct; r0, γr and best achieved λ∗.

Output: J∗∗ and t∗∗.
1: Initialize a queue Qt with only one element Ct.
2: t∗∗ ← t0 of Ct.
3: if J(λ∗,C′M ,CF ) > Jupp t of Ct then
4: J∗∗ ← Jupp t of Ct.
5: else J∗∗ ← J(λ∗,C′M ,CF ).
6: end if
7: start loop
8: Quit the loop if Qt is empty.
9: Quit the loop if J∗∗

J(PF ,CF )×NC′
M

≤ 1.

10: Pick out a cube with the lowest Jlow t from Qt.
11: Quit the loop if J∗∗ − Jlow t < ε or the side-length of

this cube is smaller than 2σmin t.
12: Divide the cube into 8 subcubes (octants).
13: for each subcube Ct do
14: Calculate Jupp t with r0, t0 and γr .
15: if Jupp t < J∗∗ then
16: t∗∗ ← t0, J∗∗ ← Jupp t.
17: end if
18: Calculate Jlow t with r0, t0, γr and γt.
19: if Jlow t ≥ J∗∗ or Jlow t

J(PF ,CF )×NC′
M

≥ 1 then

20: Discard Ct.
21: else Place Ct into Qt.
22: end if
23: end for
24: end loop

centers, which saves the time-consuming fuzzy clustering
for locating substantial centers. Moreover, since the two
point sets have been coarsely aligned, the gradient-based
local convergence in the fine registration can obtain the
exact result within a short span of time. This coarse-to-fine
strategy can effectively address the trade-off issue.

Next, we present the global optimization scheme. To
reduce the computational burden, the nested BnB structure
presented in Go-ICP [29], which consists of an outer BnB
search in rotation space and an inner BnB search in transla-
tion space, is employed in our method. For the outer search,
given a rotation cube Cr centered at r0, the bounds of the
fuzzy cluster-based metric are rewritten as follows:

Jupp r(λ,C′M ,CF ) = min
t∈Ct

∑NC′
M

j=1 J((r0; t), c′Mj ,CF )

Jlow r(λ,C′M ,CF ) = min
t∈Ct

∑NC′
M

j=1 Jlow r0((r0; t), c′Mj ,CF )

(15)
where Jlow r0((r0; t), c′Mj ,CF ) is

Jlow r0((r0; t), c′Mj ,CF ) =
0, if ∀

i=1,··· ,NCF

D((r0; t), c′Mj , cFi)− γrj ≤ 0(∑NCF
i=1

[
D((r0; t), c′Mj , cFi)− γrj

] 2
1−m

)1−m

, else

(16)
For each Cr , the inner BnB finds the optimal translation
to derive the bounds described in Eq. (15) by starting the

division (branch) from the initial translation cube Ct. Given
a translation cube Ct centered at t0, the upper bound of the
metric is the sum of Jlow r0((r0; t), c′Mj ,CF )s at t0, and the
lower bound is the sum of Jlow(λ, c′Mj ,CF )s in Eq. (12):Jupp t(λ,C′M ,CF ) =

∑NC′
M

j=1 Jlow r0((r0; t0), c′Mj ,CF )

Jlow t(λ,C′M ,CF ) =
∑NC′

M
j=1 Jlow(λ, c′Mj ,CF )

(17)
Jlow r in Eq. (15) is derived by the inner BnB, where r0 and
γr of Eq. (17) are given from the current outer search, and
Jupp r in Eq. (15) is derived by the inner BnB with the same
r0 but setting all γrjs to be zero in Eq. (17).

In the BnB of Go-ICP, a cube in the queue with the lowest
lower bound has the highest priority to be selected, and the
cube with the lower bound greater than the best achieved
error is discarded. When a better solution is found by BnB,
the traditional ICP is applied for a further local convergence.
In addition, Go-ICP will stop when the difference between
the best achieved error and the currently lowest lower
bound is less than a predefined threshold ε, or the size of
the cubes in the queue is sufficiently small or the queue
is empty. In our method, the above lowest-first selection,
cube discard strategy, and stop criteria are also employed.
Similarly, the gradient-based local convergence is integrated
for refinement each time a smaller distance loss is found
by BnB. Furthermore, we add two new criteria as follows
according to the registration quality assessment.

Strategy 3 (new criteria for global optimization).
Criterion I. A cube is removed from the queue if the met-

ric in it has the lower bound not less than AFPCD×NC′M
.

Criterion II. When the best achieved λ gives ρλ ≤ 1,
which means J(λ,C′M ,CF ) ≤ AFPCD×NC′M

, the global
search stops and passes this λ to the fine registration.

The optimization scheme are described by Algorithms
1 and 2, which are extended from the outer and inner
BnB search of Go-ICP. The main differences of the scheme
compared to Go-ICP are the following: i). Our scheme
optimizes the fuzzy cluster-based metric for registration; ii).
Our scheme utilizes the two criteria of Strategy 3, which
appear in lines 5 and 15 of Algorithm 1 and lines 9 and 19
of Algorithm 2, to improve the computational efficiency of
the global optimization; and iii). Our scheme proceeds in a
coarse-to-fine fashion. Some experiments in the next section
will demonstrate the superiority of our scheme over Go-ICP.

We now discuss the selection of the trimming ratio ξ.
For partial overlap registration, in the global search (coarse
registration), using an overlarge ξ may lead to a premature
stop, where λ satisfies ρλ ≤ 1 but is an erroneous solution.
When ξ is less than its real value, AFCCD will increase since
some cMjs of the nonoverlapping part, which have larger
center-to-center distances, are included. When ξ is too small,
the AFCCD of the optimal solution may be greater than the
AFPCD, and then Criterion II of Strategy 3 will not be used,
but our scheme can still converge to the optimal solution
when reaching other stop criteria. In the fine registration,
with a too-small ξ, the result may not be sufficiently satis-
factory due to the negative effects yielded by cMjs of the
nonoverlapping part, while the result could be accurate by
using a relatively larger ξ since it can guarantee that the
included cMjs are inliers. Therefore, the user can choose
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Fig. 7. Local convergence tests for LM-ICP [2], NDT [15], JRMPC [1] and
our method. The first row shows the two pairs of partially overlapping
scans used in the tests, where an example of their initial poses is given
in each left part. The second row shows the errors ελ. The third row
shows the values of ρλ to validate the proposed registration quality
assessment. The last row presents the time costs.

a relatively small ξ for the coarse registration to avoid the
premature stop and then choose a slightly larger ξ in the
fine registration for precise alignment. A suggestion on the
basis of our experimental experience is the following:

ξfine =


0.75× ξ + 0.075, if ξ < 10%

0.5× ξ + 0.1, if 10% ≤ ξ < 20%
ξ, else

(18)

where ξ is used in the coarse registration and ξfine is
used in the fine registration. ξ can be determined by vi-
sually observing the two scans and roughly guessing their
nonoverlapping ratios. If a rough guess is not available, the
user can start with a small ξ and then gradually increase
it for a test. Some experimental results in the next section
demonstrate that our method is robust to variation in ξ.

5 EXPERIMENTS

The proposed method 1 is implemented in MATLAB R2018b
on a PC with 8 GB RAM and an i5 2.30 GHz Intel CPU. For
fuzzy c-means clustering, we choose m = 2 and set the
iteration number to 100. We found that this setting works
well for different point sets of registration. When using
the two-step pruning method, 15% of the points with the
greatest distance losses are removed in the second step. For
partial overlap cases, when trimming is applied, Eq. (18)
is applied. For global optimization, as in Go-ICP [29], we
prenormalize the two point sets with the same scaling gains
to include all the points in the domain [−1, 1]3 and choose
the initial rotation and translation cubes as Cr = [−π, π]3

1. Source code can be found at https://gitsvn-
nt.oru.se/qianfang.liao/FuzzyClusterBasedRegistration

Fig. 8. Registration results of NDT [15], GMM [12] and our method
for two full bunny models with noisy outliers. The fixed set (red) is
“bun zipper”, and the moving set (blue) is “bun zipper res2”. The noisy
outliers are same as those in Fig. 1. The angle difference of the initial
poses is 20◦. The time costs of the optimization of NDT, GMM and our
method are 0.9098 s, 1.1913 s, and 0.3730 s, respectively.

and Ct = [−0.5, 0.5]3. Note that the AFPCDs and AFCCDs
will be different from their original values due to the scale’s
change, but the registration quality assessment will still be
valid since the two point sets are of the same scale. In fine
registration, PF and PM are downsampled to approximately
1500 and 2000 points, respectively, to be the fuzzy cluster
centers. The error of the derived λ = (r; t) is defined as
ελ = ‖λ− λg‖, where λg = (rg; tg) denotes the ground
truth transformation. One degree of the rotation angle dif-
ference will lead to an increment of 0.0175 in ελ.

5.1 Local Convergence Tests

In this section, we test the local convergence of the fuzzy
cluster-based metric by solely using the gradient-based
algorithm in the coarse-to-fine optimization and compare
the results with those of three existing methods: LM-ICP
[2], NDT [15] and JRMPC [1]. This test is based on two
pairs of partially overlapping scans recorded by Dr. Mag-
nusson in our laboratory (the Robot Lab, AASS building,
Örebro University, Sweden) and publicly available in [50].
The transformations given by [50] are taken as the ground
truth. Each scan has more than 110,000 points, and we
downsample it to approximately 8000 points to apply the
four registration methods for efficiency. The grid size for
NDT is 0.5 m [15], and the number of components for
JRMPC is chosen to be 300. In our method, we choose
NCF

= NCM
= 100 for fuzzy clustering. Fig. 7 shows

the registration performances of the four methods with
respect to incrementally enlarged pose differences of each
pair, where the initial estimates used by the four methods
in all the cases are zero and no trimming is applied. In
the convergence range, LM-ICP cannot adequately handle
the nonoverlapping parts and yields relatively large errors
in translation. Thus, its ελs are greater than those of the
other three methods. Among the four methods, our metric
achieves the broadest convergence range and requires the
lowest time cost in the convergence range. Moreover, the
registration quality assessment yields correct results that
ρλ < 1 for accurate alignment and ρλ > 1 for misalignment.
Note that the AFCCDs and AFPCDs of ρλ are calculated
based on the fuzzy clusters used in the coarse registration.
The following experiments use the same method to derive
ρλ.
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Fig. 9. Registration results of sparse ICP [9] and our method for noisy
point sets. The first row shows a partial-to-full registration, and the
remaining rows show two partially overlapping registrations. For each
point set, the number of noisy outliers is 20% that of the real points, and
the noisy outliers are distributed in the same way as that in Fig. 1. For
the noisy horse scan pair, NPF

= 58182 and NPM
= 30521. For the

noisy bunny scan pair, NPF
= 48308 and NPM

= 48117. For the noisy
chicken scan pair, NPF

= 35422 and NPM
= 36198.

Fig. 10. The registration errors of our method for the partially overlapping
bunny and chicken scans in Fig. 9 with different trimming ratios.

5.2 Robustness Tests

In this section, first, we employ two full bunny models
[47] with different resolutions and with manually added
noisy outliers to compare the robustness among NDT [15],
GMM [12] and our method. In this test, we choose equal
numbers of components, 64, for the three representations.
In addition, our method solely uses coarse registration with
the gradient-based algorithm for optimization. The initial-
ization is zero for the three methods. Fig. 8 shows that our
method outperforms the other two cluster representations
in terms of both the accuracy and time cost of optimization.
The reason is presented in Fig. 1 and described in Section 3.
In addition, the ρλ of the final solution of our method is less
than 1.

Next, we compare the robustness between sparse ICP
[9] and our method based on three point set pairs (horse
[51], bunny [47] and chicken [52]) with manually added
noisy outliers, as shown in Fig. 9. In our method, NCF

=
NCM

= 80 for fuzzy clustering. For fair comparison, our
method solely uses the gradient-based algorithm in the
coarse-to-fine procedure. The horse registration is a partial-
to-full case, and thus, no trimming is applied. The bunny
and chicken scans are partial overlap cases, and we choose
ξ = 20% for them. Fig. 9 shows the performances. Com-

Fig. 11. The ablation study of Strategy 3. The first row shows the
four scan pairs used in this study. For the rest of the figure, the right
part shows the rotation cube numbers of the queue, and the left part
shows the bounds and AFPCD×NC′M

in the global optimization (coarse
registration). The upper bound denotes the distance loss of the currently
best achieved λ, and the lower bound denotes the current lowest lower
bound. C.I and C.II are short for Criterion I and Criterion II, respectively.
(i), (ii), (iii) and (iv) mark the spots where the global optimization stops
in different conditions: (i). Both C.I and C.II are applied; (ii). Only C.II is
applied; (iii). Only C.I is applied; (iv). Neither C.I nor C.II is applied.

pared to sparse ICP, our method gives correct results within
less time (the time cost covers fuzzy clustering, outlier
pruning, coarse and fine registration). In addition, the final
ρλs are less than 1.

The sparse ICP’s failure is due to its narrow convergence
range: A good initialization is needed to derive a correct
result [9], and zeros are poor initial estimates for it to align
the three pairs in Fig. 9. Compared to sparse ICP, our metric
has a broader local convergence range and thus is more
robust to poor initialization. However, for partial overlap
cases, our method needs to estimate a trimming ratio ξ.
For this issue, we test our method with different ξs to align
the bunny and chicken scans. The results are shown in Fig.
10. The bunny scans can be registered when ξ is between
0 and 51%, and the chicken scans can be registered when
ξ is between 0 and 55%. These results demonstrate that
our metric using local optimization can handle relatively
large variation in ξ: It can suppress the negative effects
when some nonoverlapping elements are involved by using
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Fig. 12. The registration process of bunny data “bun zipper” and “bun090” with original poses using the proposed method, where the three steps
of the coarse registration correspond to the results updated by BnB and local convergence shown in Fig. 11

Fig. 13. The registration errors of our method for the partially overlapping
dragon and Buddha scans in Fig. 11 with different trimming ratios.

a relatively small ξ and also can achieve accurate results
when some inliers are trimmed by using a relatively large
ξ. In the next section, we will demonstrate that our metric
using global optimization is also very robust to variation in
ξ. This property allows the user to roughly guess a ξ.

5.3 Global Optimization Tests
This section presents a number of tests for the global opti-
mization scheme described in Algorithms 1 and 2.

Optimality tests. To verify that the global optimization
scheme can converge to optimal solutions and achieve cor-
rect alignments, we employ the angel model from [51] and
the bunny, dragon and happy Buddha data from [47] to form
four different cases for the optimality tests as follows:

Full-to-full registration. We perform 100 tests of register-
ing the angel model to its copy with random initial poses.

Partial-to-full registration. Ten pairs are formed by the
bunny data, in which the fixed sets are the reconstructed full
model and the moving sets are the 10 partial scans. For each
pair, in addition to the original pose, we randomly select 99
initial poses for the moving set to perform 100 tests in total.

Partial overlap registration. Ten pairs of partially overlap-
ping dragon scans are selected. For each pair, ξ = 20% and
100 tests with random initial poses are performed.

Noisy partial overlap registration. Four pairs of partially
overlapping happy Buddha scans are selected. We add noisy
outliers to each scan, where these outliers have the same
ratio and same distribution as that in Fig. 1. For each pair, we
perform 100 tests with random initial poses and ξ = 20%.

In these 2500 test cases, to perform fuzzy clustering,
each clean point set is downsampled to approximately 8000
points for efficiency, while no downsampling is applied to
the noisy point sets. In addition, we choose NCF

= NCM
=

50 for the full-to-full and partial-to-full pairs and choose
NCF

= NCM
= 80 for the rest. As expected, all the tests

achieve correct alignments. Moreover, their global optimiza-
tions are all stopped by the registration quality assessment.
The mean/largest ελs and time costs are given in Table 1,

where the time cost covers fuzzy clustering, outlier pruning
if needed, and coarse and fine registrations. Note that since
each noisy Buddha scan has approximately 30,000 points,
they require more time in fuzzy clustering and incur extra
costs for outlier pruning when compared to the situation
with the clean scans. Thus, the time costs of Buddha data
are greater than those of the other three groups.

TABLE 1
Registration results of the optimality tests

Range data ελs (mean/largest) time costs (mean/largest)
Angel 0.0027 / 0.0083 7.616 s / 17.717 s
Bunny 0.0048 / 0.0102 20.31 s / 42.34 s
Dragon 0.0041 / 0.0098 25.78 s / 72.05 s
Buddha 0.0050 / 0.0116 52.29 s / 127.28 s

Ablation study. To evaluate the improvement yielded
by each criterion of Strategy 3, we select one test case from
each of the four range data groups in the optimality tests to
perform an ablation study, where the selected bunny pair is
composed of the full model and the partial scan “bun090”
in their original poses. Four conditions are analyzed in this
ablation study: (i). Both Criteria I and II are applied; (ii).
Only Criterion II is applied; (iii). Only Criterion I is applied;
and (iv). Neither Criterion I nor Criterion II is applied.

TABLE 2
Time costs of the global optimization in the ablation study in Fig. 11

Range data (i) (ii) (iii) (iv)
Angel 2.3601 s 2.5593 s 7.1505 s 7.4134 s
Bunny 14.7674 s 16.0481 s 83.0716 s 84.1582 s
Dragon 5.7506 s 6.5409 s 50.1883 s 51.7468 s
Buddha 42.7620 s 45.6922 s 84.7893 s 87.9895 s

For each of the four selected test cases, we run two
times of the global optimization, where one applies neither
of the criteria and the other solely applies Criterion I, to
obtain the results of conditions (iii) and (iv). For the stop
criteria of global search, we set the threshold ε to be 0
and terminate the BnB when the divided subcubes reach a
specified small size: The side-length is 0.02. Fig. 11 shows
the results: The upper bound (the distance loss of the
best achieved λ), collaboratively updated by BnB and local
convergence, cascades down and remains unchanged when
reaching the optimal solution, and the lower bound gradu-
ally increases to approach the upper bound. By drawing a
line of AFPCD×NC′M

in each test case to compare against
the upper bound, we can obtain the results of conditions (i)
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Fig. 14. The registration results of Go-ICP and our method for three partially overlapping scan pairs: dinosaur, chef and armadillo.

and (ii), in which the global optimization will stop when the
upper bound becomes less than AFPCD×NC′M

.
Under the conditions using Criterion I, a few seconds

can be saved since Criterion I can remove some unqualified
cubes from the queue to reduce the time of sorting. Under
the conditions without using Criterion II, the global search
does not know whether a solution (upper bound) is good or
not. As a result, after the upper bound reaches the optimal
solution, it has to run for a relatively long extra period
to raise the lowest lower bound and meet the predefined
stop criteria. An important result is that among all the
upper bounds in the global optimization, only the optimal
solutions derived by the last local convergence are less than
the associated AFPCD×NC′M

to have ρλ < 1 (sometimes
the initial estimate for the last local convergence obtained
by BnB also has ρλ < 1, such as the angel data shown in
Fig. 11). Therefore, under the conditions in which Criterion
II is applied, once the upper bound reaches a good solution,
the global optimization will be aware of this fact and stop in
time. The time costs of the four conditions of each test case
in Fig 11 are presented in Table 2, where using Criterion II
reduces the time cost by up to 88.5%.

Similar to the conditions (iii) and (iv) in Fig. 11, Go-
ICP has to run for an extra period to meet the predefined
stop criteria after reaching the optimal solution (see Figs.
11 and 17 of [29]). The reason is as follows: Go-ICP utilizes
the nearest points’ distances as the metric, and it is hard to
know how small this metric is to achieve a correct alignment
without ground truth or user intervention. In addition, the
minimum value of this metric varies with different scan
resolutions and can be easily affected by outliers. Unlike Go-
ICP, our method has a registration quality assessment, and
it is robust to the variation in the scan’s resolution and the
existence of outliers. On the other hand, Go-ICP fails to align
the noisy scans shown in Figs. 8, 9 and 11 since it is soon
trapped in a local minimum and yields a misalignment due
to the false correspondences caused by the large number of
noisy outliers. As stated in [29], this problem can be resolved
if Go-ICP switches to a robust metric, such as the Lp error of
sparse ICP [9]. However, according to the analysis presented
in Section 5.2, sparse ICP has a narrow convergence range.
As a result, it may take many steps to converge in the global
search. Moreover, it still does not know whether a solution
is good without the ground truth and needs to spend extra
costs to meet the predefined stop criteria after reaching the
optimal solution. Therefore, our method is more efficient.

Moreover, the motions of the bunny point sets in this
ablation study corresponding to the registration process in
Fig. 11 are shown in Fig. 12. Compared to Go-ICP using five
steps to align the same point sets (see Fig. 10 of [29]), our
method needs fewer steps (three in the coarse registration)
because of the broad convergence range of the fuzzy cluster-
based metric. The motions of the other three point set pairs
in Fig. 11 are presented in the supplementary material.

Tests with different trimming ratios. To test the ro-
bustness of our method to variation in the trimming ratio
ξ, we apply our method using different ξs to register the
dragon and Buddha scan pairs used in the ablation study.
The results are shown in Fig. 13. The dragon scans can be
registered when ξ is between 0 and 43%, and the Buddha
scans can be registered when ξ is between 0 and 65%. These
results together with those shown in Fig. 10 demonstrate
that our method is robust to variation in ξ, and the registra-
tion quality assessment can work without a premature stop
even if ξ varies in a relatively large interval.

5.4 More Tests

In this section, different types of point sets are employed
to test and compare the registration performances of our
method and the state-of-the-art approaches. We choose
NCF

= NCM
= 80 for the fuzzy clustering in our method.

First, we consider three partially overlapping point set
pairs: The partial scans of dinosaur [52], chef [52] and
armadillo [47], are selected to compare Go-ICP [29] and our
method, where the trimming ratios are chosen to be 15%,
20%, and 25%, respectively. We randomly select 10 different
initial poses for each pair and downsample each scan to
approximately 5000 points to perform the two registration
methods. In Go-ICP, a 300 × 300 × 300 distance transform
is used, and the threshold for stopping is ε = 0.001×NPM

.
The registration results are shown in Fig. 14. In each case,
our method gives a smaller error and requires less time than
Go-ICP does. In addition, the global search of our method
is stopped by the registration quality assessment, and the
final ρλ < 1. Note that the time cost of Go-ICP includes
distance transform construction (approximately 36 s on our
computer) and registration, and the time cost of our method
covers fuzzy clustering, coarse and fine registration. For a
large part of these 30 cases, the time used by our method
is shorter than the time that Go-ICP spends on building
distance transform only. Table 3 shows the improvements
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Fig. 15. The six partial scans consecutively recorded in our laboratory and their coherent 3D model built using the proposed registration method. In
the bottom-left subfigure, the number i (i = 1, · · · , 6) indicates the position of the scanner device when taking the ith scan.

Fig. 16. The registration results of JRMPC, Go-ICP and our method for the six partial scans in Fig. 15. When each scan is downsampled to 2000,
4000, 6000 and 8000 points, the time costs of JRMPC using 1000/2000 components are 66.8 s/133.8 s, 129.1 s/271.1 s, 201.7 s/404.9 s, and
269.1 s/541.3 s, respectively, and the total time costs of our method with/without trimming to align the five pairs are 47.96 s/47.12 s, 97.22 s/57.89
s, 82.50 s/74.76 s, and 109.21 s/76.20 s.

in the registrations of the three pairs using our method
when compared to the results using Go-ICP. Our method
can reduce the error by up to 95.8% and reduce the time
cost by up to 83.9%.

TABLE 3
The mean/largest reductions in ελs and time costs using our method

compared to results using Go-ICP in Fig. 14

Dinosaur Chef Armadillo
ελ reduced 29.6% / 50.0% 83.5% / 95.8% 62.6% / 80.7%

time reduced 58.3% / 83.9% 51.0% / 70.4% 64.4% / 79.0%

Afterwards, we compare JRMPC [1], Go-ICP [29] and our
method at building a 3D coherent model from six partial
scans of our laboratory [50]. The six scans, shown in Fig.
15, are recorded consecutively. Each scan has more than
110,000 points, and we downsample it to 2000, 4000, 6000,
and 8000 points, separately, to create four test cases. The

transformations from [50] are taken as the ground truth. In
each test case, we run the groupwise method JRMPC two
times using 1000 and 2000 components, separately, while
we perform Go-ICP and our method to align the six scans
in sequence, which means that Scans 1 and 2 are aligned
first, and then, Scans 2 and 3 are aligned, ... , and the last
pair is Scans 5 and 6. Finally, the six scans are merged based
on the transformations of the five pairs. For each pair, the
two scans partially overlap each other, and we apply Go-
ICP and our method two separate times to register them,
where one applies trimming with ξ = 10% and the other
applies no trimming. The results are shown in Fig. 16.
JRMPC fails to align the six scans in all the test cases and
Go-ICP fails in some of the tests, while our method gives
correct alignments in all the test cases with the highest
accuracy and the lowest time cost. Note that for most of the
test cases, Go-ICP needs to carry out its BnB-based global
search to find the solution, while our method solely uses
the gradient-based algorithm for the optimization in all the
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Fig. 17. Registration results of partially overlapping outdoor scans. (a.1) and (b.1) show the scans’ initial poses. (a.2) and (b.2) show the results of
Go-ICP using ε = 0.001×NPM

. (a.3) and (b.3) show the results of Go-ICP using ε = 0.0001×NPM
. (a.4) and (b.4) are the results of our method.

Based on the fuzzy clusters and the metric of our method, we have ρλ of each λ in (a.2)-(a.4) and (b.2)-(b.4) derived by Go-ICP or our method:
(a.2). ρλ = 2.1107 > 1; (a.3). ρλ = 0.6173 < 1; (a.4). ρλ = 0.7367 < 1; (b.2). ρλ = 2.2529 > 1; (b.3). ρλ = 0.6687 < 1; (b.4). ρλ = 0.6364 < 1.

Fig. 18. The registration results of six partially overlapping outdoor scan pairs using the proposed method.

tests. The reason is because in each coarse registration of
our method, the registration quality assessment detects that
the solution derived by the first local convergence is already
satisfactory and then stops the search before using BnB. All
of the final ρλs of our method are less than 1. Based on the
transformations derived by our method, the six scans are
merged together to build a coherent 3D model, as shown in
Fig. 15.

The reasons for JRMPC’s failure are that its narrow con-
vergence range cannot handle the pose differences of these
scans, and it does not have global optimization. Although
our method does not simultaneously register multiple scans,
it can provide a very satisfactory result in building a co-
herent 3D model by aligning the scans in sequence and

can treat the pose differences of these scans because of the
broad convergence range of the fuzzy cluster-based metric.
Moreover, our method has a global optimization scheme
that can align the point sets with any initial poses. In
addition, unlike JRMPC whose computation time increases
linearly with the number of points, the time cost of our
method is less affected by the number of points. For Go-ICP,
the differences in its performance between trimming and
no trimming are very large due to its sensitivity to outliers.
Unlike those in Fig. 14, the points of these six scans are not
evenly distributed, and the same object may be described
by the points with different densities in different scans,
which can introduce uncertainties into the registration. In
addition, the scanner device leaves a relatively large number
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of points of itself in each scan, as shown in Fig. 15, which
can adversely affect the performance of Go-ICP, since it
uses binary point-to-point correspondence. In contrast, our
method is robust to these uncertainties and yields accurate
results with and without trimming (ελ < 0.005 for most of
the cases, and those with trimming give smaller ελs than
their no-trimming counterparts do, as illustrated in Fig. 16).

Next, a number of outdoor range scans, recorded by
Pellenz and Lang in the University of Koblenz-Landau,
Germany and publicly available in [50], are employed for
tests. The ground truth transformations for these scans are
unavailable. We enlarge some parts of the registered scans
to show the accuracy. Two pairs of partially overlapping
scans are selected, as shown in Fig. 17, and each scan
is downsampled to approximately 5000 points to perform
Go-ICP and our method. The two scans of each pair are
recorded consecutively and with a high degree of overlap,
and we apply no trimming when registering them. Fig. 17
shows that Go-ICP with ε = 0.001×NPM

yields erroneous
results. Then, using a smaller threshold ε = 0.0001×NPM

,
it achieves reasonable results but takes a very long time
(688.86 s and 587.27 s). Compared to Go-ICP, our method
accomplishes the tasks much faster (10.16 s and 16.68 s) and
reduces the time costs by 98.53% and 97.16%, respectively.
In addition, according to the enlarged figures shown in Fig.
17, our method yields more precise alignments for the two
pairs. Furthermore, based on the fuzzy clusters and the
metric of our method, we calculate ρλ of each solution λ
derived by Go-ICP or our method in Fig. 17. As shown in the
caption of Fig. 17, the erroneous solutions of (a.2) and (b.2)
derived by Go-ICP have ρλ > 1, and the remaining ones
have ρλ < 1. These results indicate that Go-ICP does not
know how small its metric is to provide an accurate result
and cannot determine whether its final solution is correct
without ground truth or user intervention. In contrast, our
method includes a reliable registration quality assessment
that can automatically evaluate whether a solution is good
or not. Therefore, our method is more suitable to be applied
in autonomous devices and systems.

For the final test, our method is applied to register six
other pairs of partially overlapping outdoor scans, as shown
in Fig. 18. We downsample each scan to approximately
5000 points to perform the registration for efficiency, and
no trimming is applied. The time costs are between 16.19
and 36.53 s, and the enlarged figures in Fig. 18 show that
each pair is correctly aligned. In addition, all the global
searches of our method for these six cases are stopped by
the registration quality assessment, and the final ρλs are
less than 1.

6 CONCLUSION

This paper proposes a novel point set registration method
for 3D range scan alignment. The main contributions in-
clude the following: First, we use fuzzy clusters to represent
each of the two given scans and register them by minimizing
a fuzzy weighted sum of the distances between their fuzzy
cluster centers. This fuzzy cluster-based metric has a broad
basin of convergence and provides analytic gradients such
that standard gradient-based algorithms can be applied for

optimization. Second, based on this metric, simple and effec-
tive strategies to treat outliers are developed. Furthermore,
for the first time in rigid point set registration, a registration
quality assessment in the absence of ground truth is pro-
vided, which is a key innovation of this study. Finally, an op-
timization scheme integrating the BnB and gradient-based
algorithms is designed; it can locate the global minimum
of the metric regardless of the initialization. This global
optimization scheme is performed in an effective coarse-to-
fine way, where registration quality assessment is applied to
boost the computational efficiency. Different types of range
scans are employed to demonstrate the accuracy, robustness,
effectiveness and superiority of the proposed method rela-
tive to that of several state-of-the-art approaches. In future
work, we plan to investigate groupwise registration based
on fuzzy clusters, which simultaneously registers multiple
scans using efficient global optimization.
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Supplementary material 

1. Proof for Theorem 1 

The validity of the per-element upper bound in Eq. (11) is apparent: 𝐽(𝝀0, 𝒄𝑀𝑗
′ , ℂ𝐹) must be larger 

than the minimal 𝐽(𝝀, 𝒄𝑀𝑗
′ , ℂ𝐹) in 𝑪𝑟 × 𝑪𝑡. For the per-element lower bound in Eq. (12), a detailed 

explanation is needed. Since 𝑚 > 1 in Eqs. (9) and (10), we know that  𝐽(𝝀, 𝒄𝑀𝑗
′ , ℂ𝐹) will become 

smaller when all 𝐷(𝝀, 𝒄𝑀𝑗
′ , 𝒄𝐹𝑖)s, 𝑖 = 1,⋯ ,𝑁𝐶𝐹, decrease. On the other hand, according to Lemma 1, 

if the uncertainty sphere of 𝒯(𝝀, 𝒄𝑀𝑗
′ ) does not enclose any 𝒄𝐹𝑖, the minimal value of 𝐷(𝝀, 𝒄𝑀𝑗

′ , 𝒄𝐹𝑖) 

will be achieved when 𝒯(𝝀, 𝒄𝑀𝑗
′ ) is placed at the point on the sphere’s surface which is nearest to 𝒄𝐹𝑖, 

and this minimal value is 𝐷(𝝀0, 𝒄𝑀𝑗
′ , 𝒄𝐹𝑖) − (𝛾𝑟𝑗 + 𝛾𝑡), as illustrated in Fig. S1. Therefore, for the 

distance between 𝒯(𝝀, 𝒄𝑀𝑗
′ ) and each 𝒄𝐹𝑖, we have:  

𝐷(𝝀, 𝒄𝑀𝑗
′ , 𝒄𝐹𝑖) ≥ 𝐷(𝝀0, 𝒄𝑀𝑗

′ , 𝒄𝐹𝑖) − (𝛾𝑟𝑗 + 𝛾𝑡)   (S.1.1) 

Subsequently, for the per-element distance loss 𝐽(𝝀, 𝒄𝑀𝑗
′ , ℂ𝐹), we have: 

𝐽(𝝀, 𝒄𝑀𝑗
′ , ℂ𝐹) = (∑ 𝐷(𝝀, 𝒄𝑀𝑗

′ , 𝒄𝐹𝑖)
2

1−𝑚
𝑁𝐶𝐹
𝑖=1

)
1−𝑚

≥ (∑ (𝐷(𝝀0, 𝒄𝑀𝑗
′ , 𝒄𝐹𝑖) − (𝛾𝑟𝑗 + 𝛾𝑡))

2

1−𝑚𝑁𝐶𝐹
𝑖=1

)

1−𝑚

  

= 𝐽𝑙𝑜𝑤(𝝀, 𝒄𝑀𝑗
′ , ℂ𝐹)       

(S.1.2) 

If any 𝒄𝐹𝑖 is within or on the surface of the uncertainty sphere, which means 𝐷(𝝀0, 𝒄𝑀𝑗
′ , 𝒄𝐹𝑖) − (𝛾𝑟𝑗 +

𝛾𝑡) ≤ 0, then the minimal value of 𝐷(𝝀, 𝒄𝑀𝑗
′ , 𝒄𝐹𝑖) is 0. In this case, 𝐽𝑙𝑜𝑤(𝝀, 𝒄𝑀𝑗

′ , ℂ𝐹) = 0. In Eq. (13), 

the upper and lower bounds of the fuzzy cluster-based metric 𝐽(𝝀, ℂ𝑀
′ , ℂ𝐹) are corollaries of Eq. (11) 

and (12), respectively.  

 

 

Figure S1. The distances between a  𝒯(𝝀, 𝒄𝑀𝑗
′ ) and all 𝒄𝐹𝑖s in an uncertainty sphere (the green ball) of radius 

(𝛾𝑟𝑗 + 𝛾𝑡) centered at 𝒯(𝝀0, 𝒄𝑀𝑗
′ ). Each ∗ denotes a 𝒄𝐹𝑖, and no 𝒄𝐹𝑖 is enclosed in this sphere.   

  



2. Analysis of AFCCD and AFPCD when two point sets are registered 

We present an intuitive analysis based on mathematical functions to show that the two point sets 

ℙ𝐹  and 𝒯(𝝀, ℙ𝑀), which have overlaps, can be considered as aligned or coarsely aligned if they 

satisfy: 

𝜌𝝀 =
AFCCD

AFPCD
=
𝐽(̅𝝀, ℂ𝑀

′ , ℂ𝐹)

𝐽(̅ℙ𝐹, ℂ𝐹)
≤ 1 

where  𝝀 is the transformation;  ℂ𝐹 and ℂ𝑀 are the fuzzy cluster centers of ℙ𝐹 and ℙ𝑀, respectively; 

and 𝒯(𝝀, ℂ𝑀
′ )  denotes the fuzzy cluster centers of the transformed moving set 𝒯(𝝀, ℙ𝑀)  in the 

overlapping region.   

    For the fixed set ℙ𝐹 = {𝒑𝐹𝑗 , 𝑗 = 1,2,⋯ ,𝑁𝑃𝐹}, its fuzzy cluster centers ℂ𝐹 = {𝒄𝐹𝑖 , 𝑖 = 1,2,⋯ ,𝑁𝐶𝐹} 

is derived by minimizing the following fuzzy c-means objective function: 

min
ℂ𝐹

𝐽(ℙ𝐹 , ℂ𝐹) = min
ℂ
∑ ∑ 𝜇𝒄𝐹𝑖(𝒑𝐹𝑗)

𝑚 ∙ ‖𝒑𝐹𝑗 − 𝒄𝐹𝑖‖
2𝑁𝐶

𝑖=1

𝑁𝑃

𝑗=1

= min
ℂ𝐹

∑
1

(
1

‖𝒑𝐹𝑗 − 𝒄𝐹1‖
2

𝑚−1

+
1

‖𝒑𝐹𝑗 − 𝒄𝐹2‖
2

𝑚−1

+⋯+
1

‖𝒑𝐹𝑗 − 𝒄𝑭𝑁𝐶𝐹
‖

2
𝑚−1

)

𝑚−1

𝑁𝑃𝐹

𝑗=1
 

(S.2.1) 

where 𝑚 > 1. In our study, we choose 𝑚 = 2, which is a widely used choice. Then Eq. (S.2.1) 

becomes: 

min
ℂ𝐹

𝐽(ℙ𝐹 , ℂ𝐹) = min
ℂ𝐹

∑ 𝐽(𝒑𝐹𝑗 , ℂ𝐹)
𝑁𝑃𝐹

𝑗=1

= min
ℂ𝐹

∑
1

1

‖𝒑𝐹𝑗 − 𝒄𝐹1‖
2 +

1

‖𝒑𝐹𝑗 − 𝒄𝐹2‖
2 +⋯+

1

‖𝒑𝐹𝑗 − 𝒄𝑭𝑁𝐶𝐹
‖
2

𝑁𝑃𝐹

𝑗=1
 

(S.2.2) 

where 𝐽(𝒑𝐹𝑗 , ℂ𝐹) = 1 (1 ‖𝒑𝐹𝑗 − 𝒄𝐹1‖
2

⁄ + 1 ‖𝒑𝐹𝑗 − 𝒄𝐹2‖
2

⁄ +⋯+ 1 ‖𝒑𝐹𝑗 − 𝒄𝑭𝑁𝐶𝐹
‖
2

⁄ )⁄  is the per-

point distance loss in  𝐽(ℙ𝐹, ℂ𝐹) . According to Eq. (S.2.2),  𝐽(ℙ𝐹, ℂ𝐹)  will be minimized if all 

‖𝒑𝐹𝑗 − 𝒄𝐹𝑖‖s (𝑖 = 1,⋯ ,𝑁𝐶𝐹, 𝑗 = 1,⋯ ,𝑁𝑃𝐹) are as small as possible. As a result, each fuzzy cluster 

center 𝒄𝐹𝑖  should be close to as many as possible points, and thus a 𝒄𝐹𝑖  is located at the most 

representative position in its local area. Similar phenomenon can be found with ℙ𝑀 and ℂ𝑀 . The 

AFPCD of ℙ𝐹, which is the average per-point distance loss with respect to ℂ𝐹, is calculated as:   

AFPCD = 𝐽(̅ℙ𝐹 , ℂ𝐹) =
𝐽(ℙ𝐹 , ℂ𝐹)

𝑁𝑃𝐹
=
∑ 𝐽(𝒑𝐹𝑗 , ℂ𝐹)
𝑁𝑃𝐹
𝑗=1

𝑁𝑃𝐹
 

 (S.2.3) 

AFPCD in Eq. (S.2.3) describes the points’ dispersion and disposition with respect to ℂ𝐹. When a 

point 𝒑𝐹𝑗 is near a fuzzy cluster center 𝒄𝐹𝑖, its distance loss 𝐽(𝒑𝐹𝑗 , ℂ𝐹) is smaller than AFPCD; and 



when 𝒑𝐹𝑗 is relatively not close to any fuzzy cluster centers, its distance loss 𝐽(𝒑𝐹𝑗 , ℂ𝐹) is larger than 

AFPCD.  

    Suppose ℙ𝐹  and ℙ𝑀  are aligned by 𝒯(𝝀) . In the overlapping region, the points of ℙ𝐹  and 

𝒯(𝝀, ℙ𝑀) describe the same spatial properties of the object, and thus they have the same geometric 

properties. We denote the points of ℙ𝐹 in the overlapping region as ℙ𝐹
′ = {𝒑𝐹𝑗

′ , 𝑗 = 1,2,⋯ ,𝑁𝑃𝐹′}, and 

ℙ𝐹
′  can also be used to represent the points of 𝒯(𝝀, ℙ𝑀) in this region. According to the analysis of 

fuzzy clustering stated above, in the overlapping region, 𝒄𝐹𝑖 s and 𝒯(𝝀, 𝒄𝑀𝑗
′ )s are located at the 

representative positions, which are close to as many as possible points of ℙ𝐹
′ . Consequently, we can 

know that the following 𝐽(ℙ𝐹
′ , ℂ𝐹) and  𝐽(ℙ′, ℂ𝑀

′ ) are minimized values or close to the minimized 

values:   

𝐽(ℙ𝐹
′ , ℂ𝐹) =∑ 𝐽(𝒑𝐹𝑗

′ , ℂ𝐹)
𝑁
𝑃𝐹
′

𝑗=1
=∑

1

1

‖𝒑𝐹𝑗
′ − 𝒄𝐹1‖

2 +
1

‖𝒑𝐹𝑗
′ − 𝒄𝐹2‖

2 +⋯+
1

‖𝒑𝐹𝑗
′ − 𝒄𝐹𝑁𝐶𝐹

‖
2

𝑁
𝑃𝐹
′

𝑗=1
 

(S.2.4) 

𝐽(ℙ𝐹
′ , 𝒯(𝝀, ℂ𝑀

′ )) =∑ 𝐽(𝒑𝐹𝑗
′ , 𝒯(𝝀, ℂ𝑀

′ ))
𝑁
𝑃𝐹
′

𝑗=1

=∑
1

1

‖𝒑𝐹𝑗
′ − 𝒯(𝝀, 𝒄𝑀1

′ )‖
2 +

1

‖𝒑𝐹𝑗
′ − 𝒯(𝝀, 𝒄𝑀2

′ )‖
2 +⋯+

1

‖𝒑𝐹𝑗
′ − 𝒯 (𝝀, 𝒄𝑀𝑁

𝐶𝑀
′

′ )‖
2

𝑁
𝑃𝐹
′

𝑗=1
 

(S.2.5) 

Based on the above discussion and equations, we can infer that a transformed center 𝒯(𝝀, 𝒄𝑀𝑗
′ ) is 

likely to be close to a certain 𝒄𝐹𝑖  in the overlapping region. Consequently, the distance loss of a 

𝒯(𝝀, 𝒄𝑀𝑗
′ ) with respect to ℂ𝐹, expressed as follows, is prone to being smaller than the AFPCD. 

𝐽(𝝀, 𝒄𝑀𝑗
′ , ℂ𝐹) =

1

1

‖𝒯(𝝀, 𝒄𝑀𝑗
′ ) − 𝒄𝐹1‖

2 +
1

‖𝒯(𝝀, 𝒄𝑀𝑗
′ ) − 𝒄𝐹2‖

2 +⋯+
1

‖𝒯(𝝀, 𝒄𝑀𝑗
′ ) − 𝒄𝐹𝑁𝐶𝐹

‖
2

 

(S.2.6) 

As a result, the AFCCD 𝐽(̅𝝀, ℂ𝑀
′ , ℂ𝐹), which is the average per-element distance loss of 𝒯(𝝀, ℂ𝑀

′ ) 

with respect to ℂ𝐹, is smaller than the AFPCD 𝐽(̅ℙ𝐹, ℂ𝐹): 

AFCCD = 𝐽(̅𝝀, ℂ𝑀
′ , ℂ𝐹) =

∑ 𝐽(𝝀, 𝒄𝑀𝑗
′ , ℂ𝐹)

𝑁
𝐶𝑀
′

𝑗=1

𝑁𝐶𝑀′
≤
∑ 𝐽(𝒑𝐹𝑗 , ℂ𝐹)
𝑁𝑃𝐹
𝑗=1

𝑁𝑃𝐹
= 𝐽(̅ℙ𝐹 , ℂ𝐹) = AFPCD 

In the Remark 2 of the manuscript, we state that the registration quality assessment may be invalid 

in the following four cases: 

i). The overlapping ratios of the two point sets are too small; 

ii). The size difference between the two point sets is too large;   

iii). 𝑁𝐶𝑀′  is chosen to be too small;  



iv). The trimming ratio 𝜉 for partial overlap registration is chosen to be too large.   

    We can ignore cases i) and ii) in our study since the proposed method works well for the point sets 

satisfying Assumption 1. For case iii), according to our experimental experience, a generally safe 

choice is 𝑁𝐶𝑀′ ≥ 50. For the problem of case iv), we have presented a discussion about the selection 

of 𝜉 at the end of Section 4.4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



3. The gradient of the fuzzy cluster-based metric 

The fuzzy cluster-based metric with 𝑚 = 2 for registration is expressed as follows: 

𝐽(𝝀, ℂ𝑀
′ , ℂ𝐹) =∑ ∑ (𝜇𝒄𝐹𝑖(𝒯(𝝀, 𝒄𝑀𝑗

′ )))
2
∙ (𝐷(𝝀, 𝒄𝑀𝑗

′ , 𝒄𝐹𝑖))
2𝑁𝐶𝐹

𝑖=1

𝑁
𝐶𝑀
′

𝑗=1
=∑ 𝐽(𝝀, 𝒄𝑀𝑗

′ , ℂ𝐹)
𝑁
𝐶𝑀
′

𝑗=1
 

(S.3.1) 

where  

𝐽(𝝀, 𝒄𝑀𝑗
′ , ℂ𝐹) =

{
 
 

 
 0, 𝑖𝑓 ∀𝑖=1,⋯,𝑁𝐶𝐹

 𝐷(𝝀, 𝒄𝑀𝑗
′ , 𝒄𝐹𝑖) = 0

1

∑
1

(𝐷(𝝀,𝒄𝑀𝑗
′ ,𝒄𝐹𝑖))

2

𝑁𝐶𝐹
𝑖=1

, 𝑒𝑙𝑠𝑒  (S.3.2) 

The gradient of 𝐽(𝝀, ℂ𝑀
′ , ℂ𝐹) with respect to 𝝀 is: 

∇𝝀𝐽(𝝀, ℂ𝑀
′ , ℂ𝐹) = ∑

𝜕𝐽(𝝀,𝒄𝑀𝑗
′ ,ℂ𝐹)

𝜕𝜆

𝑁
𝐶𝑀
′

𝑗=1
∈ ℝ6   (S.3.3) 

For simplicity, we denote 𝐽(𝝀, 𝒄𝑀𝑗
′ , ℂ𝐹) as 𝐽𝑗 , and 𝐷(𝝀, 𝒄𝑀𝑗

′ , 𝒄𝐹𝑖) as 𝐷𝑗𝑖 . When 𝐷𝑗𝑖s, 𝑖 = 1,⋯ ,𝑁𝐶𝐹 , 

are not 0, we have 

𝜕𝐽𝑗

𝜕𝝀
=

𝜕

𝜕𝝀
(∑

1

𝐷𝑗𝑖
2

𝑁𝐶𝐹
𝑖=1

)
−1

= (∑
1

𝐷𝑗𝑖
2

𝑁𝐶𝐹
𝑖=1

)
−2

∙ (∑ (𝐷𝑗𝑖
2)
−2
∙
𝜕(𝐷𝑗𝑖

2 )

𝜕𝝀

𝑁𝐶𝐹
𝑖=1

) = 𝐽𝑗
2 ∙ (∑ (𝐷𝑗𝑖

2)
−2
∙
𝜕(𝐷𝑗𝑖

2 )

𝜕𝝀

𝑁𝐶𝐹
𝑖=1

)  

(S.3.4) 

where 𝜕(𝐷𝑗𝑖
2)/𝜕𝝀 ∈ ℝ6 is calculated by: 

𝜕(𝐷𝑗𝑖
2 )

𝜕𝝀
=

𝜕(ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕−𝒄𝐹𝑗)

𝑇
∙(ℛ(𝒓)∙𝒄𝑀𝑗

′ +𝒕−𝒄𝐹𝑗)

𝜕𝝀
= 2 ∙

𝜕(ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕)

𝑇

𝜕𝝀
 ∙ (ℛ(𝒓) ∙ 𝒄𝑀𝑗

′ + 𝒕 − 𝒄𝐹𝑗)  

(S.3.5) 

where 𝒓 = [𝑟𝑥 𝑟𝑦 𝑟𝑧]𝑇 and 𝒕 = [𝑡𝑥 𝑡𝑦 𝑡𝑧]𝑇. Note that 𝒓 uses axis-angle representation, where 

the axis is 𝒓/‖𝒓‖ and the angle 𝜃 is ‖𝒓‖. The relationship between 𝒓 and the rotation matrix ℛ(𝒓) is:   

ℛ(𝒓) = 𝑰3 +
𝑀𝑟 ∙ sin 𝜃

𝜃
+
(𝑀𝑟)

2 ∙ (1 − cos 𝜃 )

𝜃2
 

where 𝑀𝑟 = [

0 −𝑟𝑧 𝑟𝑦
𝑟𝑧 0 −𝑟𝑥
−𝑟𝑦 𝑟𝑥 0

]. For example, if the axis is  [1, 0, 0]𝑇 and the rotation angle is 𝜃 = 𝜋, 

then 𝒓 = [𝜋, 0, 0]𝑇. By substituting 𝒓 to 𝑀𝑟 and ℛ(𝒓), we have the following result: 

𝑀𝑟 = [
0 0 0
0 0 −𝜋
0 𝜋 0

], and ℛ(𝒓) = [
1 0 0
0 −1 0
0 0 −1

] 

We denote 𝒄𝑀𝑗
′ = [𝒄𝑀𝑗

′ (𝑥)   𝒄𝑀𝑗
′ (𝑦)   𝒄𝑀𝑗

′ (𝑧)]𝑇, and for simplicity, we represent cos 𝜃 and sin 𝜃 by 

𝑐𝜃 and 𝑠𝜃, respectively. From the relationship between 𝒓 and ℛ(𝒓), we have: 



ℛ(𝒓) ∙ 𝒄𝑀𝑗
′ + 𝒕  

=

[
 
 
 
 𝑐𝜃 +

𝑟𝑥𝑟𝑥

𝜃2
(1 − 𝑐𝜃) −

𝑟𝑧

𝜃
𝑠𝜃 +

𝑟𝑥𝑟𝑦

𝜃2
(1 − 𝑐𝜃)

𝑟𝑦

𝜃
𝑠𝜃 +

𝑟𝑥𝑟𝑧

𝜃2
(1 − 𝑐𝜃)

𝑟𝑧

𝜃
𝑠𝜃 +

𝑟𝑦𝑟𝑥

𝜃2
(1 − 𝑐𝜃) 𝑐𝜃 +

𝑟𝑦𝑟𝑦

𝜃2
(1 − 𝑐𝜃) −

𝑟𝑥

𝜃
𝑠𝜃 +

𝑟𝑦𝑟𝑧

𝜃2
(1 − 𝑐𝜃)

−
𝑟𝑦

𝜃
𝑠𝜃 +

𝑟𝑧𝑟𝑥

𝜃2
(1 − 𝑐𝜃)

𝑟𝑥

𝜃
𝑠𝜃 +

𝑟𝑧𝑟𝑦

𝜃2
(1 − 𝑐𝜃) 𝑐𝜃 +

𝑟𝑧𝑟𝑧

𝜃2
(1 − 𝑐𝜃) ]

 
 
 
 

∙ [

𝒄𝑀𝑗
′ (𝑥)

 𝒄𝑀𝑗
′ (𝑦)

𝒄𝑀𝑗
′ (𝑧)

] + [

𝑡𝑥
𝑡𝑦
𝑡𝑧

]  

=

[
 
 
 
 
{ℛ(𝒓) ∙ 𝒄𝑀𝑗

′ + 𝒕}
𝑥

{ℛ(𝒓) ∙ 𝒄𝑀𝑗
′ + 𝒕}

𝑦

{ℛ(𝒓) ∙ 𝒄𝑀𝑗
′ + 𝒕}

𝑧]
 
 
 
 

                       (S.3.6) 

where  

{ℛ(𝒓) ∙ 𝒄𝑀𝑗
′ + 𝒕}

𝑥
= 𝒄𝑀𝑗

′ (𝑥) ∙ 𝑐𝜃 + (𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑦 − 𝒄𝑀𝑗

′ (𝑦) ∙ 𝑟𝑧) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑥𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙

𝑟𝑥𝑟𝑦 + 𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑥𝑟𝑧) (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑡𝑥   

{ℛ(𝒓) ∙ 𝒄𝑀𝑗
′ + 𝒕}

𝑦
= 𝒄𝑀𝑗

′ (𝑦) ∙ 𝑐𝜃 + (𝒄𝑀𝑗
′ (𝑥) ∙ 𝑟𝑧 − 𝒄𝑀𝑗

′ (𝑧) ∙ 𝑟𝑥) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑦𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙

𝑟𝑦𝑟𝑦 + 𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑦𝑟𝑧) (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑡𝑦  

{ℛ(𝒓) ∙ 𝒄𝑀𝑗
′ + 𝒕}

𝑧
= 𝒄𝑀𝑗

′ (𝑧) ∙ 𝑐𝜃 + (𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑥 − 𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑦) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑧𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙

𝑟𝑧𝑟𝑦 + 𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑧𝑟𝑧) (

1

𝜃2
−
𝑐𝜃

𝜃2
) + 𝑡𝑧  

Therefore, 𝜕(ℛ(𝒓) ∙ 𝒄𝑀𝑗
′ + 𝒕)/𝜕𝝀 ∈ ℝ3×6, the 18 elements of 𝜕(ℛ(𝒓) ∙ 𝒄𝑀𝑗

′ + 𝒕)/𝜕𝝀 can be derived 

using the following equations: 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑥

𝜕𝑟𝑥
= 𝑟𝑥 ∙ (−𝒄𝑀𝑗

′ (𝑥) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑧) ∙ 𝑟𝑦 − 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑧) ∙ (

𝑐𝜃

𝜃2
−

1

𝜃2
∙
𝑠𝜃

𝜃
)) +

(2 ∙ 𝒄𝑀𝑗
′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗

′ (𝑦) ∙ 𝑟𝑦 + 𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑧) ∙ (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑟𝑥 ∙ 𝑟𝑥 ∙ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑦 +

𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑧) ∙ (−

2

𝜃4
+

1

𝜃2
𝑠𝜃

𝜃
+
2𝑐𝜃

𝜃4
)   

(S.3.7) 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑥

𝜕𝑟𝑦
= 𝑟𝑦 ∙ (−𝒄𝑀𝑗

′ (𝑥) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑧) ∙ 𝑟𝑦 − 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑧) ∙ (

𝑐𝜃

𝜃2
−

1

𝜃2
∙
𝑠𝜃

𝜃
)) + 𝒄𝑀𝑗

′ (𝑧) ∙
𝑠𝜃

𝜃
+

𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑥 ∙ (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑟𝑦 ∙ 𝑟𝑥 ∙ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑦 + 𝒄𝑀𝑗

′ (𝑧) ∙ 𝑟𝑧) ∙ (−
2

𝜃4
+

1

𝜃2
𝑠𝜃

𝜃
+
2𝑐𝜃

𝜃4
)   

(S.3.8) 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑥

𝜕𝑟𝑧
= 𝑟𝑧 ∙ (−𝒄𝑀𝑗

′ (𝑥) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑧) ∙ 𝑟𝑦 − 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑧) ∙ (

𝑐𝜃

𝜃2
−

1

𝜃2
∙
𝑠𝜃

𝜃
)) − 𝒄𝑀𝑗

′ (𝑦) ∙
𝑠𝜃

𝜃
+

𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑥 ∙ (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑟𝑧 ∙ 𝑟𝑥 ∙ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑦 + 𝒄𝑀𝑗

′ (𝑧) ∙ 𝑟𝑧) ∙ (−
2

𝜃4
+

1

𝜃2
𝑠𝜃

𝜃
+
2𝑐𝜃

𝜃4
)  

(S.3.9) 



𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑥

𝜕𝑡𝑥
= 1, 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑥

𝜕𝑡𝑦
= 0, 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑥

𝜕𝑡𝑧
= 0   

(S.3.10) 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑦

𝜕𝑟𝑥
= 𝑟𝑥 ∙ (−𝒄𝑀𝑗

′ (𝑦) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑧 − 𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑥) ∙ (

𝑐𝜃

𝜃2
−

1

𝜃2
∙
𝑠𝜃

𝜃
)) − 𝒄𝑀𝑗

′ (𝑧) ∙
𝑠𝜃

𝜃
+

𝒄𝑀𝑗
′ (𝑥) ∙ 𝑟𝑦 ∙ (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑟𝑥 ∙ 𝑟𝑦 ∙ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑦 + 𝒄𝑀𝑗

′ (𝑧) ∙ 𝑟𝑧) ∙ (−
2

𝜃4
+

1

𝜃2
𝑠𝜃

𝜃
+
2𝑐𝜃

𝜃4
)  

(S.3.11) 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑦

𝜕𝑟𝑦
= 𝑟𝑦 ∙ (−𝒄𝑀𝑗

′ (𝑦) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑧 − 𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑥) ∙ (

𝑐𝜃

𝜃2
−

1

𝜃2
∙
𝑠𝜃

𝜃
)) +

(𝒄𝑀𝑗
′ (𝑥) ∙ 𝑟𝑥 + 2 ∙ 𝒄𝑀𝑗

′ (𝑦) ∙ 𝑟𝑦 + 𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑧) ∙ (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑟𝑦 ∙ 𝑟𝑦 ∙ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑦 +

𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑧) ∙ (−

2

𝜃4
+

1

𝜃2
𝑠𝜃

𝜃
+
2𝑐𝜃

𝜃4
)  

(S.3.12) 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑦

𝜕𝑟𝑧
= 𝑟𝑧 ∙ (−𝒄𝑀𝑗

′ (𝑦) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑧 − 𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑥) ∙ (

𝑐𝜃

𝜃2
−

1

𝜃2
∙
𝑠𝜃

𝜃
)) + 𝒄𝑀𝑗

′ (𝑥) ∙
𝑠𝜃

𝜃
+

𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑦 ∙ (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑟𝑧 ∙ 𝑟𝑦 ∙ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑦 + 𝒄𝑀𝑗

′ (𝑧) ∙ 𝑟𝑧) ∙ (−
2

𝜃4
+

1

𝜃2
𝑠𝜃

𝜃
+
2𝑐𝜃

𝜃4
)  

(S.3.13) 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑦

𝜕𝑡𝑥
= 0, 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑦

𝜕𝑡𝑦
= 1, 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑦

𝜕𝑡𝑧
= 0 

(S.3.14) 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑧

𝜕𝑟𝑥
= 𝑟𝑥 ∙ (−𝒄𝑀𝑗

′ (𝑧) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑦) ∙ 𝑟𝑥 − 𝒄𝑀𝑗
′ (𝑥) ∙ 𝑟𝑦) ∙ (

𝑐𝜃

𝜃2
−

1

𝜃2
∙
𝑠𝜃

𝜃
)) + 𝒄𝑀𝑗

′ (𝑦) ∙
𝑠𝜃

𝜃
+

𝒄𝑀𝑗
′ (𝑥) ∙ 𝑟𝑧 ∙ (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑟𝑥 ∙ 𝑟𝑧 ∙ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑦 + 𝒄𝑀𝑗

′ (𝑧) ∙ 𝑟𝑧) ∙ (−
2

𝜃4
+

1

𝜃2
𝑠𝜃

𝜃
+
2𝑐𝜃

𝜃4
)  

(S.3.15) 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑧

𝜕𝑟𝑦
= 𝑟𝑦 ∙ (−𝒄𝑀𝑗

′ (𝑧) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑦) ∙ 𝑟𝑥 − 𝒄𝑀𝑗
′ (𝑥) ∙ 𝑟𝑦) ∙ (

𝑐𝜃

𝜃2
−

1

𝜃2
∙
𝑠𝜃

𝜃
)) − 𝒄𝑀𝑗

′ (𝑥) ∙
𝑠𝜃

𝜃
+

𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑧 ∙ (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑟𝑦 ∙ 𝑟𝑧 ∙ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑦 + 𝒄𝑀𝑗

′ (𝑧) ∙ 𝑟𝑧) ∙ (−
2

𝜃4
+

1

𝜃2
𝑠𝜃

𝜃
+
2𝑐𝜃

𝜃4
)  

(S.3.16) 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑧

𝜕𝑟𝑧
= 𝑟𝑧 ∙ (−𝒄𝑀𝑗

′ (𝑧) ∙
𝑠𝜃

𝜃
+ (𝒄𝑀𝑗

′ (𝑦) ∙ 𝑟𝑥 − 𝒄𝑀𝑗
′ (𝑥) ∙ 𝑟𝑦) ∙ (

𝑐𝜃

𝜃2
−

1

𝜃2
∙
𝑠𝜃

𝜃
)) +

(𝒄𝑀𝑗
′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗

′ (𝑦) ∙ 𝑟𝑦 + 2 ∙ 𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑧) ∙ (

1

𝜃2
−

𝑐𝜃

𝜃2
) + 𝑟𝑧 ∙ 𝑟𝑧 ∙ (𝒄𝑀𝑗

′ (𝑥) ∙ 𝑟𝑥 + 𝒄𝑀𝑗
′ (𝑦) ∙ 𝑟𝑦 +

𝒄𝑀𝑗
′ (𝑧) ∙ 𝑟𝑧) ∙ (−

2

𝜃4
+

1

𝜃2
𝑠𝜃

𝜃
+
2𝑐𝜃

𝜃4
)  

(S.3.17) 



𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑧

𝜕𝑡𝑥
= 0, 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑧

𝜕𝑡𝑦
= 0, 

𝜕{ℛ(𝒓)∙𝒄𝑀𝑗
′ +𝒕}

𝑧

𝜕𝑡𝑧
= 1 

(S.3.18) 

Submitting equations (S.3.7)-(S.3.18) to (S.3.4), we can have the value of 𝜕𝐽𝑗/𝜕𝝀, and then sum 𝐽𝑗s 

of all the 𝒄𝑀𝑗
′ s, we can have ∇𝝀𝐽(𝝀, ℂ𝑀

′ , ℂ𝐹). 

  



4. The registration processes of the angel, dragon and happy Buddha point sets in the ablation 

study shown in Fig. 11 of Section 5.3 

 

Angel:  

 

 

Dragon: 

 

 

 

Happy Buddha: 
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