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Abstract—We propose a higher order mining (HOM) approach
for modelling, monitoring and analyzing district heating (DH)
substations’ operational behaviour and performance. HOM is
concerned with mining over patterns rather than primary or raw
data. The proposed approach uses a combination of different
data analysis techniques such as sequential pattern mining,
clustering analysis, consensus clustering and minimum spanning
tree (MST). Initially, a substation’s operational behaviour is
modeled by extracting weekly patterns and performing clustering
analysis. The substation’s performance is monitored by assessing
its modeled behaviour for every two consecutive weeks. In
case some significant difference is observed, further analysis
is performed by integrating the built models into a consensus
clustering and applying an MST for identifying deviating be-
haviours. The results of the study show that our method is
robust for detecting deviating and sub-optimal behaviours of
DH substations. In addition, the proposed method can facilitate
domain experts in the interpretation and understanding of the
substations’ behaviour and performance by providing different
data analysis and visualization techniques.

Index Terms—District Heating Substations; Clustering Anal-
ysis; Minimum Spanning Tree; Data Mining; Higher Order
Mining; Outlier Detection; Fault Detection

I. INTRODUCTION

A district heating (DH) system provides a number of build-
ings with heat and domestic hot water from a central boiler
plant through a distribution network for a limited geographical

area. Different components of the DH system at the primary

side are shown in Figure 1. The provided heat transfers through

substations from the distribution network into consumers’

buildings (the secondary side of the DH system) to get heat

and domestic hot water on demand. The DH substations

consist of different components and each can be a potential

source of faults. Faults in substations can arise from stuck

valves, fouled heat exchangers, malfunctions in temperature

transmitters, control systems and many more [1], [2].

Gadd and Werner [3] divide faults in DH substations and

secondary systems into three categories as follows: 1) faults

resulting in comfort problems such as lack of enough heat

or physical issues such as water leakage, 2) faults with

known cause but unsolved since their identification are time

demanding and costly, and 3) faults that require advanced fault

detection systems. Faults in substations do not necessarily

result in comfort problems for the consumers. Instead, in

most cases they cause sub-optimal behaviour for a long time

before they are noticed. Therefore, early detection of faults

Fig. 1: District heating system (picture borrowed from the

Swedish Energy Agency webpage1)

and deviations can reduce the maintenance cost and help avoid

abnormal event progression. This in return makes it possible to

lower the system’s temperatures and provides an opportunity

to use renewable and other low-value energy sources such as

excess heat.

In this study, we use a combination of data analysis

techniques for modelling, monitoring, and analyzing the DH

substations’ operational behaviours. We propose a higher order

mining (HOM) approach to facilitate domain experts in under-

standing faulty and deviating (sub-optimal) DH substations’

behaviours. HOM is a sub-field of knowledge discovery that

is applied on non-primary, derived data, or patterns to provide

human-consumable results [4]. In our approach we apply

sequential pattern mining on raw data, perform clustering

analysis, consensus clustering, and minimum spanning tree

(MST) construction on the extracted patterns.

We initially discretize the data and extract weekly frequent

patterns. The patterns extracted for each week are grouped into

clusters which model a DH substation’s operational behaviour.

Next, we analyze and assess the similarity between substation

behaviours for every two consecutive weeks. The assessed

similarity can be used to measure the discrepancy between the

substation performance within the studied time period. When

the discrepancy is significant (above a given threshold) we

perform further analysis by integrating the produced clustering

solutions into a consensus clustering. We further apply the

MST algorithm, which builds an MST, by considering the

exemplars of the built consensus clustering solution as nodes

1 http://www.energimyndigheten.se/en/sustainability/households/
heating-your-home/district-heating/
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and the distance between them as edges. An MST is a tree

with a minimum traversing cost, and in order to identify

deviating behaviours, we cut the longest edge(s) of the MST.

Small and distant sub-trees can be interpreted as outliers. In

addition, we calculate the similarity between the clustering

solutions generated for each two consecutive weeks for the

whole heating season. The calculated similarities can be used

to create a performance signature profile of the substation

and further be applied for comparing the performance of

substations that belong to the same heat load category.

The main contribution of this study is a data-driven ap-

proach based on the HOM paradigm that combines sequential

pattern mining, clustering analysis, and MST. We show the

applicability of the approach in district heating domain to:

1. Model and analyze weekly DH substation’s operational

behaviour.

2. Monitor DH substation’s performance by assessing the

similarity among the weekly built models and creating a

substation’s performance signature profile for the whole

studied period.

3. Identify deviating/faulty and sub-optimal substation’s be-

haviours by integration analysis of the weekly built

models.

II. RELATED WORK

Fault is an abnormal state within the system that may cause

a failure or a malfunction. Fault detection is the identifi-

cation of an unacceptable deviation of at least one feature

of the system from the expected or usual behaviour [5].

Fault detection has been researched and studied in different

domains. There are several factors such as the nature of data,

availability of labeled data, constraints and requirements of a

fault detection problem that makes it domain specific [6]. In

other words, most fault detection techniques are developed to

address specific problems.

Katipamula and Brambley [7], [8] conducted an extensive

review in two parts on fault detection and diagnosis (FDD)

for building systems. They classified FDD methods based on

the availability of a priori knowledge for formulating the di-

agnostics and highlighted their advantages and disadvantages.

In a recent review, Djenouri et al. [9] focused on the

usage of machine learning in smart building applications.

The authors classified the existing solutions in two main

categories; occupancy monitoring such as user preferences,

and energy/device-centric solutions. In each group the existing

solutions were presented, discussed, and compared.

Gadd and Werner [3] showed that hourly meter readings can

be used for detecting faults at DH substations. The authors

identified three fault groups: 1) low average annual tempera-

ture difference, 2) poor substation control, and 3) unsuitable

heat load pattern. The results of the study showed that low

average annual temperature differences are the most important

issues, and that addressing them can improve the efficiency

of the DH systems. However, solving unsuitable heat load

patterns is probably the easiest and the most cost-effective

fault category to be considered.

Xue et al. [10] applied clustering analysis and association

rule mining to detect faults in substations with and without
return-water pressure pumps. Cluster analysis was applied in

two steps 1) to partition the substations based on monthly

historical heat load variations and 2) to identify daily heat

variation using hourly data. The result of the clustering

analysis was used for feature discretization and preparation

for association rule mining. The results of the study showed

the method can discover useful knowledge to improve the

energy performance of the substations. However, for temporal

knowledge discovery, advanced data mining techniques are

required.

Månsson et al. [2] proposed a method based on gradient

boosting regression to predict an hourly mass flow of a well

performing substation using only a few number of features.

The built model is tested by manipulating the well performing

substation data to simulate two scenarios: communication

problems and a drifting meter fault. The model prediction

performance is evaluated by calculating the hourly residual

of the actual and the predicted values on original and faulty

datasets. Additionally, cumulative sums of residuals using a

rolling window that contains residuals from the last 24 hours

were calculated. The results of the study showed that the

proposed model can be used for continued fault detection.

Ece et al. [11] proposed an approach for automatically

discovering heat load patterns in DH systems. Heat load

patterns reflect yearly heat usage in an individual building

and their discovery is crucial for effective DH operations and

managements. The authors applied k-shape clustering [12] on

smart meter data to group buildings with similar heat load

profiles. Additionally, the proposed method was shown to be

capable of identifying buildings with abnormal heat profiles

and unsuitable control strategies.

Sandin et al. [13] used probabilistic methods and heuristics

for automated detection and ranking of faults in large-scale

district energy systems. The authors studied a set of methods

ranging from limit-checking and basic model to applying

more sophisticated approaches such as regression modelling,

clustering analysis on hourly energy metering.

Our current work is devoted to modelling, monitoring

and analyzing the DH substations’ operational behaviours by

following the HOM paradigm. In this study, hourly data is

transformed into categorical data and sequential pattern mining

is used to extract weekly frequent patterns. After this step,

we only focus on non-primary data (the extracted patterns) to

perform different levels of clustering analysis and knowledge

discovery to facilitate the domain experts in understanding

the substations’ operational behaviours. In contrast to the

studies discussed above, by extracting weekly patterns we are

able to monitor and assess the operational behaviours of a

DH substation with respect to all selected features. This can

support domain experts in better understanding the underlying

specifics of the detected deviations by supplying them with a

more complete view of the monitored phenomenon.
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III. METHODS AND TECHNIQUES

A. Sequential Pattern Mining

Sequential pattern mining is the process of finding fre-

quently occurring patterns in a sequence dataset. The records

of the sequence dataset contain sequences of events that

often have chronological order. In this study, we apply the

PrefixSpan algorithm [14] to extract frequent sequential pat-

terns. PrefixSpan applies a prefix-projection method to find

sequential patterns. Given a sequence dataset and a user-

specified threshold, the dataset is first scanned in order to

identify all frequent items with the length one in sequences.

Using a divide and conquer fashion the search space is divided

into a number of subsets based on the extracted prefixes.

Finally, for each subset a corresponding projected dataset is

created and mined recursively.

B. Clustering Analysis

1) Affinity Propagation: We use the affinity propagation

(AP) algorithm [15] for clustering the extracted patterns. AP

is based on the concept of exchanging messages between

data points. The exchanged messages at each step assist AP

to choose the best samples as exemplars and which data

points should choose those samples to be their exemplars.

Unlike most clustering algorithms, such as k-means [16] which

requires the number of clusters as an input, AP estimates the

optimal number of clusters based on the data provided and the

chosen exemplars are real data points. These characteristics

make AP a suitable clustering algorithm for this study.
2) Consensus Clustering: Gionis et al. [17] proposed an

approach for clustering that is based on the concept of aggre-

gation. They are interested in a problem in which a number

of different clustering solutions are given on some datasets of

elements. The objective is to produce a single clustering of

the elements that agrees as much as possible with the given

clustering solutions. Consensus clustering algorithms deal with

similar problems to those treated by clustering aggregation

techniques. Namely, such algorithms try to reconcile clus-

tering information about the same data phenomenon coming

from different sources [18] or from different runs of the

same algorithm [19]. In this study, we use the consensus

clustering algorithm proposed in [18] in order to integrate

the clustering solutions produced on the datasets collected

for two consecutive weeks. We consider the exemplars (the

representative patterns) of the produced clustering solutions.

These exemplars are then divided into k groups (clusters)

according to the degree of their similarity by applying the AP

algorithm. Subsequently, the clusters whose exemplars belong

to the same partition are merged in order to obtain the final

consensus clustering.

C. Distance Measure

The similarity between the extracted patterns are assessed

with Levenshtein distance (LD) metric [20]. The LD, also

known as edit distance, is a string similarity metric that mea-

sures the minimum number of editing operations (insertion,

deletion and substitution) required to transform one string into

the other. We have used the normalized LD where score zero
implies 100% similarity between the two patterns and one
represents no similarity. LD is a simple algorithm capable

of measuring the similarity between patterns with different

lengths. Although in this study the extracted patterns have

similar lengths, using LD can provide more flexibility when

patterns with different lengths are required to be studied.

Therefore, we choose LD as the similarity measure.

Given two clustering solutions C = {C1, C2, . . . , Cn} and

C ′ = {C ′1, C ′2, . . . , C ′m} of datasets X and X ′, respectively

the similarity, Sw, between C and C ′ can be assessed as

follows:

Sw(C,C
′) =

∑n
i=1(minm

j=1wi.d(ci, c
′
j))

2
+

∑m
j=1(minn

i=1w
′
j .d(ci, c

′
j))

2
,

(1)

where ci and c′j are exemplars of the clustering solutions Ci

and C ′j , respectively. The weights wi and w′j indicate the

relative importance of clusters Ci and C ′j compared to other

clusters in the clustering solutions C and C ′, respectively. For
example, a weight wi of a cluster Ci can be calculated as the

ratio of its cardinality to the cardinality of the dataset X , i.e.,

wi = |Ci|/|X|. The Sw has values in a range of [0,1]. Scores

of zero imply identical performance while scores close to one
show significant dissimilarities.

D. Minimum Spanning Tree

Given an undirected and connected graph G = (V,E),
a spanning tree of the graph G is a connected sub-graph

with no cycles that include all vertices. A minimum spanning

tree (MST) of an edge-weighted graph is a spanning tree

where the sum of the weights of its edges is minimum

among all the spanning trees. MSTs have been studied and

applied in different fields including cluster analysis and outlier

detection [21], [22], [23], [24], [25]. In this study we apply

an MST on top of the created consensus clustering solution

to further analyse the deviating substations’ behaviours. We

use Kruskal’s algorithm [26] for building the MST. Kruskal’s

algorithm follows a greedy approach, i.e., at each iteration it

chooses an edge which has least weight and adds it to the

growing spanning tree. The algorithm first sorts the edges of

G in an increasing order with respect to their weights. Then,

it starts adding edges in sorted order and only those that do

not form a cycle in the MST.

IV. PROPOSED METHOD

We propose a higher order mining approach for modelling,

monitoring, and analyzing the DH substations’ operational

behavior and performance. The proposed approach uses a

combination of different data analysis techniques such as

sequential pattern mining, clustering analysis, consensus clus-

tering, and the MST algorithm. Note that the last three data

mining techniques are not applied on primary data, but on

derived patterns and built models, i.e., they fall into the
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HOM paradigm. The latter brings new potential and per-

spective for knowledge discovery by generating more human-

understandable results and additionally facilitating the com-

parative analysis among substations. Thus, in the proposed

approach the available data are initially partitioned across

the time axis on a weekly basis, allowing for conventional

mining within each week and for higher order mining over

the patterns extracted from the weeks. This facilitates not only

revealing similarities and interesting differences among the

substation’s weekly operational behaviors but also contributes

to a more tractable process, e.g., modelling the substation

performance for the whole heating season. Some of the above

mentioned data analysis techniques have also been used in

[27] where the authors proposed a method for identification of

sequences of unexpected events in data streams. In this study,

these techniques are reproduced, evaluated and generalized for

solving different applied problems.

The main steps of the proposed method are as follows:

A. Data Preprocessing

In this step, we first remove all the duplicates and impute

missing values. Missing values can occur due to connection

problems of measuring instruments such as energy meters.

There are different imputation methods such as mean sub-

stitution, hot-deck imputation [28], regression analysis, and

multiple imputation [29]. In this study, we apply a simple

approach for imputation of missing values, i.e., each missing

value is replaced by averaging its neighbours. The first and the

last missing values are replaced with the next and the previous

available values, respectively. In our future work, we plan to

study and compare different methods for imputation of missing

values, e.g., such that consider the correlation structure of the

data in order to select the imputation method that is best suited

for DH substation related data.

Faults in measurement tools can appear as extreme values

or sudden jumps in the measured data. We use a Hampel

filter [30] which is a median absolute deviation (MAD) based

estimation to detect and smooth out such extreme values. The

filter computes the median, MAD, and the standard deviation

(SD) over the data in a local window. In this study, the size

of the window is considered to be seven, i.e., 3-neighbours on

each side of a sample and the threshold for extreme value

detection is set to be three. Therefore, in each window a

sample with the distance three times the SD from its local

median is considered as an extreme value and is replaced by

the local median.

Since we are monitoring the operational behaviour of the

substations based on outdoor temperature, 5 out of 10 features

that have a strong negative correlation with the outdoor tem-

perature are selected. These features are as follows: 1) Primary

temperature difference (ΔT1st ), 2) Secondary temperature dif-

ference (ΔT2nd ), 3) Primary mass flow rate (G1st ), 4) Primary

heat (Q1st ), and 5) Substation efficiency (ET
s ). The substation

efficiency is calculated by considering features from both

primary and secondary sides as follows:

ET
s =

ΔT1st

Ts,1st − Tr,2nd

(2)

where, ΔT1st is the difference between primary supply and

return temperatures, Ts,1st is the primary supply temperature,

and Tr,2nd is the return temperature at the secondary side.

Notice that the efficiency of a well-performed substation

should be close to 1 in a normal setting. However, due to

affect of the domestic hot water generation on the primary

return temperature, the ET
s can be higher than 1.

Table I shows all features included in the dataset. The

features, 4-6, 9, and 10 in bold font are selected in this

study due to their strong correlation with outdoor temperature.

The selected features have a linear correlation with outdoor

temperature, therefore, each one can be regressed on outdoor

temperature. The created regression model for each feature

gives us an approximation of that feature. We use this to

compute the residuals r = measuredvalue − predictedvalue.
Note that the aim here is twofold. Firstly, to reduce the

effect of outdoor temperature on the remaining features to

detect deviating behaviours of the DH substations while the

outdoor temperature is below 10 °C. Secondly, to de-trend the

seasonality of the data.

TABLE I: Features included in the dataset

No. Feature Notation Unit/Format

1 To Outdoor temperature °C

2 Ts,1st Primary supply temperature °C

3 Tr,1st Primary return temperature °C

4 ΔT1st Primary temperature difference °C
5 G1st Primary mass flow rate m3/h
6 Q1st Primary heat kW

7 Ts,2nd Secondary supply temperature °C

8 Tr,2nd Secondary return temperature °C

9 ΔT2nd Secondary temperature difference °C
10 ET

s Substation efficiency %

Note. Features in bold font are selected in this study due to their
strong correlation with outdoor temperature.

In this study we only assess the substations’ behaviour while

space heating is needed. Figure 2 shows the yearly seasonality

of outdoor temperature measured by building F. As one can

see the average outdoor temperature in January - April and

November - December is below 10 °C.
In order to prepare the data for the next step, we apply

z-score normalization on each feature and for every 24-hour

period: z = x−μ
σ , where x is a feature’s value, μ and σ are

the mean and the standard deviation of the feature within the

24-hour period, respectively. We perform the normalization

to scale the features to have a mean of zero and a standard

deviation of one. This makes it possible to assess a DH

substation’s operational behaviours on a weekly basis and in

comparison with other substations with the same heat load

profile. In other words, the z-score normalization is relevant

when the general shape of a feature, rather than its amplitude,

is important.
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(a) 2017

(b) 2018

Fig. 2: Yearly seasonality of outdoor temperature for building

F in a) 2017 and b) 2018.

As it was mentioned earlier, the proposed approach parti-

tions the available data across the time axis on a weekly basis

in order to extract patterns within each week. Therefore, it is

necessary to convert the continuous features to categorized or

nominal features, i.e., data discretization must be conducted.

This process can be performed in a supervised (class infor-

mation is taken into account to find proper intervals) or an

unsupervised fashion [31]. In this study, due to unavailability

of labelled data, k-means-based discretization is used. Note

that the size of k is set to be four, the same as the number

of season periods in Sweden. As a result of the discretization

process feature categories are defined as low, low medium,

medium high, and high.

B. Data Segmentation And Pattern Extraction

The size of the time window (partition) for pattern extraction

is important for further analysis. The proper partition length

leads us to monitor operational behaviour of the substations

rather than the residents’ behaviour. Therefore, after perform-

ing some preliminary tests and having discussions with domain

experts, the time window is set to be a week. The PrefixSpan

algorithm is used to find frequent sequential patterns with the

length of five in each week. Those sequential patterns that

satisfy the user-specified support are considered as frequent

ones. In this study, the user-specified support threshold is set

to be 1, i.e., any patterns that appear at least once will be

considered.

C. Data Analysis

The data analysis step can be further broken down into three

sub-steps: a) clustering of the extracted patterns, b) assessing

a substation’s behaviour by comparing the clustering solutions

produced for every two consecutive weeks, and c) conducting

further analysis and evaluation of the observed behaviour by

building a minimum spanning tree and detecting the potential

outliers. Sub-steps b) and c) can facilitate the domain experts

in further analysis and better understanding of the DH indi-

vidual substations’ behaviour and also in comparison among

the substations belonging to the same heat load category.

a) Clustering frequent sequential patterns: At this step, the

substation’s weekly operational behaviour is modeled.

This is preformed by clustering the extracted patterns

based on their similarities into groups. The similarity

between the patterns are calculated using LD.

b) Assessing a substation’s behaviours: The similarity be-

tween substation behaviours is analyzed and assessed

for every two consecutive weeks. This is done through

pairwise comparison of the exemplars of the clustering

solutions using equation 1. The assessed similarity can be

used to measure the discrepancy between the substation

performance within every two weeks period. When the

discrepancy is significant (above a given threshold, e.g.,

more than 25%) and the weekly average temperature is

below 10 °C, further analysis is preformed by integrating

the produced clustering solutions into a consensus clus-
tering. Moreover, the assessed similarities for the whole

period can be used to build a signature profile of the

substation’s performance. In addition, such performance

profiles can be applied for comparing the substations

belonging to the same heat load category.

c) Building a minimum spanning tree and detecting outliers:
The consensus clustering solution is used for building

an MST, where the exemplars are tree nodes and the

distances between them represent the tree edges. Notice

that an MST is a tree with a minimum traversing cost. In

order to identify unusual behaviours, the longest edge(s)

of the MST is removed. Smallest and distant sub-trees

created by the cut can be interpreted as outliers.

V. EXPERIMENTAL DESIGN

A. Dataset

The data used in this study is provided by an energy

company located in Southern Sweden. The dataset consists

of hourly average measurements from 82 buildings equipped

with the company’s smart system. The collected data was

obtained during February 2014 until December 2018. This

means 43,800 instances per building (24 instances per day).
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TABLE II: Detected deviations in different months during 2017.

No. Building January February March April May June - September October November December Total count

1 C 107 18 162 45 – – – 17 – 349
2 E 74 42 143 53 – – 28 99 83 522
3 F – 33 51 60 – – 80 87 159 470
4 L 114 42 186 193 63 – 126 111 62 897
5 M-S 35 166 60 – – – 80 33 42 416
6 P-S 40 23 99 323 – – 57 120 40 702

7 S-1 21 100 28 34 – – – 122 66 371

8 S-2 144 59 – – – – 37 45 31 316

9 S-S 112 87 9 9 – – 51 118 218 604

10 O-S 139 26 77 – – – 22 85 25 374

Note. Buildings in bold font are schools. Highlighted numbers shows the least number of detected deviations per month and in
total. ’–’ means the biweekly average outdoor temperature was above 10 °C, therefore, no further analysis has been done.

However, since most of the buildings have a high proportion of

missing values and rows in the time span of 2014 to 2016, we

have focused our analysis on data collected for 10 randomly

selected buildings for the period covering the recent two years

(2017 and 2018). The selected buildings are considered as

representatives for the whole set of available buildings. We

discuss and interpret the results obtained on their data for the

rest of our study.

B. Implementation And Availability

The proposed approach is implemented in Python version

3.6. The Python implementations of the PrefixSpan algo-

rithm and the edit distance are fetched from [14] and [20],

respectively. The affinity propagation algorithm and the k-
means-based discretization are adopted from the scikit-learn

module [32]. For constructing and manipulating a minimum

spanning tree the NetworkX package is used [33]. The Net-

workX package uses Kruskal’s algorithm for constructing the

MST. The implemented code and the experimental results are

available at GitHub2.

VI. RESULTS AND DISCUSSION

We have studied substations’ operational behaviour of 10

buildings during a period of two years (2017 and 2018).

For each building, we first model the substation’s weekly

operational behaviour. This is performed by grouping the

extracted frequent patterns into clusters of similar patterns.

In order to monitor the substation’s performance, we analyze

and assess the similarity between substation’s behaviours for

every two consecutive weeks. The assessed similarity is used

to measure the discrepancy between the substation’s perfor-

mance within every two week period. When the discrepancy

becomes more than 25% (a user-specified threshold) and if the

biweekly average temperature is below 10 °C, further analysis

is conducted by integrating the produced clustering solutions

into a consensus clustering. The obtained consensus clustering

solution is used for building an MST, where the exemplars

are tree nodes and the distances between them represent the

tree edges. In order to identify unusual behaviours, the longest

2 https://github.com/shahrooz-abghari/HOM-DH-Monitoring

edge(s) of the MST is removed. The smallest sub-trees created

by the cut are interpreted as faults or deviations. Table II

shows the total number of detected deviations per hour for

each building. Notice that four out of the ten studied buildings

are schools and the rest are residential buildings.

A. Building Substation Performance Signature Profile

As we mentioned earlier in Section IV-C, the assessed

similarities of a substation’s operational behaviour can be used

to build the substation performance signature profile for the

entire studied period. Additionally, such profiles can be used

for comparing the substations belonging to the same heat load

category. Figure 3 (a) shows the signature profiles of two

residential buildings, S-1 and S-2 in 2017. The two buildings

are quite similar and located in the same block. Figure 3 (b)

depicts the substations’ performance signature profiles of four

school buildings for the same year. In this plot, the substations’

performance of buildings S-S and O-S among others have some

similarities.

Although, the expectation was to observe similar perfor-

mance signatures from the buildings that are in the same

category, in most cases the substations show quite different

behaviours. The main reasons can be related to the difference

between average outdoor temperature within two weeks, social

behaviour of people, special holidays, and/or faulty substations

and equipment. It is also the case that buildings of same

build behave differently mostly due to installation issues or

unsuitable configurations. Nevertheless, this requires further

analysis by domain experts.

For the rest of this section we focus on building F and

discuss the corresponding results generated on its data.

B. Modelling Substation Operational Behaviour

Weekly operational behaviour of a substation can be mod-

eled by clustering the extracted patterns based on their simi-

larities into groups. Using the AP algorithm each cluster can

be recognized by its exemplar, a representative pattern of the

whole group. Figure 4 (a) shows the substation’s operational

model for week 16, 2017. As one can see, the clustering

solution contains 16 clusters which represents 168 (24 hours ×
7 days) different patterns. Each cluster models the substation’s
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Heating periodHeating period

(a) Residential buildings

Heating periodHeating period

(b) School buildings

Fig. 3: Operational performance signature profiles of a) two residential buildings (substations) located in the same block and

b) four schools. The signatures show the biweekly performance of the substations in 2017.

operational behaviour for some hours up to a couple of

days, based on its frequency. The number of clusters in each

clustering solution can be interpreted as different operational

modes of the substation for the studied week. When the

number of clusters is high this means that the substation has

operated in more different modes. The latter can be related to

the difference between outdoor temperature during days and

nights, social behaviour of the tenants, special holidays, and/or

faulty substations and equipment. The extracted patterns in

this study contain five features. Each feature can have a value

within a range low, low medium, medium high, and high,
where low is represented by one and high by four, respectively.

Notice that these values show the residuals between measured

and predicted values by the created regression model for each

feature.

We further analyze the operational behaviour models of

weeks 16 and 17 by calculating the similarity between the

exemplars of the corresponding clustering solutions. The cal-

culated dissimilarity is above 25% and the average weekly

outdoor temperature below 10 °C. Therefore, the proposed

method integrates the clustering solutions into consensus clus-

tering. Figure 4 (b) represents the substation’s operational be-

haviour model for the studied two weeks. The model contains

eight clusters and majority of the patterns, seven out of eight
(the green framed clusters in Figure 4 (a)) are shared between

the two weeks. Only cluster 7 belongs to week 17. In order

to detect deviating behaviour, first an MST is built on top of

the consensus clustering solution. Next, the longest edge(s) of

the tree is removed. This transforms the MST into a forest.

Sub-tree(s) with the smallest size can be marked as deviating
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behaviour. As one can notice cluster 1 (framed in red in

Figure 4 (b)) is detected as an outlier. This cluster appears

in 11 days and in total 30 times out of 336 (24 hours ×
14 days). The data collected for these particular days can be

further analyzed by domain experts to get better insight and

understanding of the identified deviating behaviour.

(a) The operational behavior of building F’s substation for week 16
of 2017. The substation’s behaviour is modeled by 16 clusters. Each
cluster is shown by its exemplar. Each feature can have a value
within a range low, low medium, medium high, and high, where
low is represented by one and high by four, respectively. The green
framed clusters are the exemplars presented also in the consensus
clustering solution (see Fig. 4 (b)).

(b) The consensus clustering integrating the clustering solutions for
weeks 16 and 17 of 2017. The majority of exemplars (seven out of
eight) are similar in both weeks while only one exemplar is chosen
from week 17. After building an MST on top of the consensus
clustering solution, cluster 1 (the red framed plot) is detected as
deviating behaviour of the substation for week 16 and 17.

Fig. 4: The operational behaviour of building F’s substation

during weeks 16 and 17 of 2017.

C. Substation Performance
Substation efficiency, ET

s , can be used as an indicator to as-

sess a substation’s operational behaviour throughout the entire

year. Figure 5 depicts the detected deviations for building F’s

substation using its average efficiency and outdoor temperature

for year 2017. Notice that in this study we only consider the

smallest sub-tree(s) after cutting the longest edge(s) of an MST

as outlier(s). Nevertheless, one can consider sorting the sub-

trees based on their size from smallest to the largest for further

analysis. Alternatively, one can define a threshold and cut those

edges with a distance greater than the threshold.
The deviations that are marked in Figure 5 represent the

less frequent patterns, which here are considered as abnormal

behaviours. For instance, in weeks 16 and 17, cluster 1

is marked as deviating behaviour of the substation due to

its proportion which is 30
336 = 9%. Possibly, this can be

interpreted that the following cluster is evolving, i.e., it might

disappear or expand.

We can analyze and assess the substation’s operational

behaviours for the whole year by counting the number of

detected deviations in each month. In Figure 6, one can

see that the number of detected outliers in January to April

compared to October to December is lower. In addition,

substation efficiency on average is closer to 100% for the

first four months. This means that when the average outdoor

temperature is approximately 3 °C the substation performs

better. During October to December, on the other hand the

efficiency by decreasing the average temperature to below

10 °C gets closer to 98%. This might be partly related to

the fact that the outdoor temperature during this period of

time is frequently fluctuating between above and below 10 °C.

However, since the number of detected deviations are doubled

by December this can be related to some kind of fault in the

substation.

(a) No. of detected deviations against average outdoor temperature

(b) No. of detected deviations against average substation efficiency

Fig. 6: Monthly number of detected deviations against a)
average outdoor temperature, b) average substation efficiency

for building F in 2017.

Figure 7 provides more detailed visualization showing de-

tected deviations aggregated each day of the week per month

for both average outdoor temperature and substation efficiency.

As one can notice the substation efficiency shows a sudden

drop in October. Further analysis of the data reveals that the
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Fig. 5: Detected deviations for building F in 2017. Each deviation is detected by building an MST on top a consensus clustering

solution for two weeks and cutting the longest edge(s) of the MST. The detected deviation are shown using average substation

efficiency and outdoor temperature for every two weeks.

(a) No. of detected deviations against average outdoor temperature

(b) No. of detected deviations against average substation efficiency

Fig. 7: Number of detected deviations aggregated per weekday for each month against a) average outdoor temperature, b)
average substation efficiency for building F in 2017.

substation was turned off from October 20th for almost four

days.

VII. CONCLUSION AND FUTURE WORK

We have proposed a higher order data mining approach for

modelling, analyzing and monitoring the operational behaviour

of DH substations. The proposed approach initially partitions

the available data across the time axis on a weekly basis,

allowing for conventional mining within each week and for

higher order mining over the extracted patterns from the

weeks. As demonstrated by the conducting experiments, this
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facilitates not only revealing similarities and interesting dif-

ferences among the substation’s weekly operational behaviors,

but also contributes to generating human-understandable and

tractable results.

The approach has been applied to and evaluated on over two

years of data for 10 buildings that are chosen at random. The

results have shown that the method is robust in identifying

and analyzing deviating and sub-optimal behaviours of the

DH substations. In addition, the proposed approach provides

different techniques for monitoring and data analysis, which

can facilitate domain experts in the interpretation and better

understanding of the DH substations’ operational behaviour

and performance.

For future work we aim to pursue further analysis and

evaluation of the proposed approach on richer data sets coming

from different sources (e.g, different types of buildings) by

cooperating more closely with the domain experts.

In the long-term perspective, we are interested in deriving

weekly patterns, discriminative in terms of the substation

behavior, and further linking the derived patterns (a substa-

tion’s operational modes) to performance indicators such as

efficiency. In addition, we have the ambition to extend the

proposed approach with means for root-cause analysis and

diagnosis of detected deviations by considering secondary side

data.
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