
IN DEGREE PROJECT INFORMATION AND COMMUNICATION
TECHNOLOGY,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2019

Accelerating CNN on FPGA
An Implementation of MobileNet on FPGA

YULAN SHEN

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Accelerating CNN on FPGA:
An Implementation of
MobileNet on FPGA

YULAN SHEN

Master in Embedded Systems
Date: September 5, 2019
Supervisor: Masoumeh Ebrahimi
Examiner: Johnny Öberg
School of Electrical Engineering and Computer Science
Host company: Synective Labs AB
Swedish title: Accelerera CNN på FPGA: Implementera MobileNet
på FPGA

iii

Abstract
Convolutional Neural Network is a deep learning algorithm that brings rev-
olutionary impact on computer vision area. One of its applications is im-
age classification. However, problem exists in this algorithm that it involves
huge number of operations and parameters, which limits its possibility in time
and resource restricted embedded applications. MobileNet, a neural network
that uses separable convolutional layers instead of standard convolutional lay-
ers, largely reduces computational consumption compared to traditional CNN
models. By implementingMobileNet on FPGA, image classification problems
could be largely accelerated.

In this thesis, we have designed an accelerator block for MobileNet. We
have implemented a simplifiedMobileNet onXilinxUltraScale+ Zu104 FPGA
board with 64 accelerators. We use the implemented MobileNet to solve a
gesture classification problem. The implemented designworks under 100MHz
frequency. It shows a 28.4x speed up than CPU (Intel(R) Pentium(R) CPU
G4560@3.50GHz), and a 6.5x speed up thanGPU (NVIDIAGeForce 940MX
1.004GHz). Besides, it is a power efficient design. Its power consumption is
4.07w. The accuracy reaches 43% in gesture classification.

Keywords
CNN, FPGA acceleration, Deep Learning, MobileNet, Image classification,
Computer vision

iv

Sammanfattning
CNN-Nätvark är en djupinlärning algoritm som ger revolutionerande inverkan
på datorvision, till exempel, bildklassificering. Det finns emellertid problem
i denna algoritm att det innebär ett stort antal operationer och parametrar,
vilket begränsar möjligheten i tidsbegränsade och resursbegränsade inbäddade
applikationer.MobileNet, ett neuralt nätverk som använder separerbara convo-
lution lager i stället för standard convolution lager, minskar i stor utsträckning
beräkningsmängder än traditionella CNN-modeller. Genom att implementera
MobileNet på FPGA kan problem med bildklassificering accelereras i stor
utsträckning.

Vi har utformat ett acceleratorblock för MobileNet. Vi har implementerat
ett förenklat MobileNet på Xilinx UltraScale + Zu104 FPGA-kort med 64
acceleratorer. Vi använder det implementerade MobileNet för att lösa ett gest-
klassificeringsproblem. Implementerade designen fungerar under 100MHz-
frekvens. Den visar en hastighet på 28,4x än CPU (Intel (R) Pentium (R) CPU
G4560@ 3,50 GHz) och en 6,5x snabbare hastighet än GPU (NVIDIAGeFor-
ce 940MX 1,004GHz). Det är en energieffektiv design. Strömförbrukningen
är 4,07w. Noggrannheten når 43% i gestklassificering.

Keywords
CNN, FPGA acceleration, Deep Learning, MobileNet, Image classification,
Computer vision

v

Acknowledgements
The thesis is supported by Synective Labs. Many thanks to Gunnar Stjernberg,
Viktor Wase and Roland Stenholm and Niklas Ljung.

I would like to acknowledge Zekun Du for his work in deciding the neural
network structure and the training of the neural network.

Many thanks to Masoumeh Ebrahimi for her supervision and direction in
the thesis work.
Stockholm, July, 2019
Yulan

List of Figures

2.1 Structure of Convolutional Neural Network 5
2.2 Structure of Standard Convolutional Layer 5
2.3 Different Padding Styles in Convolution 6
2.4 Stride-2 3× 3 Convolution 7
2.5 Structure of Pooling Layer 7
2.6 Structure of Fully Connected Layer 8
2.7 Convolution Kernels of Separable Convolution(a) and Stan-

dard Convolution(b) . 9
2.8 Structure of Depthwise Convolutional Layer 10
2.9 Structure of Pointwise Convolutional Layer 11
2.10 Basic DSP48E2 Functionality [1] 15

3.1 Block Design of the Acceleration System 21
3.2 Block Design of MobileNet 23
3.3 AXI Read [2] . 24
3.4 AXI Write [2] . 25
3.5 Structure of Datapath Controller 26
3.6 Block Design of an Accelerator in MobileNet 27
3.7 Structure of Depthwise Convolution Block 28
3.8 Structure of Pointwise Convolution Block 29
3.9 Shift Registers in Pooling Block 30
3.10 Hardware Structure of the First Fully Connected Layer 31

4.1 Zynq UltraScale+ ZU104 Appearance [3] 34
4.2 Performance (a), Power (b) and Efficiency (c) of CPU, GPU

and FPGA . 37

5.1 An Image from Original Dataset (a) and an Image from Ad-
justed Dataset (b) . 40

vi

List of Tables

2.1 Computational Cost of Popular CNN structures [4] 13
2.2 Computational Cost of MobileNet structures [5] 14

3.1 MobileNet structure to be implemented 22
3.2 Size of ROMs in System Design 24

4.1 Resource Usage of the Implemented MobileNet 34
4.2 Resource Usage of the Accelerator and the Fully Connected

Layer Processor . 35
4.3 MobileNet structure to be implemented 36
4.4 Power Usage of the Implemented MobileNet 37
4.5 Comparison of CPU, GPU, and FPGA in Efficiency 37

5.1 Software Simulation Result with Floating Point Weights . . . 40
5.2 Software Simulation Result with Integer Weights 41
5.3 Hardware Tested Result with Integer Weights 41
5.4 An Image Classification Result with Rounded Weights 42
5.5 An Image Classification Result with Rounded-Down Weights . 42

vii

List of Abbreviations

AXI Advanced eXtensible Interface
CLB Configurable Logic Block
CNN Convolutional Neural Network
CPU Central Processing Unit
DSP Digital Signal Processing
FF Flip Flop
FPGA Field Programmable Gate Array
fps Frame Per Second
GOPS Giga Operations Per Second
GPU Graphic Processing Unit
HLS High Level Synthesis
I/O Input/Output
MAC Multiply Accumulator
PL Programmable Logic
PS Processing System
RAM Random Access Memory
ReLU Rectified Linear Units
ROM Read Only Memory
RTL Register Transfer Level
SELU Scaled Exponential Linear Unit
WHS Worst Hold Slack
WNS Worst Negative Slack

viii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Goals . 2
1.4 Organization of the Thesis 2

2 Background 4
2.1 CNN . 4

2.1.1 Standard CNN . 4
2.1.2 MobileNet . 9
2.1.3 Computational Consumption Analysis 11

2.2 FPGA Platform . 14
2.2.1 FPGA Resources . 14

2.3 FPGA accelerated CNN . 16
2.3.1 Resource Optimized CNN Models 16
2.3.2 Related Works . 17
2.3.3 Advantages of Using FPGA to Accelerate CNN 18

2.4 Summary . 18

3 Block Design 20
3.1 MobileNet Structure . 20
3.2 System Design . 21

3.2.1 Memory Allocation 23
3.2.2 Data Transaction . 24

3.3 Accelerator Design . 26
3.3.1 Depthwise Convolution Block 27
3.3.2 Pointwise Convolution Block 28
3.3.3 Pooling Block . 29
3.3.4 ReLU Block . 30

ix

x CONTENTS

3.3.5 RAM Block . 30
3.4 Fully Connected Layer Processor 31
3.5 Summary . 32

4 Hardware Implementation and Results 33
4.1 FPGA Platform . 33
4.2 Resource Utilization . 33
4.3 Timing Performance . 35
4.4 Power consumption . 35
4.5 Comparison with CPU and GPU 35
4.6 Summary . 37

5 Gesture Classification example 39
5.1 Dataset . 39
5.2 Network Structure and Training 39
5.3 Accuracy Result . 40
5.4 Analysis . 41
5.5 Summary . 42

6 Conclusion 43

References 45

Chapter 1

Introduction

1.1 Background
Convolutional Neural Network (CNN) is a deep learning algorithm that re-
cently have brought revolution in computer vision area. CNN shows excellent
performance in solving complex computer vision problems including image
classification [6] [7], object detection [7] [8], semantic segmentation [8] and
image retrieval [9].

The wide usage of CNN in computer vision brings a rising interest in
applying the algorithm to portable and real-time applications. However, the
high performance of CNN algorithms comes at the price of large computa-
tional consumption. The algorithm involves large number of parameters and
large number of mathematical operations, which brings challenges to time and
space restricted applications. One optimization method is model simplifica-
tion. Strategies such as pooling, pruning [10], variations of traditional CNN
algorithms such as MobileNet [5] [11], ShuffleNet [12], CondenseNet [13]
are developed in order to optimize resource usage. On the other hand, more
and more applications turn to high performance hardware platforms. Graphics
Processing Units (GPU) and Field-Programmable Gate Array (FPGA) stand
out for their ability in doing massive parallel operations.

Both GPU and FPGA are growing fast in artificial intelligence acceleration
area. GPU is now dominating the market as it has less engineering cost and
it goes into market early. However, compared to GPU, FPGA has several
outstanding features that make it a rising star in accelerating deep learning
algorithms. The first is flexibility. FPGA allows engineers to reconfigure
underlying hardware architecture, even down to bit-level. It is a competitive
feature when lower precision deep learning algorithms, such as binary neural

1

2 CHAPTER 1. INTRODUCTION

network [14] and ternary neural network [15], are being explored by many
people today. The second is low latency. Latency of FPGAs is at themagnitude
of nanoseconds while it is microseconds for GPUs. The third is high power
efficiency. Xilinx Virtex Ultrascale+, FPGA board produced by Xilinx, has
general purpose compute efficiency of 277 GOP/s/W, while NVidia Tesla P4,
GPU produced by Nvidia, the efficiency is of 208 GOP/s/W [16]. Both hit the
market in 2017.

1.2 Purpose
The master thesis project aims at empowering CNN algorithms with less com-
putational cost, faster speed and higher power efficiency, making the powerful
and useful algorithm possible to be applicable to time and resource restricted
applications.

Due to its characteristics of flexibility, low latency, and high power effi-
ciency, FPGA is an ideal platform for neural network acceleration. Researches
have proved that by applying CNN on FPGA, faster speed and higher power ef-
ficiency could be achieved. Many researches have put up their FPGA solutions
to accelerate CNN. However, most researches focus only on the performance
of FPGA accelerated CNN, but few of them have been used to solve realistic
problems. In the master thesis project, not only the performance is discussed,
but also the FPGA solution is applied to a realistic problem.

1.3 Goals
In this project, the following goals will be reached.

• Propose an FPGA-based acceleration solution to accelerateMobileNet [5] [11].
• Implement the proposed solution on Xilinx Zynq UltraScale+ MPSoC

ZCU104 FPGA board to demonstrate the advantage of FPGA acceleration.
•Analyse the resource usage of the FPGA solution andmake a comparison

in performance and efficiency among FPGA solution, CPU solution and GPU
solution.

•Use the implemented neural network to solve a specific problem – gesture
classification.

1.4 Organization of the Thesis
The master thesis is organized in the following structure:

CHAPTER 1. INTRODUCTION 3

• Chapter 1 describes the problem.
• Chapter 2 is background. It introduces the structure of CNN and Mo-

bileNet. A comparison in resource usage between standard CNN and Mo-
bileNet is made. It includes an introduction to FPGA. It also includes related
works, including researches of resource optimized CNN models, other imple-
mented designs that accelerate CNN on FPGA, and the advantage of using
FPGA to accelerate CNN.

• Chapter 3 presents the block design of the MobileNet in detail.
• Chapter 4 presents the implementation result of the block design on the

target hardware platform.
• Chapter 5 introduces how the implemented MobileNet is used to solve

gesture classification problem.
• Chapter 6 includes conclusion and future work.

Chapter 2

Background

2.1 CNN
Convolutional Neural Network is a deep learning algorithm that shows great
capability in image classification. CNN extract features of images by convo-
lution and use the features to classify objects. It is designed to automatically
and adaptively learn spatial hierarchies of features [17] through training. An
image can be classified when the features vote for the most possible class that
the image belongs to.

Deep learning algorithms are deployed to two phases, one is training and
another is inference. As a supervised learning algorithm, CNN uses a set
of labeled images to train the network. Training process implements back-
propagation algorithm that updates the parameters in CNN. After the model
has been fine tuned and well trianed, the learned model will be used to classify
new samples. It is known as inference. The structure and parameters of a
neural network is fixed once the training process has done, while inference is
implemented every time a new data sample comes. Therefore, the acceleration
of the inference phase is mainly discussed.

2.1.1 Standard CNN
CNN is structured by layers. In an image classification problem, we expect
an image as an input layer and values representing the possibility of different
classes as an output layer. Between the input layer and the output layer, there
are multiple hidden layers. The hidden layers include convolutional layers,
activation function, pooling layers, fully connected layers etc. An illustration
is shown in Figure 2.1.

4

CHAPTER 2. BACKGROUND 5

Figure 2.1: Structure of Convolutional Neural Network

Convolutional Layer

A convolutional layer has M input channels and N output channels. Each input
channel contains a feature map sizedWf ·Hf . TheM ·Wf ·Hf input convolves
with a convolution kernel sizedM ·Wk ·Hk and produces aWf ·Hf output
feature map in one of the output channels. Figure 2.2 shows a convolution
with a single kernel. In the convolution kernels are trained weights of the
neural network. Convolution with N such kernels produces an output sized
N ·Wf ·Hf .

Figure 2.2: Structure of Standard Convolutional Layer

6 CHAPTER 2. BACKGROUND

Wf is the feature map width, and Hf is the feature map height. Wk is
the kernel width, and Hk is the kernel height. For each pixel in input C and
output G, the expression is shown in Equation 2.1, where K represents the
convolution kernel.

G[n, x, y] =

Wk
2∑

i=−Wk
2

Hk
2∑

j=−Hk
2

M−1∑
m=0

C[m,x+ i, y + j] ·K[n, i, j] (2.1)

Padding The size of output feature maps will shrink due to convolution.
Therefore, padding is used in order to keep the size of output feature maps the
same as the input. The idea is to attach values around the input feature map.
There are several padding styles distinguished by the values attached around
the boundary. Zero padding pads the inputs with zeros. Reflection padding
pads with reflection of the input boundary. Replication padding pads with
replication of the input boundary. Figure 2.3 shows an example with different
padding styles.

Figure 2.3: Different Padding Styles in Convolution

Stride Stride defines how many steps the convolution kernel will jump over
when shifting. It also indicates the factor by which to downscale. Figure 2.4
shows a 2D convolution with a 3× 3 convolution kernel and with stride of 2.
The size of the output feature map is downsacled by the factor of the stride in
both dimension.

Pooling Layer

Pooling layer, also called subsampling layer, is used to reduce the spatial size of
feature maps as well as to reduce the number of parameters and mathematical

CHAPTER 2. BACKGROUND 7

Figure 2.4: Stride-2 3× 3 Convolution

operations in the network [18]. Pooling layer could be configured in different
styles by defining its pooling window size, stride and method. Methods in-
clude max pooling and average pooling. For example, 2×2max pooling with
stride of 2 is commonly used in convolutional neural networks. It is shown
in Figure 2.5. It separates the feature map into several 2× 2 non-overlapping
rectangles and takes the maximum value in each rectangle. The output size is
reduced to 1

4
of input size as a result.

Figure 2.5: Structure of Pooling Layer

8 CHAPTER 2. BACKGROUND

Activation

A differentiable and nonlinear function is applied to the feature map and then
the result is sent to the subsequence layer as input. The function is called
activation function. Activation introduces nonlinearity to the network. It aids
the learning of high order polynomials [26] so that the network can learn and
perform a more complex task.

Common activation functions are Sigmoid (Equation 2.2), Rectified Lin-
ear Units (ReLU) (Equation 2.3), Scaled Exponential Linear Unit (SELU)
(Equation 2.4) etc.

Sigmoid(x) =
1

1 + e−x
(2.2)

ReLU(x) =

{
x x > 0

0 x ≤ 0
(2.3)

SeLU(x) = λ

{
x x > 0

α(ex − 1) x ≤ 0
(2.4)

Fully Connected Layer

In a fully connected layer, the feature map of the previous layer is flattened
to linear structure. Each unit in the feature map acts as a neuron and has full
connections to all neurons in the next layer. In a fully connected layer with M
input neurons and N output neurons, the connection is shown in Figure 2.6.

Figure 2.6: Structure of Fully Connected Layer

CHAPTER 2. BACKGROUND 9

For each neuron in input X and output Y, the expression is shown in Equa-
tion 2.5, where W represents the weight of each connection, and B represents
the bias of each output neuron.

Y [n] =
M−1∑
m=0

X[m] ·W [m,n] +B[n] (2.5)

2.1.2 MobileNet
MobileNet is a variation of Convolutional Neural Network. It is an efficient
model for mobile and embedded vision applications. It uses less parameters
and less mathematical operations yet maintains reasonable accuracy compared
to traditional CNNs. The idea is to use separable convolutional layers to take
the place of standard convolutional layers. M kernels sizedM ·Wk ·Hk used
in traditional CNN is replaced by M kernels sizedWk ·Hk and N kernels sized
M ·1·1, as shown in Figure 2.7. Despite the convolutional layer, pooling layer,
activation and fully connected layer inMobileNet are the same with traditional
CNN.

Figure 2.7: Convolution Kernels of Separable Convolution(a) and Standard
Convolution(b)

10 CHAPTER 2. BACKGROUND

Depthwise Convolutional Layer

The convolution with theWk ·Hk kernel is called depthwise convolution. In
a depthwise convolution, the number of input channels and the number of
output channels are the same. TheWf ·Wf feature map in each input channel
convolves with a Wk · Hk convolution kernel and produces an output feature
map sizedWf ·Wf to the corresponding output channel. Therefore, the input
size and the output size keep the same in a depthwise convolutional layer. An
illustration of depthwise convolution is shown in Figure 2.8.

Figure 2.8: Structure of Depthwise Convolutional Layer

For each pixel in input C and output G of a depthwise convolutional layer,
the expression is shown in Equation 2.6, where K represents the kernel.

G[m,x, y] =

Wk
2∑

i=−Wk
2

Hk
2∑

j=−Hk
2

C[m,x+ i, y + j] ·K[m, i, j] (2.6)

Pointwise Convolutional Layer

The convolution with theM · 1 · 1 kernel is called pointwise convolution. In a
pointwise convolution, there are N kernels sizedM ·1·1. TheM ·Wf ·Hf input
convolves with one kernel and produces aWf ·Hf feature map in one of the
output channels, as shown in Figure 2.9. The output is of the size ofN ·Wf ·Hf .
Pointwise convolutional layer is a special case of standard convolutional layer,
where the kernel height and kernel width are both 1.

CHAPTER 2. BACKGROUND 11

Figure 2.9: Structure of Pointwise Convolutional Layer

For each unit in input C and output G of a pointwise convolutional layer,
the expression is shown in Equation 2.7, where K represents the convolution
kernel.

G[n, x, y] =
M−1∑
m=0

C[m,x, y] ·K[n,m] (2.7)

2.1.3 Computational Consumption Analysis
Separable convolutional layer saves computational cost in both time and space
dimension compared to standard convolutional layer, which brings an advan-
tage to MobileNet in resource restricted embedded applications. On one hand,
separable convolutional layer uses less parameters than standard convolutional
layer. Less memory space is required to store the network information. On the
other hand, separable convolutional layer reduces the number of mathematical
operations, mostly multiply-accumulate operations, which leads to the reduc-
tion in time used to process a frame.

Computational Consumption in Standard Convolutional Layer Accord-
ing to Equation 2.1, in a standard convolutional layer, each neuron in the output
feature map is a result of M ·Wk · Hk multiply-accumulate operations. The
output feature map size isN ·Wf ·Hf . Therefore, the total number of multiply-
accumulate operations in a single layer is the product of the output size and

12 CHAPTER 2. BACKGROUND

the number of MAC operations for each neuron in the output.

MACStandard Convolution = M ·Wk ·Hk ·N ·Wf ·Hf (2.8)

Each output channel corresponds to a kernel of the size of M ·Wk · Hk.
Therefore, the number of parameters in a standard convolutional layer is

ParametersStandard Convolution = N ·M ·Wk ·Hk (2.9)

Computational Consumption in Separable Convolutional Layer Sepa-
rable convolution separates the standard convolutional layer into a depthwise
convolutional layer and a pointwise convolutional layer.

In depthwise convolutional layer, each output channel is a convolution
result of aWk ·Hk convolution kernel and aWf ·Hf feature map. Therefore,
the total number of MAC operations in a depthwise convolutional layer is

MACDepthwise Convolution = M ·Wk ·Hk ·Wf ·Hf (2.10)

The total number of parameters in a depthwise convolutional layer is

ParametersDepthwise Convolution = M ·Wk ·Hk (2.11)

In pointwise convolutional layer, the convolution kernel is of the size of
M · 1 · 1. Therefore, each neuron in the output feature map is a result of
M multiply-accumulate operations. The total number of multiply-accumulate
operations in a single layer is the product of the output feature map size and
the number of MAC operations for each neuron in the output feature map.

MACPointwise Convolution = M ·N ·Wf ·Hf (2.12)

The total number of parameters in a pointwise convolutional layer is

ParametersPointwise Convolution = M ·N (2.13)

Combining a depthwise convolution and a pointwise convolution is a sepa-
rable convolution. The result of separable convolution is compared to standard
convolution.

MACSeparable Convolution

MACStandard Convolution

=
M ·Wk ·Hk ·Wf ·Hf + M ·N ·Wf ·Hf

M ·N ·Wk ·Hk ·Wf ·Hf

=
1

N
+

1

Wk ·Hk

(2.14)

CHAPTER 2. BACKGROUND 13

ParametersSeparable Convolution

ParametersStandard Convolution

=
M ·Wk ·Hk + M ·N

N ·M ·Wk ·Hk

=
1

N
+

1

Wk ·Hk

(2.15)

AsWk ·Hk is usually fixed to 3 × 3 or 5 × 5, in most cases, by applying
separable convolution could reduce the number of MAC and the number of
parameters by 10 to 20.

Computational Consumption in Fully Connected Layer The fully con-
nected layers in CNN are essentially matrix multiplications. A fully connected
layer with M input and N output is a N ·M matrix multiplied with a M · 1
matrix and get aN · 1matrix as a result. TheN ·M matrix stores the weights
for the fully connected layer. The M · 1 matrix represents the input neurons
and the N · 1 matrix represents the output neurons.Therefore,

MACFully Connected Layer = M ·N (2.16)

ParametersFully Connected Layer = M ·N (2.17)

Computational Consumptions of Different Models In Table 2.1, a com-
parison among popular CNNmodels is made based on the number of multiply-
accumulate operations, the number of parameters, and the accuracy. The ac-
curacy is measured on the ImageNet [19] benchmark. ImageNet [19] is the test
dataset for ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an
annually held challenge in the accuracy of object detecting. The dataset con-
tains images collected from the Internet and these images are hand annotated
to 1000 object categories.

Table 2.1: Computational Cost of Popular CNN structures [4]
Number of

MAC operations
Number of
parameters

ImageNet
Accuracy

VGG16 [20] 15.5G 138M 71.9%
AlexNet [6] 724M 61M 57.1%

GoogLeNet [21] 1.58G 6.99M 68.7%
ResNet50 [22] 3.86G 25.5M 75.3%

syl
高亮

14 CHAPTER 2. BACKGROUND

Table 2.2 shows the number of MAC operations and the number of param-
eters of MobileNet structures. On ImageNet [19] benchmark, 1.0 MobileNet-
224 has achieved similar accuracy with relatively large CNNs such as VGG16,
GoogleNet and ResNet50, and 0.50MobileNet-160 has achieved similar accu-
racy with AlexNet. However, the computational cost is much less than tradi-
tional CNNmodels in both 1.0 MobileNet-224 and 0.50 MobileNet-160. Mo-

Table 2.2: Computational Cost of MobileNet structures [5]
Number of

MAC operations
Number of
parameters

ImageNet
Accuracy

1.0 MobileNet-224 [5] 569M 4.2M 70.6%
0.50 MobileNet-160 [5] 76M 1.32M 60.2%

bileNet shows a capability in reducing both the number ofmultiply-accumulation
operations and the number parameters, while maintaining the accuracy.

2.2 FPGA Platform
FPGA is the abbreviation of Field programmable Gate Array. As indicated
by its name, it comprises of an array of programmable logic blocks that are
connected via programmable interconnects.

FPGA has three main advantages, flexibility, low latency and high energy
efficiency. Therefore, FPGA is widely used in producing highly customizable
SoCs, ASIC verification, high performance computing etc.

Modern FPGA evaluation board is usually an integration of Processor Sys-
tem (PS) and Programmable Logic (PL). Processor System is a general pur-
pose system that is usually made by a powerful CPU processor. Programmable
Logic contains the reconfigurable resources that is commonly recognized as
FPGA resources including Look-up Table (LUT), Digital Signal Processor
(DSP), and Block Random Access Memory (BRAM).

2.2.1 FPGA Resources
LUT

Look-up Table (LUT) works as function generators. In Xilinx Ultrascale+
architecture, 6-input LUTs are used. Combining several LUTs and some other
components such as flip flops, arithmetic and carry chains, wide multiplexers

syl
高亮

CHAPTER 2. BACKGROUND 15

forms a Configurable Logic Block (CLB). CLB is the main resource for im-
plementing general-purpose combinatorial and sequential circuits on FPGA.

DSP

Digital Signal Processor (DSP) slices on FPGA could perform various com-
monly used arithmetic operations. The use of DSP could take advantage of
hardware parallelism to provide high data throughput and high efficiency for
DSP applications. DSP48E2 is the DSP slice used in Xilinx Ultrascale+ MP-
SoC devices. The basic functionality is shown in Figure 2.10. One DSP slice
could be configured to perform one of the arithmetic operations, including 4-
input addition, multiplication, multiply-accumulation and etc. The data width
of the input and the output could also be configured. It could be maximum 48
bit. The DSP slice is optimized to have low power consumption, high speed,
small size while maintaining its flexibility.

Figure 2.10: Basic DSP48E2 Functionality [1]

BRAM

Block Random Access Memory is the major memory element on FPGA. They
are scattered and interleaved with other configurable components like DSP
and LUT on FPGA. Close interaction with DSP and LUT offers BRAM great
flexibility.

The block RAM in Xilinx UltraScale architecture-based devices stores up
to 36 Kbits of data. It could be configured as various memory blocks. It can
be either RAM or ROM. It can have either have one port or two ports. The
port width and number of lines can be defined by users.

16 CHAPTER 2. BACKGROUND

2.3 FPGA accelerated CNN

2.3.1 Resource Optimized CNN Models
Large resource consumption of CNN algorithm is not only a challenge for
embedded systems, but also an abandon for PC based applications. Many
methods have been explored to reduce the number of parameters and the num-
ber of mathematical operations.

Some methods focus on optimization of convolutional layer, as it is the
most time and resource consuming layer in CNN algorithm. Factorization is
one method. The idea is to use a low rank basis of kernels that are separable in
the spatial domain to approximate the 3D kernels used in standard CNN [23].
MobileNet is one of the state-of-art models using separable convolution as
introduced in 2.1.2. Another way is to implement the convolution algorithm
by FFT. [24] performs convolutions as products in the Fourier domain, and
reuses transformed feature maps many times.

Some models are designed for easier parallelization. Group convolution
is an example. The concept is first introduced in AlexNet [6]. The convo-
lution channels are separated to several groups and each group has its own
set of convolution kernels. Convolution is independent in each group until
at a certain depth, the channels will mix up. In this way, the interconnection
between layers and layers is reduced and it allows parallelization of the groups.
CondenseNet [13] is another group convolution example. Instead of manually
setting the groups, it groups the channels by a learning process.

Some minimize the model by cutting off redundant information. Pruning
is a strategy used in inference phase by iteratively removing the least important
parameters—feature maps in this case—according to heuristic selection crite-
ria [25]. Networks with low precision data format are being explored. In order
to downscale the datawidth while maintaining its accuracy, various researches
focus on quantization methods. [26] uses low precision dynamic fixed point
to train the network. Some models use extreme low precision, as introduced
in [14] [15] [27].

Recentmodels are usually combinations of several strategies. ShuffleNet [12]
is a combination of separable convolution and group convolution. SEP-Nets [28]
applies binary weights to MobileNet.

CHAPTER 2. BACKGROUND 17

2.3.2 Related Works
Due to its complexity, acceleration solutions of traditional CNN are usually
aided by high-level language and high-level synthesis tools. [29] uses unrolling
and pipelining strategies aided by Vivado HLS. The solution reaches 17.42x
speedup than CPU. A solution based on OpenCL FPGA framework reaches
4.14x speedup on VGG model than CPU. [30] Distributed architecture pro-
vides another solution in acceleratingCNNon FPGA. [31] proposed an energy-
efficient model using a deeply pipelined FPGA cluster. Another solution called
FPDeep uses FPGA clusters to train CNNs [32].

Besides the challenge of implementing CNN models, allocating memory
space to store large number of weights and intermediate results is another
challenge. Off-chip memory is a common solution. However, large number of
externalmemory accesses result in long latency and large energy consumption.
[33] builds a 2-level memory cache using on-chip memories. The cache hier-
archy reduces latency and energy consumption by several orders of magnitude
than external memory access. [34] use layer fusion technique to avoid frequent
access to external memories. Compared with AlexNet, the fused-layer method
gives a 28% savings in off-chip data transfer, even when applied to the first two
layers.

In order to reduce complexity and resource usage, low precision CNN
algorithms are being explored. By applying low precision data format, less
memory space is required to store the weights and intermediate results. In-
stead of 32-bit floating point number used in most software applications, some
hardware solutions adopts 32-bit integer wights, 16-bit integer weights, or
even bitwise weights. [35] is a C-based HLS methodology to accelerate Bi-
narized Convolutional Neural Network on FPGA. The solution has reached
high throughput with low resource usage. Another solution FP-BNN is pre-
sented in [36]. It also reveals the fact that reduction in precision results in
accuracy loss. Binarized AlexNet in the design suffers from a 13% accuracy
drop compared to the original one.

Since MobileNet is proposed, interest in applying it on FPGA has kept
high. Because it involves less parameters and multiply-accumulations than
standard CNN, RTL design could be possible to implement for MobileNet.
Matrix multiplication engine (MME) array is proposed in [37]. It divides the
feature map into severalWf ·Hf ·32 submatrices. There are arrays of multipli-
ers to ensure parallelization in each submatrix. The network is implemented
on Arria 10 SoC and reaches the performance of 266.2 f/s. Another solution is
a streaming architecture with two passes [38], one for depthwise convolution

syl
高亮

18 CHAPTER 2. BACKGROUND

and another for pointwise convolution. Multipliers are shared between passes.
It is implemented on Stratix 5GSD8 and reaches the performance of 43.01 f/s.

2.3.3 Advantages of Using FPGA to Accelerate CNN
Flexibility, low latency and high efficiency are three major advantages that
FPGA have over CPU and GPU. Flexibility shows in that FPGA allows en-
gineers to reconfigure underlying hardware architecture, even down to bit-
level. It is the main characteristic that distinguish FPGA with general purpose
hardware platforms. From the perspective of latency, latency of FPGA is at the
magnitude of nanoseconds. As for GPU, it is at the magnitude of microsec-
onds. FPGA generally works on relatively slow clock frequency compared to
CPU and GPU, but shows better or no worse calculation capacity. Therefore,
FPGA could have higher power efficiency. For example, Xilinx Virtex Ultra-
scale+, FPGA board produced by Xilinx, and NVidia Tesla P4, GPU produced
by Nvidia are both hardware platforms that came to market in 2017. The
former one has general purpose compute efficiency of 277 GOP/s/W, while the
general purpose computer efficiency of the latter one is 208 GOP/s/W [16].

Besides the nature of FPGA platform, CNN is an algorithm that has huge
potential in acceleration. CNN involves large number ofmultiply-accumulation
operations that could be parallelized. The calculations in a convolutional layer
largely depend the results of previous layer. However, the calculations in
the same convolutional layer are mostly independent, which builds the base
for mass parallelization. From another perspective, CNN algorithm is now
flourishing with the development of numeric new models. Each has its unique
datapath, neural network pattern, data format and etc. FPGA could meet the
specific requirements of the models and reach rather high bandwidth. For
example, BinaryNet [14] is a neural network that uses binarized weights and
data. It uses XOR operations to replace multiplication operations in traditional
CNN. The network could be implemented by FPGA as it could describe a
model precisely in bit-level. However, on general purpose platform like CPU
and GPU, low precison data format is supported. Fitting the neural network
on CPU or GPU could cost more resources than the binarized neural network
actually requires.

2.4 Summary
The structures of traditional CNN and one of its variation MobileNet are in-
troduced in this chapter. It also highlights the difference between standard

CHAPTER 2. BACKGROUND 19

CNN and MobileNet. A comparison is also made between standard CNN and
MobileNet in resource usage and computational cost. Conclusion is made that
MobileNet, a neural network that uses separable convolutional layer instead
of standard convolutional layer, uses less parameters and involve less MAC
operations than standard CNN.

An introduction to FPGA is made in this chapter. The resource elements
on FPGA are introduced.

How people use FPGA to accelerate CNN is introduced in this chapter.
It introduces how researches optimize the resource usage of CNN. It also
introduces previous work of accelerating CNN on FPGA. It also includes the
features of FPGA and explains why FPGA is an ideal platform to performCNN
algorithms.

Chapter 3

Block Design

In this chapter, we have designed a MobileNet accelerator block. We have
also designed a system to integrate the accelerators to accelerate a specific
MobileNet. The MobileNet can be used to solve image classification prob-
lems.

3.1 MobileNet Structure
Images to be classified are 128 × 128 grey-scale images. They are preloaded
on PS. The image data is 8-bit in width. The images will be sent to PL and
processed by a predefined MobileNet on PL. When the calculation is done,
the classification result will be sent back to PS. The classification result is in
form of an array of 32-bit integers. Each integer in the array represents the
possibility of one class. The larger the integer is, the more possibly the image
belongs to the class.

The structure of the network is listed in Table 3.1. The original Mo-
bileNet in [5] is designed for images sized 224 × 224. It has 14 depthwise
convolutional layers, 13 pointwise convolutional layers, 5 pooling layer, and
1 fully connected layer, with maximum 1024 output channels. The network
is designed for complex tasks with 1000 classes and it is not designed for
embedded applications. Therefore, the MobileNet structure used in this thesis
is a compressed one. It is originated from [39]. The compressed MobileNet
has an input image sized 128 × 128 and an output of 6 classes. It has 6
depthwise convolutional layers, 5 pointwise convolutional layers, 4 pooling
layers, and 2 fully connected layers, with maximum 64 output channels. In
the design, all the depthwise convolutional layers adopt kernels of the size of
3×3. Zero paddings are applied to all depthwise convolutions. All the pooling

20

CHAPTER 3. BLOCK DESIGN 21

layers are 2-stride 2× 2 max pooling.
The total number of parameters used in the MobileNet structure is 34256

according to Eq. 2.15, Eq. 2.13 and Eq. 2.17. The total number of multiply
accumulate operations is 7.40M according to Eq. 2.10, Eq. 2.12 and Eq. 2.16.

3.2 System Design
The images to be classified are stored in PS. The trained weights used in the
network are stored in PL. There are three ROMs in PL, storing the weights
of depthwise convolutional layer, the weights of pointwise convolutional layer
and the weights of fully connected layer respectively. The network takes the
image from PS and takes the weights from ROMs in PL. When the calculation
is done in the network, it sends the results back to PS. The block design of the
acceleration System is shown in Figure 3.1.

Figure 3.1: Block Design of the Acceleration System

The MobileNet module consists of 64 accelerators and a fully connected
layer processor, as shown in Figure 3.2. The calculation in different channels
are independent. There are maximum 64 channels in the designed MobileNet.
Therefore, parallelization capacity can be fully occupied when 64 accelera-
tors working in parallel. Each accelerator can operate depthwise convolution,
pointwise convolution, pooling and ReLU. The structure of the accelerator will

22 CHAPTER 3. BLOCK DESIGN

Table 3.1: MobileNet structure to be implemented
Procedure
Number

Layer
Number

Input
Channel

Output
Channel

Input
Size

Output
Size

Execution

Procedure 0
Layer 0 1 8 128*128 128*128 Depthwise

Convolution
Layer 1 8 8 128*128 64*64 Pooling
Layer 2 8 8 64*64 64*64 ReLU

Procedure 1 Layer 3 8 8 64*64 64*64 Depthwise
Convolution

Layer 4 8 8 64*64 64*64 ReLU

Procedure 2
Layer 5 8 32 64*64 64*64 Pointwise

Convolution
Layer 6 32 32 64*64 64*64 ReLU
Layer 7 32 32 64*64 32*32 Pooling

Procedure 3 Layer 8 32 32 32*32 32*32 Depthwise
Convolution

Layer 9 32 32 32*32 32*32 ReLU

Procedure 4
Layer 10 32 64 32*32 32*32 Pointwise

Convolution
Layer 11 64 64 32*32 16*16 Pooling
Layer 12 64 64 16*16 16*16 ReLU

Procedure 5 Layer 13 64 64 16*16 16*16 Depthwise
Convolution

Layer 14 64 64 16*16 16*16 ReLU

Procedure 6 Layer 15 64 64 16*16 16*16 Pointwise
Convolution

Layer 16 64 64 16*16 16*16 ReLU

Procedure 7 Layer 17 64 64 16*16 16*16 Depthwise
Convolution

Layer 18 64 64 16*16 16*16 ReLU

Procedure 8
Layer 19 64 64 16*16 16*16 Pointwise

Convolution
Layer 20 64 64 16*16 8*8 Pooling
Layer 21 64 64 8*8 8*8 ReLU

Procedure 9 Layer 22 64 64 8*8 8*8 Depthwise
Convolution

Layer 23 64 64 8*8 8*8 ReLU

Procedure 10 Layer 24 64 16 8*8 8*8 Pointwise
Convolution

Layer 25 16 16 8*8 8*8 ReLU
Fully Connected Layer

Procedure
Number

Layer
Number Input Neurons Output Neurons

Procedure 11 Layer 26 1024 (8*8*16) 16
Layer 27 16 6

CHAPTER 3. BLOCK DESIGN 23

be explained in detail in Section 3.3. Data is transferred from accelerator to
accelerator through data bus. The data bus is managed by a controller.

Figure 3.2: Block Design of MobileNet

3.2.1 Memory Allocation
As the MobileNet used in the project is a compressed one, the number of
parameters used in the neural network is small enough to be stored in on-chip
memories. The weights for depthwise convolution, pointwise convolution and
fully connected layers are stored separately in 3 ROMs. All the weights are
8-bit signed integers. The size of the ROMs are listed in Table 3.2.

ROMDep is the ROM for depthwise convolution, All the weights for a sin-
gle layer are stored in a line. There are 6 depthwise convolutional layer in the
design and the maximum number of parameters in a layer is 576. Therefore,
it is 4608 bit in width and has 6 lines. If the number of parameter in a layer is
less than 576, zeros are filled in blank space.

ROMPnt is the ROM for pointwise convolution, all the weights for a single
layer are stored in aN ·M array. Because the maximum N in the design is 64,
the weight array is fit in a 64 ·M array. If the number of output channel is less
than 64, the blank space is filled with zero. Therefore, the ROM is 512-bit in
width and have 232 lines.

The first fully connected layer has 1024 input neurons and 16 output neu-
rons. Weights for the first fully connected layer are stored in a 16×1024 array.
The second fully connected layer has 16 input neurons and 6 output neurons.
Weights are stored in a 6 × 16 array. ROMFC , the ROM for the weights of
fully connected layer, is 128-bit in width and have 1040 lines.

There is a RAM for the storage of original images. It is 8-bit in width and
have 16384 lines as the image is 128× 128 in size.

24 CHAPTER 3. BLOCK DESIGN

Table 3.2: Size of ROMs in System Design
Width(bit) Lines Size(kB)

ROMDep 4608 6 3.375
ROMPnt 512 232 14.5
ROMFC 128 1040 16.25

Inside each accelerator in Figure 3.2, there is a RAM to store intermediate
result. It will be explained in detail in Section 3.3.

3.2.2 Data Transaction
Data transaction Between PL and PS

In the system, the image to be classified should be transferred from PL to
PS and the classification result should be transferred from PL to PS after
calculation.

Data transaction between PL and PS adopts Advanced eXtensible Interface
(AXI) protocol [2]. AXI protocol ensures high speed data transformation from
point to point.

AXI Interface consists of five channels: Read Address Channel, Write Ad-
dress Channel, Read Data Channel, Write Data Channel, and Write Response
Channel. Different types of messages are transmitted separately via indepen-
dent channels. A handshake-like procedure is required before all transmissions
in each channel. A valid signal represents that the address or the data from the
source is valid. A ready signal indicates that the terminal is ready for receiving
messages.

Figure 3.3: AXI Read [2]

CHAPTER 3. BLOCK DESIGN 25

As shown in Figure 3.3, in a read operation, the master sends a read address
valid signal and read address to the slave when the read address channel is
ready. Then the slave will send read data back through read data channel.

Figure 3.4: AXI Write [2]

As shown in Figure 3.4, in a write channel, the master sends a write address
valid signal and write address to the slave when the write address channel is
ready. It also sends a write data valid signal and write data to the slave when
the write data channel is ready. Then the slave will send a write response back
to the master, indicating whether the write operation is successful or not.

In the thesis project, data bandwidth between PL and PS in this system is
32-bit. Read requests are sent from PL side. Data read is done in a read burst
mode, meaning that 16 32-bit will be sent consecutively from PS to PL, and
each 32-bit data takes one clock cycles. Once a read burst is done, PL will
send another read request, until the whole image has been transferred. 256
read requests are needed to transfer a 128 × 128 image. In a write process,
when the results are produced by MobileNet. PL will send a write request to
PS. If PS side has prepared to receive data, data will be sent to PS in a write
burst mode. 16 32-bit data will be sent consecutively to PS.

Data Transaction Inside PL

Data is transferred inside PL through data bus. As shown in Figure 3.2, data
transaction inside PL is organized by a data bus controller.

Data bus controller is responsible for all internal data transaction in the
network. The data bus controller has three major functions.

The first is to inform the accelerators with layer information. An accel-
erator in the network requires layer information to choose correct data path,

26 CHAPTER 3. BLOCK DESIGN

Figure 3.5: Structure of Datapath Controller

weights and corresponding input data to do calculation. Layer information
includes layer number, number of input channels, number of output channels
and feature map size. Data bus controller is responsible for providing all in-
formation that the accelerators require. It sends control instructions indicating
layer structure to the accelerators when a layer execution is going to start, so
that the accelerator could work properly.

The second, the data bus controller is responsible for data transaction from
ROM to the accelerators. Weights for depthwise convolution, pointwise con-
volution and fully connected layer are stored in separate ROMs. The data bus
controller reads weights from correct ROM and sends them to corresponding
accelerators.

The third, the controller is in charge of data transaction between acceler-
ators. It requires data from the RAM in the accelerators which contains the
feature map data of the previous layer and send the data to the accelerators that
are in need of the data.

The interconnection between data bus controller, the accelerators and the
ROMs is shown in Figure 3.5.

3.3 Accelerator Design
As shown in Figure 3.6, an accelerator in the network is composed of a RAM
to store intermediate results, a depthwise convolution block, a pointwise con-

syl
高亮

CHAPTER 3. BLOCK DESIGN 27

volution block, a pooling block, and a ReLU block.

Figure 3.6: Block Design of an Accelerator in MobileNet

The accelerator can cope with four procedures corresponding to four dat-
apaths: depthwise convolution followed by ReLU, depthwise convolution fol-
lowed by pooling and then ReLU, pointwise convolution followed by ReLU,
and pointwise convolution followed by pooling and then ReLU. Datapath is
chosen depending on layer information passed to the accelerator.

3.3.1 Depthwise Convolution Block
Depthwise convolution block is responsible for depthwise convolution in Mo-
bileNet. The structure is shown in Figure 3.7

A feature map is read and sent to depthwise convolution block pixel by
pixel from left to right and from top to down. A result buffer that covers 2
complete lines and the first 3 pixels of a third line is used to store the temporary
result. Every time a pixel is shifted in, it is multiplied by 9 kernel weights in
the 3 × 3 convolution window and then added to corresponding registers in
the result buffer. It is done by 9 MAC blocks. The result is then shifted out. It
will be passed to the next block for further calculation.

The weights are 8-bit signed integers and the feature map pixels are 8-bit
unsigned integers. The MAC block performs the multiply-accumulate oper-
ation of the two and get an output of 16-bit signed integer. The result buffer
that the stores the temporary result is also 16-bit in width. The maximum
feature map size is 128×128. Therefore, the length of the result buffer is 259.
However, as the neural network has different feature map sizes for different

28 CHAPTER 3. BLOCK DESIGN

layers. The depthwise convolution block can adapt the use of the shift registers
according to input feature map size. In this design, feature maps with the size
of 128 × 128, 64 × 64, 32 × 32, 16 × 16 and 8 × 8 can be processed in
the depthwise convolutional block. For example, with the feature map size of
64× 64, only 131 of the shift registers are used.

Figure 3.7: Structure of Depthwise Convolution Block

Padding

Zero padding is applied to depthwise convolution. Padding in the top row
and the bottom row can be implemented by inserting zeros as inputs. For the
padding at the left most column and the right most column, when the input
pixel is on the left or right edge of the feature map, the corresponding weights
are multiplied with zeros but not the input pixel.

3.3.2 Pointwise Convolution Block
In a pointwise convolutional layer with M input channels, a result pixel of
output feature map is the sum of products of M different pixels and their
corresponding weights. M is 64 in this MobileNet structure. Therefore, two
buffers are used in the pointwise convolution block, one for the weights from
ROM, one for the data to be convolved. The buffer sizes are both 8-bit in
width and 64 in length in this case. Since there are limited DSPs on the FPGA
board, the MAC operations are divided into 8 groups. Each group employs a

CHAPTER 3. BLOCK DESIGN 29

MAC block for calculation and a buffer for the storage of intermediate result.
The result of one pixel in the output is the sum of the multiply accumulation
results of the 8 groups. The MAC block in pointwise convolution block has
the same configuration with the MAC used in depthwise convolution block
and the buffers for intermediate results are also 16-bit in width.

Figure 3.8: Structure of Pointwise Convolution Block

As shown in Figure 3.8, eight MAC blocks are placed in a pointwise con-
volution block. The weights are preloaded from ROM before the start of the
calculation. The data to be convolved is taken from the RAMs for the results
of previous layer. When doing calculation, the correct data are taken from the
weight buffer and the data buffer, and then sent to MACs. The result of each
group comes out every 8 clock cycles. Then they are added together. The
addition of the 8 results adopts tree adder structure. They are added two by
two until the output is the sum of 8 data. The output is sent to subsequence
block for further calculation.

3.3.3 Pooling Block
Like depthwise convolution, shift registers are used to store part of the feature
map. The shift register covers the first line and the first two pixels of the second
line and it is 16-bit in width. As the maximum feature map size in the design
is 128 × 128. The shift register is 130 in length. When the shift register is

30 CHAPTER 3. BLOCK DESIGN

Figure 3.9: Shift Registers in Pooling Block

filled with corresponding data, the pooling result is the maximum value in the
pooling window.

A Mux is used to choose from different sizes of the register buffer, since
the neural network has different feature map sizes for different layers. Feature
maps with the size of 128×128, 64×64, 32×32 and 16×16 can be processed
in pooling block.

3.3.4 ReLU Block
In a ReLU block, it has an input of 16-bit signed integer and an output of 16-bit
signed integer. If the input value is less than zero, the output is zero, otherwise,
the output is the same as input.

3.3.5 RAM Block
TheRAM in the accelerator stores the intermediate result produced. The RAM
is able to store 4096 8-bit data. As the output data of a ReLU block is 16-bit
in width, it should be normalized to 8-bit in order to fit in the RAM.

CHAPTER 3. BLOCK DESIGN 31

3.4 Fully Connected Layer Processor

Figure 3.10: Hardware Structure of the First Fully Connected Layer

Fully connected layer processor is specially designed for the fully con-
nected layers used in Table 2.2. The first fully connected layer is essentially a
16× 1024 matrix multiplied with a 1024× 1 matrix and the result is a 16× 1

matrix, and the second fully connected layer is a 6 × 16 matrix multiplied
with the 16 × 1 matrix and the result is a 6 × 1 matrix. Therefore, the fully
connected layer processor is consisted of 16 multiply accumulators. The mul-
tiply accumulators are shared in both the first and the second fully connected
layer. In the first fully connected layer with 1024 inputs and 16 outputs, 16
multiply accumulators work in parallel. It takes weights from ROM and input
data from previous layer. The results are produced after 1024 clock cycles.
In the second fully connected layer with 16 inputs and 6 outputs, 6 of the 16
multiply accumulators are working in parallel. The results of the first fully
connected layer are used as input in the second fully connected layer. The
results are produced after 16 clock cycles. An illustration of the first fully
connected layer is shown in Figure 3.10.

32 CHAPTER 3. BLOCK DESIGN

3.5 Summary
A block design of the MobileNet presented in Table 2.2 is introduced in this
section. However, the structure is not only designed for the specified network
structure, but also flexible to other network structures that are within the hard-
ware capability and design limits.

Since the network is composed of arrays of accelerators, one could add or
decrease the number of accelerators according to the network structure with
little effort.

All calculation blocks in the accelerator, including depthwise convolu-
tional block, pointwise convolutional block and pooling block, support feature
map of different sizes. The feature map size could choose from 128 × 128,
64× 64, 32× 32, 16× 16 and 8× 8.

It also allows users to choose from different processing procedures, since
the accelerator provide data path among depthwise convolution followed by
ReLU, depthwise convolution followed by pooling and then ReLU, pointwise
convolution followed by ReLU, or pointwise convolution followed by pooling
and then ReLU. The order of the procedures could be rearranged to fit other
MobileNet structures.

Chapter 4

Hardware Implementation andRe-
sults

The designed MobileNet is implemented on Xilinx Vivado. Simulation, syn-
thesis, implementation and bitstream generation are the four steps that can turn
RTL source code to running application. Simulation simulates the behavior of
the RTL blocks. Synthesis transforms an RTL design into a gate-level netlist.
[40]. Implementation is to place and route the netlist onto device resources,
within the logical, physical, and timing constraints of the design [41]. Bit-
stream generation generates the bitstream that can be read and programmed
by the target FPGA board according to the implementation results.

4.1 FPGA Platform
The hardware platform in the project is Xilinx Zynq UltraScale+ ZU104. The
board is populated with the Zynq UltraScale+ XCZU7EV-2FFVC1156 MP-
SoC, which integrates a powerful processing system (PS) and programmable
logic (PL) in the same device. The PS features the Arm R© flagship Cortex R©-
A53 64-bit quad-core processor and Cortex-R5 dual-core real-time proces-
sor [3]. The appearance of the board is shown in Figure 4.1.

4.2 Resource Utilization
One of the characteristics of embedded systems is that it is resource limited.
Therefore, all designs on FPGA should not exceed its resource limit.

In Xilinx Zynq UltraScale+ ZU104, reconfigurable components include

33

34 CHAPTER 4. HARDWARE IMPLEMENTATION AND RESULTS

Figure 4.1: Zynq UltraScale+ ZU104 Appearance [3]

504K system logic cells, 461K CLB flip-flops, 11Mb block RAM, 27Mb Ul-
traRAM and 1723 DSP slices.

Table 4.1 shows the resource usage for the designed MobileNet after im-
plementation. None of the resources exceeds its limitations, meaning that the
design fit the board well.

Table 4.1: Resource Usage of the Implemented MobileNet
LUT LUTRAM FF BRAM DSP I/O BUFG

Utilization 161209 19167 168522 159.5 1104 6 2
Availability 230400 101760 460800 312 1728 360 544
Utilization% 69.97 18.84 36.57 51.12 63.89 1.67 0.37

152.5 BRAMs are used, from which 64 BRAMs are for the weights of
depthwise convolution, 7.5 BRAMs are for the weights of pointwise convo-
lution, 6 BRAMs are for the weights of fully connected layer, 4 BRAMs are
used to store the original image. Each of the 64 accelerator uses a BRAM to
store intermediate result. The other BRAMs are used for debug hub.

Table 4.2 shows the resource usage for each accelerator and the resource
usage for fully connected layer processor.

CHAPTER 4. HARDWARE IMPLEMENTATION AND RESULTS 35

Table 4.2: Resource Usage of the Accelerator and the Fully Connected Layer
Processor

LUT LUTRAM BRAM DSP

Accelerator

Total 2433 289 1 17
Depthwise convolution 500 204 0 9
Pointwise convolution 1536 0 0 8
Pooling 228 85 0 0
ReLU 85 0 0 0
RAM 1 0 1 0

Fully Connected Layer 1189 0 6 16

In each accelerator, a single depthwise convolution uses 9 DSPs, and a
single pointwise convolution block uses 8 DSPs. A fully connected layer
processor uses 16 DSPs. Thus, there are 1104 DSPs used for 64 accelerators
and a fully connected layer processor.

4.3 Timing Performance
The implemented design is working under 100 MHz frequency. It passed all
timing constraints. Its worst hold slack (WHS) is 0.471 ns. Its worst negative
slack (WNS) is 0.010 ns. Its worst pulse width slack is 3.498ns. The limits
are all 10 ns in 100 MHz.

It takes 69191 clock cycles to deal with one image frame in the MobileNet.
It is 691.19us under 100Hz frequency. The number of clock cycles used for
each procedure is listed in Table 4.3.

4.4 Power consumption
The power consumption in the design is 4.075W. The power consumption of
different part is listed in Table 4.4, from which 68% of the power is for the
processor system, and 32% of the power is for programmable logic.

4.5 Comparison with CPU and GPU
Performance is measured by validating 1800 images on CPU (Intel(R) Pen-
tium(R)CPUG4560@3.50GHz), GPU (NVIDIAGeForce 940MX1.004GHz)

36 CHAPTER 4. HARDWARE IMPLEMENTATION AND RESULTS

Table 4.3: MobileNet structure to be implemented

Procedure
Number

Layer
Number

Execution Clock
Cycles

Procedure 0
Layer 0 Depthwise Convolution

16585Layer 1 Pooling
Layer 2 ReLU

Procedure 1 Layer 3 Depthwise Convolution 4173Layer 4 ReLU

Procedure 2
Layer 5 Pointwise Convolution

32787Layer 6 ReLU
Layer 7 Pooling

Procedure 3 Layer 8 Depthwise Convolution 1069Layer 9 ReLU

Procedure 4
Layer 10 Pointwise Convolution

8211Layer 11 Pooling
Layer 12 ReLU

Procedure 5 Layer 13 Depthwise Convolution 285Layer 14 ReLU

Procedure 6 Layer 15 Pointwise Convolution 2063Layer 16 ReLU

Procedure 7 Layer 17 Depthwise Convolution 285Layer 18 ReLU

Procedure 8
Layer 19 Pointwise Convolution

2067Layer 20 Pooling
Layer 21 ReLU

Procedure 9 Layer 22 Depthwise Convolution 85Layer 23 ReLU

Procedure 10 Layer 24 Pointwise Convolution 527Layer 25 ReLU
Fully Connected Layer

Procedure
Number

Layer
Number Execution Clock Cycles

Procedure 11 Layer 26 Fully Connected 1054Layer 27 Fully Connected
Total 69191

CHAPTER 4. HARDWARE IMPLEMENTATION AND RESULTS 37

Table 4.4: Power Usage of the Implemented MobileNet
Dynamic Static

Clocks Signals Logic BRAM DSP I/O PS PL PS
Power(W) 0.284 0.036 0.054 0.175 0.124 0.004 2.678 0.621 0.099
Utilization% 6.97 0.88 1.33 4.29 3.04 0.10 65.72 15.24 2.43

and FPGA (Xilinx Ultrascale+ Zu104 100MHz) using the same MobileNet
structure in Table 2.2. The result is shown in Table 4.5. Performance is
defined as how many frames could be processed in one second. Power is the
average power in validation. Efficiency is defined as how many frames could
be processed by 1 Watt.

FPGA implementation in this project shows an advantage in higher perfor-
mance. It has a 28.4x speed-up than CPU and a 6.5x speed-up than GPU. The
FPGA implementation also costs lower power consumption and has higher
power efficiency over CPU and GPU.

Table 4.5: Comparison of CPU, GPU, and FPGA in Efficiency
CPU GPU FPGA

Performance 44fps 193fps 1250fps
Power 19.9w 20.7w 4.1w
Efficiency 2.2fps/w 9.3fps/w 304.9fps/w

(a) Performance (b) Power (c) Efficiency

Figure 4.2: Performance (a), Power (b) and Efficiency (c) of CPU, GPU and
FPGA

4.6 Summary
The designed MobileNet is implemented on FPGA. It passed all the resource
and timing constraints of Xilinx UltraScale+ ZU104 FPGA board. The imple-

38 CHAPTER 4. HARDWARE IMPLEMENTATION AND RESULTS

mented MobileNet on FPGA has higher performance, lower power consump-
tion and higher power efficiency than CPU (Intel(R) Pentium(R) CPU G4560
@ 3.50GHz), GPU (NVIDIA GeForce 940MX 1.004GHz).

Chapter 5

Gesture Classification example

An example of using the network on FPGA to solve actual problems will
be presented in this chapter. We will use the MobileNet to solve a gesture
classification problem. People use 6 gestures to represent 0 to 5. The task is
to recognize which number the gesture represents in an image.

5.1 Dataset
The dataset is adjusted from Fingers [42] from Kaggle.com. The original
dataset contains 9800 images with gestures representing 0 to 5. 8000 images
are used for training and 1800 images are used for validation. Each image
is 128 × 128 pixels in size and each pixel is 8-bit in width. Figure 5.1(a)
is an image from original dataset. The backgrounds of the images are all
black. The gestures are in the same size and the same direction. In order to
simulate real-life cases, interference factors including background, rotation,
scaling, shifting, and noise are added to the original images. Figure 5.1(b) is
an example of the adjusted dataset.

5.2 Network Structure and Training
The neural network follows the structure shown in Table 2.2. The network
is trained on GPU by Python using Pytorch package. The training process is
explained in [39]. The original weights are floating points.

39

40 CHAPTER 5. GESTURE CLASSIFICATION EXAMPLE

(a) Performance (b) Power

Figure 5.1: An Image from Original Dataset (a) and an Image from Adjusted
Dataset (b)

5.3 Accuracy Result
An independent dataset of 1800 images is used for validation. There are 300
images for each gesture representing 0 to 5. Validation on software is done by
a Python program. As shown in Table 5.1, the trained network with floating
point weights has an overall accuracy of 61%.

Table 5.1: Software Simulation Result with Floating Point Weights
Classes 0 1 2 3 4 5

Accuracy% 78 61 62 56 73 91

In order to fit the hardware structure, all the weights are quantized to 8-bit
signed integers ranging from -128 to 127. Then the new weights are applied
to the same network for validation. The validation result of the network with
8-bit integer weights in Python environment is shown in Table 5.2. It has an
overall accuracy of 56%. The validation result of the implemented MobileNet
on FPGA is shown in Table 5.3. It has an overall accuracy of 43%.

The hardware implementation suffers from a accuracy loss. It is because
the software model is not exactly same with the hardware model. It is ex-
plained in Section 5.4.

CHAPTER 5. GESTURE CLASSIFICATION EXAMPLE 41

Table 5.2: Software Simulation Result with Integer Weights
Classes 0 1 2 3 4 5

Accuracy% 73 50 48 38 52 79

Table 5.3: Hardware Tested Result with Integer Weights
Classes 0 1 2 3 4 5

Accuracy% 71 36 33 24 22 73

5.4 Analysis
The actual result on FPGA is less accurate than on software, but still evidence
shows that it acts as a classifier. There are several possible reasons for accuracy
loss.

Precision Loss
The whole network uses 8-bit signed integer as the data format. It repre-

sents integers from -128 to 127, which is far from enough in neural network,
as the precision losses fast when the neural network goes deeper and deeper.

Case 1: Accuracy decreases when the weights are integers rather than
floating point.

Table 5.1 shows the accuracy result of the network with 32-bit floating
point, while Table 5.1 is the accuracy result of the network with integers. Both
are simulated in software environment. Results show that accuracy loses a lot
when shifting from 32-bit floating point to 8-bit signed integers. For example,
accuracy of classifying number 4 decreases from 73% to 52% when using
integers instead of floating point as weight format.

Case 2: How the floating point are rounded to integers will affect the final
result.

An image representing 2 is validated in two networks. The weights of
one of the networks are rounded to the nearest integers, while the weights of
another network are rounded to integers by round down strategy. Table 5.5
and Table 5.4 shows the result data of the two networks. Though there is
miner difference in the network weights, the final results show huge difference
between each other. It even leads to misclassification. In the network with
weights rounded to the nearest integer, the image is classified to 2, which is
the expected result. However, in the network with the weights rounded down,
the image is classified to 1.

42 CHAPTER 5. GESTURE CLASSIFICATION EXAMPLE

Table 5.4: An Image Classification Result with Rounded Weights
Classes 0 1 2 3 4 5

Results 3165 34252 54786 15610 -70377 -112112

Table 5.5: An Image Classification Result with Rounded-Down Weights
Classes 0 1 2 3 4 5

Results 14665 57989 47953 1009 -52666 -76242

Overflow
Integers also brings the problem of overflow. The intermediate results

of multiply-accumulators in both depthwise convolution and pointwise con-
volution are in 17-bit signed integer format. In depthwise convolution, the
convolution is the sum of 9 17-bit signed integers. The case is even worse in
pointwise convolution, in some situations, the result for one pixel is the sum
of 64 17-bit signed integers. Overflow may occur in high possibility when
doing accumulation. This problem could be fixed in hardware, by setting the
overflowed value to the maximum representable value. However, in software
validation process, the situation is not included. It causes the difference in
software behavior and hardware behavior.

5.5 Summary
Gesture classification problem is solved by the implemented MobileNet on
FPGA. Though accuracy is a bit away from software simulation, the FPGA
design works as a classifier. The reason for accuracy loss is analyzed in this
chapter. Precision loss and overflow caused by using 8-bit integers instead of
floating-point numbers could be the problem.

Chapter 6

Conclusion

In this thesis, we implemented a simplified MobileNet on FPGA and used the
MobileNet to solve a realistic gesture classification problem. We specially de-
signed an accelerator block to accelerate the depthwise convolution, pointwise
convolution, and pooling in MobileNet. We also designed a fully connected
layer processor. The simplified MobileNet is built based on a system which
integrates 64 accelerators and a fully connected layer processor. The sys-
tem largely accelerates the inference phase of the MobileNet. It works under
100MHz frequency on Xilinx UltraScale+ Zu104 FPGA board. It shows a
28.4x speed up than CPU (Intel(R) Pentium(R) CPUG4560@ 3.50GHz), and
a 6.5x speed up than GPU (NVIDIA GeForce 940MX 1.004GHz). Besides,
it is a power efficient design. Its power consumption is 4.07w. We used the
MobileNet to solve a gesture classification problem. The dataset contains ges-
tures representing zero to five with backgrounds. We trained the MobileNet in
Python environment and applied the trained weights to the implemented Mo-
bileNet on FPGA. The accuracy of the gesture classification problem reaches
43% on FPGA.

As a future work, we plan to explore deeper into improving the imple-
mented design. The thesis work implemented a specific MobileNet on FPGA.
However, the design is applicable to other MobileNet structures as explained
in Section 3.5. Further research could be made in applying the design to
more complex MobileNet structures. Besides gesture classification problem,
the implemented MobileNet could be applied to other image classification
problems, especially some commonly recognized benchmarks, for example,
ImageNet [19]. Testifying the implemented design’s performance and accu-
racy on these benchmarks makes it comparable to other MobileNet imple-
mentations and it may help readers understand the advantage of the FPGA

43

44 CHAPTER 6. CONCLUSION

design better. The implementation is a correct one but not a perfect one. One
major disadvantage is that there exists an accuracy loss migrating the software
trained neural network to hardware platform. Further research could focus
on minimizing the effect of quantization. From hardware perspective, there
exists room for the improvement of efficiency. The implemented FPGA design
now works at 100MHz. As the frequency increases, it will reach faster speed
but consume more power. By applying different frequencies to the hardware
implementation, the relationship between power and speed can be explored. In
this way, finding a balance between speed and power can improve the efficiency
of the design.

References

[1] Xilinx. Ultrascale architecture dsp slice. Technical report, Xilinx, 2019.

[2] Xilinx. Axi reference guide. Technical report, Xilinx, 2011.

[3] Xilinx. Zcu104 evaluation board. Technical report, Xilinx, 2018.

[4] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, and François Berry.
Accelerating CNN inference on fpgas: A survey. CoRR, abs/1806.01683,
2018.

[5] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. Commun. ACM,
60(6):84–90, 2017.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei
Li. Imagenet: A large-scale hierarchical image database. In 2009
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA,
pages 248–255, 2009.

[8] Bharath Hariharan, Pablo Arbelaez, Ross B. Girshick, and Jitendra
Malik. Simultaneous detection and segmentation. CoRR, abs/1407.1808,
2014.

[9] Filip Radenovic, Giorgos Tolias, andOndrej Chum. CNN image retrieval
learns from bow: Unsupervised fine-tuning with hard examples. In
Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,

45

46 REFERENCES

The Netherlands, October 11-14, 2016, Proceedings, Part I, pages 3–20,
2016.

[10] PavloMolchanov, Stephen Tyree, Tero Karras, TimoAila, and JanKautz.
Pruning convolutional neural networks for resource efficient inference. In
5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

[11] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 4510–4520, 2018.

[12] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet
V2: practical guidelines for efficient CNN architecture design. In
Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part XIV, pages 122–138,
2018.

[13] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q.
Weinberger. Condensenet: An efficient densenet using learned group
convolutions. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 2752–2761, 2018.

[14] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep
neural networks with weights and activations constrained to +1 or -1.
CoRR, abs/1602.02830, 2016.

[15] Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric
Pétrot. Ternary neural networks for resource-efficient AI applications. In
2017 International Joint Conference on Neural Networks, IJCNN 2017,
Anchorage, AK, USA, May 14-19, 2017, pages 2547–2554, 2017.

[16] CathalMurphy andYao Fu. Xilinx all programmable devices: A superior
platform for compute-intensive systems, 2017.

[17] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori
Togashi. Convolutional neural networks: an overview and application in
radiology. Insights into Imaging, 9(4):611–629, Aug 2018.

REFERENCES 47

[18] F. Schilling. The effect of batch normalization on deep convolutional
neural networks. KTH, 2016.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[20] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings, 2015.

[21] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E.
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and An-
drew Rabinovich. Going deeper with convolutions. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,
USA, June 7-12, 2015, pages 1–9, 2015.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pages 770–778, 2016.

[23] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up
convolutional neural networks with low rank expansions. In British
Machine Vision Conference, BMVC 2014, Nottingham, UK, September
1-5, 2014, 2014.

[24] Michaël Mathieu, Mikael Henaff, and Yann LeCun. Fast training of
convolutional networks through ffts. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings, 2014.

[25] PavloMolchanov, Stephen Tyree, Tero Karras, TimoAila, and JanKautz.
Pruning convolutional neural networks for resource efficient inference. In
5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

[26] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training
deep neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024, 2014.

[27] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional

48 REFERENCES

neural networks. In Computer Vision - ECCV 2016 - 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part IV, pages 525–542, 2016.

[28] Zhe Li, Xiaoyu Wang, Xutao Lv, and Tianbao Yang. Sep-nets: Small
and effective pattern networks. CoRR, abs/1706.03912, 2017.

[29] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. Optimizing fpga-based accelerator design for deep convo-
lutional neural networks. In Proceedings of the 2015 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, February 22-24, 2015, pages 161–170, 2015.

[30] Jialiang Zhang and Jing Li. Improving the performance of opencl-based
FPGA accelerator for convolutional neural network. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA 2017, Monterey, CA, USA, February 22-24, 2017,
pages 25–34, 2017.

[31] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason
Cong. Energy-efficient CNN implementation on a deeply pipelined
FPGA cluster. In Proceedings of the 2016 International Symposium
on Low Power Electronics and Design, ISLPED 2016, San Francisco
Airport, CA, USA, August 08 - 10, 2016, pages 326–331, 2016.

[32] Tong Geng, Tianqi Wang, Ang Li, Xi Jin, and Martin C. Herbordt.
A scalable framework for acceleration of CNN training on deeply-
pipelined FPGA clusters with weight and workload balancing. CoRR,
abs/1901.01007, 2019.

[33] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient
processing of deep neural networks: A tutorial and survey. Proceedings
of the IEEE, 105(12):2295–2329, 2017.

[34] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-
layer CNN accelerators. In 49th Annual IEEE/ACM International Sym-
posium onMicroarchitecture, MICRO 2016, Taipei, Taiwan, October 15-
19, 2016, pages 22:1–22:12, 2016.

[35] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau
Lin, Mani B. Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating
binarized convolutional neural networks with software-programmable

REFERENCES 49

fpgas. InProceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA 2017, Monterey, CA, USA,
February 22-24, 2017, pages 15–24, 2017.

[36] Shuang Liang, Shouyi Yin, Leibo Liu,Wayne Luk, and ShaojunWei. FP-
BNN: binarized neural network on FPGA. Neurocomputing, 275:1072–
1086, 2018.

[37] Lin Bai, Yiming Zhao, and Xinming Huang. A CNN accelerator on
FPGA using depthwise separable convolution. IEEE Trans. on Circuits
and Systems, 65-II(10):1415–1419, 2018.

[38] Ruizhe Zhao, Xinyu Niu, and Wayne Luk. Automatic optimising
CNN with depthwise separable convolution on FPGA: (abstact only).
In Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA 2018, Monterey, CA, USA,
February 25-27, 2018, page 285, 2018.

[39] Zekun Du. Algorithm design and optimization of convolutional neural
networks implemented on fpgas, 2019.

[40] Xilinx. Vivado design suite user guide: Synthesis, 2019.

[41] Xilinx. Vivado design suite user guide: Implementation. Xilinx, 2019.

[42] Pavel Koryakin. Fingers, 2019.

TRITA-EECS-EX-2019:659

www.kth.se

	Introduction
	Background
	Purpose
	Goals
	Organization of the Thesis

	Background
	CNN
	Standard CNN
	MobileNet
	Computational Consumption Analysis

	FPGA Platform
	FPGA Resources

	FPGA accelerated CNN
	Resource Optimized CNN Models
	Related Works
	Advantages of Using FPGA to Accelerate CNN

	Summary

	Block Design
	MobileNet Structure
	System Design
	Memory Allocation
	Data Transaction

	Accelerator Design
	 Depthwise Convolution Block
	 Pointwise Convolution Block
	Pooling Block
	ReLU Block
	RAM Block

	Fully Connected Layer Processor
	Summary

	Hardware Implementation and Results
	FPGA Platform
	Resource Utilization
	Timing Performance
	Power consumption
	Comparison with CPU and GPU
	Summary

	Gesture Classification example
	Dataset
	Network Structure and Training
	Accuracy Result
	Analysis
	Summary

	Conclusion
	References

