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Abstract: Ubiquitous and pervasive computing holds great potential in the 

domain of Product-Service Systems to introduce a model-driven paradigm for 

decision support. Data-driven design is often discussed as a critical enabler for 

developing simulation models that comprehensively explore the PSS design 

space for complex systems, linking of performances to customer and provider 

value. Emerging from the findings of two empirical studies conducted in 

collaboration with multinational manufacturing companies in the business-to-

business market, this paper defines a data-driven framework to support 

engineering teams in exploring, early in the design process, the available design 

space for Product-Service Systems from a value perspective. Verification 

activities show that the framework and modeling approach is considered to fill a 

gap when it comes to stimulating value discussions across functions and 

organizational roles, as well as to grow a clearer picture of how different 

disciplines contribute to the creation of value for new solutions. 
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1 Introduction 

Engineering design is a decision-intensive activity (Ullman and D’Ambrosio 1995) which 

often peaks at the earliest phases of design (Baumann and Pfitzinger 2017). To reduce the 

risk and costs of rework in a later phase caused by sub-optimal decisions, it is important to 

frontload early-stage tasks with simulation models (Isaksson et al. 2013) to support the 

comprehensive exploration of the feasible design space (Green 2000). Paradoxically, while 

the results of these simulations are used to make design decisions on increasingly complex 

systems (Zeigler et al. 2018), the available modelling and simulation support is strongly 

mono-disciplinary, and software tools are poorly integrated (Fitzgerald et al. 2010). For 

instance, dynamic systems simulation, finite element analysis, and lifecycle analysis are 

often performed in isolation, even though there is an intuitive logical connection between 
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these domains. When a system is composed of multiple subsystems (Bhise 2013), a more 

holistic view on the integration of simulation domains is needed, something that is referred 

to in the literature as co-simulation (Gomes et al. 2018; Sinha et al. 2001). 

A major gap is seen today when it comes to co-simulate the ability of a design concept 

to deliver ‘value’ to customer and stakeholders during the front-end of a development 

project. The knowledge used to build the sequence of simulations model for concept 

assessment is often of speculative nature (see: Dorst 2006; Mocko et al. 2004). This hinders 

the ability to assess if a given concept will raise customer satisfaction and, in turn, revenues 

and provider’s profitability. Intuition, instinct, gut feelings and personal experience have 

been observed to be primary means to link micro-level decisions (e.g., on material 

properties) to macro-level phenomena (e.g., customer satisfaction) (Ericson et al. 2007).  

Digitalization and the Internet of Things are often discussed as game changers when 

dealing with the construction of relevant and reliable models for early stage design decision 

making (Kim et al. 2017). The opportunity to gather and analyse a large amount of data 

from existing solutions is seen as a major enabler in the process of identifying trends - and 

hence functions - to improve the trustworthiness of early simulation models (King et al. 

2017; Provost and Fawcett 2013; Yu and Zhu 2016). This opportunity is often captured by 

the umbrella term ‘data-driven design’ (e.g., Labrinidis and Jagadish 2012). Several 

authors (e.g., Yu and Zhu 2016) have discussed how data-driven design might close the 

knowledge gap between how the product is realized and how this will satisfy the final users. 

Data-driven frameworks (Afrin et al. 2018; Tuchsen 2018) have been further proposed to 

support this co-simulation exercise. Existing literature shows examples of how data-driven 

approaches have been adopted for predicting the product performances (Zhang 2017; 

Zheng  2018) and to explore the available design space (Bogers et al. 2016) during concept 

design. An issue common to most of the proposed frameworks is their poor generalizability 

outside their proposed domain and/or industrial sectors. At the same time, these 

frameworks are often limited to the evaluation of only alternative product configurations 

from a performance perspective and do not support the assessment of the ‘ilities’ as a 

system (e.g., adaptability, changeability, sustainability), alternative business models in 

terms of different Product-Service Systems (PSS) types (Baines et al. 2007), and circular 

economy considerations. 

The purpose of this research work is to support engineering designers in exploiting a 

data-driven design paradigm for early stage design. The objective of the paper is then to 

propose a framework that guides the design team in the development of a chain of 

simulations models – and related data sources - capable of exploring design space 

comprehensively - in terms of performances, behaviour, and generated value along the 

system lifecycle. The driving research question for the work can then be described as: 

 

How can a data-driven approach support the design exploration process for PSS 

concepts in early design?  

 

The concept of ‘value’ is central to the research question and to the development of the 

proposed data-driven framework. This is because the recent “servitization” (Vandermerwe 

and Rada 1988) and “service transformation” (Cavalieri et al. 2017) trends have 

highlighted how manufacturing companies are transforming their business nature, from 

being owners of competencies and resources to become integrators of a set of skills, 

resources, and technologies able to realize complex value creation processes. Rather than 

focusing on technical improvements and cost reduction, the manufacturers of products and 
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systems are increasingly promoting the selling of the utility and performance associated 

with its use. 

In the following sections, the paper describes how the proposed data-driven framework 

has been conceptualized from the analysis of the literature review and from the analysis of 

the empirical data. Section 2 presents the research methodology and describes how 

empirical data have been collected and analysed. Section 3 investigates the literature 

review conducted to build a theoretical background to support the proposed framework. 

Section 4 describes the proposed data-driven framework for design assessment and 

exploration. Section 5 discusses the findings from the study, while the conclusions and 

future work are presented in Section 6. 

2 Methodology 

The overall research effort is framed according to the Design Research Methodology 

(DRM) framework (Blessing and Chakrabarti 2009). DRM consists of four stages: 

Research Clarification (RC), Descriptive Study I (DS-I), Prescriptive Study (PS) and 

Descriptive Study II (DS-II). Hence, the work presented in this paper covers a review-

based RC, a comprehensive DS-I and PS, and an initial DS-II. The application of DRM in 

this research is justified both by the complexity of the data-driven design phenomenon, and 

by the aim to improve (and do not merely understand) design practices. DRM is thought to 

be suitable when the objective is that of developing support rather than mainly explain or 

predict a phenomenon. The paper does not merely focus on modelling a theory of an 

existing situation but wants also to propose a vision of the desired situation, as well as of 

the support (the proposed data-driven framework) that is likely to change the existing into 

the desired situation and maintain this.  

The Research clarification (RC) stage has benefitted from the analysis of current 

literature in the domain of data-driven design and PSS, as well as from the interaction with 

industry practitioners, process owners and experts from a range of different manufacturing 

sectors (from aerospace and mining to road construction and automotive). 

Empirical data in DS-I have been obtained from the analysis of two case studies (Yin 

2013) conducted in collaboration with multinational manufacturing companies active in 

the business-to-business market. Company A is a multinational food packaging and 

processing company based in Sweden. The company that offers packaging, filling 

machines and processing for dairy, beverages, cheese, ice-cream and prepared food, 

including distribution tools. Company B is a multinational engineering manufacturer of 

mobile compactors for road surfaces, also based in Sweden. 

Data collection activities featured semi-structured interviews (both individual and 

paired interviews), regular multi-day physical co-creation workshops and the analysis of 

company documents. Following the guidelines for qualitative research proposed by Miles 

et al. (2013), interviews activities covered a variety of roles, both at managerial and 

engineering level, to generate knowledge from both the ‘meatiest’ cases and the 

‘peripheries’. Each of the 12 interviews conducted in the 2 cases lasted for about 50 

minutes. Respondents were located mainly using a snowballing technique (Warren 2002). 

Once the initial respondent (fulfilling the theoretical criteria) was identified, he/she helped 

to locate others through his/her social network. During the interviews and the workshops, 

the authors compiled visual representations and demonstrators of the emerging modeling 

concepts for data-driven design. These were used mainly as discussion triggers to identify 
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critical topics for the development of the proposed framework. These findings were 

iteratively verified with the industrial practitioners in co-located research workshops and 

through the participation in regular debriefing activities within the research project. 

3 Literature review: towards data-driven PSS design 

A wave of change fostered by the so-called Fourth Industrial Revolution or Industry 4.0 is 

sweeping the manufacturing industry in recent years. The introduction of the Internet of 

Things has led to vertically and horizontally integrated production systems (Thoben et al. 

2017). The shift from ‘traditional production methods’ to ‘intelligent manufacturing’ 

(Zhong et al. 2017) has been enabled by the combination of cheap and ubiquitous sensors 

high computational speeds, and advancements in artificial intelligence applications.  

The opportunity to exploit real-world data to improve product design, reliability and 

quality lies at the core of the notion of ‘data-driven design’. What makes the latter to stand-

out from classical performance-based analysis is the opportunity to seamlessly connect the 

IoT (and its massive dataset) with the design environment, so to ensure that the next 

generation of products, services and systems meets customers’ needs even better than 

today’s generation. Noticeably, rather than making assumptions about how a product 

concept will perform when operated, maintained, dismissed or recycle, the design team can 

extract relevant knowledge for decision making by leveraging existing data from the field. 

Imagine a manufacturer that monitors usage of a fleet of products operating in different 

markets, geographical areas or customer groups. By gathering field data, the team might 

come to the realization that a particular sub-system (or component) is over-engineered and 

unnecessary. In turn, this may lead to products that are unnecessarily costly, while still 

being unable to add value to customer and users. The team can use this information to 

modify the original design - e.g. by simplifying its architecture or installing cheaper 

components - reducing production costs so to reduce selling price or improve margins.  

3.1 Towards model-based value analysis 
A model-driven paradigm to support the early stages of the design of complex systems has 

been exercised for many years. Today, it is possible to build physical or behavioural models 

for almost any system/subsystem across any relevant stage of their life cycle. For instance, 

models produced in MATLAB, Simulink, Ansys, LS-Dyna provide engineers with 

quantitative data on the performances of the systems for different internal and external 

inputs. Through these simulations, it is possible to evaluate design alternatives to find better 

solutions and support design for robustness, reliability, and safety. 

Model-Based System Engineering (MBSE) is a common approach in the domain of 

Systems Engineering (SE) to exploit domain models as the primary means of information 

exchange between engineers (Alemanni et al. 2011; Gausemeier et al. 2013).  As described 

by Zeigler et al. (2018) MBSE calls for formalized models to replace documents as the 

fundamental building blocks of  (SE). In practice, MBSE promotes the use of a ‘central 

model’ to serve as a means of coordinating system design (Cameron and Adsit 2018). This 

model facilitates all the activities related to requirements definition, analysis, verification 

and validation of a complex system since the conceptual design, throughout development, 

and until the later phases of its lifecycle.  

Nowadays MBSE is considered a critical and indispensable capability to develop 

complex system requirements in a systematic manner and to enable different teams to work 
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in a collaborative way (Madni and Purohit 2019). Yet, recent work (e.g., Cameron and 

Adsit 2018). has highlighted several practical challenges related to the introduction of 

MBSE in the organization, a major one being the MBSE inability to support a “full-system 

lifecycle” view (see: Madni and Sievers 2018). More specifically, literature in the domain 

of Systems Engineering has stressed the importance of assessing, early on, the expected 

value of a complex system design concepts (Collopy and Hollingsworth 2011). This means 

extending modelling and simulation capabilities behind traditional performances, so as to 

measure the ability of a system to provide value to customers and stakeholders. Collopy 

(2009) is among the firsts to spotlight the opportunity of developing so-called ‘value 

models’ to capture the long term consequence of design from a value perspective 

Yet, in spite of many conceptual frameworks being proposed for Value-Driven Design  

(VDD) (Lee and Paredis 2014; Isaksson et al. 2015; Bertoni et al. 2017), the uptake of 

value modelling methodologies is still limited due to the intrinsic difficulties of capturing 

and measuring all the relevant aspects of value for customers - subjective and objective 

(Weiss 2013) – since an early design phase.  

Gorissen et al. (2014) and Bertoni et al. (2015) recognize that decision-makers need 

enough information and data to properly understand the design “trade-off” assessment 

using a value model. The opportunity of exploiting data from the usage and operational 

stage related to the interaction between humans and the system (hardware, software, and 

service) holds great potential to cope with the current limitations of VDD. At the same 

time, VDD approaches shall make better use of data obtained from the early simulation on 

the design concept and use them to populate a value model to understand trade-off 

capabilities, performance, cost and life for a complex product. Current activities in the 

VDD research stream (e.g., Isaksson et al. 2015; Bertoni et al. 2017) are exploring the 

opportunity to apply value model in a data-rich situation, arguing that by applying a data-

driven approach for value assessment it will be possible to increase the reliability and 

fidelity of the value model at all design levels. 

As the complexity of design increases, due to the need for considering an increased 

number of subsystems and components in the design of product-service solutions, so the 

complexity of the modelling activity increases proportionally. In order to manage this 

increasing complexity, design decision support – in the form of ad-hoc frameworks – are 

needed to guide the design team in exploiting data to assess the value of a design. Yet, 

data-driven approaches for value analysis are in their infancy and lack of a systematic way 

to structure the value modelling exercise by exploiting the available data.  

3.2 Data-driven design 

Data-driven approaches feature a long history in the domain of engineering design. Their 

main goals can be described as ‘predictive’, which is to forecast the value of a given 

variable, and ‘descriptive’, having the objective to understand and discover patterns in the 

available data (Anand and Büchner 1998). Tsent and Hiao (1997) are often indicated to be 

the first to propose the use of data mining for the recognition of functional requirements 

patterns in design. Since then, the application of data-driven models in design has captured 

increased attention in recent years, mainly with regards to the opportunity of improving the 

design synthesis stage and the ability to understand customer needs and expectations (see: 

Bertoni 2018).  

Vale and Shea (2003) are among the first to define a modification-based design 

framework where design solutions develop through the successive application of 
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modification operators to the existing design. Machine learning is used to support synthesis 

by guiding the solution search process using past experience that is self-learned by on-

going observation. In this approach data are accumulated through observations and 

machine learning is applied to learn relevant relationships between the design objectives, 

constraints and modification operators. Song and Kusiak (2009) describes the application 

of data mining algorithms to historical sales data, extracting knowledge from that data, and 

using it to manage product diversity. In this work, the knowledge (rules) extracted from 

the historical purchase data was used to infer customers’ future buying patterns, thus 

allowing producers to meet customer requirements and to manage efficiently the 

enterprise's resources. Later, Wickel and Lindemann (2015) propose a data-driven 

approach to help companies in improving their decisions in engineering change processes 

by discovering new patterns and structures through the use of machine learning algorithms. 

Nie et al. (2018) lately describe the combined use of MATLAB and Simpack, as well as of 

surrogate modelling, to support the design of railway vehicles under the data-driven 

paradigm. 

Digital technologies have long been described as critical enables to help companies in 

the journey towards service-based business (Neu and Brown 2008). Ubiquitous and 

pervasive computing holds great potential in the domain of Product-Service Systems (PSS) 

to introduce a model-driven paradigm for decision support. For instance, the ability to 

record a large quantity of data about hardware use, service performances, and human-

product interactions is believed to dramatically enhance decision making at different levels 

of the enterprise (strategical, tactical and operational) and along the entire lifecycle of the 

PSS (see: Bertoni 2018). Geng et al. (2012) illustrate an interesting example of the 

application of data-driven approaches in the domain of Product-Service Systems. In their 

work, they propose an apriori-based association rule mining algorithm for aiding PSS 

conceptual design. In their work, the authors describe how parameter translating rules are 

extracted from historical PSS design data, providing the designers with sufficient 

knowledge to aid analysing parameter translation between two adjacent domains and to 

decrease the subjectivity and complexity of the decision-making process. Another example 

of the application of a data-driven paradigm in PSS is provided by Lützenberger et al. 

(2016). The authors provide a methodology and an example of how information gathered 

from sensors embedded in consumer products (in this case, a washing machine) can be 

used to retrieve improved design requirements for next-generation PSS hardware. Based 

on the sensor data from the washing machine and the user feedback, the authors exemplify 

both how the product can be adapted to consumer needs and also services can be 

created/supported. Additional contributions have focused at a more operational level to 

propose mining techniques suitable for product development tasks. Woon et al. (2003), for 

instance, propose the use of the so-called Product Development Miner (PDMiner) to mine 

weblogs efficiently and effectively and, in this way,  design faster products by discovering 

the relationships among parts and assemblies. An interesting recent contribution given the 

objective of this paper is the Predictive Life Cycle Design (PLCD) design framework 

proposed by Ma and Kim (2016). PLCD enables engineering designers to optimize a 

product design - adjusting product attributes, the selling prices and production quantities 

of new and reman product – by considering the current and future demand for a product 

through data trend mining. The framework enables the engineering team to eventually 

identify the product design that is expected to maximize the total profit over the entire 

product life cycle. 
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4 Developing a data-driven framework for PSS design 

The results from the literature review and empirical study have brought to the definition of 

a data-driven framework to support engineering teams in exploring - early in the design 

process - the available design space for PSS from a value perspective. Figure 1 provides 

an overarching view of the and illustrates the sequence of simulation activities - and the 

associated flow of data – needed to be performed to support value assessment activities 

along the concept design stage. 

The framework is composed of 6 main layers, corresponding to the main outcomes of 

the associated simulation models. These have been defined to highlight, on the one end, 

the generic product lifecycle phases (See: www.capgemini.org). On the other end, the 

definition of the layers has been inspired by the main layers point circular economy system 

strategies described by (MacArthur 2013). Data are gathered at each layer to support the 

definition of relevant simulation models able to represent the contribution of each design 

from a value perspective. Several sources have been identified and mapped in the 

framework with regards to the main data items to be considered in the value modelling 

activity. These primarily include sensor data collected from production processes and 

during the usage phase of existing hardware. Information stored in internal and external 

databases, e.g., originating from manual reports and other activities, is also included in the 

framework as a secondary data source. Eventually, the outcomes from previous modelling 

activities (e.g., the results of CAx models and more) provides further information to define 

and populate the chain of simulation models at each step.  

 

 
Figure 1: The generic data-driven design framework for early stage PSS design exploration. 
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The Knowledge Discovery Process (KDP) featured in the framework is adapted from 

the work of Kulin et al. (2016) and describes all the necessary steps to transform data into 

knowledge when dealing with new knowledge in large datasets. Initially, the design team 

must state the specific piece of knowledge needed to populate the simulation model at each 

layer. This statement must then be explicitly formulated as a data science problem, 

describing how the collected data can be used to define the input to the simulation model. 

As explain by Kulin et al. (2016), data must then be collected - according to the definition 

stated – and explored so to validate both the dataset and the formulation of the data science 

problem from the previous step. In the pre-processing phase, the raw data must be 

transformed into a format suitable for feeding into machine learning algorithms. This phase 

foresees four main sub-steps: data cleaning, data integration, data transformation, and data 

reduction. The goal of the Data Mining phase that follows is that of training the algorithms 

to solve the knowledge discovery problem that was identified and formulated in step 1. The 

performance of previously trained data algorithms must be then evaluated so to select the 

best performing model. Eventually, the functions, expressions and other outputs from the 

KDP process are turned into relevant inputs for the simulation models at each layer. 

4.1 Performance layer 

Previous research in the domain of complex system design (e.g., Isaksson et al. 2013)  has 

shown that new products, sub-systems, and components are seldom radically new designs, 

but rather incremental improvements of a given product platform. Evans et al. (2007) 

further highlight how a platform strategy can be a significant enabler to create high-

performing PSS, thanks to the opportunity of customizing and contextualizing system-level 

solutions to fit many sets of different needs. As also pinpointed by Evans et al. (2007) a 

platform-based approach allows derivative products to be developed with more variety, 

shorter schedules, and lower costs. The data collected from the empirical investigation 

support these considerations, further revealing that the necessity to comply with a number 

of requirements – e.g., manufacturing commonality, logistics and supply chain 

management – considerably limit the design team's freedom to develop radical solutions. 

Hence, early in the design process, the assessment of a PSS hardware kicks-off from the 

identification and further development of such a platform. From this, a number of platforms 

‘variants’ (i.e., design configurations) are tested for ‘suitability’ for the targeted PSS 

business models. A product platform during early design is typically described by a 

functional diagram and by a fully parametric CAD model, which also contains rules for the 

automatic generation of alternative topological variants of given platform design. Multiple 

configurations are generated through a Design-of-Experiment (DoE) routine (Bertoni et al. 

2018), and each of them features its own physical and engineering characteristics, which 

may change during the design process until a final concept is chosen (Logan and Smithers 

1993). 

The Performance layer represents the first step in the value analysis. The objective is 

to calculate the specific performances (e.g., acceleration, speed and fuel consumption for 

a vehicle) associated with a give platform variant. This information is, in turn, exploited at 

the Operational, Life Cycle and End-of-Life layer of the framework, in order to assess the 

expected behaviour of the machine and its contribution to the creation of value for both 

customers and other stakeholders. To estimate performances at this layer, a Dynamic 

System (DS) simulation is developed in the MATLAB environment. The differential or 

algebraic equations underlying the DS simulation are defined in a way so that the main 

https://www.zotero.org/google-docs/?0vFvUF
https://www.zotero.org/google-docs/?0vFvUF
https://www.zotero.org/google-docs/?mQIg0P
https://www.zotero.org/google-docs/?mQIg0P
https://www.zotero.org/google-docs/?mQIg0P
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engineering characteristics of each platform variant can be treated as a variable. Several 

functional attributes needed to define the equations in the MATLAB environment are 

derived from the CAD description, such as the mass of a sub-system or component, its 

geometrical features and more. These equations may further contain constant factors, 

coefficients, and other constraints, which are typically extracted from the company 

database or from the existing product in use. The simulation model further interacts with 

other software (CAE, FEM, numerical computing platform etcetera) (referred to as clients) 

that run specific models needed to assess different aspects of the studied concept. 

4.2 Realization layer 

The main purpose of the Realisation layer is to raise awareness among design decision-

makers about the lead time, energy cost, equipment investment and other factors associated 

with the production of a given platform variant. A Discrete Event Simulation (DES) model 

is deployed to quantify the ability of a design to meet the production goal, as well as to 

spotlight unforeseen bottlenecks and production issues. The simulation model takes as 

input geometrical data from CAD, such as for example, the number of components in a 

system (affecting manufacturing and assembly cost), estimated mass (affecting logistics in 

the manufacturing operations), component size and more. Sensor data are gathered at the 

shop floor, cell and workstation level to feed the simulation model with relevant functions 

to simulate the behaviour of the machine in operation. The Manufacturing Execution 

Systems (MES) provides further information related to the throughput of the production 

process and to its planning that is used to guide the value modelling activity. This layer 

further incorporates a simulation model that accounts for the opportunity to bring end-of-

life products back to good-as-new. Remanufacturing refers to the industrial process 

whereby used products referred to as ‘cores’ are restored. Sensor data from the restoration 

facilities can be collected and analysed to provide an assessment of how the product would 

fit a circular strategy based on the remanufacturing model. 

4.3 Operational layer  

The Performance layer renders geometrical-, physical- and performance-related data that 

can be exploited in the simulation environment to assess the behaviour of a design concept 

in the usage phase. The ability to quantify the value creation opportunity for customers and 

users is of behemoth importance for guiding early stage design decisions towards value 

optimization. The Operational layer foresees the creation of several usage simulation 

models, that are iteratively refined during the development process. These models take a 

more ‘system-level’ view compared with those deployed in the previous step and consider 

the interaction of the proposed hardware with both humans and other machines. These 

models consider evolving contextual conditions in the scenario and evaluate the 

performances of a given hardware-service package in a given timeframe. The simulation 

model is also designed and configured to estimate the impact of refurbishing operations on 

the overall usage process highlighting the changes in performances triggered by the 

opportunity of updating the system components. 

 The framework shown in Figure 1 proposes the use of a Discrete Event Simulation 

Environment (DES) approach to quantify the usage-related performances of a design. The 

main reason to approach scenario simulation with DES is that it considers the stochastic 

nature of the usage scenario parameters, providing realistic predictions of how the PSS 

hardware will operate. Also, since the simulation verifies a limited number of moments 
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during the simulation time, the run results are compressed and more efficient. Previous 

research (e.g., Bertoni et al. 2016) has also shown that DES models are preferred ‘boundary 

objects’ for the design team, mainly because they are intuitive to understand across the 

organizational roles and functions, facilitating negotiations and knowledge sharing across 

individual and disciplines., This has shown to have with beneficial effects for decision-

making during the early stages of the design process. 

Sensors data are collected and analysed from the usage process to support the definition 

of the general layout, the relationships between objects/entities and the functions in the 

DES model. These include all relevant performances-related data for the hardware in 

operation, including its geographical location and other environmental data influencing the 

use of the hardware in given scenarios. Hardware settings data and information about 

which systems are deployed at any given time are also important information to be 

collected so to define relevant functions for the simulation model. A module at this layer 

further accounts for the feasibility and associated benefit/cost of repairing or refurbishing 

the hardware to its desired level of performance. While process-related data – e.g., related 

to cleaning and recovering operations – may be gathered from sensors, other relevant 

inputs, such as information about the inspection and reassembly process are typically 

recorded by the service technician and stored in a database.  

4.4 Life cycle and End-of-life layer 

Research (e.g., Fadeyi et al. 2017) shows that PSS are characterized by heavy product 

usage, which requires higher product serviceability. Customers expect service procedures 

to be carried out with the absolute minimum disruption of product use. Serviceability and 

maintainability must then be built into the hardware already during the earliest phases of 

design, configuring the product platform variant in such a way to ease service provision.  

Simulation activities at this layer aim at quantifying the costs and efforts needed to 

ensure the proper availability of the PSS hardware throughout its entire lifecycle. As shown 

by Sassanelli et al. (2016) the serviceability efficiency of the design is typically determined 

considering each disassembly operation and item removal. This focus on ‘disassembly 

operations’ justifies the adoption of a DES approach – which can be possible scaled-up to 

exploit hybrid model capabilities - to evaluate different maintenance strategies, by 

incorporating all the maintenance operational settings such as asset location, spare part 

levels, labour availability, travel time to asset, etc. in the simulation model. The use of DES 

is further justified from previous research focusing on the application of simulation in 

maintenance research (see: Alrabghi and Tiwari 2015).  

Sensor data capturing the conditions of the hardware in operation (e.g., vibration, 

temperature and more for a vehicle) are considered critical in the proposed framework to 

identify those changes that indicate the development of a fault. Additional data are gathered 

and analysed to determine functions that can predict failure modes. Service scheduling 

data, as well as data from the Computerized Maintenance Management Information System 

(CMMIS), are an additional source of information to populate the simulation model at this 

layer. Noticeably, the model further assesses the feasibility and the economic viability of 

maintaining and prolonging the life of the hardware. Information about the speed and 

quality of repair is fed into the model to inform decision-makers about the extent to which 

a proposed platform variant can be serviced and maintain along its lifecycle. 

Historical data stored in internal and external databases can be mined and analysed to 

obtain important information about the performances of a given design during the phase-
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out and disposal phase. One important aspect in this respect is the opportunity to assess the 

resale value of hardware by extracting relevant functions that describe how different 

components (and their status) influence prices and purchaser decisions in the second-hand 

market (Chowdhery and Bertoni 2018). Condition monitoring data, as well as other data 

from the targeted markets, are of interest to define the structure and the expressions 

governing the simulation model at this step. The simulation model at the end-of-life layer 

requires further information about the key performance indicators of the reverse logistics 

chain, as well as data from cleaning/valeting processes.    

4.5 Value layer 

The simulation results obtained at the different layers are eventually used to populate a Net 

Present Value (NPV) – or, alternatively, a Surplus Value (SV) -  function at the Value 

layer. NPV and SV are monetary models that calculate the long-term profitability of a 

design concept, in a similar fashion to what proposed in the Value-Driven Design literature 

for the evaluation of complex systems (Soban et al. 2012; Cheung et al. 2012; Monceaux 

et al. 2014). The function compares cash inflows and outflows over a period of time 

considered relevant by the design team. The definition of the cost items follows the model 

for the Total Cost of Ownership proposed by the PROTEUS Tool book (Finken et al. 2013). 

From here, cost areas are shortlisted, distinguishing between items considered to be 

priorities, negligible or not assessable when developing the cost engineering approach. 

Importantly, separate value models are developed to account for alternative PSS business 

model types. In doing so, revenue data are calculated by considering, for instance, the 

effective utilization of the PSS hardware, its availability in the different PSS types, its 

flexibility in operation and more. The NPV model results are used then to identify the most 

valuable combination of features for the hardware given alternative business models. 

5 Discussion 

The research presented in this paper foresees several iterations loops where the qualitative 

researcher moves back and forth between design and implementation to ensure congruence 

among question formulation, literature, recruitment, data collection strategies, and 

analysis. The proposed data-driven framework shall be considered the outcome of such 

initial iterations and a first step towards the elaboration of a more comprehensive guidelines 

to support the design exploration activity for Product-Service Systems using models. The 

main benefit of this ‘frontloading’ exercise is to raise awareness among decision-makers 

of the long-term consequences of their design decisions in alternative business scenarios. 

Verification activities have foreseen the involvement of industrial practitioners, 

academic experts, and other stakeholders, and has been conducted through the development 

of increasingly complex demonstrators to progressively validate the emerging modelling 

concepts. Debriefing activities with the partner company in the project indicate that the 

application of the proposed model-based approach may leverage communication among 

the different disciplinary teams involved in the early stages of PSS design. By combining 

models – and using data to raise their reliability and maturity – each individual in the design 

team may grow a clearer picture of how different disciplines (from engineering to 

management) contribute to the creation of value for new sol. The opportunity to link 

engineering characteristics and ‘performances’ to value are considered a critical capability 
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by practitioners. They recognize that in the fuzzy front-end, design decision-makers also 

lack the ability to communicate why their work is ‘good’, and, hence, to deliberate about 

the most value-adding design. The application of the proposed framework and modelling 

approach is considered to fill a gap when it comes to stimulating value discussions across 

functions and organizational roles. Importantly, the ability to leverage the value negotiation 

early in the design process is considered critical to keeping the focus on the underlying 

business case when developing products and ‘hardware’, which is to justify why a proposed 

technology, material or design is ‘good’ in the light of the targeted PSS type. 

6 Conclusions 

The selection of PSS design concepts is an iterative process, which requires systematic 

support that is able to adapt to the pool of information and knowledge available during 

decision events. The data-driven framework presented in this paper shall be considered a 

step forward toward a larger research effort whose purpose is to create a data-driven 

platform for value-based decisions in PSS conceptual design. This contribution illustrates 

the initial finding from this iterative research process, pinpointing the model chain, 

techniques and data sources that need to be introduced in the PSS design process to assess 

the value of solution concepts already in an early phase. Noticeably, the proposed 

framework is generic enough to be applied across industrial sectors and PSS types, and it 

is meant to provide a reference upon which to further investigate the benefits of simulation 

models in data-intensive environment for early stage decision making, to ultimately push 

forward the state of the art and the state of the practice of data-driven design. 

The overall purpose of this work is to use data-driven models to capture and represent 

‘value’ aspects and link these to the engineering design process. Future research will focus 

on the further development of the proposed framework by gathering and collecting 

empirical evidence from a broader range of industries and case studies. Enlarging the 

number of cases will allow to further build a theory on the topic of data-driven design, 

identifying key variables, describing their linkages and why relationships exist. 
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