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Abstract. Energy consumption reduction has been an increasing trend in machine learning over the past few years due to its
socio-ecological importance. In new challenging areas such as edge computing, energy consumption and predictive accuracy
are key variables during algorithm design and implementation. State-of-the-art ensemble stream mining algorithms are able to
create highly accurate predictions at a substantial energy cost. This paper introduces the nmin adaptation method to ensembles
of Hoeffding tree algorithms, to further reduce their energy consumption without sacrificing accuracy. We also present extensive
theoretical energy models of such algorithms, detailing their energy patterns and how nmin adaptation affects their energy
consumption. We have evaluated the energy efficiency and accuracy of the nmin adaptation method on five different ensembles
of Hoeffding trees under 11 publicly available datasets. The results show that we are able to reduce the energy consumption
significantly, by 21% on average, affecting accuracy by less than one percent on average.
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1. Introduction

Energy consumption in machine learning is starting to gain importance in state-of-the-art research.
This is clearly visible in areas where researchers are incorporating the inference or training of the model
inside the device (i.e. edge computing or edge AI). An area whose main focus is on real-time prediction
on the edge is data stream mining.

One of the most well-known and used classifier is the decision tree, due to its explainability advantage.
In the data stream setting, where we can only do one pass over the data, and we can not store all of it, the
main problem of building a decision tree is the need to reuse the examples to compute the best splitting
attributes. Hulten and Domingos [16] proposed the Hoeffding Tree or VFDT, a very fast decision tree
for streaming data, where instead of reusing instances, we wait for new instances to arrive. The most
interesting feature of the Hoeffding tree is that it builds an identical tree with a traditional one, with high
probability if the number of instances is large enough, and that it has theoretical guarantees about that.

Decision trees are usually not used alone, but within ensembles methods. Ensemble methods are
combinations of several models whose individual predictions are combined in some manner (e.g.,
averaging or voting) to form a final prediction. They have several advantages over single classifier
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methods: they are easy to scale and parallelize, they can adapt to change quickly by pruning under-
performing parts of the ensemble, and they therefore usually also generate more accurate concept
descriptions.

Advancements in data stream mining have been primarily focused on creating algorithms that output
higher predictive performance. For that, they used ensembles of existing algorithms. However, these
solutions output high predictive performance at the cost of higher energy consumption. We recently
conducted an experiment comparing Online Boosting [34,35] to standard Hoeffding trees for the Forest
dataset (Section 5.1). Online Boosting was able to achieve 14% more accuracy but consuming 5 times
more energy. To address this challenge, we present the nmin adaptation method for ensembles of
Hoeffding Tree algorithms [16], to make them more feasible to run in the edge.

The nmin adaptation method is a method presented in [18], which reduces the energy consumption
of standard Hoeffding tree algorithms by adapting the number of instances needed to create a split. We
extend that study by incorporating the nmin adaptation method to ensembles of Hoeffding trees. The goal
of this paper is two-fold:

– Present an energy efficient approach to real-time prediction with high levels of accuracy.
– Present detailed theoretical energy models for ensemble of Hoeffding trees, together with a generic

approach to create energy models, applicable to any class of algorithms.
We have conducted experiments on five different ensembles of Hoeffding trees (Leveraging Bagging [6],

Online Coordinate Boosting [37], Online Accuracy Updated Ensemble [11], Online Bagging [36],and
Online Boosting [36]), with and without nmin adaptation, on 11 publicly available datasets. The results
show that we are able to reduce the energy consumption by 21%, affecting accuracy by less than 1%, on
average.

This approach achieves similar levels of accuracy as state-of-the-art ensemble online algorithms, while
significantly reducing its energy consumption. We believe this is a significant step towards a greener
data stream mining, by proposing not only more energy efficient algorithms, but also creating a better
understanding of how ensemble online algorithms consume energy.

The rest of the paper is organized as follows: The work related to this study is presented in Section 2.
Background on Hoeffding trees and the nmin adaptation method is presented in Section 3. The main
contribution of this paper is presented in Section 4. There we first describe how to build energy models
for any kind of algorithm (Fig. 2), we then present extensive theoretical energy models for the Online
Bagging, Leveraging Bagging, Online Boosting, Online Coordinate Boosting, and Online Accuracy
Updated Ensemble algorithms. This helps at understanding the energy bottlenecks of the algorithm, and
why nmin adaptation is efficient at handling those bottlenecks. The design of the experiments together
with the results are presented in Sections 5 and 6 respectively. The paper ends with conclusions in
Section 7.

2. Related work

Energy efficiency has been widely studied in the field of computer architecture for decades [23].
Moore’s law stated that the performance of CPUs was going to double every 18 months, by doubling
the number of transistors. This prediction was made considering one fundamental constraint, that the
energy consumed by each unit of computing would decrease as the number of transistors increased.1 The

1https://www.forbes.com/2010/04/29/moores-law-computing-processing-opinions-contributors-bill-dally.html.
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CPU scaling from Moore does not apply anymore, and the main reason is because there was not enough
focus on scaling the power while increasing performance [25]. This has created a paradigm shift, where
power is the key factor studied to improve computer performance, creating processors that handle more
operations using the same amount of power [28].

Machine learning research, and in particular deep learning, is aware of the need to focus not only on
creating more accurate models, but also on creating energy efficient models [20,21,38]. The researchers
in this area have realized that the amount of energy and resources (e.g. GPUs) needed to perform training
and inference on such models is impractical, especially for mobile platforms. Currently most of the
machine learning models used in the phone are accessed through the cloud, since doing inference in the
phone is challenging. Some research is going in that direction, such as The Low Power Image Recognition
Challenge (LPIRC) [19], and the work by [13,39].

Approaches to mine streams of data have been evolving during the past years. We consider the
Hoeffding tree algorithm [16] to be the first algorithm that was able to classify data from an infinite stream
of data in constant time per example. That approach was later improved to be able to handle concept
drift [26], that is, non-stationary streams of data that evolve through time. The ability to handle concept
drift introduces many computational demands, since the algorithm needs to keep track of the error to
detect when a change occurs. ADWIN (adaptive windowing) [3] is the most efficient change detector
that can be incorporated to any algorithm. The Hoeffding Adaptive Tree (HAT) [4] was introduced as an
extension to the standard Hoeffding tree algorithm that is able to handle concept drift using the ADWIN
detector.

In relation to energy efficiency and data stream mining, several studies have recently focused on
creating more energy efficient versions of existing models. The Vertical Hoeffding Tree (VHT) [29]
was introduced to parallelize the induction of Hoeffding trees. Another approach for distributed systems
is the Streaming Parallel Decision Tree algorithm (SPDT) [2]. Marrón et al. [33] propose a hardware
approach to improve Hoeffding trees, by parallelizing the execution of random forests of Hoeffding trees
and creating specific hardware configurations. Another streaming algorithm that was improved in terms
of energy efficiency was the KNN version with self-adjusting memory [30].

A recent publication at the International Conference on Data Mining [31] presented an approach
similar to ours, which estimates the value of nmin to avoid unnecessary split attempts. Although their
approach seems to better estimate the value of nmin, our approach is still more energy efficient (based on
their results), which is the ultimate goal of our study. We believe that trading off a few percentages of
accuracy is necessary in some scenarios (e.g. embedded devices) where energy and battery consumption
is the main concern. This work is an extension of an already published study where we introduced nmin
adaptation [18]. While in that work the nmin adaptation method was only applied to the standard version
of the Hoeffding tree algorithm, this study proposes more energy efficient approaches to create ensembles
of Hoeffding trees, validated by the experiments on five different algorithms and 11 different datasets. On
top of that, this study presents, to the best of our knowledge, the first approach to create generic energy
model for any class of machine learning algorithm.

3. Background

This section explains in detail Hoeffding trees, together with the ensembles of Hoeffding trees used in
this study.
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3.1. Hoeffding tree algorithm

The Hoeffding tree algorithm (Algorithm 2), also known as Very Fast Decision Tree (VFDT) [16], was
first introduced in the year 2000, presenting the first approach that was able to mine from a stream of data
in constant time per example, with low computational constraints, and being able to read the data only
once without storing it. The algorithm builds and updates the model as the data arrive, storing only the
necessary statistics at each node to be able to grow the tree.

The algorithm reads an instance, traverses the tree until it reaches the corresponding leaf, and updates
the statistics at that leaf based on the information from that instance. For attributes with discrete values,
the statistics are counts of class values for each attribute value. On the other hand, for attributes with
numerical values there are several approaches to safe the information in the most efficient way. The most
common approach used nowadays is to maintain a Gaussian function with the mean, standard deviation,
maximum, and minimum, at each node, for each class label and attribute.

Once nmin instances are read in a particular leaf, the algorithm calculates the information gain(entropy)
for each attribute, using the aforementioned statistics. If ∆G > ε, i.e. the difference between the infor-
mation gain from the best and the second best attribute (∆G) is higher than the Hoeffidng Bound [24](ε),
then a split occurs, and the leaf substituted by the node with the best attribute. The Hoeffding bound(ε) is
defined as:

ε =

√
R2 ln(1/δ)

2n
(1)

and it states that the split on the best attribute having observed n number of examples, will be the same as
if the algorithm had observed an infinite number of examples, with probability 1− δ. The idea is that
the Hoeffding tree can be approximated to a standard decision tree by observing a sufficient number of
instances at each node, to create a confident split. On the other hand, if ∆G < ε < τ , a tie occurs. This
happens when the two top attributes are equally good, thus the tree splits on any of those.

Algorithm 1 AttemptSplit Symbols: X: attributes; ε: Hoeffding bound Eq. (1)

1: Compute Gl(Xi) for each attribute Xi
2: ∆G = Gl(Xa)−Gl(Xb) . Difference between two best attributes
3: if (∆G > ε) or (ε < τ ) then
4: Split← True
5: end if

3.2. nmin adaptation

The nmin adaptation method was previously introduced in [18]. While that study only focused on the
energy reduction of standard Hoeffding tree algorithms, this study proposes to use the nmin adaptation
method on ensembles of Hoeffding trees, to align with the current approaches in data stream mining.

The goal of the nmin adaptation method is to estimate the number of instances (nmin) that are needed to
make a split with confidence 1− δ. Current Hoeffding tree algorithms use a fixed value of nmin instances.
Thus the batch of instances that are observed on each node before checking for a possible split is the
same for each node, and during the complete execution of the algorithm. As is explained in Section 4.2.1,
having a fixed nmin value is energy inefficient. This is because there are many times where those instances
are not enough to make a confident split, thus all those computations are done unnecessarily.

Our method estimates, for each node, the nmin instances that ensure a split, to calculate the splitting
attributes only when there is going to be a split. Since each node will have their own nmin, we allow the
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Algorithm 2 Hoeffding Tree. Symbols: HT : Initial tree; X: set of attributes; G(·): split evaluation function; τ : hyperparameter
used for attributes with tied information gain; nmin: hyperparameter to decide when to check for a split.
1: while stream is not empty do
2: Read instance
3: Traverse the tree using HT . Until leaf l is reached
4: Update statistics at leaf l . Nominal and numerical attributes
5: Increment nl: instances seen at l
6: if nmin 6 nl then
7: AttemptSplit(l) . Call Function from Algorithm 1
8: if Split==True then
9: CreateChildren(l) . New leaf lm with initialized statistics

10: else
11: Disable attr {Xp|(Gl(Xp)−Gl(Xa)) > ε}
12: end if
13: end if
14: end while

Fig. 1. Example of the nmin adaptation method. The value of nmin is going to be adapted based on two scenarios: scenario 1
(left plot), and scenario 2 (right plot).

tree to grow faster (lower nmin) in those branches where there is a clear attribute to split on, and to delay
the growth (higher nmin) in those branches where there is no clear attribute to split on.

The value of nmin is going to be adapted only when a non-split occurs, otherwise we assume that the
current value is the optimal one. The method follows two approaches, illustrated in Fig. 1.

The first approach (scenario 1) approximates the value of nmin when the non-split occurred because no
attribute was the clear winner (Fig. 1 left plot). In this case, nmin is estimated as the number of instances
needed for the best attribute to be higher than the second best attribute with a difference of ε. Taking a
look at the left plot from Fig. 1, nmin are the instances needed for the green triangle (ε), to reach the
black star(∆G). When we wait for those nmin instances, then ∆G > ε, satisfying the condition for a
split. More formally, for the first scenario:

nmin =

⌈
R2 · ln(1/δ)

2 · (∆G)2

⌉
(2)

The second approach (scenario 2) approximates the value of nmin when the non-split occurred because
ε > τ . In this scenario, although the attributes are very similar (∆G < ε), and their difference in entropy
is smaller than τ , the confidence is still not high enough to make a split. Taking a look at the right plot
from Fig. 1, nmin are the instances needed for the green triangle (ε), to reach the red dot (τ ). When we
wait for those instances, then ε < τ , satisfying the condition to create a split. More formally, the nmin
approximation for the scenario 2 is defined as:
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nmin =

⌈
R2 · ln(1/δ)

2 · τ2

⌉
(3)

The nmin adaptation implemented for the Hoeffding tree algorithm is portrayed in Algorithm 3.

Algorithm 3 Hoeffding Tree with nmin adaptation. Symbols: nmin: hyperparameter initially set by the user that is going to be
adapted; HT : Initial tree; X: set of attributes; G(·): split evaluation function; τ : hyperparameter used for attributes with tied
information gain
1: while stream is not empty do
2: Read instance
3: Traverse the tree using HT . Until leaf l is reached
4: Update statistics at leaf l . Nominal and numerical attributes
5: Increment nl: instances seen at l
6: if nmin 6 nl then
7: AttemptSplit(l) . Call Function from Algorithm 1
8: if Split==True then
9: CreateChildren(l) . New leaf lm with initialized statistics

10: else
11: Disable attr {Xp|(Gl(Xp)−Gl(Xa)) > ε} . Adapt the value of nmin
12: if ∆G 6 τ then

13: nmin =

⌈
R2·ln(1/δ)

2·τ2

⌉
. Scenario 2

14: else
15: nmin =

⌈
R2·ln(1/δ)

2·(∆G)2

⌉
. Scenario 1

16: end if
17: end if
18: end if
19: end while

4. Energy modeling of Hoeffding tree ensembles

This section presents the main contribution of this paper, guidelines on how to construct energy efficient
ensembles of Hoeffding trees, validated with the experiments on Section 6. In order to reduce the energy
consumption of ensembles of Hoeffding trees, we apply the nmin adaptation method to the Hoeffding
tree algorithm, and use that algorithm as the base for the different ensembles. To have a more detailed
view on how energy is consumed on ensembles of Hoeffding tees, we first portray an approach to create
generic theoretical energy models for any kind of algorithm (Section 4.1). We then show how that generic
approach applied for ensemble of Hoeffding trees (Section 4.2 and Fig. 3). That section finalizes with a
detailed energy model and explanation of each algorithm: Online Bagging, Online Boosting, Leveraging
Bagging, Online Coordinate Boosting, Online Accuracy Updated Ensemble, and Hoeffding tree with
nmin adaptation.

4.1. Generic approach to create energy models

We have summarized the different steps to create theoretical energy models in Fig. 2.
First, Step 1 formalizes the generic energy model, as a sum of the different operations (mapped then to

algorithm functions) categorized by type of operation. Thus, the total energy of a model can be expressed
as:

E = nFPU · EFPU + nINT · EINT + ncache · Ecache + ncache_miss · (Ecache_miss + EDRAM)
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Fig. 2. Generic approach to build energy models for any kind of algorithm.

The operations are divided into integer, floating point operations, and DRAM and cache accesses.
We consider a DRAM access everytime a cache miss occurs. The energy per access or per computation
(EFPU, EINT, Ecache_miss, EDRAM) will depend on the specific hardware where the algorithm is run. How-
ever, knowing which type of operations consumes more energy (example a DRAM access consumes 100
times more energy than a floating point operation), together with the amount of operations for each type,
gives a detailed overview of the theoretical energy consumption of the algorithm. Step 1 can be done only
once, as appears in the figure, and can be used for any algorithm. It can be adapted to specific hardware
components if needed.

Step 2 focuses on identifying the main functions of the algorithm, and then representing them in terms
of generic features such as number of attributes or size of the ensemble.

In Step 3 the goal is to map the functions from Step 2 to the different type of operations. For example, a
function that counts the number of instances can be expressed as one integer operation per instance.
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Fig. 3. Energy model approach for ensembles of Hoeffding trees with nmin adaptation. Steps: i) Obtain the energy model
(following Fig. 2) for the general ensemble of trees; ii) Obtain the energy model of Hoeffding trees with nmin adaptation; iii)
Sum the energy model variables. The energy model for Hoeffding trees (dashed box) can be substituted by the energy model of
any other algorithm that is going to be part of the ensembles (for example Hoeffding Adaptive Trees [4]).

Fig. 4. Energy model for the Hoeffding tree with nmin adaptation.

An example of how to apply these steps is shown in Section 4.2.

4.2. Ensembles energy models

The process to create an energy model for any ensemble of other algorithms is summarized in Fig. 3.
The goal is to combine the energy model of the ensemble and the energy model of the base algorithm for
the ensemble. In the case of Online Bagging, for instance, we need to sum the energy model of Online
Bagging plus the energy model of the Hoeffding tree with nmin adaptation. If another model is used in
the ensemble, it can be substituted by the Hoeffding tree with nmin adaptation (dashed box).

This section details, first, the energy model of Hoeffding Trees with nmin adaptation (Fig. 4), then the
energy models of the ensembles: Online Bagging (Fig. 5), Leveraging Bagging (Fig. 6), Online Boosting
(Fig. 7), Online Coordinate Boosting (Fig. 8), Online Accuracy Updated Ensemble (Fig. 9).

4.2.1. Hoeffding trees with nmin adaptation
The energy consumption of Hoeffding trees with nmin adaptation (HT-nmin for the remainder of the

paper), explained in detail in Section 3.2, is summarized with the energy model from Fig. 4.
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The second step (Fig. 2) after defining the generic energy model is to identify the main functions of the
HT-nmin. The HT-nmin algorithm spends energy on training (traversing the tree, updating the statistics,
checking for a split, doing a split), and doing inference (traversing the tree, Naive Bayes or majority class
prediction at the leaf). In particular:

– Traverse the tree: The energy spent on traversing the tree is calculated as the number of cache
misses, which we assume as one access per attribute per instance (for every time as instance is read),
as the worst case scenario.

– Updating statistics: The energy spent on updating statistics is divided in nominal and numerical
attributes. The energy spent in updating attributes regarding computations is one integer computation
per instance per nominal attribute, and one floating point operation per numerical attribute. In terms
of accesses, for both nominal and numeric attributes, we have a cache miss the first time we access
the table, and then one cache hit per nominal attribute, and then a cache miss for every attribute that
exceeds the block size.

– Checking for a split: To check for a split we need to calculate the entropy for all attributes, calculate
the Hoeffding bound, and sort the attributes to obtain the best one. Calculating the entropy, calculating
the Hoeffding bound, and sorting the attributes, is one floating point operation per attribute, every
nmin instances. Regarding memory accesses, we consider one cache miss every nmin instances.

– Doing a split: To create a new node we consider one floating point operation and one cache miss
every nmin instances.

Finally, those functions are mapped to the corresponding nFPU, nINT, ncache, ncache_miss, as shown in
Fig. 4.

What we believe is more important to observe from this energy model is the impact of the nmin
parameter. The amount of times that the algorithm check for split, which involves a significant part of
the energy consumption, depends on the value of nmin. That is why having a bad approximation of
nmin incurs in high energy costs without increasing the predictive performance. This model is the input
presented in the energy models of the ensembles from the following paragraphs.

4.2.2. Online Bagging
Online Bagging, presented in Algorithm 4, was proposed by Oza and Russell [36] as a streaming

version of traditional ensemble bagging. Bagging is one of the simplest ensemble methods to implement.
Non-streaming bagging [9] builds a set of M base models, training each model with a bootstrap sample
of size N created by drawing random samples with replacement from the original training set. Each base
model’s training set contains each of the original training examples K times where P (K = k) follows a
binomial distribution:

P (K = k) =

(
n

k

)
pk(1− p)n−k =

(
n

k

)
1

n

k
(

1− 1

n

)n−k
.

This binomial distribution for large values of n tends to a Poisson(1) distribution, where Poisson(1)
= exp(−1)/k!. Using this fact, [36] proposed Online Bagging, an online method that instead of sampling
with replacement, gives each example a weight according to Poisson(1).

This algorithm has two main functions, one involved in training the model, that depends on the base
algorithm, and the other function that calculates k. Training the model can be represented as the energy
model of the Hoeffding tree with nmin adaptation, from Fig. 4. Calculating k involves one floating point
operation per instance (N ) per model (M ). The final energy model for Online Bagging is represented in
Fig. 5.
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Algorithm 4 Online Bagging(h,d)
1: for each instance d do
2: for each model hm, (m ∈ 1, 2, . . . ,M) do
3: k = Poisson(λ = 1)
4: Train the model on the new instance k times
5: end for
6: end for

Fig. 5. Online Bagging energy model based on the number of models (M ) and number of instances (N ), considering the
Hoeffding tree with nmin adaptation as the base tree classifier.

4.2.3. Leveraging Bagging
When data is evolving over time, it is important that models adapt to the changes in the stream and

evolve over time. ADWIN bagging [7] is the online bagging method of Oza and Russell with the addition
of the ADWIN algorithm [3] as a change detector and as an estimator for the weights of the boosting
method. When a change is detected, the worst classifier of the ensemble of classifiers is removed and a
new classifier is added to the ensemble. Leveraging Bagging [6], shown in Algorithm 6, extends ADWIN
bagging by leveraging the performance of bagging with two randomization improvements: increasing
resampling and using output detection codes. Leveraging bagging increases the weights of this resampling
using a larger value λ to compute the value of the Poisson distribution. For every instance, on top of
training the model for each ensemble as for Online Bagging, Leveraging Bagging checks if the instance
is correctly classified by the model, and inputs such error value to the ADWIN detector (Algorithm 5), to
check for a possible change.

Algorithm 5 ADWIN. Symbols: h: ensemble of models hm: model in particular. d: instance
1: ypred = Classify instance d with classifier hm
2: y = True class of d
3: if ypred == y then
4: correctlyClassifies← True
5: end if
6: ErrEstim = getEstimation(hm)
7: if setInput(hm, correctlyClassifies) == True then
8: if getEstimation(hm) > ErrEstim then . After new input from Line 8
9: Change← True

10: end if
11: end if

Leveraging Bagging has a similar energy consumption pattern than Online Bagging with the addition
of the ADWIN detector and the output codes. The ADWIN detector introduces significant overhead since
it has to keep track of the error. For every instance ADWIN calculates if model hm correctly classifies
instance d, for each model hm, (m ∈ 1, 2, . . . ,M). It then inputs a 0 for misclassification or 1 for a
correct classification to the ADWIN detector. With this information, ADWIN outputs if there has been a
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Algorithm 6 Leveraging Bagging(h,d,λ)
1: for each instance d do
2: for each model hm, (m ∈ 1, 2, . . . ,M) do
3: k = Poisson(λd)
4: Train the model on the new instance k times
5: ADWIN(h, hm, d) . Call function from Algorithm 5
6: if ADWIN detects change on hm then
7: Replace classifier with highest error with a new classifier
8: end if
9: end for

10: end for

Fig. 6. Energy model for Leveraging Bagging. N = number of instances, M = number of models, W = window size, s =
speed of change, c = percentage of correctly classified instances.

change in the current window. If the size of the window exceeds the maximum value assigned, ADWIN
resizes the window. Finally, if a change is detected, the worst performing classifier is removed from the
ensemble, and a new one is created.

The main functions of the baseline algorithm are: calculate k, train with HT-nmin, and replace classifier.
The main functions of ADWIN are: traverse the tree, obtain the true class y, compare y with the prediction,
get the estimation, and set the input to ADWIN. The following list details these functions in terms of type
of operations and number of instances, models, etc. Computing the output codes are omitted since they
are not activated by default in the algorithm.

– Calculate k is one FPU operation per instance per model.
– Replacing the classifier is one cache miss per classifier to get the error of each classifier, and one

cache miss to replace it. That is per instance per model per everytime change is detected (S variable).
– Traverse the tree. As for the HT-nmin, the energy is calculated as the number of cache misses,
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assuming one access per attribute per instance.
– Obtaining the true class is one cache miss per instance per model.
– Comparing y with the prediction is one cache access per instance per model.
– Getting the estimation is just dividing the amount of error by the number of instances, which

outputs to one floating point operation per instance per model.
– Setting the input is quite energy consuming, since there are several operations involved. First

it inserts the element in the window bucket, which is one cache miss per instance per model.
Second it compresses the buckets, which we calculate as one cache miss per instance per model
for the first access, and then (log(W) − 1) cache accesses per instance per model for the rest of
the window accesses, W being the window size. Third it reduces the window, which is the same
energy consumption pattern as compressing the buckets, one cache miss per instance per model and
(log(W)− 1) cache accesses per instance per model.

Figure 6 shows the energy model of the Leveraging Bagging algorithm, based on the function ex-
planations presented in the previous list. M is the number of models in the example, N the number of
instances, W is the window size for ADWIN, s is the speed of change (the percentage of instances with
change), c is the percentage of correctly classified instances.

4.2.4. Online Boosting
Online Boosting [34,35] is an extension of boosting for streaming data, presented in Algorithm 7. The

main difference with Online Bagging is that Online Boosting updates the λ of the Poisson distribution
for the next classifier based on the preformance of the current classifier (Fig. 4). If classifier m classifies
the instance correctly, that instance will be assigned a lower weight for the next classifier m+ 1. On the
other hand, if the instance is classified incorrectly, that instance gets updated with a higher weight. Each
instance is passed through each model in sequence.

Algorithm 7 Online Boosting(h,d)
1: λd = 1
2: for each instance d do
3: for each model hm, (m ∈ 1, 2, . . . ,M) do
4: k = Poisson(λd)
5: Train the model on the new instance k times
6: if instance is correctly classified then
7: instance weight λd updated to a lower value
8: instance weight λd updated to a higher value
9: end if

10: end for
11: end for

Regarding its energy consumption and energy model, we observe that Online Boosting presents a
similar energy consumption pattern than Online Bagging. Online Bagging introduces an extra memory
access to update the weight, which we assume that the access is a DRAM access because each instance is
updated sequentially, not fitting in cache. We assume one instance update per instance per model, the
worst case scenario if all instances are classified incorrectly. The detailed energy model is presented in
Fig. 7.

4.2.5. Online Coordinate Boosting
Online Coordinate Boosting [37](Algorithm 8) is an extension to Online Boosting, that uses a different

procedure to update the weight, to yield a closer approximation to Freund and Schapire’s AdaBoost
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Fig. 7. Online Boosting energy model based on the number of models (M ) and number of instances (N ), considering the
Hoeffding tree with nmin adaptation as the base tree classifier. k represents the output value of the Poisson distribution from
Algorithm 7, line 4.

algorithm [17]. The weight update procedure is derived by minimizing AdaBoost’s loss when viewed in
an incremental form.

From Algorithm 8 we can observe the different calculations in lines 8, 11, 13, 14, and 15. Once the
weight is calculated, the HT-nmin algorithm is trained with weight d. They use the following formulas to
calculate π+

j , π+
j , W+

jk and W−
jk.

Algorithm 8 Online Coordinate Boosting(h,x)
1: d = 1
2: for each instance x do
3: for each model hm, (m ∈ 1, 2, . . . ,M) do
4: if instance is correctly classified then
5: mj = 1
6: end if
7: for every model seen so far −1 do
8: Calculate π+

j and π+
j using Eqs (4) and (5)

9: end for
10: for every model seen so far do
11: Calculate W+

jk and W−jk using Eqs (6) and (7)
12: end for
13: αij = 1

2
log

W+
jj

W−
jj

14: ∆αj = αij − αi−1
j

15: d← de−α
i
jmij

16: Train the model on the new instance with weight d
17: end for
18: end for

π+
j =

j−1∏
k=j0

(
W+
jk

W+
jj

e−∆αk +

(
1−

W+
jk

W+
jj

)
e∆αk

)
(4)

π−j =

j−1∏
k=j0

(
W−
jk

W−
jj

e−∆αk +

(
1−

W−
jk

W−
jj

)
e∆αk

)
(5)

W+
jk =W+

jkπ
+
j + d1[mik=+1] · 1[mij=+1] (6)

W−
jk =W−

jkπ
−
j + d1[mik=−1] · 1[mij=−1] (7)
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Fig. 8. Energy model for Online Coordinate Boosting.

where j represents the model of the ensemble, j0 is set to 0, and mj is defined in line 5 of the algorithm.
To iterate over the product we introduced the loops in lines 7 and 10.

In relation to energy consumption, this energy model, presented in Fig. 8 adds the extra floating
point operations of calculating the values of Wjk, πj , αij , ∆αj , and d, and the cache accesses related to
traversing the tree to calculate if the instance is correctly classified. Traversing the tree is the same as for
ADWIN, one access per attribute per instance. Calculating πj can be estimated as

M−1∑
k=0

k,

and Wjk as

M∑
k=0

k.

Since the sum of πj and Wjk result in M2 operations, the amount of floating point operations of lines
8 and 11 can be simplified as: M ·N(M2 · 2 + 3). Finally, lines 13, 14, and 15 of Algorithm 8 require
one floating point operation per instance per model.

4.2.6. Online Accuracy Updated Ensemble
Batch-incremental methods create models from batches, and they remove them as memory fills up; they

cannot learn instance-by-instance. The size of the batch must be chosen to provide a balance between
best model accuracy (large batches) and best response to new instances (smaller batches). The Online
Accuracy Updated Ensemble (OAUE) [11,12], presented in Algorithm 9 maintains a weighted set of
component classifiers and predicts the class of incoming examples by aggregating the predictions of
components using a weighted voting rule. After processing a new example, each component classifier is
weighted according to its accuracy and incrementally trained.

Regarding its energy consumption, we first present the main functions of the algorithm, to then present
its energy patterns, combined in an energy model on Fig. 9. The main functions are: create a new classifier,
calculate the prediction error, add classifier, weight classifier, and replace classifier.

– Creating a new classifier requires one cache miss every w instances (lines 5 and 12), thus N
w .

– Calculating the prediction error is the same energy as traversing the tree, that as previously
explained for the HT-nmin and the Leveraging Bagging algorithms is one cache miss per attribute
per instance (line 4), per model.

– Adding a new classifier (line 7) is one cache miss every w instances, only the first M times.
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Algorithm 9 Online Accuracy Updated Ensemble. Symbols: ε: ensemble w: window M : ensemble size
1: ε← ∅
2: C′ ←new candidate classifier
3: for each instance xt do
4: Calculate the prediction error of all classifiers Ci ∈ ε on xt

5: if t > 0 and t mod w = 0 then
6: if |ε| < M then
7: Add classifier C′ to the ensemble ε
8: else
9: weight all classifiers Ci ∈ ε and C′ using Eq. (8)

10: substitute least accurate classifier in ε with C′

11: end if
12: C′ ← new candidate classifier
13: else
14: incrementally train classifier C′ with xt
15: weight all classifiers Ci ∈ ε using Eq. (8)
16: end if
17: for all classifiers Ci ∈ ε do
18: incrementally train classifier Ci with xt

19: end for
20: end for

Fig. 9. Energy model for Online Accuracy Updated Ensemble.

– Calculating the weight for each classifier requires one floating point operation per classifier per
N − N

w instances, using the Eq. (8) on line 9, and then on line 15 for the rest of the instances. Thus it
requires N floating point operations minus M (condition on line 6).

– Replacing the classifier is the same as the function used in ADWIN, one cache miss per classifier to
calculate the error for each classifier, plus one extra cache miss to replace it. This occurs for every N

w
instances.

wti =
1

MSEtr +MSEti + ε
(8)

5. Experimental design

We have performed several experiments to evaluate our proposed method, nmin adaptation, in en-
sembles of Hoeffding trees. The experiments have a dual purpose: i) first, to see how much energy
consumption is reduced by applying the nmin adaptation method in ensembles of Hoeffding trees; ii) and
second, to see how much accuracy is affected in case of this energy reduction. To fulfill those purposes, we
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Table 1
Synthetic and real world datasets. Ai and Af
represent the number of nominal and numeri-
cal attributes, respectively. The details of each
dataset is presented in Section 5.1

Dataset Instances Ai Af Class
Synthetic
RandomTree 1,000,000 5 5 2
Waveform 1,000,000 0 21 3
RandomRBF 1,000,000 0 10 2
LED 1,000,000 24 0 10
Hyperplane 1,000,000 0 10 2
Agrawal 1,000,000 3 6 2
Real World
Airline 539,383 4 3 2
Electricity 45,312 1 6 2
Poker 829,201 5 5 10
CICIDS 461,802 78 5 6
Forest 581,012 40 10 7

have run a set of five different ensemble algorithms of Hoeffding trees, with and without nmin adaptation,
and compared their energy consumption and accuracy. We have tested these algorithms over six synthetic
datasets and five real world datasets, described in Table 1.

The ensembles used for this paper are: LeveragingBag, OCBoost, OnlineAccuracyUpdatedEnsemble,
OzaBag, and OzaBoost. They have already been described in Section 4. All of them use the Hoeffding
tree as the base classifier, with and without the nmin adaptation method.

The next subsections explain the datasets in more detail, together with the framework and tools for
running the algorithms and measuring the energy consumption.

5.1. Datasets

The synthetic datasets have been generated using the already available generators in MOA (Massive
Online Analysis) [5]. The real world datasets are publicly available online. Each source is detailed with
the explanation of the dataset.

5.1.1. RandomTree
The random tree dataset is inspired in the dataset proposed by the original authors of the Hoeffding

tree algorithm [16]. The idea is to build a decision tree, by splitting on random attributes, and assigning
random values to the leaves. The new examples are then sorted through the tree and labeled based on the
values at the leaves.

5.1.2. Waveform
This dataset is from the UCI repository [15]. A wave is generated as a combination of two or three

waves. The task if to predict which one of the three waves the instance represents.

5.1.3. RBF
The radial based function (RBF) dataset is created by selecting a number of centroids, each with a

random center, class label and weight. Each new example randomly selects a center, considering that
centers with higher weights are more likely to be chosen. The chosen centroid represents the class of the
example. More details are given by [8].
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Table 2
Accuracy results of running LeveragingBag, OCBoost, OnlineAccuracyUpdatedEnsemble (OAUE), OzaBag, and OzaBoost on
ensembles of Hoeffding trees, with and without nmin. Accuracy is measured as the percentage of correctly classified instances.
The Nmin and NoNmin columns represent running the algorithm with and without nmin adaptation respectively. Highest accuracy
per dataset and algorithm are presented in bold

LeveragingBag OCBoost OAUE OzaBag OzaBoost
Dataset nmin Baseline nmin Baseline nmin Baseline nmin Baseline nmin Baseline
Agrawal 94.84 94.79 93.47 93.77 94.97 95.01 94.93 95.09 94.16 93.13
CICIDS 99.63 99.75 48.48 48.53 99.38 99.43 99.38 99.51 99.43 99.38
Hyperplane 90.69 90.46 90.43 89.90 91.96 91.93 90.83 90.68 90.40 90.01
LED 74.02 73.92 17.41 17.32 73.92 73.96 73.89 73.93 73.98 73.81
RandomRBF 95.08 95.30 91.99 92.26 92.17 92.96 93.43 93.99 93.85 93.93
RandomTree 97.28 97.85 93.11 93.28 94.39 94.72 94.47 95.12 95.81 96.77
Waveform 85.77 85.85 55.66 55.85 80.39 80.43 85.52 85.52 84.52 84.53
airline 63.33 63.49 66.09 66.03 68.55 68.69 64.92 64.93 63.46 63.32
Forest 88.90 92.50 73.59 75.44 84.34 85.31 80.89 83.93 87.01 90.71
Elec 89.84 90.44 89.06 91.24 81.54 83.34 81.66 84.08 86.78 87.76
poker 77.54 88.19 75.61 79.87 69.82 71.55 73.92 83.68 85.39 88.40

5.1.4. LED
The attributes of this dataset represent each segment of a digit on a LED display. The goal is to predict

which is the digit based on the segments, where there is a 10% chance for each attribute to be inverted [10].

5.1.5. Hyperplane
The hyperplane dataset is generated by creating a set of points that satisfies

∑d
i=1wixi = w0, where

xi is the coordinate for each point [26].

5.1.6. Agrawal
The function generates one of ten different predefined loan functions. The dataset is described in the

original paper [1].

5.1.7. airline
The airline dataset [27] predicts if a given flight will be delayed based on attributes such as airport of

origin and airline.

5.1.8. Electricity
The electricity dataset is originally described in [22], and is frequently used in the study of performance

comparisons. Each instance represents the change of the electricity price based on different attributes
such as day of the week, based on the Australian New South Wales Electricity Market.

5.1.9. poker
The poker dataset is a normalized dataset available from the UCI repository. Each instance represents a

hand consisting of five playing cards, where each card has two attributes; suit and rank.

5.1.10. Forest
The forest dataset contains the actual forest cover type for a given observation of 30 × 30 meter cells2

2https://archive.ics.uci.edu/ml/datasets/Covertype.
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5.1.11. CICIDS
The CICIDS dataset is a cybersecurity dataset from 2017 where the task is to detect intrusions [40].

5.2. Environment

The framework used to run the algorithms is MOA (Massive Online Analysis). MOA has the most
updated data stream mining algorithms, and is widely used in the field. To evaluate the algorithms in
terms of accuracy, we have used the Evaluate Prequential option, which tests and then trains on subsets
of data. This allows to see the accuracy increase in real time.

Measuring energy consumption is a complicated task. There are no simple ways to measure energy,
since there are many hardware variables involved. Based on previous work and experience, we believe
that the most straight forward approach to measure energy today is by using an interface provided by Intel
called RAPL [14]. This interface allows the user to access specific hardware counters available in the
processor, which saves energy related measurements of the processor and the DRAM. This approach does
not introduce any overhead (in comparison to other approaches such as simulation based), and allows
for real time energy measurements. This matches with the requirements in data stream mining. To use
the Intel RAPL interface, we use the tool already available: Intel Power Gadget3 This tool allows for an
energy and power monitoring during the execution of a particular program or script. Since the energy
or power is not isolated for that particular program, we have ensured that only our MOA experiments
where running on the machine at the time of the measurements. However, since we are aware that there
are always programs running in the background, we focus on portraying relative values between different
algorithms/methods. For this particular paper, our objective is to understand the difference in energy
between using the nmin adaptation method and not using the method. Thus, we focus on the difference
between those setups, rather than on absolute values of energy.

All the experiments have been run on a machine with an 3.5 GHz Intel Core i7, with 16 GB of RAM,
running OSX. We ran the experiments five times and averaged the results.

5.3. Reproducibility

The nmin adaptation method has been implemented in MOA, to make it openly available once the paper
has been reviewed. We have used the implementation in MOA of the ensembles of Hoeffding trees, choos-
ing the Hoeffding tree with nmin adaptation as the base classifier. In order to increase the reproducibility
of our results, we have made available the code of the nmin adaptation, together with the code of all
the experiments, the code used to create the tables and plots, and the datasets. It can be obtained in the
following link: https://www.dropbox.com/sh/ahfsp4i99vd1dmc/AABtjEc4EDkfogS1ZMbz1ofea?dl=0.
At the moment is a private repository, but it will be publicly available in GitHub once the paper has been
reviewed.

6. Results and discussion

The accuracy and energy consumption results of running algorithms LeveragingBag, OCBoost, On-
lineAccuracyUpdatedEnsemble, OZaBag, and OzaBag, on the datasets from Table 1, are presented in
Tables 2 and 3, respectively.

3https://software.intel.com/en-us/articles/intel-power-gadget-20.
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Table 3
Energy consumption results of running LeveragingBag, OCBoost, OnlineAccuracyUpdatedEnsemble (OAUE), OzaBag, and
OzaBoost on ensembles of Hoeffding trees, with and without nmin. The energy is measured in joules(J). Lowest energy
consumption per dataset and algorithm are presented in bold. The Nmin and NoNmin columns represent running the algorithm
with and without nmin adaptation respectively

LeveragingBag OCBoost OAUE OzaBag OzaBoost
Dataset nmin Baseline nmin Baseline nmin Baseline nmin Baseline nmin Baseline
Agrawal 5121.81 6856.58 1203.68 1522.84 1326.48 1374.64 1236.72 1352.17 2175.24 3018.05
CICIDS 1448.66 1709.49 1511.78 1658.37 1415.23 1528.05 1193.95 1362.44 1463.70 1621.17
Hyperplane 8391.08 14370.83 1009.45 1364.35 856.30 1246.84 1233.10 1815.75 1307.83 1881.81
LED 1854.47 2325.33 1614.94 1865.63 1645.07 1772.10 1218.56 1397.10 1280.74 1507.98
RandomRBF 7389.42 10617.94 1070.32 1347.56 1362.92 1796.12 1614.04 2111.28 1637.68 2293.95
RandomTree 7900.56 12534.89 1510.23 1791.32 1873.98 2452.21 1887.13 2555.93 2465.27 3942.07
Waveform 9164.32 15182.30 1759.72 2298.32 1371.15 1533.26 1544.43 2190.14 1907.51 2593.89
airline 10845.63 12028.00 5015.23 6310.04 1789.47 3004.81 6127.37 7132.72 7057.96 7907.50
Forest 2061.23 2801.53 1619.14 1919.68 1820.17 1969.78 1347.59 2156.80 1693.18 2496.60
Elec 148.72 183.86 93.18 111.81 104.77 121.84 102.15 115.40 95.94 118.15
poker 744.47 1220.16 917.18 1023.73 759.18 844.75 641.70 934.99 801.12 1051.66

Table 4
Difference in accuracy(∆%) and energy consumption ∆(J) between the algorithms running with and without nmin adaptation.
The difference is measured as the percentage between both approaches. For the ∆(%) column, the higher the value the better,
since it means that the nmin adaptation approach obtained higher accuracy than the non-nmin adaptation. For the ∆(J) the lower
the better, meaning that we reduced the energy consumption by that percent

LeveragingBag OCBoost OAUE OzaBag OzaBoost
Dataset ∆% ∆(J) ∆% ∆(J) ∆% ∆(J) ∆% ∆(J) ∆% ∆(J)
Agrawal 0.05 −25.30 −0.30 −20.96 −0.04 −3.50 −0.16 −8.54 1.04 −27.93
CICIDS −0.12 −15.26 −0.05 −8.84 −0.05 −7.38 −0.13 −12.37 0.06 −9.71
Hyperplane 0.23 −41.61 0.53 −26.01 0.03 −31.32 0.15 −32.09 0.39 −30.50
LED 0.11 −20.25 0.09 −13.44 −0.05 −7.17 −0.04 −12.78 0.17 −15.07
RandomRBF −0.22 −30.41 −0.27 −20.57 −0.79 −24.12 −0.56 −23.55 −0.08 −28.61
RandomTree −0.56 −36.97 −0.17 −15.69 −0.33 −23.58 −0.65 −26.17 −0.96 −37.46
Waveform −0.08 −39.64 −0.19 −23.43 −0.03 −10.57 0.00 −29.48 −0.00 −26.46
airline −0.16 −9.83 0.06 −20.52 −0.14 −40.45 −0.01 −14.09 0.14 −10.74
Forest −3.60 −26.42 −1.85 −15.66 −0.97 −7.60 −3.04 −37.52 −3.70 −32.18
Elec −0.60 −19.11 −2.18 −16.67 −1.80 −14.01 −2.42 −11.48 −0.98 −18.80
poker −10.65 −38.99 −4.26 −10.41 −1.73 −10.13 −9.76 −31.37 −3.01 −23.82
Average −1.42 −27.62 −0.78 −17.47 −0.54 −16.35 −1.51 −21.77 −0.63 −23.75

Table 4 presents the difference in accuracy and energy consumption between running the algorithm
with and without nmin adaptation, our proposed method. The column ∆% details the difference, in
percentage, between the accuracy of running the algorithm with and without nmin adaptation. A negative
value represents that the algorithm with nmin adaptation obtained lower accuracy than the algorithm with
the original implementation. The column ∆(J) presents the difference, in percentage, between the energy
consumption of running the algorithm with and without nmin adaptation. The lower the value the better,
since it means that we reduced the energy consumption by that amount.

Looking at Table 4, we can see how for all algorithms and for all datasets nmin adaptation reduced the
energy consumption by 21 percent, up to a 41 percent. Accuracy is affected by less than 1 percent on
average. The poker dataset obtained the highest difference in accuracy between both methods, up to a 10
percent. However, the other datasets show how the original ensembles of Hoeffding trees and the version
with nmin adaptation are comparable in terms of accuracy.

Figure 10 shows how accuracy increases with the number of instances. Each subplot represents all



100 E. García-Martín et al. / Energy modeling of Hoeffding tree ensembles

Fig. 10. Accuracy comparison between running the algorithms with and without nmin adaptation on all datasets. The results of
each dataset are averaged for all algorithms.



E. García-Martín et al. / Energy modeling of Hoeffding tree ensembles 101

Fig. 11. Energy consumption for all datasets and all algorithms, with and without nmin adaptation.
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Fig. 12. Energy consumption and accuracy comparison for each algorithm, averaged for all datasets and for the nmin
adaptation and baseline setups.

algorithms averaged for that particular dataset. Our goal with this figure is to show the difference between
running the ensembles with and without nmin adaptation in terms of accuracy. We can observe how for
most of the datasets (Agrawal, Hyperplane, LED, RandomRBF, RandomTree, Waveform, and airline)
the difference is indiscernible, suggesting that the algorithm performs equally well for both the nmin
adaptation approach and the standard approach. For the poker and forest dataset, we can see how nmin
adaptation obtains lower accuracy than the standard approach. This was also visible in Table 2.

Figure 11 shows the energy consumption per dataset, per algorithm, with and without nmin adaptation.
This figure clearly shows how all algorithms with nmin adaptation consume less energy than the standard
version. This occurs in all datasets, even in datasets where the accuracy is higher for the nmin adaptation
approach (e.g. Agrawal dataset, OzaBoost algorithm).

At a first glance, and without analyzing the results in depth, one could think that a higher accuracy
requires a higher energy cost. However, our results show that there is not a direct relationship between
accuracy increase and an increase in energy consumption. This can be observed in Fig. 12, which shows a
comparison between accuracy and energy, per algorithm, averaged for all datasets, for the nmin adaptation
and baseline setups. Looking also at Table 4, for instance at the OzaBoost algorithm, we can see how
there is a high energy decrease (30 percent for the Hyperplane dataset) while still obtaining a higher
accuracy (0.39 percent). Another algorithm with a high energy decrease is the OAUE for the airline
dataset, where we decrease 40% the energy and accuracy is affected by 0.14 percent. A similar energy
reduction is obtained in the poker dataset, for the LeveragingBag algorithm. However in this case the
accuracy is significantly affected by 10%. These results are very promising, since they suggest that there
is not a correlation between energy consumption and accuracy. Thus, there are ways, such as our current
approach, to reduce the energy consumption of an algorithm without having to sacrifice accuracy. The
importance lies on finding those hotspots that make the algorithm consume energy inefficiently.

In overall, our results show how nmin adaptation is able to reduce the energy consumption by 21
percent on average, affecting accuracy by less than one percent on average. This demonstrates that our
solution is able to create more energy efficient ensembles of Hoeffding trees trading off less than one
percent of accuracy.
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7. Conclusions

This paper presents a simple, yet effective approach to reduce the energy consumption of ensembles of
Hoeffding tree algorithms. This method, nmin adaptation, estimates the batch size of instances needed to
check for a split, individually for each node. Thus, allowing the Hoeffding tree to grow faster in those
branches where the confidence for choosing the best attribute is higher, and delaying the split in those
branches where the confidence is lower.

We also present a generic approach to build theoretical energy models for any class of algorithms,
together with energy models for the ensembles of Hoeffding trees used in this paper.

We conduct a set of experiments where we compare the accuracy and energy consumption of five
ensembles of Hoeffding trees with and without nmin, on 11 publicly available datasets. The results show
that nmin adaptation reduces the energy consumption significantly, on all datasets (up to a 41%, with
21% on average). This is achieved by trading off a few percentages of accuracy (up to a 10% for one
particular dataset, on average of less than 1%). Our results also show that there is no clear correlation
between a higher accuracy and a higher energy consumption. Thus, opening the possibility for more
research to create more energy efficient algorithms without sacrificing accuracy.

While data stream mining approaches are focused on running on edge devices, still there has not been
much research that tackle the energy efficiency of the approaches, which is a key variable for these
devices. This study provides one step forward into achieving more energy efficient algorithms that are
able to run in embedded devices. For future work, we plan on designing more energy efficient Hoeffding
trees that are able to compete with high accurate current approaches [32].
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