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Abstract
Recently machine learning researchers are designing algorithms that can run in embedded and mobile devices, which
introduces additional constraints compared to traditional algorithm design approaches. One of these constraints is energy
consumption, which directly translates to battery capacity for these devices. Streaming algorithms, such as the Very Fast
Decision Tree (VFDT), are designed to run in such devices due to their high velocity and low memory requirements. How-
ever, they have not been designed with an energy efficiency focus. This paper addresses this challenge by presenting the nmin
adaptationmethod, which reduces the energy consumption of the VFDT algorithm with only minor effects on accuracy. nmin
adaptation allows the algorithm to grow faster in those branches where there is more confidence to create a split, and delays
the split on the less confident branches. This removes unnecessary computations related to checking for splits but maintains
similar levels of accuracy. We have conducted extensive experiments on 29 public datasets, showing that the VFDTwith nmin
adaptation consumes up to 31% less energy than the original VFDT, and up to 96% less energy than the CVFDT (VFDT
adapted for concept drift scenarios), trading off up to 1.7 percent of accuracy.

Keywords Data stream mining · Green artificial intelligence · Energy efficiency · Hoeffding trees · Energy-aware machine
learning

1 Introduction

State-of-the-art machine learning algorithms are now being
designed to run in the edge, which creates new time, mem-
ory, and energy requirements. Streaming algorithms fulfill
the time and memory requirements by building models in
real-time, processing data with high velocity and low mem-
ory consumption. The Very Fast Decision Tree (VFDT)
algorithm [10] was the first streaming algorithm with the
aforementioned properties that still achieves competitive
accuracy results. However, energy consumption has not been
considered during the design of the VFDT and state-of-the-
art streaming algorithms. Since machine learning algorithms
are starting to be designed in the edge [18,34], we believe
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that it is not feasible anymore to build algorithms that are
not energy-aware. To address this gap, this paper presents
the nmin adaptation method, which reduces the energy con-
sumption of the VFDT and other Hoeffding tree algorithms,
with only minor effects on accuracy.

The nmin adaptationmethod adapts the value of the nmin
parameter on real time and based on the incoming data.
The nmin parameter sets the minimum number of observed
instances (batch size) at each leaf to check for a possible
split. By setting a unique and adaptive value of nmin at each
leaf, this method allows the tree to grow faster on those paths
where there are clear splits, while delaying splits on more
uncertain paths. By delaying the growth in those paths where
there is not enough confidence, the algorithm saves signifi-
cant amount on energy on unnecessary tasks, with onlyminor
effects on accuracy.

This paper extends our previous work “Hoeffding Trees
with nmin adaptation” [16] by adding extensive experiments
that validate the proposed method with statistical tests on the
results. The results clearly show how the VFDT with nmin
adaptation (entitled VFDT-nmin) obtains significantly lower
levels of energy consumption (7 percent on average, up to a
31 percent) affecting accuracy up to a 1.7%. In particular,
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we have investigated the energy consumption and accuracy
of the VFDT, VFDT-nmin, and CVFDT (Concept-Adapting
Very Fast Decision Tree [22]) algorithms under 29 public
datasets.

Wefirst investigated the energy consumption and accuracy
of the mentioned algorithms in a baseline scenario, where
we empirically validated that handling numerical attributes
is much more energy consuming than handling nominal
attributes. We then examined the effect of concept drift on
the mentioned algorithms, concluding that (i) VFDT-nmin
achieves significantly lower energy consumption than VFDT
and CVFDT on the majority of datasets, (ii) VFDT-nmin
scales better than VFDT (and CVFDT) in terms of energy
consumption when increasing the amount of drift, and (iii)
CVFDT (designed to handle concept drift) obtains lower
levels of accuracy in the majority of concept drift datasets,
while VFDT and VFDT-nmin perform similarly. Finally, we
showed howVFDT-nmin obtains significantly lower levels of
energy consumption in 5/6 real-world datasets, while obtain-
ing the highest accuracy in all real-world datasets.

The contributions of this paper are summarized as follows:

– Wepresent thenmin adaptationmethod, to create energy-
aware Hoeffding tree algorithms, which makes them
suitable for running in the edge.

– We present a general approach to create energy mod-
els for different classes of machine learning algorithms.
We apply this knowledge to create an energy model for
the VFDT, independent of the programming language
and hardware platform. One of the findings of the model
is the high energy consumption of handling numerical
attributes compared to nominal attributes.

– We empirically validate the previous claim in Sect. 6.2,
where we show how handling numerical attributes con-
sumes up to 12× more energy than nominal attributes.
This is visible also in Fig. 6.

– We show how VFDT-nmin scales better than the VFDT
in terms of energy consumption when increasing the
amount of drift.

– We show how VFDT-nmin consumes significantly less
energy than the VFDT on 76% of the datasets (7% on
average, up to a 31%) and than the CVFDT on all the
datasets, (86% on average, up to a 97%), while affecting
accuracy by less than 1%, up to a 1.7%. These claims are
validated with statistical tests on the data.

In this extension we expanded the datasets from 15 to 29,
investigating more phenomena such as concept drift, and
validating its use in real-world datasets. We also performed
statistical tests on the results, validating that the VFDT-nmin
consumes significantly less energy than the VFDT. We also
added Sect. 4.3 that explains a general way to create energy
models for different classes of algorithms. Finally, we theo-

retically bounded the batch size of instances that VFDT-nmin
can adapt to, showing that it can affect accuracy by at most
δ
p , where δ is the confidence value and p the leaf probability.
The rest of the paper is organized as follows. The back-

ground and related work are presented in Sect. 2. The nmin
adaptationmethod is presented in Sect. 3. The energy model
that profiles the energy consumption of the VFDT is pre-
sented in Sect. 4.

Section 5 presents the experimental design. Section 6
presents the results and discussion. Section 7 details the lim-
itations of this study. Section 8 concludes the paper with the
significance and impact of our work.

2 Background and related work

In this section we explain the fundamentals of the VFDT. In
addition, we introduce related studies in streaming data and
resource-aware machine learning.

2.1 VFDT

Very Fast Decision Tree [10] is a decision tree algorithm
that builds a tree incrementally. The data instances are ana-
lyzed sequentially and only once. The algorithm reads an
instance, sorts it into the corresponding leaf and updates
the statistics at that leaf. To update the statistics the algo-
rithm maintains a table for each node, with the observed
attribute and class values. Updating the statistics of numer-
ical attributes is done by saving and updating the mean and
standard deviation for every new instance. Each leaf also
stores the instances observed so far. After nmin instances
are read at that leaf, the algorithm calculates the informa-
tion gain (G) from all observed attributes. The difference
in information gain between the best and the second best
attribute (�G) is compared with the Hoeffding Bound [20]
(ε). If �G > ε, then that leaf is substituted by a node, and
there is a split on the best attribute. That attribute is removed
from the list of attributes available to split in that branch.
If �G < ε < τ , a tie occurs, splitting on any of the two
top attributes, since they have very similar information gain
values. The Hoeffding bound (ε),

ε =
√

R2 ln(1/δ)

2n
(1)

states that the chosen attribute at a specific node after see-
ing n number of examples, will be the same attribute as if
the algorithm has seen an infinite number of examples, with
probability 1 − δ.

We now discuss the computational complexity of the
VFDT, shown in lines 1–21 from Algorithm 1. Suppose that
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n is the number of instances andm is the number of attributes.
The algorithm loops over n iterations. Every step between 6
and 9 requires execution time that is proportional tom. In the
worst-case scenario the computational complexity of step 7 is
O(m) according to [10]. The function in step 7 traverses the
tree until it finds the corresponding leaf. Since the attributes
are not repeated for each branch, in the worst-case scenario
the tree will have a depth of m attributes. Step 8 runs in con-
stant time. The computational complexity of this part can be
evaluated to O(n ·m). The computational complexity of the
remainder part of the algorithm (from step 11 downwards)
depends on n/nmin. Moreover, the computational complex-
ity of steps 11 to 13 is equal to O(m), while steps 16 to 18
need constant time, i.e., the computational complexity of this
part is O(n/nmin · m). The total computational complexity
of the VFDT is O(n ·m)+O(n/nmin ·m) and n >> nmin,
i.e., it can be simplified to O(n · m).

2.2 Related work

Energy efficiency is an important research topic in com-
puter engineering [11]. Reams et al. [32] provide a good
overview of energy efficiency in computing for different plat-
forms: servers, desktops, and mobile devices. The authors
also propose an energy cost model based on the number of
instructions, power consumption, the price per unit of energy,
and the execution time. While energy efficiency has mostly
been studied in computer engineering, during the past years
green computing has emerged. Green IT, also known as green
computing, started in 1992 with the launch of the Energy
Star program by the US Environmental Protection Agency
(EPA) [35]. Green computing is the study and practice of
designing, manufacturing, using, and disposing computers,
servers, and associated systems efficiently and effective with
minimal or no environmental impact [35]. One specific area
is energy-efficient computing [32], where there is a sig-
nificant focus on reducing the energy consumption of data
centers [37].

In relation to big data, data centers, and cloud comput-
ing, there have been several studies that design methods for
energy-efficient cloud computing [7,33]. One approach was
used byGoogleDeepMind to reduce the energy used in cool-
ing their data centers [12]. These studies focused on reducing
the energy consumed by data centers using machine learning
to, e.g., predict the load for optimization. However, we focus
on reducing the energy consumption of machine learning
algorithms.

Regarding machine learning and energy efficiency, there
has been a recent increase in interest toward resource-
aware machine learning. The focus has been on building
energy-efficient algorithms that are able to run on platforms
with scarce resources [6,13,14,25]. Closely related is the
work done on building energy-efficient deep neural net-

works [34,42]. Theydeveloped amodelwhere the energy cost
of the principal components of a neural network is defined,
and then used for pruning a neural network without reducing
accuracy. Some work is also conducted in building energy
and computational-efficient cluster solutions [30], accelerat-
ing the original algorithm by parallelizing some of the key
features.

Data stream mining algorithms analyze data aiming at
reducing the memory usage, by reading the data only once
without storing it. Examples of efficient algorithms are the
VFDT [10] and a KNN streaming version with self-adjusting
memory [27]. There have been extensions to these algo-
rithms for distributed systems, such as the Vertical Hoeffding
Tree [26], where the authors parallelize the induction of
Hoeffding trees, and the Streaming Parallel Decision Tree
algorithm (SPDT). Applications of streaming algorithms
have been conducted in many domains, such as fraud detec-
tion [5] and time series forecasting [31]. More focused on
hardware approaches to improve Hoeffding trees is the work
proposed by [28], where they parallelize the execution of
random forest of Hoeffding trees, together with a specific
hardware configuration to improve induction of Hoeffding
trees. Other work has been done where the authors present
the energy hotspots of the VFDT [15]. Our proposed work in
this paper focuses on a direct approach to reduce the energy
consumption of theVFDTbydynamically adapting the nmin
parameter based on incoming data, introducing the notion of
dynamic parameter adaptation in data stream mining.

3 nmin adaptation

The nmin adaptation method, the main contribution of this
paper, aims at reducing the energy consumption of the VFDT
while maintaining similar levels of accuracy. There are many
computations andmemory accesses dependent on the param-
eter nmin, observed in the energymodel presented in Sect. 4.
However, the design of the original VFDT sets the value of
nmin to a fixed value from the beginning of the execution.
This is problematic, because there are many functions that
would be computed unnecessarily if the number of nmin
instances is not high enough to make a confident split (e.g.,
calc_entropy, calc_hoeff_bound, and get_best_att). Our goal
is to set nmin to a specific value on each leaf that ensures
a split, so that the N

nmin values in Eq. 20 are only computed
when needed. nmin adaptation adapts the value of nmin to a
higher one, thusmaking N

nmin smaller. This approach reduces
computations, reduces memory accesses, and does not affect
the final accuracy, since we are only computing those func-
tions when needed.

In another publication, the authors [15] already confirmed
the high energy impact of the functions involved in calculat-
ing the best attributes. This matches with our energy model
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and motivates the reasons and objectives for nmin adapta-
tion:

1. Reduce thenumber of computations andmemory accesses
by adapting the value of nmin to a specific value on each
leaf that ensures a split.

2. Maintain similar levels of accuracy by removing only
unnecessary computations, thus developing the same tree
structure.

nmin adaptation sets nmin to the estimated number of
instances required to guarantee a split with confidence 1− δ.
The higher the value of nmin, the higher the chance to split.
However, setting nmin to a very high value can decrease
accuracy if the growth of the tree is significantly delayed, and
setting nmin to a lower value increases the accuracy at the
expense of energy, as it has to calculate theG of all attributes
evenwhen there are not enough instances tomake a confident
split. Thus, our solution allows for a faster growth in the
branches with a higher confidence to make a split and delays
the growth in the less confident ones. We have identified two
scenarios that are responsible for not splitting. We set nmin
to a different value to address these scenarios, depending on
the incoming data.

The two scenarios are the following:

Scenario 1 (�G < ε and �G > τ ) Fig. 1, left plot. The
attributes are not too similar, since�G > τ , but their differ-
ence is not big enough to make a split, since �G < ε. The
solution is to wait for more examples until ε (green triangle)
decreases and is smaller than �G (black star). Following

this reasoning, nmin =
⌈
R2·ln(1/δ)
2·(�G)2

⌉
, obtained by setting

ε = �G in (1), to guarantee that �G ≥ ε will be satisfied
in the next iteration, creating a split.

Scenario 2 (�G < ε and �G < τ but ε > τ ) The top
attributes are very similar in terms of information gain, but ε
is still higher than τ , as can be seen in Fig. 1, right plot. The
algorithm needs more instances so that ε (green triangle)
decreases and is smaller than τ (red dot). Following this

reasoning, nmin =
⌈
R2·ln(1/δ)

2·τ 2
⌉
, by setting ε = τ in (1). In

the next iteration ε ≤ τ will be satisfied, forcing a split.

The upper bound of the batch size is given in scenario 2,
since the lower the ε the higher the number of instances. The
lowest value of ε is when ε = τ , because if ε < τ then a
split occurs, so there would be no need to adapt the value
of nmin in that case. The lower bound of the batch size is
given in scenario 1, and for the case when �G = ε, which is
approximately the initial value of nmin. Thus, the adaptive
size of the batch can be bounded to the following interval:⌈
initial nmin,

R2·ln(1/δ)
2·τ 2

⌉
.

The upper and lower bound can be related to the notion of
intensional disagreement, which is described in the VFDT
original paper as the probability that the path of an exam-
ple through DT1 will differ from its path through DT2 [10].
There, the authors propose Theorem 1, which states that the
intensional disagreement between the Hoeffding tree and the
batch tree is lower than δ

p , where p is the leaf probability.
The original VFDT and the VFDT-nmin only differ in the

way the node split is created. The VFDT-nmin requires that
more examples are seen at a node to make an informed deci-
sion. Based on the VFDT original paper, the authors confirm
that whenmore examples are read at the node, i.e., increasing
nmin, the value of δ decreases, increasing the confidence of
the split. In this case, increasing the nmin would create a tree
that at most differs with the original (batch) tree in δ

p , in a
scenario with an infinite data stream. Since in our case the
upper bound (around 3000 instances) is significantly lower
than the size of the stream (around 1million instances), accu-
racy should not be significantly affected.

The pseudocode of VFDT-nmin is presented in Algo-
rithm1. The specific part of nmin adaptation is shown in lines
22–26, where we specify how nmin is going to be adapted
based on the scenarios explained above. The idea is that,
when those scenarios occur, we adapt the value of nmin, so
that they do not occur in the next iteration, thus ensuring a
split. Figure 2 shows a diagram of the main functions and
functionalities of the VFDT-nmin algorithm, inspired in the
work by [8].

In relation to the computational complexity of the nmin
adaptation, we can observe that this method does not add
any overhead. Thus, the computational complexity of VFDT-
nmin is O(n · m).

In relation to concept drift, state-of-the-art Hoeffding tree
algorithms that are able to handle concept drift [1] also use the
nmin parameter to decide when to check for possible splits.
Thus, our method can be directly applied to those class of
algorithms and should theoretically output similar results.
We have planned that for future works.

Finally, we show an example of how nmin adaptation
works for two of the datasets used in the final experiments.
These datasets are described in Table 1. Figure 3 shows the
nmin variation for the cases when nmin is initially set to
20, 200, 2000. So, after those instances, nmin will adapt to
a higher value depending on the data observed so far at that
specific leaf. The airline dataset shows many adaptations of
nmin when nmin is initially set to 20. This is expected, since
we are showing the adaptations per leaf, so at the begin-
ning all the leaves starting with nmin = 20 will adapt that
value to a much larger one. The same reasoning occurs when
nmin = 200 initially, since there will be less adaptations
because the leaves need to wait for more instances, and there
is a higher chance to split when more instances are read.
The poker dataset exhibits a different behavior, where nmin
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Fig. 1 Variation of ε (Hoeffding
bound) with the number of
instances. nmin adaptation
method for scenarios 1 and 2

Fig. 2 Flowchart diagram of the VFDT-nmin algorithm

adapts to a higher value, 30, 491. This occurs in Scenario 2,
but since the poker dataset has 10 classes, the range R of
Hoeffding bound Eq. (1) is higher. Finally, looking at the
cases where nmin = 2000 (green), we observe how there
is almost no adaptation. VFDT-nmin either splits after 2000

instances, or it adapts nmin = 2763 or nmin = 30, 491,
because the attributes are very similar.

4 Energy consumption of the VFDT

Energy consumption is a necessary measurement for today’s
computations, since it has a direct impact on the electric-
ity bill of data centers and battery life of embedded devices.
However, measuring energy consumption is a challenging
task. As has been shown by researchers in computer architec-
ture, estimating the energy consumption of a program is not
straightforward and is not as simple as measuring the execu-
tion time, since there are many other variables involved [29].

In this section, we first give a general background on
energy consumption and its relationship to software energy
consumption. We then propose a general approach to create
energymodels applicable to any class of algorithms.We then
use this approach to create a theoretical energy model for the
VFDT algorithm, based on the number of instances of the
stream, and number of numerical and nominal attributes.

4.1 General energy consumption

Energy efficiency in computing usually refers to a hardware
approach to reduce the power consumption of processors or

Fig. 3 Variation of nmin for
nmin initially set to
20, 200, 2000 on poker and
airline datasets (Table 1). With a
lower nmin, nmin adaptation
adapts nmin to a higher value
more frequently. The peaks on
nmin = 2763 and
nmin = 30, 491 are explained
by Scenario 2, since τ is a fixed
hyperparameter
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Algorithm1VFDT-nmin:VeryFastDecisionTreewithnmin
adaptation
1: HT : Tree with a single leaf (the root)
2: X : set of attributes
3: G(·): split evaluation function
4: τ : hyperparameter set by the user
5: nmin: hyperparameter initially set by the user
6: while stream is not empty do
7: Read instance Ii
8: Sort Ii to corresponding leaf l using HT
9: Update statistics at leaf l
10: Increment nl : instances seen at l
11: if nmin ≤ nl then
12: Compute Gl (Xi ) for each attribute Xi
13: Xa , Xb = attributes with the highest Gl
14: �G = Gl (Xa) − Gl (Xb)

15: Compute ε

16: if (�G > ε) or (ε < τ ) then
17: Replace l with a node that splits on Xa
18: for each branch of the split do
19: New leaf lm with initialized statistics
20: end for
21: else
22: Disable attr {X p|(Gl (X p) − Gl (Xa)) > ε}
23: if �G ≤ τ then
24:
25: nmin =

⌈
R2·ln(1/δ)

2·τ 2
⌉

26: else
27: nmin =

⌈
R2·ln(1/δ)
2·(�G)2

⌉
28: end if
29: end if
30: end if
31: end while

ways to make processors handle more operations using the
same amount of power [24].

Power is the rate at which energy is being consumed. The
average power during a time interval T is defined as [40]:

Pavg = E

T
(2)

where E, energy, is measured in joules (J), Pavg is measured
in watts (W), and time T is measured in seconds (s). We
can distinguish between dynamic and static power. Static
power, also known as leakage power, is the power consumed
when there is no circuit activity. Dynamic power, on the other
hand, is the power dissipated by the circuit, from charging
and discharging the capacitor [11]:

Pdynamic = α · C · V 2
dd · f (3)

where α is the activity factor, representing the percentage of
the circuit that is active. Vdd is the voltage,C the capacitance,
and f the clock frequency measured in hertz (Hz). Energy is
the effort to perform a task, and it is defined as the integral
of power over a period of time [11]:

E =
∫ T

0
P(t)dt (4)

In this study we focus on the measurement of energy con-
sumption, since it gives an overview of how much power is
consumed in an interval of time.

Finally, we concludewith an explanation of howprograms
consume energy. The total execution time of a program is
defined as [11]:

Texe = IC × CP I × Tc (5)

where IC is the number of executed instructions, CPI (clock
cycles per instruction) is the average number of clock cycles
needed to execute each instruction, and TC is the clock cycle
time of the processor. The total energy consumed by a pro-
gram is:

E = IC × CP I × EPC (6)

where EPC is the energy per clock cycle, and it is defined as

EPC ∝ C · V 2
dd (7)

The value CPI depends on the type of instruction, since dif-
ferent instructions require different number of clock cycles
to complete. However, measuring only time does not give a
realistic view on the energy consumption, because there are
instructions that can consumemore energydue to a longdelay
(e.g., memory accesses), or others that consumemore energy
because of a high requirement of computations (floating point
operations). Both could obtain similar energy consumption
levels; however, the first one would have a longer execution
time than the last one.

4.2 Theoretical energymodel

This section explains how to create theoretical energymodels
for different algorithms from a general perspective. We then
apply this knowledge in Sect. 4.3 to create a specific model
for the energy consumed by the VFDT.

The energy consumed by an algorithm can be estimated
by identifying the type of events in the algorithm, e.g., float-
ing point calculation, memory accesses, etc. We propose the
following steps:

1. Identify the main functions of the algorithm
2. Define the type of events that are of interest, i.e., mem-

ory accesses, cachemisses, floating point operations, and
integer point operations (such as Eq. (8))

3. Map the different algorithm functions to the type of
events, to end up with an equation based on the number
of memory accesses and number of computations [such
as Eqs. (12) and (15)]
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4. If needed, characterize the amount of energy consumed
per type of event for that specific processor, based on the
work by [21].

This approach can be adapted to any algorithm and can
thus provide insights into the energy behavior of an algo-
rithm. The model is independent of programming language,
etc., and focuses on basic operations in a particular algorithm,
including access to resources such as data and memory. One
of the main objectives with the model is to gain an under-
standing of which parts of the algorithms are most energy
consuming.

In practice, when we measure the energy consumption on
a real system, this can be done in two ways: externally, i.e.,
we measure the current, etc., consumed by the hardware, or
internally, i.e., we measure how the software behaves. Most
internal energymeasurement estimation toolswork similarly,
i.e., they count a number of hardware events using perfor-
mance counters in the processors. These numbers are then
fed into an energy model (similar to our simplified model),
and then an estimation of the energy consumption is done.
TheRAPL framework by Intel that we use in our paper works
in this way.

4.3 VFDT energymodel

The energymodel of theVFDT is based on the different steps
to create an energy model from Sect. 4.2. The functions are
taken from the pseudocode of the VFDT [10]. Algorithm 1
shows the pseudocode for the VFDT algorithmwith the nmin
adaptation functionality added, but the main functions can
also be observed there. Themain functions are the following:

– Sort instance to leaf When an instance is read, the first
step is to traverse the tree based on the attribute values of
that instance, to reach the correspondent leaf.

– Update attributes Once the leaf is reached, the infor-
mation at that leaf is updated with the attribute/class
information of the instance. The update process is differ-
ent if the attribute is numerical or nominal. For nominal
attributes a simple table with the counts is needed. For
updating the numerical attribute the mean and the stan-
dard deviation are updated.

– Update instance count After each instance is read, the
counter at that leaf is updated.

– Calculate entropy Once nmin instances are observed at a
leaf, the entropy (information gain in this case) is calcu-
lated for each attribute.

– Get best attribute The attributes with the highest infor-
mation gain are chosen.

– Calculate Hoeffding bound We then compare the differ-
ence between the best and the second best attribute with
the Hoeffding bound, calculated with Eq.(1).

– Create new node If there is a clear attribute to split on,
we split on the best attribute creating a new node.

Based on the information provided above, we present the
energy consumption of the VFDT in the following model:

EV FDT = Ecomp + Ecache_tot + Ecache_miss_tot , (8)

where Ecomp is the energy consumed on computations,
Ecache_tot is the energy consumed on cache accesses, and
Ecache_miss_tot is the energy consumed on cache misses.
They are defined as follows:

Ecomp = nFPU · EFPU + nI NT · EI NT , (9)

where nFPU is the number of floating point operations,
EFPU is the average energy per floating point operation,
nI NT is the number of integer operations, and EI NT is the
average energy per integer operation.

Ecache_tot = ncache · Ecache, (10)

where ncache is the number of accesses to cache, and Ecache

is the average energy per access to cache. Finally,

Ecache_miss_tot = ncache_miss ·(Ecache_miss+EDRAM ), (11)

where ncache_miss is the number of cache misses, EDRAM is
the average energy per DRAM access, and Ecache_miss is the
average energy per cache miss.

The next step is to map these nFPU , nI NT , ncache, and
ncache_miss to the VFDT algorithm’s functions, explained at
the beginning of this section.

nFPU = ncomp(updating_numerical_atts)

+ ncomp(calc_entropy)

+ ncomp(calc_hoe f f _bound)

+ ncomp(get_best_att)

(12)

nI NT = ncomp(updating_nominal_atts)

+ ncomp(updating_instance_count),
(13)

where ncomp( fi ) refers to the number of computations
required by function fi .
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ncache = nacc(updating_atts) (14)

ncache_miss = nacc(sorting_instance_to_lea f )

+ nacc(updating_atts)

+ nacc(calc_entropy)

+ nacc(calc_hoe f f _bound)

+ nacc(new_node),

(15)

where nacc( fi ) represents the number of accesses to mem-
ory or cache in order to execute function fi . The number
of cache and memory accesses of updating the attributes
(updating_atts) will depend on the block size of the cache.
If the block size is big enough, then wewould have one cache
miss to update the information of the first attribute, and then
cache hits for the rest of the attributes. However, if there are
many attributes, thus not fitting on the block size B, then
there will be a cache miss for every attribute that exceeds the
block size. We also consider the presence of a cache miss
every time a node of the tree is traversed, and every time we
calculate the entropy and Hoeffding bound values.

The last step is to express these number of accesses and
computations based on the number of instances (N ), the
nmin value, the number of numerical attributes (A f ), the
number of nominal attributes (Ai ), and the block cache size
B. We then obtain the following:

nFPU = N · A f + N

nmin
· (A f + Ai )

+ N

nmin
+ N

nmin
· (A f + Ai )

= N · A f + 2 · N

nmin
· (A f + Ai ) + N

nmin

(16)

Updating numerical attributes is one access per instance per
numerical attribute; calculating the entropy is one access per
attribute (thus the sum of nominal and numerical attributes)
every nmin instances; calculating the Hoeffding bound is
one access every nmin instances; and calculating the best
attribute is the same as calculating the entropy.

nI NT = N · Ai + N (17)

Updating nominal attributes is, as before, one access per
instance per nominal attribute and one access per instance
for updating the counter.

ncache = N ·
(
A f + Ai − A f + Ai

B

)
(18)

To update the attributes, we consider one cache hit per all
attributes per instance, minus all the attributes that do not fit
on the block size B and create cache misses.

ncache_miss = N ·
(
A f + Ai + A f + Ai

B

)

+ N

nmin
+ N

nmin
+ N

nmin

= N ·
(
A f + Ai + A f + Ai

B

)
+ 3 · N

nmin

(19)

To calculate the number of accesses of sorting an instance
to a leaf we assume that we need to access one level per
attribute, which is the worst-case scenario. So the total num-
ber of accesses in this case is one per instance per attribute. To
update the attributes, as was explained before, it is one miss
per all attributes that exceed the block size B, per instance. To
access the needed values to calculate the entropy, the Hoeffd-
ing bound, and to split, we consider one access every nmin
instances.

Based on Eqs. (8), (9), (10), (11), (16), (17), (18), and
(19), our final energy model equation is the following:

EV FDT = EFPU ·
(
N · A f + 2 · N

nmin
· (A f + Ai )

+ N

nmin

)
+ EI NT · (N · Ai + N )

+ Ecache ·
(
N ·

(
A f + Ai − A f + Ai

B

))
+ (Ecache_miss + EDRAM ) · (

N · (
A f + Ai

+ A f + Ai

B

)
+ 3 · N

nmin

)
(20)

This is a general and simplified model of how the VFDT
algorithm consumes energy. The energy values (i.e., Ecache,
EFPU , EI NT , EDRAM , and Ecache_miss) will vary depend-
ing on the processor and architecture, although there is a
lot of research that ranks these operations based on their
energy consumption [21]. For instance, a DRAM instruction
consumes three orders of magnitude more energy than an
ALU operation. We can see the importance of the number of
attributes in the overall energy consumption of the algorithm.
Since EFPU is significantly higher than EI NT , numerical
attributes have a higher impact on energy consumption than
nominal attributes.

5 Experimental design

In comparisonwith our previouswork [16],we have designed
extensive experiments to better understand the behavior of
VFDT, VFDT-nmin, and CVFDT (Concept-Adapting Very
Fast Decision Tree [22]) in three setups:

– Baseline
– Concept Drift

123



International Journal of Data Science and Analytics (2021) 11:105–126 113

– Real World

The baseline setup presents a sensitivity analysis where we
evaluate the accuracy and energy consumption of the men-
tioned algorithms while varying the input parameters of the
dataset. In particular, we vary the number of instances, nom-
inal, and numerical attributes, to understand how that affects
energy consumption and accuracy.We have already observed
through our energy model that the number of numerical
attributes affected significantly the energy consumption. This
setup aims at validating empirically that observation, to be
used as a baseline to the other experiments.

The concept drift setup investigates the effect of concept
drift in accuracy and energy consumption. We have taken
three synthetically generated datasets, LED, RBF, and wave-
form, and added two levels of change.

The real-world setup investigates the energy consumption
and accuracy of the VFDT, VFDT-nmin, and CVFDT, in six
real datasets.

The datasets used in our experiments are explained, per
setup, in Table 1, and described in Sect. 5.1. We run the
experiments on a machine with an 3.5 GHz Intel Core i7,
with 16GB of RAM, running OSX. To estimate the energy
consumption we use Intel Power Gadget,1 that accesses
the performance counters of the processor, together with
Intel’s RAPL interface to obtain energy consumption estima-
tions [9]. The implementation of VFDT-nmin together with
the scripts to conduct the experiments is publicly available.2

5.1 Datasets

We have used synthetic datasets for the baseline and concept
drift setup and six different real datasets for the last setup.
The choice of datasets is inspired by the work of [3].

The datasets are described in Table 1. There are a total
of 29 datasets, 23 artificial datasets generated with Massive
Online Analysis (MOA) [2], and 6 real-world datasets. The
artificial datasets are listed in Table 1.
RT_inst_Ai_A f : Random tree dataset with inst number of
instances, Ai number of nominal attributes, and A f num-
ber of numerical attributes. This dataset is inspired from the
dataset proposed by the authors of the original VFDT [10]. It
first builds the tree, by randomly selecting attributes to split,
assigning random values to the leaves. The leaves will be the
classes of the instances. Then new examples are generated,
with random attribute values, and they are labeled based on
the already created tree.
LED_x: LED dataset with x attributes with drift. The goal
is to predict the digit on a LED display with seven segments,
where each attribute has a 10% chance of being inverted [4].

1 https://software.intel.com/en-us/articles/intel-power-gadget-20.
2 https://github.com/egarciamartin/hoeffding-nmin-adaptation.

Table 1 Datasets used in the experiment to compare VFDT, VFDT-
nmin, and CVFDT

Dataset Train Test Ai A f Class

Baseline

RT_10k_10_10 6700 3300 0 10 2

RT_100k_10_10 67,000 33,000 0 10 2

RT_1M_10_10 670,000 330,000 0 10 2

RT_10M_10_10 6,700,000 3,300,000 0 10 2

RT_1M_10_0 670,000 330,000 10 0 2

RT_1M_20_0 670,000 330,000 20 0 2

RT_1M_30_0 670,000 330,000 30 0 2

RT_1M_40_0 670,000 330,000 40 0 2

RT_1M_50_0 670,000 330,000 50 0 2

RT_1M_0_10 670,000 330,000 0 10 2

RT_1M_0_20 670,000 330,000 0 20 2

RT_1M_0_30 670,000 330,000 0 30 2

RT_1M_0_40 670,000 330,000 0 40 2

RT_1M_0_50 670,000 330,000 0 50 2

Concept drift

LED 670,000 330,000 24 0 10

LED_3 670,000 330,000 24 0 10

LED_7 670,000 330,000 24 0 10

RBF 670,000 330,000 0 10 2

RBF_m 670,000 330,000 0 10 2

RBF_f 670,000 330,000 0 10 2

waveform 670,000 330,000 0 21 3

waveform_5 670,000 330,000 0 21 3

waveform_10 670,000 330,000 0 21 3

Real world

Airline 539,383 99,999 4 3 2

Electricity 30,359 14,953 1 6 2

Poker 555,564 273,637 5 5 10

CICIDS 461,802 230,901 78 5 6

Forest 387,342 193.670 40 10 7

kddcup 3,265,621 1,632,810 7 34 23

Ai and A f represent the number of nominal and numerical attributes,
respectively. The details of each dataset are presented in Sect. 5.1

RBF_v: The radial-based function (RBF) dataset has 10
numerical attributes. The generator creates n number of cen-
troids, each with a random center, class label, and weight.
Each new example randomly selects a center, considering
that centers with higher weights are more likely to be cho-
sen. The chosen centroid represents the class of the example.
Drift is introduced by moving the centroids with speed v,
either moderate (0.001), or fast (0.01).More details are given
by [3].
waveform_x: Waveform dataset with x attributes with drift.
The waveform dataset comes from the UCI repository. The
function generates a wave as a combination of two or three
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Table 2 Difference in accuracy
(�Acc) and energy
consumption (�Energy)
between VFDT and VFDT-nmin
and VFDT-nmin and CVFDT

VFDT-nmin versus VFDT VFDT-nmin versus CVFDT
Dataset �Acc (%) �Energy (%) �Acc (%) �Energy (%)

Baseline

RT_10K_10_10 0.00 −12.35 1.91 −66.44

RT_100K_10_10 0.00 −2.44 −9.67 −82.23

RT_1M_10_10 −0.33 −4.77 3.91 −89.86

RT_10M_10_10 −0.31 −1.70 6.60 −84.02

RT_1M_0_10 −0.25 −0.26 1.41 −94.05

RT_1M_0_20 −0.20 −2.75 1.39 −93.33

RT_1M_0_30 −0.03 −2.04 1.04 −95.41

RT_1M_0_40 0.05 −1.47 1.19 −96.29

RT_1M_0_50 −0.06 −1.37 0.98 −97.04

RT_1M_10_0 0.73 −1.15 11.63 −84.15

RT_1M_20_0 −1.65 −1.19 9.96 −84.50

RT_1M_30_0 3.88 2.04 17.84 −83.98

RT_1M_40_0 5.13 0.78 16.34 −85.40

RT_1M_50_0 25.28 0.33 42.80 −84.29

Concept drift

LED 1.78 2.21 2.25 −82.19

LED_3 1.78 1.14 2.25 −81.42

LED_7 1.78 0.33 2.25 −81.47

RBF −0.89 −11.72 1.16 −93.85

RBF_m −0.29 −19.96 0.63 −91.18

RBF_f 0.28 −19.95 1.45 −95.80

waveform −1.09 −24.92 1.26 −87.18

waveform_10 −0.85 −21.87 1.49 −86.74

waveform_5 −0.85 −21.98 1.49 −86.81

Real

CICIDS17 0.18 −3.70 2.09 −89.84

Airline 0.07 −11.19 11.97 −87.39

Electricity 3.32 −31.61 5.10 −77.07

Forest 0.20 −2.47 3.19 −83.36

kddcup 0.00 −5.82 39.62 −82.80

Poker 3.17 8.81 16.98 −82.37

Average 1.41 −6.59 6.91 −86.57

A positive number in accuracy means that VFDT-nmin obtained a higher accuracy. A negative number in
energy means that the VFDT-nmin reduced the energy consumption by that percentage. Higher accuracy and
lower energy consumption of the VFDT-nmin are presented in bold

Table 3 Results from performing a Wilcoxon signed-rank test on the
differences in accuracy and energy consumption between the VFDT
and VFDT-nmin on all datasets

Measure p Value Null Hypothesis

Accuracy 5.89 × 10−6 Rejected. Lower than 0.01

Energy 2.56 × 10−6 Rejected. Lower than 0.01

base waves. The task is to differentiate between the three
waves.

We have also tested six real datasets, some of them avail-
able from the MOA official Web site.3 The poker dataset is a
normalized dataset available from the UCI repository. Each
instance represents a hand consisting of five playing cards,
where each card has two attributes: suit and rank. The elec-
tricity dataset is originally described in [19] and is frequently
used in the study of performance comparisons. Each instance
represents the change of the electricity price based on differ-
ent attributes such as day of the week, represented by the

3 https://moa.cms.waikato.ac.nz/datasets/.
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Australian New South Wales Electricity Market. The airline
dataset [23] predicts if a given flight will be delayed based
on attributes such as airport of origin and airline. The forest
dataset contains the forest cover type for 30× 30 meter cells
obtained from US Forest Service (USFS) Region 2 Resource
Information System (RIS) data.4 TheKDDCUP dataset5 [39]
was created for a competition in 1999, where the goal was
to detect network intrusions. A similar but newer data are
the CICIDS [36], a dataset in cybersecurity where the task is
again to detect intrusions.

5.2 Algorithms

We compare VFDT, VFDT-nmin, and CVFDT under the
mentioned datasets. The initial value of nmin is set to 200,
which is the default value used by the authors of the VFDT.
We evaluate all algorithms based on the following measures:
accuracy (percent of correctly classified instances), energy
consumed by the processor, and energy consumed by the
DRAM. We evaluate the accuracy by having a training set
and a test set that is different from the training set, as can be
observed in Table 1. We have not performed yet prequential
evaluation as with this method, however that is planned for
future works.

5.3 Statistical significance

To test whether the differences between accuracy and energy
consumption between the VFDT and the VFDT-nmin are
statistically significant, we perform a nonparametric test,
namely the Wilcoxon signed-rank test [41].

We choose a nonparametric test after having tested for
normality between the differences in accuracy and energy
consumption between the VFDT and VFDT-nmin, obtaining
p values smaller than 0.01. We choose this test in particular
since the observations are paired based on the dataset and
thus can be considered as dependent.

We first test whether the VFDT-nmin obtained signifi-
cantly higher accuracy than theVFDT, since the data indicate
that the average of the accuracy of the VFDT-nmin is 1.41%
higher than for the VFDT. Thus, we propose the following
null and one-tailed alternative hypothesis [38]:

H0 : μA1 = μA2, where μA1 represents the mean of
accuracy values for the VFDT, and μA2 represents the mean
of accuracy values for VFDT-nmin. Thus, the null hypothe-
sis states that the means of the accuracy values between the
VFDT and the VFDT-nmin are equal.

H1 : μA1 < μA2, stating that the mean of the accuracy of
VFDT-nmin is higher than the mean of the accuracy of the
VFDT.

4 https://moa.cms.waikato.ac.nz/datasets/.
5 http://kdd.ics.uci.edu/databases/kddcup99/task.html. Ta
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If the p value, obtained as a result of the test, is lower than
the chosen alpha level (0.01 for this paper), we can conclude
that the VFDT-nmin obtains significantly higher accuracy
than the VFDT.

We perform the same statistical tests to check whether the
difference in energy consumption between theVFDT and the
VFDT-nmin is statistically significant. After testing for nor-
mality, and obtaining a p value of less than 0.01, we choose
to perform the same nonparametric test as before, Wilcoxon
signed-rank test. The null and alternative hypothesis is the
following:

H0 : μE1 = μE2, where μE1 represents the mean of
energy consumptionvalues for theVFDT, andμE2 represents
the mean of energy consumption values for VFDT-nmin.
Thus, the null hypothesis states that theVFDTand theVFDT-
nmin consume equal amounts of energy.

H1 : μE1 > μE2, stating that the mean of the energy
consumed by the VFDT is higher than the mean of the
energy consumed by the VFDT-nmin. Since we employ
directional alternative hypothesis, the null hypothesis can
only be rejected if the data indicate that the mean of the
energy consumed by the VFDT is significantly higher than
the mean of the energy consumed by the VFDT-nmin.

6 Results and discussion

The results of the experiments are divided in the three setups
defined above. Tables 4, 5, and 6 present the accuracy and
energy consumption results of the baseline, concept drift,
and real datasets setups, respectively. We have evaluated the
accuracy as the percentage of correctly classified instances
and the energy consumption as the energy estimated by the
Intel Power Gadget tool, summing the energy consumed
by the processor and the DRAM to obtain the total energy
consumption. We have run the experiments 5 times and
averaged the results. Table 2 summarizes the energy and
accuracy results from all datasets by showing the difference
between VFDT-nmin and VFDT and between VFDT-nmin
and CVFDT.

We initially discuss the statistical significance results per-
formed on the accuracy and energy consumption data from
the VFDT and the VFDT-nmin. We then discuss the differ-
ence in energy consumption and accuracy from the baseline
datasets between VFDT, VFDT-nmin, and CVFDT. The aim
is to have a general understanding of the algorithm in terms
of energy consumption, and how the number of nominal
and numerical attributes affect it. We further compare how
concept drift affects both accuracy and energy consumption
in different datasets with different levels of concept drift.
Finally we compare how well the nmin adaptation method
works in real-world datasets, in terms of accuracy and energy
consumption.
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Fig. 4 Baseline setup. Comparison on energy consumption and accuracy of the number of nominal attributes for the VFDT-nmin, VFDT, and
CVFDT. The lower figures are expanded version of the upper figures (without CVFDT)

6.1 Statistical characterization

This section presents the results of the statistical significance
analysis between the VFDT and the VFDT-nmin. We omit
the comparison against the CVFDT since the differences are
clear, and CVFDT obtains significantly higher energy con-
sumption on all datasets, and worse accuracy on all except
one.

We have performed a Wilcoxon signed-rank test on the
data, with a confidence level of 0.01. The p values of the
tests are presented in Table 3.

The results show that there is a statistically significant
difference between the accuracy of the VFDT and the VFDT-
nmin, since the p value is lower than 0.01. Thus, the null
hypothesis, which stated that the means of the accuracy
of both algorithms are equal (Sect. 5.3), is rejected. The
results also show that there is a statistical difference between
the energy consumption values between the VFDT and the
VFDT-nmin. The null hypothesis can be rejected, since the
p value (2.56 × 10−6) is lower than 0.01. Thus, the alter-

native hypothesis is supported, which stated that the energy
consumed by the VFDT-nmin is significantly lower than the
energy consumed by the VFDT.

6.2 Baseline setup

The baseline setup (Table 4) is done by varying the number
of instances, nominal, and numerical attributes from the ran-
dom tree dataset. Figure 4 compares the amount of accuracy
and energy consumedwhen the number of nominal attributes
is varied between 10, 20, 30, 40, and 50. We observe that
the VFDT and VFDT-nmin behave very similarly, i.e., the
higher the number of attributes, the higher the energy con-
sumption. However, the CVFDT has a significantly higher
increase in energy consumption when increasing the number
of attributes. Based on this analysis, we can conclude that
the CVFDT does not scale with the number of attributes.
Figure 4 also shows the accuracy per number of nominal
attributes, where we noticed a strange phenomenon. VFDT-
nmin obtains significantly higher levels of accuracy than the
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Fig. 5 Baseline setup. Comparison on energy consumption and accuracy of the number of numerical attributes for the VFDT-nmin, VFDT, and
CVFDT. The lower figures are expanded version of the upper figures (without CVFDT)

VFDT. This is visible especially for the dataset with 50 nom-
inal attributes. We believe that this may be due to some error
with the code that was provided in the original implemen-
tation. We have tested the same dataset on the new version
from MOA [2], and it has not shown such behavior.

Figure 5 shows the same comparison as Fig. 4 but for
numerical attributes. We can see a similar pattern in terms
of energy consumption. Namely, the higher the number
of numerical attributes the higher the energy consump-
tion. While VFDT-nmin and VFDT show a linear increase,
CVFDT shows an exponential increase. The latter confirms
our previous claim that it is nonscalable. However, in terms
of accuracy, all algorithms behave as expected. The accu-
racy is almost identical, being independent of the number
of attributes. Figure 6 compares the energy consumption
of the nominal and numerical attributes by averaging all
algorithms (VFDT, VFDT-nmin, and CVFDT). The figures
empirically validate what we theoretically claimed with the
energy model in Sect. 4.3. Namely, that handling numerical
attributes results in a higher energy cost compared to handling

nominal attributes. We can observe that handling 50 numer-
ical attributes costs 12.6X more than handling 50 nominal
attributes (averaged for VFDT-nmin, VFDT, and CVFDT).
This matches with the results from the VFDT energy model
(Sect. 4.2), where the numerical attributes require handling
floating point operations, which are more energy consuming
than integer operations.

We have studied the energy consumption and accuracy
of varying the number of instances between 10k, 100k, 1M,
and 10M. Figure 7 shows that there is not a linear increase
between the number of instances and the energy consump-
tion. When the number of instances reaches 10M, the energy
consumption increases by 18× (compared to 1M), for the
VFDT-nmin and VFDT, and by 12× for the CVFDT. The
accuracy increases with the number of instances, which is
the expected behavior, since with more instances the tree is
able to reflect better the dataset.

From Table 4 we can observe that the VFDT-nmin
obtained the lowest energy consumption in 11 out of 14
datasets. This is achieved while obtaining either the highest
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Fig. 6 Baseline setup. Comparison of the nominal and numerical
attributes on energy consumption and accuracy for the VFDT-nmin,
VFDT, and CVFDT. The lower figures are expanded version of the
upper figures (without CVFDT)

accuracy or up to a 1.65% lower compared to the algorithm
with the highest accuracy. The CVFDT obtains the high-
est energy consumption values for all datasets, and it only
obtains the highest accuracy in one of the datasets. We con-
clude that, for the baseline datasets, the VFDT-nmin obtains
significantly lower energy at a cost of less than 1% of accu-
racy on average.

6.3 Concept drift setup

Figures 8 and 9 show the energy consumption and accu-
racy results of running the VFDT, VFDT-nmin, and CVFDT
algorithms on datasets with different levels of concept drift
(see also Table 5). Figure 9 focuses on VFDT and VFDT-
nmin for a clearer view, since CVFDT has high levels of
energy consumption and does not allow to view the dif-
ference in energy between VFDT and VFDT-nmin. As we
already observed with the baseline setup, CVFDT consumes
significantlymore energy thanVFDTandVFDT-nmin. How-
ever, in terms of accuracy, it obtains a lower accuracy in
all of the datasets with concept drift. This behavior is not
expected, since the CVFDT is supposed to handle concept
drift, but even in datasets with a high level of drift, such as
RBF fast, it obtains lower accuracy than both VFDT and
VFDT-nmin. Taking a look at Fig. 9, we observe howVFDT-
nmin obtains significantly lower energy consumption than
VFDTfor theRBFandwaveformdatasets.On the other hand,
VFDT-nmin obtains slightly higher energy consumption for
the LED dataset, but it seems to scale better when increas-

ing the number of attributes with drift. VFDT-nmin decreases
energy consumption when instead of having 3 attributes with
driftwe have 7 (higher drift),whileVFDT increases in energy
consumption. This phenomenon is also visible for the RBF
dataset, where VFDT-nmin scales in terms of energy con-
sumption when increasing drift, and VFDT does not.

Moreover, all three algorithms decrease accuracy for the
RBF dataset when increasing the amount of drift, although
there is a slight increase when moving from moderate to
fast drift. The LED and waveform dataset give almost the
same accuracy when varying the amount of drift. The reason
for this is that the algorithm is able to learn the data even
with drift, and there is no possibility for a higher accuracy
in these datasets (with this type of algorithms). VFDT-nmin
obtains higher accuracy for the LED dataset independently
on the amount of drift, but at a cost of higher energy consump-
tion.All in all,VFDT-nminobtains significantly lower energy
consumption on 6/9 datasets. Moreover, VFDT-nmin scales
better than VFDT in terms of energy consumption when
increasing the amount of drift or the number of attributes
with drift. VFDT and VFDT-nmin obtain very similar lev-
els of accuracy (less than 1% difference in average), while
VFDT-nmin even obtains a higher accuracy in 3/9 datasets.
As for other the other datasets, CVFDT obtains significantly
higher energy consumption on all drift datasets while not
giving improvements in accuracy.

6.4 Real-world setup

This last section describes the energy consumption and accu-
racy results of running VFDT, VFDT-nmin, and CVFDT in
six real-world datasets (explained in Sect. 5.1). Aswe can see
fromTable 6, VFDT-nmin obtains the highest accuracy on all
datasets and the lowest energy consumption on 5/6 datasets.
The differences in accuracy between VFDT and VFDT-nmin
are in average of 1.16%. For the electricity dataset, VFDT-
nmin obtains themaximum accuracy gain, of 3.3% compared
to VFDT. Similar to the previous setups, CVFDT obtains
significantly lower levels of accuracy on all datasets at a sig-
nificantly higher energy cost.

This is clear from Figs. 10, 11, and 12. Figure 12 restricts
the results to the VFDT and VFDT-nmin for a clear view.
Figure 10 shows how there is not a clear direct connection
between a higher energy consumption and a higher accu-
racy. Taking a look at the forest dataset, for instance, we see
how this dataset consumes more energy than the electricity,
airline, and poker datasets, but it obtains a lower accuracy
than all of them. KDDcup is the dataset with the highest
energy consumption because it is also the dataset with the
highest number of instances. In relation to how the num-
ber of attributes impact the energy consumption, we observe
how CICIDS obtains significantly higher energy consump-
tion than the poker dataset, while poker has more number of
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Fig. 7 Baseline setup. Comparison on energy consumption and accuracy of the number of instances for the VFDT-nmin, VFDT, and CVFDT. The
lower figures are expanded version of the upper figures (without CVFDT)

instances than CICIDS. The reason is because CICIDS has
73 more attributes than poker.

6.5 Summary

The VFDT-nmin outperforms VFDT in terms of energy con-
sumption in the majority of real-world and concept drift
datasets, irrespectively of the amount of instances and numer-
ical attributes. VFDT-nmin consumes more energy than the
VFDT in the poker and the LED dataset, both datasets
containing 10 different classes. However, the VFDT-nmin
consumes less energy than the VFDT for the kddcup dataset,
which has 23 different classes. Thus, VFDT-nmin energy
performance compared to the VFDT is not correlated with
the number of classes. VFDT-nmin consumes less energy
than the VFDT on the baseline setup for all instances and
numerical attributes datasets. The results of the paper are
summarized below:

– VFDT-nmin obtains significantly lower levels of energy
consumption in comparison with VFDT for 22 out of the
29 studied datasets (76% of the datasets).

– VFDT and VFDT-nmin obtain on average less than 1%
difference in accuracy. VFDT-nmin obtains higher accu-
racy than VFDT on 55% of the datasets.

– CVFDT obtains significantly higher energy consumption
and lower accuracy in almost all datasets, even on concept
drift datasets.

– Regarding the baseline setup, we can see how han-
dling numerical attributes costs up to 12X more energy
than handling nominal attributes. This matches with our
theoretical claims from the energy model (Sect. 4.3).
The reason for this difference in energy is because the
average energy per floating point operation (EFPU ) is
significantly higher than the average energy per integer
instruction (EI NT ), as explained by [21].

– We also observed thatwhileVFDTandVFDT-nmin scale
linearly in terms of energy consumption when increasing
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Fig. 8 Concept drift setup. Comparison on energy consumption and accuracy for the LED, RBF, and waveform datasets for the VFDT-nmin, VFDT,
and CVFDT

Fig. 9 Concept drift setup. Comparison on energy consumption and accuracy for the LED, RBF, and waveform datasets for the VFDT-nmin, and
VFDT
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Fig. 10 Real-world setup. Results of running the VFDT, VFDT-nmin, and CVFDT on real-world datasets. The datasets are sorted by the energy
consumption (ascending) of the VFDT-nmin

Fig. 11 Real-world setup. Results of running the VFDT, VFDT-nmin, and CVFDT on real-world datasets. The datasets are sorted by the energy
consumption (ascending) of the VFDT-nmin on the left plot and by the accuracy (descending) of the VFDT-nmin on the right plot

the number of attributes, CVFDT scales poorly with the
increase of both number of attributes and instances.

– Regarding concept drift, we observed that VFDT-nmin
scales better than VFDT in terms of energy consumption
when increasing the amount of drift or the number of
attributes with drift.

– VFDT-nmin obtained a higher accuracy compared to
VFDT for all real-world datasets, obtaining a signifi-
cantly lower energy energy consumption in 83% of the
datasets.We also observed how therewas not a direct cor-
relation between a higher energy consumption needed to
obtain a higher accuracy. This was explained simply by
the size and the dimension (number of attributes) of the
dataset.

7 Limitations

There are a few limitations worth mentioning in this study.
Regarding the nmin adaptationmethod, it adapts to the opti-
mal nmin parameter making the assumption that the future
observed data will follow the same distribution as the already
observed data. Regarding the implementation and code used,
we are aware that there might be a bug in the original imple-
mentation of the VFDT that is the one used in this study. This
wasmentioned in the baseline setup, since we obtained unex-
pected results for the datasets with high number of nominal
attributes. We are going to use MOA, which has the newer
implementation of the code, in future studies.
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Fig. 12 Real-world setup. Results of running the VFDT, VFDT-nmin, on real-world datasets. The datasets are sorted by the energy consumption
of the VFDT-nmin on the left plot and by the accuracy of the VFDT-nmin on the right plot

Regarding the energy consumption estimation, the energy
consumption values are not given per program, but for the
complete system (DRAM or CPU). Thus, we base our con-
clusions on the comparison between the algorithms and
setups, since all of them are run on the same scenarios.
Since estimating energy consumption in software is chal-
lenging [17], we have created the energy model presented in
Sects. 4.2 and 4.3, which is independent of the programming
language and hardware platform. We understand that this is
a simplified model of all the events present in the algorithm.
However, it is a straightforward approach to understand, from
a theoretical perspective, which parts of the algorithm are the
most energy inefficient. More details on different approaches
to estimate energy are giving in the already mentioned sur-
vey [17].

8 Conclusions

This paper introduced nmin adaptation, a method that
extends standard Hoeffding trees to reduce their energy con-
sumption. nmin adaptation allows for a faster growth on
the branches with higher confidence to split and delays the
growth on the less confident branches. This reduces unneces-
sary computations, reducing energy consumption with only
minor effects on accuracy.

This paper extends our previous work: “Hoeffding Trees
with nmin adaptation” by adding extensive experiments that
validate the proposed method with statistical tests. We have
evaluated the accuracy and energy consumption of theVFDT,
VFDT-nmin (VFDT with nmin adaptation), and CVFDT
algorithms, under 29 public datasets. The results show that
VDFT-nmin consumes up to 31% less energy, affecting accu-

racy at most by a 1.65%, in comparison with the standard
VFDT. In comparison with CVFDT, VFDT-nmin consumes
85% less energy, obtaining 6% higher accuracy values, on
average.

In particular, we have first conducted a sensitivity analy-
sis to determine the energy consumption and accuracy of the
mentioned algorithmswhen varying the number of instances,
nominal, and numerical attributes. The results of this analy-
sis show that handling numerical attributes can consume up
to 12X more energy than handling nominal attributes. We
then compared VFDT, VFDT-nmin, and CVFDT on concept
drift datasets. The results of this setup conclude that VFDT-
nmin consumes significantly less energy consumption than
the other two algorithms (13% on average compared to the
VFDT, 87% compared to the CVFDT), while obtaining sim-
ilar levels of accuracy. We finally compared the mentioned
algorithms in six real-world datasets. VFDT-nmin obtained
higher accuracy than VDFT and CVFDT, while obtaining
7% less energy consumption than the VFDT and 84% less
energy consumption than the CVFDT.

Low energy consumption is one of the key requirements
for algorithms to be able to run in the edge (e.g., mobile and
embedded devices).While data streammining algorithms are
designed to run in the edge, due to their high velocity and
low memory usage, they still have not considered energy
consumption. To address that gap, we present a method that
allows for an energy-efficient approach to design Hoeffding
trees, without affecting its predictive performance.
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