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Abstract

Reaction Conditions Data Mining

Samuel Hallinder

In organic chemistry and especially process chemistry, there is a constant need to 
develop cost-effective ways to optimize different reaction conditions. With the 
increased development of Machine Learning (ML) combined with Data Mining (DM) 
new possibilities arise to reduce time and costs in the field of chemical science. In 
order to address the need for reduced time-/cost savings in process chemistry, the 
often-employed Suzuki-Miyaura reaction was studied by such ML and DM 
methods. A representative dataset containing molecular and structural properties 
of substrates and product were calculated with open-source toolkits Indigo, 
Chemistry Development Kit and RDKit available in KNIME. To predict any form of 
reaction outcomes, catalysts and reaction conditions were ranked based on 
several binary classification Machine Learning models designed with a Random 
Forest algorithm. On model lead to a binary classification model performing at a 
low computational cost. It showed an AUC of 98.5% predicting a reaction to a 
certain threshold of yield ( >=60% and <=40%). A second model encompassed six 
unique binary classification models and presented an average accuracy of 91.6% 
to predict a correct catalyst. These six different models were combined to later 
rank catalysts that are best suited for a new reaction and gave a probability result 
between 23.6% to 77.3%. The experimental validation was proven to highlight the 
uncertainty of the performance, were the least suitable (23.6%) catalyst 
demonstrated best performance. Overall, the models showed a promising 
correlation to support the synthesis optimization problem and with further 
adjustment there are great opportunities to obtain a model that can assist 
chemists in the future.
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1 Abbreviations 
 
AI  Artificial Intelligence 
ANN  Artificial Neural Networks 
AUC  Area Under the Curve 
CART  Classification And Regression Tree 
CDK  Chemistry Development Kit 
DM                Data Mining 
DR  Dimensional Reduction 
ER  Error Rate 
FN  False Negatives   
FP  False Positives   
FPR  False Positive Rate 
HPLC  High-Pressure Liquide Chromatography 
IPC  In Process Control 
HTS               High Throughput Screening 
KNIME        Konstanz Information Miner 
KNN               K-Nearest Neighbours 
LR                  Logistic Regression 
ML                 Machine Learning 
MQN                       Molecular Quantum Numbers 
Mtry                        Number of features for deciding best splits 
NB                          Naïve Bayes 
OOB                       Out Of Bag 
PMML   Predictive Modell Mark-up Language 
RF  Random Forest 
ROC   Receiver Operating Characteristics 
RP   Reversed Phase 
SL  Statistical Learning 
SVM   Support Vector Machines 
PCA  Principal Component Analysis 
TN   True Negatives 
TP   True Positives 
TPR   True Positive Rate 
TPSA   Topological Polar Surface Area 
VSA  Van der Waals Surface Area  
Pd(dppf)Cl2             [1,1´-bis(diphenylphosphino)ferrocene]dichloropalladium(II) 
Pd(dtbpf)Cl2           [1,1´-bis(di-tert-butylphosphino)ferrocene]dichloropalladium(II) 
Pd(PPh3)2Cl2           Bis(triphenylphosphine)palladium(II)dichloride 
Pd(PPh3)4                Tetrakis(triphenylphosphine)palladium(0) 
Pd(t-Bu3P)2   Bis(tri-tert-butylphosphine)palladium(0) 
XPhosPdG2   Chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-

biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) 
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2 Populärvetenskaplig sammanfattning 
 
Inom organisk kemi och processkemi ser man ett ständigt behov av att utveckla, 
tidseffektivisera och på kostnadseffektiva sätt optimera olika processer. 
Försökplaneringsmetoder, så som faktoriell design används i en bred utsträckning för att 
optimera system där matematiska funktioner utnyttjas för att finna ett linjärt samband i utfallet 
av en reaktion. Detta har demonstrerats vara en tidskrävande process även för de mest skickliga 
inom området, där flertalet testförsök erfordras för att finna de mest gynnsamma 
reaktionsparametrarna som krävs för att uppnå ett så högt utbyte av önskad produkt som 
möjligt. 

Suzuki-Miyaura-korskopplingsreaktionen är en av de mest använda reaktionerna i att bilda nya 
kol-kolbindningar inom medicinsk kemi, men har visats vara tidskrävande att optimera. Dessa 
reaktioner sker inte spontant i rumstemperatur utan måste utföras med tillförsel av värme 
tillsammans med närvaro av en metallkatalysator och bas i ett lösningsmedelssystem. Behovet 
här är att finna en kombination av faktorer så som katalysator, bas samt lösningsmedel som ska 
vara mest fördelaktig för att erhålla så högt utbyte som möjligt för en specifik reaktion. För att 
undvika stora kostnader på flertalet optimeringsprocesser har man nu sett en stor utveckling 
och förhoppning till att kombinera kunskapen inom maskininlärning och datautvinning med 
den kemivetenskapliga sfären. Med olika algoritmer har man sett en möjlighet att identifiera 
mönster inom en stor representation av data som tidigare inte varit möjligt. Maskininlärning 
har de senaste årtionden blivit applicerad i en allt större utsträckning inom läkemedelskemi, 
bioinformatik, etc. Syftet har då varit att på ett effektivare sätt kunna identifiera möjliga 
substanser, föreningar eller större komponenter som är av relevans till utvecklingen av nya 
läkemedelskandidater. Intresset har med detta även väckts inom kemisk syntes och 
processkemi. 

Målet för denna studie har varit med hjälp av maskininlärning skapa ett verktyg för att på ett så 
kostnadseffektivt och tidsparande sätt optimera förhållandena för en reaktion. Den tidigare 
nämnda Suzuki-Miyaura-reaktionen valdes i denna studie för att studera det definierade 
problemet. Molekylära parametrar och strukturella molekylelement beräknades för att 
modellera utfallen från tidigare dokumenterade reaktioner. En maskininlärningsalgoritm 
implementerades, som läste in sig på befintliga data för att hitta intressanta mönster som skulle 
vara av relevans för att modellera det experimentella utfallet. I detta projekt valdes en Random 
Forest-algoritm, som i tidigare studier visats ha en hög säkerhet i olika binära 
klassificeringsfrågor. Första klassificeringsfrågan som konstruerades i detta projekt var om man 
kan uppfatta någon korrelation med de beräknade molekylära och strukturella egenskaperna för 
de olika komponenterna och utbytet för reaktionen.  Om så var fallet, skulle det finnas en 
möjlighet att då förutsäga vilken katalysator som skulle kunna vara mest pålitlig att presentera 
ett högt utbyte för den specifika reaktionen.  
 
Flertalet binära klassificeringsmodeller konstruerades och den mest framgångsrika modellen i 
att identifiera om en reaktion kommer ge ett högt eller lågt produktutbyte resulterades i att ge 
en säkerhet på 93.5%. Vidare undersöktes om det var möjligt att man på något likande sätt 
skulle kunna förutsäga vilken katalysator som skulle vara mest gynnsam för en reaktion i att få 
ett högt produktutbyte. Här valdes enbart sex stycken katalysatorer som alla använts i en mängd 
olika reaktioner; från 1 000 till 25 000. Unika binära klassificeringsmodeller konstruerades likt 
den framgångsrika modellen, och presenterade med ca 92% säkerhet rätt katalysator för de 
dokumenterade reaktionerna i test datasetet. 
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De två modellerna kombinerades för att senare rangordna de katalysatorer som är mest till minst 
lämpad för en ny reaktion, resultaten spred sig mellan 23.6% upp till 77.3% för de sex 
katalysatorerna. Dessa resultat validerades senare genom en experimentell analys där olika 
katalysatorer testades i laboratoriet och jämfördes med resultaten från modellen. De minst 
lämpade katalysatorerna visade sig prestera bättre medan den högst trovärdig utifrån modellens 
förutsägelse presenterade ett mindre önskvärt resultat. Detta motbevisade modellens säkerhet 
att ge ett representativt förslag av katalysator till en ny reaktion. Osäkerheten som uppstår beror 
generellt på de komplikationer som tillkommer i att förutse utfallet av en reaktion. Den 
beskrivning som erhålls från tidigare dokumenterade resultat tillsammans med de deskriptorer 
som modellen använder sig av har visats vara en osäkerhetsfaktor. Eftersom ingen direkt 
information ges kring de centrerade bindningar som bildas eller bryts i reaktionen så medför 
det en problematik i modellens förmåga att förutsäga reaktiviteten. Denna studie har dock visat 
att en korrelation existerar, vilket ger en god grund för framtida forskning. Metoden i sig är inte 
fel, med optimering och justering finns det stora möjligheter att erhålla en procedur som kan 
assistera kemister i att optimera reaktioner på ett tidseffektivt och ekonomiskt sett i framtiden. 
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3 Introduction 
 
3.1 Background 
A common challenge organic chemist encounters daily is the optimisation process of reaction 
conditions, which is one of the most time-consuming processes even for a person skilled in the 
art of synthetical organic chemistry and can take up to several weeks or even months to execute 
in the most efficient way. Different techniques have been used to confront these types of 
problems and factorial designs, D-optimal designs as well as High Throughput Screening (HTS) 
[1] [2] [3], are a few methods that have been successfully used to find the most preferable 
conditions at the minimal cost for a specific reaction. The techniques of HTS and combinatorial 
synthesis have contributed to gather and store large information of molecules into databases, 
and have made up for the evolution of the big data era in organic chemistry [4]. The field of 
drug discovery and process design have gained a lot from this to detect new target molecules 
as well as optimize several chemical processes.[5] [6].  

 
The knowledge of Statistical Learning (SL), Machine Learning (ML) and Artificial Intelligence 
(AI) have influenced chemists to gather information and discover patterns in various databases. 
A broad range of different machine learning algorithms have later been used to either obtain 
vital information from databases or to forecast future estimations derived from available data. 
Logistic Regression (LR) [4] [7] [8], k-Nearest Neighbours (kNN) [6] [8] [9], Support Vector 
Machines (SVM) [4] [6] [9] [10] [11], Artificial Neural Networks (ANN) [4] [6] [12] [13] [14], 
Naïve Bayes (NB) [11] [12] and Random Forest (RF) [4] [6] [8] [11] [15] are a few widely used 
algorithms in this field of research. The ability to influence and help to develop future new drug 
candidates, or to assist organic chemists to make reactions more effective, shorten time to 
optimized conditions, or even predict the outcome for specific reactions, is why these 
algorithms are one of the most acknowledged techniques today. 

 
Some studies dedicated to combine ML techniques with synthetic chemistry predictions have 
been disclosed in the past decade. For example, Coley CW et al. [13] made an attempt to design 
a software tool to assist chemists in predicting reaction outcomes, by using a neural network 
model to score and rank candidate products with high prediction accuracy. The final estimate 
of selecting the major product with only one rank was obtained at a 71.8% accuracy. With three 
number of candidate ranks, the accuracy of desired product was within the top three gave 86.7% 
and with five, 90.8%. The incorrect documented predictions were notably related to the lack of 
information from descriptors on chemical reactivity. 
 
In another study performed by Skoraczyñski G et al.[4] different machine learning algorithms, 
such as LR, SVM, ANN and different types of RF were constructed. The models were trained 
with a large set of different reactions and descriptors, predicting a binary classification of yields 
respectively classification of reaction times. The main objective was to analyze if currently 
available descriptors are enough for forecasting reaction outcomes. Usage of molecular 
descriptors from RDKit (open source toolkit for calulating molecular descriptors) together with 
parameters from experiments, solvents and temperature, made it possible to obtain a prediction 
accuracy of 65% for yield respectively 75% for reaction times.  
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Aires de Sousa J, et al.[11] published a study with a sligtly different approach, were the 
objective was to design a system to predict reaction conditions for Michael reactions. 198 
different Michael reactions with a number of different set of descriptors were used to train a 
couple of ML algorithms (SVM, NB and RF) to predict best combinations of conditions. The 
model that predicted the best for each solvent and catalyst tested was the RF model, after a 3-
fold cross validation. The accuracy for different solvents and catalysts varied between 70 and 
100% [11]. A similar approach was defined for a toxicity prediction study [16].   
 
Using large sets of reactions and/or a large number of descriptors has been proven to be an 
immense burden on computational resources. Robin Gebuer et al. [15]  published a study where  
the investigation was performed analyzing the major challenges, using big data in machine 
learning. The RF algorithm was introduced as an example, were different parameters were 
presented to be tuned for optimizing the model design to minimize the expense of calculations. 
 
In summary, the Random Forest algorithm has been a good approach in constructing different 
model designs for receiving fast and solid predictive performances in machine learning 
modelling. Therefore, it was chosen as primary algorithm for this study.  
 
3.2 Aim of thesis 
Due to a high interest and desire to identify synthesis procedures that optimize time-consuming 
steps, the aim of this project was to “obtain a machine learning tool to rank the best reaction 
conditions for a specific reaction using only molecular properties”. The reaction of choice was 
the Suzuki coupling since this is one of the most used transformations in medicinal chemistry. 
All codes & algorithms are publicly available in the open-source software KNIME [17] which 
was used to apply the widely used Random Forest algorithm for model creation. 
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4 Theory 
In this section the underlying theory of Machine learning and its application will be described. 
4.1 Machine Learning  
Machine learning is a field in computer science that focuses on the development of different 
methods to automatically detect patterns in various datasets and use the uncovered patterns to 
create predictions for future data. To obtain this information, numerous distinctive types of 
algorithms and methods are readily available to apply for different tasks. ML is based on two 
strategies of learning, supervised and unsupervised. Different algorithms are constructed under 
each learning approach. [18] [19] 
 
4.2 Unsupervised Learning 
Unsupervised Learning is defined as the descriptive approach. It has been proved to find 
patterns within an input 𝑋" of the p-dimensionally vector space and present useful information 
of that set [20]. A dataset is defined as,	𝑝 = 	 {(𝑋")}"*+,…,./  where it is possible to find implicit 
correlations and variance within vectors in the 𝑝-dimensional space. Clustering and Principal 
Component Analysis (PCA)[6] are a few known unsupervised methods that are widely used to 
acquire information of the features of a data set. The principles with both methods are to find 
similarities within parameters and place them into separate groups, or, place different thresholds 
to separate them from each other. This is very useful in large data sets problems[18], where the 
interests is to find information on poorly presented descriptors.  
 
4.3 Supervised Learning 
Supervised learning is described as a predictive approach where a computer can learn what has 
been presented by different algorithms, thereafter to predict future events based on that 
information [20]. It is defined as	𝐷 = 	 {(𝑋", 𝑌")}"*+,…,.2 , were D is the set for training and B is 
the number of training examples. 𝑋" Is defined as a vector of distinctive features or numbers in 
the 𝑝-dimensional space,	𝑋" ∈ ℝ5. Features/properties/descriptors are a representation of a 
value e.g. the topological surface area (TPSA) which is a feature/descriptor that presents 
information of the molecular shape of a molecule. In general, can it be anything that will 
influence the categorical or nominal feature which is defined as the output variable [18], 𝑌 ,	𝑌" ∈
	{1, … , 𝐶}. For classification tasks 𝑌" is of a categorical value. For regression tasks 𝑌" is defined 
as a real value,	𝑌" ∈ ℝ5.  
 
4.3.1 Classification 
In this project, a classification task was of interest where a categorical value was used to 
describe the problem. Defined as 𝑌" ∈ 	 {1, … , 𝐶},	were 𝐶 presents number of possible outcomes 
to a specific task of interest. The aim in classification tasks is to define the problem as a function 
[18], when 𝑌" = 𝑓(𝑋"). The function (𝑓), describes the problem with a representation of a fixed 
table of data points (𝑋"), named training set. This function is thereafter applied to another set of 
input data to predict classification outcomes. An ML algorithm will learn to find the patterns in 
the training data set and give an estimation of the performance to predict the desired 𝑦". The 
performance is later measured by the generalisation error, which gives an estimation of the 
performance. A prediction variable is made, 𝑌:" = 𝑔<𝑋:"=, that approximates the function of the 
training set to give a prediction of the output. An independent test set is later defined as another 
function, to validate the model’s predictability. Accuracy measures is calculated by dividing all 
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correct predictions to all predictions from the results of the test set. Which is a decent way to 
get an understanding of the model performance. 
 
4.3.2 Random Forest, CART and OOB 
There can be a few or multiple algorithms that are of best fit for solving different tasks for 
each problem. In this project, the supervised learning model, Random Forest algorithm, was 
implemented to first predict two yield classes and thereafter different catalysts classes. The 
RF is well known for its predictive accuracy, flexibility and can be used for both classification 
and regression tasks. It was firstly mentioned by Leo Breiman and defined as an ML 
algorithm that can be found under the branch of ensemble learning methods [21]. The theory 
of RF is closely correlated with the Classification And Regression Tree (CART) and the 
theory of bagging. 
 
CART algorithms often refer as if a tree is drawn upside down. A statement is created in form 
of a question. For example: “Do the molecule follow the Lipinski rule of five?” 
 
When using this algorithm to solve this classification task. Different questions are formed, in 
finding an acceptable representation what corresponds to the Lipinski rule of five. The CART 
uses a recursive binary splitting method, which means that all data are within the field to predict 
the outcome. Each feature is divided into distinct branches to acquire an information on the 
outcome and is referred as a candidate split. All candidate splits are calculated according to 
accuracy of choosing the right class, and this follows until no further splits is possible within a 
feature. The final decision from all final splits is combined and an average of all results is 
obtained on how accurate it can predict the molecules appearances to follow the rule.  
 
The CART algorithm is simple to understand and interpret [18]. It works with both numerical 
and categorical features and can define multiclass tasks [20]. In addition, it also has the 
possibility to handle noisy parameters remarkably well, hence no need of a heavily curation 
performance. However, the main drawback with a CART algorithm in general is that it can 
easily create trees that overfit the data. The most apparent problem is the algorithm´s sensitivity 
with unstable data, which is observed when minor changes appear. The creation of that tree will 
be affected, and the final estimation would provide a negative impact to the final prediction. In 
most cases a high variance is shown within the final estimation and a low prediction is 
presented. One solution to this problem is to lower the variance for estimators by implement 
bagging. The short definition of bagging is to create decorrelated [21], noisy decision trees by 
random selection of descriptors and then average them to gain higher accuracy.  
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In binary classifications tasks and ensemble trees algorithms is the Gini Index often selected as 
the split criterion defined as Gini	(T) = 	1 − ∑ (p(cF))G − ∑ p(tF)I

F*+ ∑ p<cJKtF=(1 −L
J*+

L
F*+

<cJKtF=). [18] [20] T is the test used in a node. cF Is assigned as a categorical class and the 
estimated probability in which a feature is in that specific class is defined as p<cJKt=. In a node 
is all examples assigned to be in that class, therefore the value is set to 1 and all other set to 0. 
The variance is combined from each class k and calculated together from ∑ p<cJKtF=(1 −L

J*+

<cJKtF=), n is defined as the number of splits that are needed to get better “purer” splits then the 
one before. The test or defined question that maximizes the function above will be the best split 
that is going to be selected for that particular internal node.  
 
RF for classification problems is stated as an ensemble of E trees, where	TN and XF is defined 
as a vector of distinctive features or numbers in the 𝑝-dimensional space [18]	[20]	[21]. The 
combination of all trees contributes to E number of outputs, YVN = TN(XF) where	YVW, e =
1,… , E, is the obtained prediction for 	eth number of trees. A majority vote is defined from the 
combined predictions, as YV (Figure 1) and describe a simplified version of a Random Forest 
algorithm. 
 
 

 
Figure 1: Example of a small Random Forest ensemble of three decision trees. A binary classification problem is exemplified 
as two colors, red and green. Each decision tree has its own combinations of variables that will be of best choice in finding the 
most accurate prediction, which is further selected to be best suitable for each defined question. Three number of outputs will 
present the predictions (final vote) which is obtained from each three. The predictions are combined, and a majority vote is 
selected as the final prediction for the particular task of interest. 

 
The main differences with a Random Forest algorithm and the earlier bagging approach, that 
each new training set is drawn with replacements from the original training set. And by random 
feature selection a new training set is thereafter grown [20]. As described, bagging reduces the 
variance, but it also gives additional features to the random forest algorithm. It contributes to 
an ongoing estimate generalization error of the combined decision trees, correlation and 
strength estimates. All this is returned as the Out-Of-Bag (OOB) estimates, consisting of a test 
set of OOB samples.  
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OOB samples are defined as all the samples that were left out during the replacement method 
while training. Those samples have not been used in training and will be expended as a leave 
one out type of cross-validation, simultaneously while the model is trained. An error estimate 
of the model can be obtained by only using the OOB addition. Error	rate	(ER) ≈ ER__` =
	na+ ∑ I(YV__`(XF) ≠ 	YFI

F*+ , were YV__` is the average prediction from the OOB samples, as a 
test set and I is an indicator function that defines the wrong prediction of n OOB cases. This 
type of validation has proved to give similar result as a k-fold cross validation [10]. 
 
For measuring model performance, to evaluate how well each class is distinguish by the model 
is the Receiver Operating Characteristic (ROC) curve of extensively use for classification 
models [22] [23]. In creation of the ROC-curve, two vital parameters are needed, the first is 
True Positive Rate (TPR), TPR = ef

efghi
 .TP is defined as the number of True Positives and FN 

is the False Negatives. The second parameter is False Positive Rate (FPR), R = hf
hfgei

 . FP is 
the number of False Positive outcomes and TN the True Negatives. Together it defines the ROC 
curve, when TPR are plotted against the FPR.  

 
To compute or evaluate the ROC curve, the Area Under the Curve (AUC) measure is applied 
[18]. It provides an arrangement of all classification thresholds in a range from 0 to 1. For 
example, if the designed model predicts zero correct classes an AUC value of 0 will be obtained 
and if the model predictions are 60% accurate an AUC of 0.6 will be received. 
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5 Experimental 
5.1 Data software  
Structural information of reactions was obtained and extracted from the chemical reaction 
centric database Reaxys (Elsevier) [24]. The open source platform/software used in this project 
for creation of workflows for curation of data, creation of models and analysis of model 
predictions performance was The Konstanz Information Miner (KNIME) V3.x.[17]. Molecular 
properties were calculated in KNIME based on open source toolkits such as Indigo, Chemistry 
Development Kit (CDK) [25] and RDKit [26]. Default settings of Random Forest algorithm 
was selected according to Leo Breiman [21]: square root of number of variables for Mtry; 
sample size, all observations with replacement; node size, selected to one; number of model 
trees to 100; Gini index as split criterion. Hyperparameters tuned during this project were Mtry 
and number of trees. 
 
5.2  Laboratory Validation 
Two different Suzuki-Miyaura reactions were performed with different sets of catalyst, solvent 
and base. 
 
5.2.1 Chemicals 
Organoborane was provided from RISE Research Institutes of Sweden (Södertälje, Sweden). 
1-Bromo-3-nitrobenzene was purchased from Lancaster (Eastgate, White Lund, Morecambe, 
England), 2-Bromobenzonitrile from Merck (Darmstadt, Germany). Catalysts Pd(dppf)Cl2, 
DCM was purchased from CombiPhos, Inc. (Princeton, NJ, U.S.A.), Pd(PPh3)2Cl2 from Sigma-
Aldrich, Fluka Chemie AG (Buchs, Switzerland) and Pd(PPh3)4 from Sigma-Aldrich 
(Darmstadt, Germany). Potassium carbonate was purchased from (Scharlau) Fisher Scientific 
(Hampton, NH, U.S.A.) and Cesium Fluoride (99%) from Sigma-Aldrich (Darmstadt, 
Germany). 1-Butanol (99.8%) and 1,4 Dioxane (99.8%) were both purchased from Merck 
(Darmstadt, Germany). 
 
5.2.2 Instrumentation of High-Performance Liquide Chromatography (HPLC) 
The column used for In Process Controls (IPC, i.e. sample taken from reaction) and evaluation 
of reaction performance, was a Symmetry Shield Reversed-Phase (RP) C8 Column (5 µm, 4.6 
x 50 mm) from Waters (Milford, Ma, U.S.A.). Mobil phase composition was with 95% 
acetonitrile(aq) and 0.1% formic acid. Temperature was set to +40 °C with a pressure at 3 bar. 
Flow rate was consistent of 2.00 mL/min. with an injection volume of 10 µL. Detection was 
performed by UV at wavelength of 254 nm. 
 
5.2.3 General experimental procedure 
Each Suzuki-Miyaura Cross-Coupling reaction was performed under nitrogen flow at +80 °C. 
1 g of organohalide (1-bromo-3-nitrobenzene or 2-bromobenzonitrile), organoborane (provided 
from RISE) (1.2 equiv.) and base (4.37 equiv.) were mixed and dissolved in a solvent system 
of 10 mL 1-butanol/H2O or 1,4-dioxane/H2O (7/3 ratio). The mixture was stirred at room-
temperature with nitrogen flow until full dissolution was observed. Catalyst (0.02 equiv.) was 
added to start the reaction. IPC’s were performed before addition of catalysts and after one hour 
of addition, with HPLC for monitoring the reaction. After full consumption of starting material, 
the crude product was extracted and evaporated for crude HPLC analysis. Conversion (%) of 
product was obtained as final evaluation of the performance of the reaction.  
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6 Method 
This section will present the methodological approach towards the aim, based on the outcomes 
of three defined milestones:  
 
Milestone 1: Design a “local” machine learning model to predict a binary classification task of 
the Suzuki Miyaura reaction and investigate how to optimize the model in terms of 
predictability performance. 
 
Milestone 2: Define unique models to predict multiple binary classification tasks of catalysts 
used in a Suzuki-Miyaura reaction.  

 
Milestone 3: Apply the best model for ranking most preferable catalysts for unknown candidate 
reactions and test the hypothesis in laboratory to evaluate the model performance. 
 
6.1 Preparation of data 
In this project, the widely used cross-coupling reaction Suzuki-Miyaura was studied to create 
the underlying data table. This reaction is often used for large-scale synthesis of medicinal drugs 
due to the advantages of mild conditions, using commercially available low-cost reagents [27]. 
It is a metal catalysed reaction (Scheme 1) most often with palladium. Other metals such as e.g. 
Ruthenium, Iron and Nickel have also proved to work well. The reaction occurs with the two 
reactants, organoborane (often boronic acid) and an organohalide or triflate, to form a C-C 
bond, under basic conditions. [28] 
 

 
 
Scheme 1: A generalized reaction scheme of a Suzuki-Miyaura cross coupling. The first component, organoborane, is often 
shown as a boronic acid but can vary. Reaction takes place with an organohalide, such as iodide, bromide, triflate etc. Reaction 
conditions, especially catalyst and base, have been shown to be of major impact in the formation of a single C-C bond. 

The initial dataset in this project was defined together with structural information, molecular 
properties and reaction conditions from a total of 100 000 Suzuki-Miyaura cross coupling 
reactions extracted from Reaxys, (Elsevier) [24] consisting of different borane -, halide/triflate 
components and products. Each reaction reference obtained information on different yields, 
solvent systems and catalysts. A KNIME workflow was constructed for data curation, 
unnecessary information as well as inconsistent data was removed. Duplicates of reactions 
could have a potentially negatively impact the model performance, by influence the 
generalization error estimates in predicting a typical classification class. Multi step reactions 
would give a more complex representation of data to learn, compared to single steps reactions, 
and would therefore be much harder to describe and predict with only molecular properties and 
reaction conditions.  If two yields were documented for a reaction, the highest yield was decided 
to remain within the dataset to minimize the uncertainty of the human factor. The 100 most 
used catalysts were manually highlighted and extracted as a unique value used in the final table. 
After curation, a total of 94 000 reactions were used for further analysis. For the external 
validation, 2 000 other Suzuki-Miyaura reactions were extracted from Reaxys and curated as 
described. 

Catalyst

Base
Solvent
Temp.

R1,R3 = aryl, alkene (vinyl), alkyne R2 = H (boronic acid), alkyl (boronic ester)
X = halide, triflate
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6.2  Descriptor setup 
Two distinct descriptor sets were calculated for further implementation and training of the 
constructed binary classification models. The desired descriptors were primarily based on One-
Dimensional (0D/1D) descriptors and Two-Dimensional (2D) descriptors to gather 
characteristics of individual components.  

 
0D and 1D descriptors are based on molecular formula, and present numerical features e.g. 
molecular weights, atom counts, etc. These features were extremely fast to calculate and would 
provide a simplified description of different compounds, compared to 2D descriptors, which 
are more complex and primarily based on chemical graph theory [6].These latter descriptors 
provide information on molecules’ space (topology), e.g. topological surface area , fragment 
counts, Zagreb index, etc. These types of descriptors were calculated for each component, 
containing different open toolkit sources available in KNIME. The first set of descriptors used 
in the training was a combination of two available toolkits, CDK [25] & Indigo. The second 
design of descriptors was conducted by RDKit toolkit [26] in KNIME and were calculated for 
each component of all 94 000 Suzuki Miyaura cross coupling reactions. 
 
6.3  Machine Learning Model design 
The desired outcome of this project was to obtain an assisting tool based on the Random Forest 
algorithm to predict best reaction conditions, e.g. yield and catalyst. To address the main goal 
of this thesis, a large set of different models were constructed. The strategical approach was to 
try and obtain the best model, based on a set of several optimization processes. In addition, to 
meet the defined objectives, different investigations were performed by using “sufficient” 
numbers of descriptors without losing model accuracy. The main approach was thereafter to 
optimize the Random Forest model, analysing number of tree models that are enough for 
obtaining less error misclassification, as well as numbers of descriptors/properties for obtaining 
the best split at each node while building the forest. 
 
6.3.1 Milestone 1 
The approach towards designing a “local” Random Forest model for predicting a binary 
classification task and investigate and optimize the model to improve predictability measures 
will be described in this section.  

 
6.3.1.1 First attempt of model design for prediction of yield classes 
A first binary classification of yield was performed with the Random Forest algorithm, 
constructed with the two classes defined as yield ≥60% and ≤40%, to obtain milestone 1. To 
improve and create a more diverse training set, i.e. increase differences of “good” and “bad” 
classes, reactions between 60 and 40 percent1 were filtered out. The random forest model was 
initially constructed with default values recommended in KNIME, based on the theory of 
Random Forest mentioned by Leo Breiman [21]. Each RF model was trained with a number of 
100 models of decision trees with bagging (Figure 2). Number of descriptors used for each split 
was randomly obtained by square root of the total numbers of descriptors/properties.  
 

                                                
1 This could also be performed with 65/35 or 70/30 to weed out reactions that might be higher or lower due to 
experimental errors. Therefore, was it set to 60/40 hence the large interest of very good reactions over bad ones. 
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Figure 2: Design of workflow for Random forest model. 1) The curated table was divided into training and test set, 80/20, 
based on random sampling selection. 2) A tree ensemble learner was implemented, and default settings were selected for the 
used Random Forest algorithm. 3) Classification predictor was applied to obtain prediction estimates of yield classes on the 
independent test set. 4) To understand the predictive performances, Cohen´s Kappa, accuracies, specificity and sensitivity 
measures was obtained respectively AUC measures to get an understanding of the predictive performances of OOB samples 
and the independent test set. 5) The process was repeated 10 times to obtain an understanding of consistency and model 
strength.  

In addition to the calculated descriptors, different solvent combination and catalyst was defined 
as a unique number. Each unique number of catalysts and solvent was implemented and 
combined with the two descriptor sets, to quantifying and comparing experimental 
performances with each other. 
 
Both data sets were evaluated before learning through a 10-fold cross validation. Each set with 
an error rate lower that 0, 1% was not accepted, due to the impact of being too biased for a set 
of reactions. Two different models were created and trained and each respective descriptor sets. 
From the full dataset, 80% was selected to training and 20% as independent testing the trained 
model. Evaluation of prediction accuracy was performed from a ROC-curve were AUC 
measures were obtained. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 14 

6.3.1.2 Optimization to minimize the number of descriptors  
An additional workflow was constructed, to investigate correlation and variance within the two 
different descriptors sets (Figure 3). The table of descriptors was normalized to a range of 0 – 
1, highly correlated descriptors with correlation above 80%, respectively descriptors with a 
variance below 0.5%, were removed.  

 

 
Figure 3: Design of dimensionality reduction (DR) workflow. 1) All input of data, i.e. descriptors, was normalized for further 
evaluation. 2) A linear correlation matrix was implemented. 3) A correlation threshold was set to 80%, only one of the highly 
correlated descriptors remained within the table. 4) Descriptors with a significantly low variance (0.5%), will appear to be 
constant through all reactions and would not have any important impact of building the RF and was later removed. 5) All 
remaining descriptors were thereafter denormalized to further train the Random Forest model. 

After the dimensionality reduction was a workflow to obtain variable importance measures 
designed (Figure 4). A recursively defined column loop was conducted over all descriptors, 
where error rates were calculated for each model missing a specific one. A comparison of the 
variable importance for each type of descriptor was performed, comparing 0D/1D against 2D. 
 

 

 
Figure 4: Design of variable importance workflow, 1) all descriptors after DR were selected (numerical values); a column list 
loop was implemented for selecting one specific descriptor that would be excluding before execution. 2) A 10-fold cross 
validation was processed, to obtain error rates (percentages of selecting wrong class) of the RF performances of predicting 
correct class in the independent test sets. 4) A mean error rate was calculated, obtaining information how well the designed 
algorithm without one specific descriptor would perform. 5) The workflow was recursively performed, until acquiring enough 
information on the importance of all defined descriptors.  
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6.3.1.3 Optimization of model design 
To develop a strong and accurate predicting tool, of e.g. yield classes, the most efficient way 
was to optimize the training phase of the machine learning algorithm. The Random Forest 
algorithm contains different parameters that can be tuned to optimize prediction accuracy, 
defined as hyperparameters [29]. The goal was to investigate in which parameter value would 
obtain strong and accurate predictions with less computational costs. The first hyperparameter 
to optimize was Mtry: a new workflow was constructed with eight similar models with different 
Mtry values. Error rates were obtained from each model and later analysed against the 
importance of number of Mtry. A similar approach was constructed for investigating the 
importance of number of trees, consisting of eight Random Forest models with 2 000-, 1 000-, 
500-, 100-, 50-, 10-, 5- and 1 tree. Error rate in percent was obtained and plotted against the 
number of trees, which impact was further analysed to predict its accuracy.  
 
6.3.1.4 Final Random Forest model of a binary classification of yield 
The final RF model was created based on results from the optimization processes. Initially, each 
dataset was evaluated through a 10-fold cross validation in an order to avoid a too biased model. 
Each RF model was corrected and trained using 500 models of decision trees with bagging and 
random selection of features. The number of Mtry was set to the optimized value for each model 
and ROC and AUC measures were used for benchmarking the model performance. The final 
model design was merged with several workflows to later obtain information on AUC for the 
defined task (Figure 5).  
  

 
Figure 5: Design of final Random Forest model. 1) The final established dataset was evaluated with a 10-fold cross validation 
to observe no overfitting was present. 2) If error measures were lower than 0, 1 %, the dataset was rejected. 3) The accepted 
dataset was later pre-processed, unnecessary features (𝑋") were removed for achieving faster calculations in training of RF 
model. 4) Optimized model conditions for training the data of the RF model were implemented and AUC measure was presented 
for evaluation. 5) The model was converted to a Predictive Model Mark-up Language (PMML) for export. 6) The obtained 
results were later performed in a message, with information on obtained AUC for the defined task. 7) If the model was not 
accepted, an error massages would been performed instead as final text message. 8) Obtained import of data is later 
concatenated into a final estimation. 9) A final clear-text message was presented for obtaining a final understanding of the 
model performances.  
 
An external validation set was prepared with approximately 2 000 new Suzuki Miyaura 
reactions, extracted from Reaxys and curated with the designed workflow. Identical reactions 
compared to training set were removed and descriptors were calculated. The final RF model 
was later used in predicting yield classes and estimating model performance. To validate the 
model, AUC and accuracies were evaluated. 
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6.3.2 Milestone 2 
MS2 encompasses the approach to further define a model for prediction of one or multiple 
combined binary classifications of the most used catalysts in a Suzuki-Miyaura reaction. 
 
6.3.2.1 Random Forest model for binary classification of catalysts 
To obtain a tool/procedure in assisting chemists to deciding best reaction conditions, one critical 
criterion was to find an appropriate catalyst for the desired reaction. The next task was to 
investigate if the Random Forest algorithm would be of an appropriate choice in predicting 
multiple binary classifications, represented by a large set of molecular formula and graph-based 
descriptors. To encounter the defined objectives, 6 different binary classification models were 
constructed and ranked according to appearances within all 94 000 reactions. The six catalysts 
selected were confirmed to be commercially available and followed to obtain an active 
phosphine ligand. In detail, each desired catalyst was given an isolated class versus all others. 
Descriptors used in each table were selected after DR workflow performance and the creation 
of 12 models. Yield and solvent information were set to distinctive numbers and later combined 
with the descriptor tables. For defining a narrower prediction (lowest misclassification error) 
of the catalysts, each model was optimized after tuning of the two hyperparameters. Further 
evaluation of the performances was obtained by AUC measures and an external validation set 
was tested on four randomly chosen models, based on a set consisting of 1000 Suzuki Miyaura 
reactions extracted from Reaxys. 
 
6.3.3 Milestone 3 
This encompassed the description of the method to define a final model for ranking of most 
preferable catalysts for unknown candidate reactions, as well as the experimental validation of 
the obtained predictive performance. 
 
6.3.3.1 Ranking candidate catalyst 
To obtain a model that would have the possibility to rank the most preferable catalyst for a 
specific reaction. The main idea was to combine the methods defined in 6.3.1 and 6.3.2 to create 
a model that would be able to present catalysts that will have a higher possibility of presenting 
a high yield. Each catalyst model was later ranked based on probability score. Molecular 
properties were calculated on each component for each candidate reaction (Scheme 2 & 3) to 
obtain a representation of data that would be possible to use in prediction of best catalyst for 
that reaction. Each representation with computed descriptors of both candidate reactions was 
curated to fit the RDKit based model design and an additional column of desired yields was 
implemented as a unique column, ranging 80 – 100%, to be a priority for the different catalyst 
models. 

 
 
Scheme 2: General reaction scheme for candidate reaction A, the organoborane component selected was a boronic acid with 
high polarity. The desired C-C coupling product is created using 1-bromo-3-nitrobenzene as halide. 

R1,R2 = aryl, vinyl, alkyl etc.

Catalyst

Base
Solvent
Temp.

Candidate reaction A
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Each candidate reaction was later implemented within each model and ranked in obtaining a 
yield above a certain threshold. Candidate A (Scheme 2) was first tested and predictability 
scores was obtained for each catalyst. The approach was later performed on candidate reaction 
B (Scheme 3). All scores were evaluated, and three predicted catalysts were selected for further 
validation in laboratory.  
 

 
 
Scheme 3: General reaction scheme for candidate reaction B. Identical organoborane component selected as in A, with 2-
bromobenzonitrile as halide, forming the desired C-C coupling product. 

6.3.3.2 Experimental analysis on candidate reactions  
Each reaction was performed under predetermined conditions to validate the ML model 
performance of ranking best catalyst for a specific reaction. Solvent and base were selected to 
be optimal for each reaction and was later adjusted based on experimental outcomes. Initially 
five different conditions for candidate reaction A were tested, with n-butanol as solvent and 
potassium carbonate as base, using “best” and “worst” catalysts as obtained from the ranking 
model. Three new reactions were performed using 1,4-dioxane as solvent and potassium 
carbonate as base, evaluated together with all three catalysts. 
 
The selection of conditions for candidate reaction B was selected according to the structural 
similarities between the two candidate reactions, therefore was the best conditions for candidate 
reaction A selected as the first test. To increase the reactivity and to obtain better conversion of 
desired product, the selection of base was of major impact. In the Suzuki-Miyaura reaction, a 
base is used to initiate the transfer of the aryl or alkyl group from the organoborane to the 
catalyst-halide complex. Caesium fluoride was selected and is known to work well when base-
sensitive substrates are used, to reduce the formation of beta-hydrogen elimination by-products 
[27]. Several in process controls were performed with a HPLC analysis for monitoring the 
reactions. The chromatogram of starting materials was processed for later on comparison with 
each IPC´s on crude reaction mixtures. 
 
6.3.3.3 Evaluation performance of obtained results from experiments  
HPLC was used for analysing obtained product versus by-product. The conversion was 
calculated from processed chromatograms according to intensity of absorbance. This was 
further used as support for evaluating the defined model performance of ranking best catalysts 
for a given reaction. The combined intensity in percentage for desired product was later defined 
and a preunderstanding of the reaction outcomes, e.g. highest possible obtained yield was 
obtained. 
 
 

Candidate reaction B

Catalyst

Base
Solvent
Temp.

R1,R2 = aryl, vinyl, alkyl etc.
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7 Result and Discussion 
In this study, several Random Forest models were constructed for predictions of binary 
classification tasks. This section will present the achievements toward the milestones and final 
aim of thesis. 
 
7.1 Milestone 1  
The first goal was to design a “local” machine learning model to predict a binary classification 
task and perform an optimization study to improve the accuracy of the model. 
 
7.1.1 First model for prediction of a binary classification of yield 
To predict if a reaction would result in > 60% or < 40% yield, interesting result was found with 
the Random Forest algorithm. This, with an accuracy of 92.5% of the out of bag samples 
through the CDK and Indigo descriptor set (Table 1). The result from the independent test set 
was similar to OOB set, indicating that OOB samples can be a valid performance estimation 
for further analysis. Together with the true positive rates and false positive rates, a ROC-curve 
was plotted to acquire more accurate prediction estimation. The AUC measure from the ROC-
curve was 98% (Figure 6).  
 

 
Figure 6: Plotted ROC-curve with AUC measure for the CDK & Indigo method with full descriptor set to evaluate the 
predictability performance of the model. True positive rates (TPR) were plotted against the false positive rates (FPR) to create 
the ROC curve. AUC was measured to 0.98 in predicting the correct binary classification task of the two yield classes with 
Random Forest as ML algorithm. 

With the RDKit method, comparable results with an increase of 1% in accuracy and 0.2% for 
AUC was shown (Table 1). The design of the Random Forest algorithm and the Gini index 
ability for finding best features for each node was a key factor behind the model´s performance. 
One concern was the known problem with the presence of unwanted parameters. These 
parameters are known to contribute with a negative effect in the construction of the ML models, 
e.g. leading to a low predictability performance.  
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Another concern was if the final model would correspond too precisely to the training set and 
fail to produce reliable predictions in the future. This phenomenon refers to the theory of 
overfitting. With a 10-fold cross validation sequence the dataset was thus evaluated, a 
difference obtained after each “out of sample testing”, indicating there is no direct overfitting. 
 
Table 1: Random Forest performance estimates for both models with respective full descriptor sets after a 10-fold cross 
validation of the binary classification, if yield was >=60% or <=40% with default settings of parameters on the Random 
Forest algorithm as defined in 5.1. Sensitivity, Specificity, Cohen´s kappa, accuracies and AUC measures was obtained for 
evaluation of model performance.  

Methods Descriptor 
toolkit Set Sensitivity Specificity Cohen’s kappa Accuracy 

(%) AUC 

RF model 
Default 
settings 
(5.1) 
  

 
CDK & Indigo 

 
Out of bag 

 
0.903 

 
0.946 

 
0.849 

 
92.5 

 
- 

 Test 0.904 0.948 0.852 92.6 0.98 

RDKit Out of bag 0.912 0.95 0.862 93.1 - 

 Test 0.914 0.953 0.868 93.4 0.982 

 
 
The RF algorithm is ordinally defined to avoid the existence of this problem. Under the 
construction of each decision tree in the formation of the forest, the process of selecting random 
samples of features would play a sizeable part in avoiding the problem. Each tree was selected 
and constructed with a certain number of random subsets of features defining one specific tree. 
The number of trees will minimize the error due to biases and variance and will each time 
present different models, thereby avoiding overfitting. In the study by Skoraczyñski G et al.[4], 
best prediction performance was shown by a binary classification of yield to only 65%. The 
differences of this approach opposing theirs was to first define a “local model” for a specific 
type of reaction, the Suzuki Miyaura reaction, instead of  a “global model” that uses a large set 
of different types of reactions, as Heck, Negishi etc.  
 
The main idea of this project was to find a non-obvious correlation between molecular 
properties and reaction conditions as well as reaction outcomes. The problem to describe the 
reactivity of a reaction has been a large problem, and molecular properties have been proved to 
not give such information [4]. Hence, they will only present information on specific molecules, 
not an entire reaction. The use of a large set of different reactions with molecular 
descriptors/properties for each component of those reactions, has been shown in this project to 
be enough to find a pattern to mimic good (> 60%) or bad (< 40%) reactions. The obtained 
results in this study emphazizes that the “local model” approach was more preferable way to 
encounter these types of tasks and is of interest for further analysis. An interesting approach for 
further advances was to investigate if there is a possibility to remove unnecessary parameters 
to improve the execution and reduce number of calculations. 
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7.1.2 Optimization to minimize the number of descriptors and model conditions 
Each defined tree in a Random Forest makes splits of descriptor values into different branches, 
which continues until a final criterion is reached. For making good splits, an important 
requirement was to study the variance within the descriptors over the full representation of data. 
If not, a large number of unnecessary splits would be performed. Highly correlated descriptors 
will not show any differences under splitting. The appropriate choice was to keep one of them 
to minimize the number of unnecessary splits.  
 
To optimize and find best number of descriptors, the defined criterion was used in creating the 
final dimensionality reduction (DR) method. The descriptors/properties used in this project 
originate from medicinal chemistry to describe certain possible correlations between molecules. 
To obtain good information of these types of molecules in a Suzuki Miyaura reaction and obtain 
a model with less computational costs the two datasets were constructed with these types of 
descriptors. 
 
In comparison of the two different sets of molecular properties, the RDKit toolkit proved 
undoubtedly to present a better representation for each component in a reaction. The remaining 
molecular properties with the combinatorial descriptor set of CDK and Indigo, obtained 
information based on product and organoboranes and few for different halides/triflates. Graph-
based descriptors such as TPSA and Petitjean number and count-based properties such as 
number of rings and atom numbers remained after the DR workflow.  
 
This was not an unexpected observation, descriptors based on topology (2D) presenting in 
theory a larger variance (more unique) and lower correlation. The representation of 2D 
properties was based on calculations of connectivity measures, which might play a larger part 
in the predictivity performance of the model. Molecular formula- and fragment-based 
descriptors (0D/1D) are more likely to present values with a high correlation and were removed 
by the defined criterions. The remaining descriptors with RDKit toolkit, was primarily based 
on Van der Waals surface Area (VSA) and molecular quantum number (MQN) for the different 
components in the reactions. Greater information on number of rings and atom numbers was 
received from MQNs. Description of hydrophobicity and hydrophilicity was received from 
VSA descriptors. 
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To gain an understanding for each final descriptor selected and the predictability performances 
of the two sets, a variable importance study was performed. The obtained results for each 
molecular property were plotted against the misclassification error, i.e. the possibility of not 
being able to predict correct class (Figure 7). CDK and Indigo descriptors contributed with a 
distribution in error rate between 8.1% to 9.75%. 2D descriptors, e.g. sp3 character, Petitjean 
number and TPSA etc. proved to contribute to stronger predictions and better model 
performance. Count-based descriptors were presented as envisioned with a higher similarity 
between components. Lower misclassification error measures were shown and are of less 
importance in prediction of yield. The 2D molecular descriptors are more likely to present a 
component in a more descriptive way and are of a substantial importance, which is also 
observed with the lower range of misclassification error. 
 

 
Figure 7: Variable importance measures distribution for CDK & Indigo descriptors after dimensionality reduction. Dark blue 
bars correspond to 2D descriptors; light blue bars correspond to 0D and 1D descriptors. Showing the highest obtained 
misclassification error rates of the different parameters, was presented to not exceed 10% and the lowest error rate was 
presented to 8.1%.  

RDKit descriptors with default model conditions, presented in general lower misclassification 
error rate relative to CDK and Indigo (Figure 8). This supports the hypothesis, that RDKit 
calculated descriptors presenting a better representation of data. The distribution within all 
descriptors was obtained between 6% to maximum 6.6% in misclassification error rate. The 
molecular property that appears of most significant importance was molecular quantum number 
35 for products, presented as a light blue bar in figure 6. MQN numbers are categorized into 
different branches, such as atom count, polarity counts, and topology counts etc. Number 35 
represents the number of 5-membered rings present in products [30].  
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Figure 8: Variable importance measures distribution for all RDKit descriptors after dimensionality reduction. Dark blue bars 
correspond to 2D descriptors; light blue bars correspond to 0D and 1D descriptors. Showing the highest obtained 
misclassification error rates of the different parameters, was presented to not exceed 7% and the lowest error rate was 
presented to 6%. 
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The catalytic cycle in a Suzuki Miyaura cross coupling reaction follows three steps: 1) oxidative 
addition (rate determining), 2) transmetalation and 3) reductive elimination (Scheme 4). The 
position of a five membered ring could have a huge impact in full conversion of starting 
materials, due to the importance of the rate determine step. If a five membered ring was placed 
within the boronic component (less electron rich) the possibilities to interfere with the 
electrophilic halide/triflate in activate the catalysts could be sufficient for having a negative 
impact on the desired reaction outcome.  
 

 
Scheme 4: Generalized catalytic cycle of a Suzuki-Miyaura cross coupling reaction.1) Oxidative addition, is the rate 
determining step were the palladium catalyst together with the halide or triflate forms the first organopalladium intermediate. 
2) Transmetalation, is the second step in the cycle were the organoborane reacts with the organopalladium in a participation 
of a base towards creating the second organopalladium intermediate. 3) Reductive elimination is the last step of the cycle were 
the desired C-C formation is obtained and the originated palladium catalyst is reestablished to complete the cycle. 

Descriptors such as MQN 35 might present too generalized information on how many five-
membered rings that are located in the product and will not give the exact information where it 
is located. It will not give information if it would be presented as a substituent on the 
boronic/halide component or as the main part of that component, it could be questioned that the 
model will not capture that information. The MQN 35 has been shown to correlate with reaction 
outcome for this particular dataset of Suzuki-Miyaura reactions, it might be too bold to suggest 
that it would be of notable importance in detecting a pattern to predict if a reaction would be of 
immense success or not. Within this dataset, it seems to be one of the most favourable 
descriptors to define the best pattern for the yield.  
  
Simplified molecular properties and structural elements that these different datasets are 
constructed with presents generalized information of the molecules. The model performance in 
predicting a specific outcome would depend on a number of randomly chosen descriptors best 
fitted for the Suzuki-Miyaura reactions. The simplified descriptors would tend to coincide with 
other structural information and conditions to be favourable for the Random Forest model, 
finding the most preferable pattern to obtain the best predictive results for this particular 
reaction. 
  

LnPd(II)

1: Oxidative Addition 

2: Transmetalation

3: Reductive Elimination

base 

R1,R2 = aryl,alkene (vinyl), alkyne Y = OH (boronic ester)
X = halide, triflate Ln = ligand

Y3
-
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Another concern would be the possibility of beta-hydrogen elimination instead of the desired 
trans-metalation after the oxidative addition, leading to a higher amount of undesired product. 
Even though some parameters could have an impact on the predictive performance of a reaction 
outcome, are some of the descriptors less important to be of an immense impact if a certain 
reaction will occur or not. From a chemical point of view, would the reactivity of a reaction not 
be dependent on e.g. molecular weight or element count, to define the possibilities in producing 
the desired product. There are more parameters that one must take under consideration in 
producing a certain amount of product with a specific transformation reaction, such as the 
Suzuki- Miyaura reaction. 
  
However, in these types of models might such of different “unnecessary” parameters be crucial 
in finding patterns for specific outcomes. The information from the literature will be extremely 
important to obtain a good representation of data. Molecular properties will not give enough 
information to predict an outcome of a reaction and the size of extracted reactions will play a 
key role in the model’s ability to find patterns towards the goal. From a statistical point of view 
were the results more acceptable. A non-obvious correlation was presented in predicting a 
binary classification of yield with the selected simplified molecular descriptors. For further 
development was all descriptors selected for each dataset. The importance measures for each 
molecular property did not deviate significantly more than 0.1% and an improvement would 
not be reached by randomly remove molecular properties 
 
The optimization of a ML model does not only refer to the representation of data. For obtaining 
“best” model conditions, different hyperparameters were tuned to receive optimal predictive 
performance with the model. The approach was to find conditions with a high accurate 
predictability performance at lowest computational cost, meaning with as few calculations as 
possible. The best Mtry observed for CDK and Indigo set was with 10 features after a 10-fold 
cross validation (Figure 9). If only three or less features were selected would the 
misclassification rate be of a considerable importance in predicting the desired class. The 
approach was to select number of Mtrys´ in obtaining lowest and most stable misclassification 
error rates, and with as few numbers of features as possible.  
 
 

 
Figure 9: Box plots of number of Mtry after a 10-fold-cross validation for both CDK & INDIGO- and RDKit sets, where the 
misclassification error in percent are described at y-axis and number of Mtry´s tested at x-axis. 
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Default settings  documented in the theory of the RF algorithm are set to the square root of 
numbers of features, but as Breiman clarified [21], no optimal set of Mtry can be pre-defined 
to obtain the “best” model performance. The square root numbers are shown in each plot to 4 
respectively 9 in the x-axis of figure 9, showing that the default value is not the best fit in this 
task. An optimization process was shown to always be sufficient for understanding of each ML 
algorithm applied in model building [29]. According to the boxplots, was the optimal number 
of Mtry selected to 10 for CDK & Indigo respectively to 19 for RDKit, acquiring low error rate 
and would not be that time consuming for calculations. 
 
Next hyperparameter tuned was the number of tree models used in training. The default 
numbers of trees are selected to 100 and it follows similar agreement defined for Mtry. An 
optimization study is of need for all hyperparameters obtaining “best” model conditions. For 
both descriptor sets, 500 numbers of trees were observed to be enough in acquiring good 
predictability and to not be too demanding for the computational performance (Figure 10). 
Increasing the number of trees to 1 000 or even 2 000 was verified to influence the execution 
time and increase the computational cost and demonstrated no significant performance gain 
while doing that. The final optimized conditions were suggested to 500 number of trees and 10 
features of Mtry in CDK & Indigo model versus 500 trees and 19 Mtry for RDKit. 
 
 

 
Figure 10: Box plots of number of trees after 10-fold cross validation for both CDK & Indigo- and RDKit sets, where the 
misclassification error in % are described from 4 -16 % in the y-axis. Number of Mtry´s tested 1-2000 in x-axis. 
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7.1.3 Final model for prediction of binary classification of yield 
The improved “local” models were shown to present comparable results, towards the aim to 
forecast if a reaction would end up in a specific threshold. That was faster less time consuming 
than the previous ones. Both models with an additional validation set are shown in Table 2. One 
concern was if the predictability performance would decrease, hence the dimensionality 
reduction process. This performance was presented with an AUC of 97.7% respectively 98,5% 
from the models. The latter one is presenting an increase of 0.5% with the new RDKit set.   
 
Table 2: Random forest performance estimates of both models of different descriptor sets, after a 10-fold cross validation of 
the binary classification with optimized conditions. Sensitivity, specificity, Cohen´s kappa, accuracies and AUC measures were 
calculated for evaluation of models as well as for external validation.  

Methods Number 
of Mtry 

Number 
of trees 

Descriptor 
set Set Sensiti

vity 
Specifi

city 
Cohen’s 
kappa 

Accuracy 
(%) AUC  

RF 
algorithm 10 500 CDK & 

Indigo Out of bag 0.901 0.943 0.843 92.2 - 

     Test 0.899 0.946 0.845 92.2 0.977 

External 
Validation 

   Validation     0.744 

RF 
algorithm 19 500 RDKit Out of bag 0.919 0.952 0.871 93.6 - 

     Test 0.927 0.950 0.877 93.9 0.985 

External 
Validation 

   Validation     0.771 

 
 
To validate the final model, an external validation set with newly documented Suzuki-Miyaura 
reactions was analysed. Most preferable AUC estimates were received with the RDKit 
calculated molecular properties, being three percent more accurate than the combined CDK & 
Indigo ones. A comparison between the independent test set and the external validation set 
performances presented a difference of 20% in accuracies, which emphasizes the difficulties 
with this type of task. To evaluate the results, the distinct differences in obtained predictions 
could depend on several factors. Was the model too biased or was the curation of validation set 
not performed well enough?  
 
The validation set contained a small size of data in proportion to the size for training and could 
include reactions where the human factor has had a superior impact on the reaction outcome. 
For example, a specific reaction could be reported with 20% yield, which then belongs to the 
reactions defined as “bad”, but if another chemist performed the exact reaction and obtained 
better yield, e.g. of 80%, the reaction would be consider as “good”.  
 
The human factor would have a major impact due to the negative obtained results from the 
external validation. The validation set must be of a greater volume for minimizing the impact 
of the human factor, to perform a more equitable validation performance. A correlation was 
shown in the obtained results, which support the hypothesis to predict reaction outcomes based 
on a simplified representation of molecular properties. For further advances towards the goal 
of the project, as next task was an attempt to predict specific reactions conditions, e.g. identify 
best fitted catalyst for a reaction. 
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7.2 Milestone 2  
The obtained results from multiplied combined binary classifications in prediction of several 
catalysts will be described 
 
7.2.1 Final model for prediction of binary classification of catalysts 
Within the full set of 94 000 reactions were the six most used catalysts for this reaction selected. 
The six models were based on reactions with a representation of only the six different catalysts, 
resulting in 60 000 reactions. The purpose was to use as many reactions as possible with the 
desired classification, e.g. as observed in Figure 11. With Pd (PPh3)4 being set to be the desired 
catalyst, a final of 59 736 reactions was obtained, with an equal distribution of 50/50 of the two 
classes, meaning 29 868 for desired catalyst (Class 1) respectively for "all others” (Class 2). In 
comparison with e.g. XPhosPdG2, that contains only a total of 1 012 reactions after equal sized 
distribution of the two classes, which is no more than 2% of the entire Pd(PPh3)4 model. 
 

 
Figure 11: Distribution in volume of total amount of reactions for each defined model, 1) Pd(PPh3)4 with a representation of 
59 736 reactions, 2) Pd(dppf)Cl2 with 42 642 reactions, 3) Pd(PPh3)2Cl2 with 13 362 reactions, 4) Pd(dtbpf)Cl2 with 1 532 
reactions, 5) Pd(t-Bu3P)2 with 1 188 reactions and XPhosPdG2 with 1 012 reactions. 
  
The approach was to obtain a comprehensive description of each catalyst and to avoid losing a 
significant representation that could be essential in anticipating the true description. Due to this, 
a large variety in the representation (i.e. size) for each constructed model was obtained. The 
purpose with a large set of different reactions was to minimize the influence of the “human 
factor” and biases, to obtain a more accurate predictive model.  
 
Due to DR workflow, with the criterion of low variance and too high correlation was different 
number of descriptors selected for each model. A large representation of different reactions 
would influence the possibilities of obtaining highly correlated variables, resulting in smaller 
sets of molecular properties. In comparison of the models consisting of a smaller size of 
reactions, Model 4 – 6, were a larger representation of descriptors was presented. As performed 
earlier, is the optimization of model conditions of major impact obtaining best model 
performances.  
 
 
 

1; 59 736
2; 42 642

3; 13 
362

4; 1 532

5; 1 188

6; 1 012

TOTAL NUMBER OF REACTIONS FOR EACH DEFINED MODEL

1. Pd(PPh3)4 2. Pd(dppf)Cl2 3. Pd(PPh3)2Cl2 4. Pd(dtbpf)Cl2 5. Pd(t-Bu3P)2 6. XPhosPdG2
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It appears that number of Mtry and number of trees increases with smaller table size (Table 
3).To reduce the impact of noisy parameters, which leads to a large misclassification error rate, 
was number of Mtry set to larger than 4 (CDK & Indigo) respectively 9 (RDKit) features, 
increasing the ability finding better split variables. With the selection of a larger number of 
trees, was a more exact estimation of the majority votes obtained reducing the uncertainty of 
the wrong ones. Increasing the algorithm to obtain a more accurate prediction performance.  
 
Table 3: Obtained results after optimization analysis for each model defined. Mtry was tuned together with numbers of trees 
for achieve a solid predictive performance for each binary classification model. 

Model Entry Descriptor set Number of Mtry Number of trees 

Model 1 CDK & Indigo 5 500 
 

RDKit 10 500 

Model 2 CDK & Indigo 5 500 
 

RDKit 10 500 

Model 3 CDK & Indigo 5 1000 
 

RDKit 10 1000 

Model 4 CDK & Indigo 5 2000 
 

RDKit 13 1000 

Model 5 CDK & Indigo 5 2000 
 

RDKit 13 1000 

Model 6 CDK & Indigo 5 2000 
 

RDKit 13 1000 

 
In comparison of the different binary classification performances with defined models, AUC 
measures and accuracies from both OOB samples and test sets are presented in Figure 12. The 
accuracy from each respective set, describes how well the ML model identifies each class in an 
equal size distribution. Larger representation of data indicates to present better or more accurate 
estimation of identifying the differentiated classes. AUC estimates were received with an 
average estimate at 95.6%, compared to minor tables with an AUC average of 93.8%. All 
models presented to possess similar predictability performances, thus not so surprisingly due to 
each are optimized to perform well under specific conditions.  
 

 
Figure 12: Estimated predictive performance from each model, OOB sample accuracy, test set accuracy and AUC measures 
from ROC-curve obtained from test set is shown, where each model is represented with CDK & Indigo descriptors. 
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From results in Figure 13 was it possible to notice a slight better prediction performance using 
the RDKit models, an overall increase of accuracy and AUC estimates was observed to an 
average of 96.8% compared to an averaged of 94.4% for CDK & Indigo.  
To minimize the number of incorrect estimates in further analysis and obtain the "best” model 
for ranking appropriate catalyst, was the RDKit models selected as candidate for the final 
ranking procedure. An external validation (small set of reactions with documented catalysts) 
was performed on four of the six models. The effect of the human factor was already known to 
have a large impact, it was further of interest to analyse if models with a larger representation 
of reactions would show a more coveted trend in predictability performance.  
 

 
Figure 13: Estimated predictive performance from each model, OOB sample accuracy, test set accuracy and AUC measures 
from ROC-curve obtained from test set is shown, where each model is represented with RDKit descriptors. 

AUC measures were obtained from the selected models of catalysts with calculated RDKit 
properties on the validation set (Table 4). Models with a smaller representation of data (Model 
4 and 5) presented an AUC average of only 40.9% compared to an average of 77.8% (Model 1 
and 2) a difference of 36.9%. This result is not unexpected and is and has been of general 
interest for further understanding in this project, as the volume of representation proves to be 
of a major impact.  
 
Table 4: Obtained AUC measures after external validation, by implementation of validation set in model 1,2,4 respectively 5. 
Model 1 and 2 represents the AUC estimation with a larger representation of data, compared to Model 4 and 5 which 
contributes to reduced representation.   

Model Entry Catalyst AUC (%) 

Model 1 Pd(PPh3)4 75.1 
Model 2 Pd(dppf)Cl2 80.6 
Model 4 Pd(t-Bu3P)2 45.1 
Model 5 Pd(dtbpf)Cl2 63.6 

 
There was of further interest to obtain a multiplied binary classification model to rank most 
preferable catalysts later implemented for practical use and experimental validation. 
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7.3 Milestone 3 
A method to define a final model for ranking of the most preferable catalysts for unknown 
candidate reactions will be described, as well as the experimental validation of the obtained 
predictive performance.  
 
7.3.1 Ranking candidate catalyst 
Selected candidate reactions were implemented into each defined model to obtain predictive 
performance scores, meaning which catalyst would be best suited to obtain good reaction 
outcome, i.e. highest yield. Prediction scores are presented according to a desirable yield 
between 80-100% in Table 5. 
 
Table 5: Final prediction scores for models 1 - 6, were highest percentages corresponding to the probability of obtaining high 
yield for respective candidate reactions A and B. 

Model Entry  Catalyst  Prediction scores 
(=>80% yield) for A  

Prediction scores 
(=>80% yield) for B  

Model 1 Pd(PPh3)4 77.3% 71.8% 

Model 2 Pd(dppf)Cl2 28.0% 28.6% 

Model 3 Pd(PPh3)2Cl2 31.9% 46.1% 

Model 4 Pd(dtbpf)Cl2 34.7% 34.4% 

Model 5 Pd(t-Bu3P)2 48.8% 51.1% 

Model 6 XPhosPdG2 23.6% 31.4% 

 
The obtained predictions for A versus B were almost identical. Both reactions are similar in 
structure, with identical boron components. The catalyst showing most preferable prediction 
scores was Pd(PPh3)2, one of the most documented catalyst that has been proven to work well 
in Suzuki-Miyaura cross-coupling reactions. The catalyst obtaining lowest prediction scores 
was Pd(dppf)Cl2 and XPhosPdG2. 
 
7.3.2 Experimental analysis on candidate reactions  
To confirm the hypothesis, each reaction was run in duplicates to obtain a minimum of 
reproducible results to validate the model performances. Candidate reaction A (Figure 14) was 
performed with Butanol/H2O as solvent system together with potassium carbonate. This 
resulted in a conversion of only 67% product with Pd(PPh3)4  and 84% with the least preferable 
catalysts, Pd(dppf)Cl2 and is in contradiction to the hypothesis. The presence of the competitive 
(fast) side reaction, beta-hydride elimination, during these types of reactions could be one 
explanation of the presented outcome. It seems to be considerably higher with the sufficiently 
more reactive catalyst, Pd(PPh3)4, compared to Pd(dppf)Cl2 and occurs under highly polar 
conditions using n-Butanol as solvent. Another explanation could be the ML models giving 
inaccurate predictions. For further understanding different conditions for reaction A were 
performed using as solvent the less polar 1,4-dioxane. This, with a conversion of and 92% for 
catalyst 1, 93% for catalyst 2 and 94% for catalyst 3.  
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Figure 14: Obtained experimental outcomes for candidate reaction A. Test 1) was performed with n-Butanol and potassium 
carbonate, at 80°C for both Pd(PPh3)4 (ranked as number 1) and Pd(dppf)Cl2 (ranked as number 5). Conversion of product 
was 67.4% respectively 84.0%. Test 2) was performed to obtain better results, which are more preferable for Pd(PPh3)4 and 
an improvement was shown with 1,4-dioxane as solvent for all of the three catalysts. A negative trend is still observed for 
Pd(PPh3)4. 

 
The least optimal catalyst (Pd(dppf)Cl2) was observed to perform remarkably well in both tests. 
This could indicate that the defined approach of ranking most preferable catalysts is 
questionable. The combination of solvent and base were selected to work in such a manner to 
perform well for different types of reactions. The importance of solvent in this case was due to 
the attendance of high polarity components, i.e. boronic acid. The combination of 1,4-dioxane 
as solvent and potassium carbonate as base, were selected to be a tremendous fit for this type 
of reaction and catalysts. Pd(dppf)Cl2 was presented to be of a good fit with a probability of 
28.0% to perform within the defined threshold for the desired outcome. One consideration was 
if the selected condition system for testing would have been the “optimal” in synthesis of 
product with Pd(dppf)Cl2 as catalyst for candidate reaction A, thereby the impressive results. 
 
The resulting conversions for each reaction outcome of reaction B, presented less impressive 
results (Figure 15) and a negative trend was observed. A similar trend was observed earlier in 
the first test for candidate A. The catalysts presenting highest probability of obtaining a 
conversion of product above 80.0% turned out to be least optimal ones, i.e. the opposite was 
observed versus what was predicted. Only 53.8% conversion was obtained with Pd(PPh3)4 and 
the least considerable catalysts to 89.3% for desired product. The selected conditions were 
therefore changed to achieve a better understanding of the outcome. Bromobenzonitrile showed 
to be more sensitive to the selected base, and to improve the reactivity during trans-metalation 
was Caesium fluoride selected. Generally, it was observed that all reactions improved, 
Pd(PPh3)4 went from 53.8% to 78.6% , Pd(PPh3)2Cl2 from 82.7% to 94.7% and Pd(dppf)Cl2 
from 89.3% to 94.0%. All results deemed to disprove the defined hypothesis. 
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Figure 15: Obtained experimental outcomes for candidate reaction B. Test 1) was performed with 1,4-Dioxane and potassium 
carbonate, at 80°C for both Pd(PPh3)4 (ranked as number 1), Pd(PPh3)2Cl2 (ranked as 3)  and Pd(dppf)Cl2 (ranked as number 
6). Conversion of product were 53,8%, 82,7 and 83,9%. Test 2) was performed for obtaining better results, which are more 
preferable for Pd(PPh3)4 and an improvement was shown with caesium fluoride as base for all of three catalysts. A negative 
trend is still shown for Pd(PPh3)4. 

 
The method strongly suggests that Pd(PPh3)4 would be the most considerable catalysts with a 
probability of 77.0% but shows inadequate results in laboratorial performance. The final 
ranking model would be considered to be revisited, since solvent, base and temperature was not 
part of the original prediction. These conditions have been proved to be of a significant impact 
in reaction outcomes and it may not be surprising to have obtained a bad fit of theory versus 
experimental results. The approach for validation can be questioned, if the scope of different 
solvent systems, bases and temperatures were selected to get an estimation of how well the 
model was ranking the different catalysts it could be improved. The obtained information from 
the experimental analysis was enough to conclude there are improvements needed to obtain a 
better model for prediction of catalysts. 
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8 Conclusion 
The applications of ML have been of large interest since the big data era began and it continues 
to develop. The difficulties of finding drug candidates or optimizing time-consuming processes 
could be solved by use of machine learning and data mining. The aim of this study was to 
optimize a tedious time-consuming process by implementing a machine learning tool to rank 
the best catalysts for a specific reaction. The initial focus was the widely applied Suzuki-
Miyaura reaction in drug development investigations. 
 
The concluding remarks in this study refer to the impressive performance of the Random Forest 
algorithm in predicting the outcomes for a distinct type of reaction. The improved binary 
classification model was shown to perform at a low computational cost with an AUC of 97.0% 
when a Suzuki-Miyaura reaction would end up in a certain threshold, i.e. with ≥60% and ≤40%, 
yields. Why this particular task was of interest for this study was explained by questionable 
results from previous studies [4]. To avoid the presented complications (in predicting reaction 
outcomes), another approach towards the task was applied, incorporating the use of a “local” 
model. 
 
The complications with “global” models include an insufficient coverage of steric, electronic 
effects, etc. The “global” models are shown to represent a large set of reactions (millions) with 
distinct groups of type reactions. These global models do not include more than a hundred 
reactions for a unique type and will not be enough to describe the intrinsic complexity of a 
reaction. To present a more comprehensive analysis, an approach to limit the scope to only one 
type reaction was used to predict possible reaction outcomes and was shown to increase the 
predictability with 32.0%. 
 
The difficulty for a scientist in optimizing a Suzuki Miyaura reaction has been known to depend 
on the reactivity and selectivity of one catalyst. Furthermore, six diverse Random Forest-based 
models were defined to predict a catalyst as proof of concept towards the aim of this study and 
all models presented astonishing results with an average of 90.0% accuracy. With the 
experimental outcome, being opposite to the expected prediction, a new hypothesis for future 
approach will be required. The intrinsic complexity of designing a Random Forest model 
towards selecting specific conditions, was the lack of sufficient molecular representation from 
currently available descriptors. As concluded, the representation of a category has a significant 
impact on the performance of the model. The difference in the number of catalysts per model 
is caused by the size of reactions, which resulted in an insufficient coverage of a specific 
catalyst.  
 
To summarise, an improved binary classification model was designed to predict two yield 
classes. The models for ranking best catalyst selections for a specific reaction showed 
promising correlations. However, the model requires further investigation, mainly regarding 
the catalyst representation but also other factors, including solvent systems, base, etc. A human 
factor in the experimental laboratory work cannot be ruled out, as may be a potential issue with 
some of the literature data. At first glance, the Random Forest algorithm was shown to have 
high and stable predictions. However, models with a minor representation of reactions have a 
major drawback in practical use, which was discovered through the experimental validation in 
this thesis. 
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9 Future work 
In principal the correct future work is already present, an interest is to investigate the scope of 
development with the Random Forest model (in predicting yield classes) towards new 
opportunities. A study to obtain prediction results with other metal-catalysed cross-coupling 
reactions (e.g. Heck, Negishi etc.), would be interesting due to being a commonly used 
transformation in developing new medicinal candidates. It would also be interesting to 
investigate if it is possible to obtain a multiple binary classification model, based on a combined 
dataset with different cross-coupling reactions.  
 
There is also an interest to explore the accuracy of the experimental validation, to address the 
doubtfulness from earlier performance. A new strategical laboratorial approach (factorial 
designs) will be of interest as validation procedure in future work. 
 
Furthermore, to design an approach to identify a wider range of more commercially available 
catalysts as well as obtain narrower information on different bases, temperatures, and solvent 
combinations. Together with an investigation in how to create a new descriptor value for obtain 
a better representation of a catalyst, will be of priority. Ultimately, if any future performed 
experiment is started based on the results from predicting the outcome would be close to ideal. 
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