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Abstract

In this paper, we introduce an optimal average cost learning framework to solve output regulation problem for linear systems
with unknown dynamics. Our optimal framework aims to design the controller to achieve output tracking and disturbance
rejection while minimizing the average cost. We derive the Hamilton-Jacobi-Bellman (HJB) equation for the optimal average
cost problem and develop a reinforcement algorithm to solve it. Our proposed algorithm is an off-policy routine which learns
the optimal average cost solution completely model-free. We rigorously analyze the convergence of the proposed algorithm.
Compared to previous approaches for optimal tracking controller design, we elevate the need for judicious selection of the
discounting factor and the proposed algorithm can be implemented completely model-free. We support our theoretical results
with a simulation example.
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1 Introduction

Output regulation is one of the central concepts in con-
trol theory which aims at tracking and disturbance re-
jection [9,16,21,19,20]. Usually, the dynamics of the ref-
erence and the disturbance are combined into a single
dynamical system called exo-system in the literature [9].
There are two general approaches to design the controller
for the output regulation problem. The first approach
is a feedforward method where a feedback controller is
designed to stabilize the system and a feedforward con-
troller is obtained by solving the output regulation equa-
tion to keep track of the exo-system. The second ap-
proach is to include an internal model of the exo-system
in the dynamic controller and then, the control signal
is a feedback from the internal state of the controller
and the state of the system. Both approaches need a full
knowledge of the system and the exo-system dynamics.
Proportional–Integral–Derivative (PID) controllers are
also widely used for practical (but not generally exact)
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tracking [12].

Over the past decades, Reinforcement Learning (RL)
techniques are used to design adaptive/optimal schemes
for control of systems with unknown dynamics [17,4].
Recently, RL techniques have been further extended
to solve tracking-type problems [6,13–15,23,8]. In
[22,23,8,10], suboptimal approaches are suggested where
the feedforward part of the controller is obtained by dy-
namic inversion assuming that the dynamics is known
and the feedback part is obtained by solving optimal
control problems using RL techniques. These methods
are suboptimal because only the feedback part of the
controller is considered in the cost function. The main
challenge in considering the feedforward part in the
optimal controller design is that the feedforward part
results in an infinite cost; because it contains a term
from the exo-system (or an internal model of the exo-
system) which is non-dissipating. One possible way to
fix this issue is to optimize a discounted cost [13–15].
The discounting factor needs to satisfy an upper bound
to ensure local asymptotic stability of the tracking er-
ror while it cannot be selected near to zero to avoid an
infinite cost and a long transient response. Note that
the discounted cost may not be a correct measure of the
original cost, for example when the cost is the consumed
energy of the system [3]. Alternatively, [6,5] suggest



a non-discounted framework for the output regulation
controller design where it is required to build and evalu-
ate tracking-type errors using information of the output
matrices and such, they are not completely model-free.

To elevate the need for judicious selection of the dis-
counting factor and to design the output regulation con-
troller without any knowledge about the dynamics, we
bring together optimal average cost, output regulation
theory, and RL techniques. There are two main contri-
butions in this paper. Our first contribution is to intro-
duce an average cost optimization to solve the output
regulation problem. This makes our formulation and re-
sults independent of the discounting factor and its se-
lection [13–15]. Our second contribution is to propose a
completely model-free online RL algorithm to solve the
output regulation problem. In comparison, the RL ap-
proaches in [6,5,13] need a knowledge of the input or
output matrices.

Notations: Let I and 0 denote an identity and a zero
matrices with appropriate dimensions respectively. Let
⊗ denote the Kronecker product. Let ∇f denote the
gradient of function f(x) with respect to x. The (semi)
positive definiteness constraint on the matrix Q is
formulated as (Q ≥ 0), Q > 0. The set of all eigen-
values of a square matrix A is denoted by Spec(A)
and the minimum eigenvalue is denoted by µ(A). The
transpose of a matrix is denoted by the superscript
†. Consider matrix A = [a1, ..., am] ∈ Rn×m. Then,

vec(A) = [a†1, a
†
2, ..., a

†
m]† ∈ Rnm. Consider a sym-

metric matrix P = [pij ] ∈ Rn×n. Then, vecs(P ) =

[p11, p12, .., p1n, p22, .., p2n, ..., pnn]† ∈ Rn(n+1)/2. Con-
sider a vector x = [xi] ∈ Rn. Then vecv(x) =
[x21, 2x1x2, ..., 2x1xn, x

2
2, ..., 2x2xn, ..., x

2
n]† ∈ Rn(n+1)/2.

2 Output Regulation Problem

Consider the following dynamical system

ẋ = Ax+Bu+Dv, (1)

y = Cx, (2)

v̇ = Sv, (3)

w = Fv, (4)

e = y − w = Cx− Fv, (5)

where x ∈ Rn, u ∈ Rm, y ∈ Rp denote the state, the
control and the output of the system, and v ∈ Rq, w ∈
Rp denote the state and the output of the exo-system.
Here, the exo-system (3) contains the dynamics of the
reference signal to be tracked and the disturbance to be
rejected [9]. It is desired to design the controller u such
that the output regulation error, denoted by e ∈ Rp,
converges to zero. Let v(t, v0) denote the solution of (3)
at time t initiated at v0 and let x(t, x0, v, u) denote the
solution of (1) at time t by the control u initiated at

x0. For simplicity, we define the augmented state of the

system and the exo-system as X(t) =
[
x(t)† v(t)†

]†
.

Stacking (1)-(3), the augmented system is defined as

Ẋ =

[
A D

0 S

]
X +

[
B

0

]
u = AaX +Bau,

e =
[
C −F

]
X = CaX.

(6)

Problem 1 Consider (1)-(5). Design

u = Kfbx+Kffv (7)

such that the output regulation error e converges to an
arbitrary small vicinity of zero.

We make the following assumption regarding the dy-
namical systems in (1)-(6).

Assumption 1 The pair (A,B) is stabilizable and
(Aa, Ca) is detectable.

Assumption 2 Re(λ) ≤ 0, ∀λ ∈ Spec(S).

Assumption 3 The linear matrix equations

ΠS = AΠ +BΓ +D, CΠ− F = 0, (8)

are solved by some Π ∈ Rn×q and Γ ∈ Rm×q.

Theorem 1 ([9]) Let Assumptions 1-2 hold and assume
that Kfb is selected such that A+BKfb is strictly stable.
Then, the controller

u = Kfbx+ (Γ−KfbΠ)v (9)

solves Problem 1 if and only if Assumption 3 holds.

Introduce ξ = x−Πv. Using (8), we have

ξ̇ =(A+BKfb)ξ, u = Kfbξ + Γv,

e =Cξ.
(10)

Hence, if the controller (9) solves the output regulation
problem, it also results ξ → 0 and vice versa.

3 Optimal Output Regulation Problem

Consider the following quadratic performance index

V (X(t), u(t)) =

∫ +∞

t

r(X(τ), u(τ)) dτ (11)

where r(X,u) = e†Qe + u†Ru is the running cost with
Q > 0 and R > 0. The performance index in (11) is
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called the total (not-discounted) value function and it
can be optimized only if the exo-system (3) is asymptot-
ically stable; otherwise, the total value function becomes
infinite because of the feedforward controller from the
exo-system in (3). The finiteness of the value function is
a key in Bellman principle of optimality [2], and a prob-
lem with an infinite value function is not well defined.
Alternatively, one can consider optimizing of the aver-
age value function instead of (11). Define the average
value function as

Va(X(t), u(t)) = lim
T→∞

1

T

∫ t+T

t

r(X(τ), u(τ)) dτ (12)

which is bounded if Assumption 2 holds. If we set t = 0
in (12) then, we obtain the average cost

Ja(X0, u(t)) = lim
T→∞

1

T

∫ T

0

r(X(τ), u(τ)) dτ. (13)

In this paper, we are interested in finding control policies
of the form u(t) = u(x(t), v(t)) from the set of average
cost admissible policies.

Definition 1 (Average cost admissible policy)
Consider dynamical system (1)-(5). The policy (feed-
back/feedforward controller) u(x, v) is Average Cost
Admissible (ACA), denoted by u(x, v) ∈ UACA, if it sat-
isfies the following: (a) it is continuous, (b) u(0) = 0,
(c) ẋ = Ax+ Bu(x,0) is asymptotically stable, and (d)
the average cost (13) is bounded.

Now, we compare the ACA with the Classical definition
of Admissible policy (CA) in [1]. Properties (a)-(b) are
the same for both the ACA and CA. Property (c) con-
cerns the stabilizability of the dynamical system. Since
the exo-system in (3) is not stabilizable, only stabiliz-
ability of (1) is considered in ACA. Regarding (d), a CA
policy makes the value function (11) finite while an ACA
policy makes the average value function (12) finite. Fi-
nally, we note that a CA policy is always an ACA policy
but the converse is not true. For example, the output
regulation controller (9) is ACA but not CA because the
average value function (12) is finite but the total value
function (11) becomes infinite by (9) because of the term
from the exo-system, i.e. (Γ − KfbΠ)v, which is non-
dissipating.

Problem 2 Consider (1)-(5). Find an optimal ACA
policy u∗ = K∗X(t) to bring the output regulation error
e to an arbitrary small vicinity of zero by minimizing
(12).

The optimal average value function associated with the
optimal policy u∗ = K∗X(t) is denoted by

V ∗a (X(t)) = lim
T→∞

1

T

∫ t+T

t

r(X(τ), u∗) dτ, (14)

and the optimal average cost is denoted by λ∗

λ∗ = Ja(X0, u
∗) = lim

T→∞

1

T

∫ T

0

r(X(τ), u∗) dτ. (15)

For an output regulation problem satisfying Assump-
tions 1-3, one can show that the optimal average cost
depends on the initial state of the exo-system.

Theorem 2 Consider (1)-(5). Let Assumptions 1-3
hold. Assume that Kfb is selected such that A + BKfb

is strictly stable such that the output regulation problem
is solvable by the controller u = Kfbx+ (Γ−KfbΠ)v =
Kfbξ + Γv. Then, the average cost λ = Ja(x0, v0, u) is
expressed in a quadratic form

λ(ν) = ν†Mν, M = lim
T→∞

1

T

∫ T

0

(eSτ )†Γ†RΓeSτ dτ,

(16)

where ν can be v0 or any other point on the trajectory of
v initiated at v0; i.e. v(t, v0), 0 ≤ t <∞.

PROOF. Let λ = Ja(x0, v0, u). Since A+BKfb is sta-
ble ξ → 0 and e→ 0. Hence, the terms containing e and
ξ in the running cost, produce a bounded total cost and a
zero average cost in the view of T →∞. As a result, the

average cost is given by λ = limT→∞
1
T

∫ T
0
v†Γ†RΓv dτ .

The solution for v in (3) initiated at v0 is v(t) = eStv0.
Consider the time 0 ≤ t <∞. Then,

λ = lim
T→∞

1

T
[

∫ t

0

v†Γ†RΓv dτ +

∫ T

t

v†Γ†RΓv dτ ].

Since the time t is finite, limT→∞
1
T

∫ t
0
v†Γ†RΓvdτ = 0

and the average cost reads

λ = lim
T→∞

1

T

∫ T

t

v†0(eSτ )†Γ†RΓeSτv0 dτ.

Changing the integral variable ρ = τ − t, the average

cost reads λ = v†0(eSt)†MeStv0. Hence, one can consider
ν ≡ v(t, v0), 0 ≤ t <∞.

3.1 Solution to the Optimal Average Cost Problem

Lemma 1 Minimizing the average value function (12)
is equivalent to minimizing the following infinite-horizon
optimal control problem

V∞(X(t), u(t)) =

∫ +∞

t

(r(X(τ), u(τ))− λ∗) dτ (17)
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in the sense that an optimal control to (17) is also optimal
for (12).

PROOF.

By (15), for any u, we have
∫ T
0

(r(X(τ), u(τ))−λ∗)dτ ≥ 0
and the equality holds for u∗. Hence, (17) achieves its
minimum value with u∗ which is also optimal for (12).

Using Lemma 1, the Hamilton-Jacobi-Bellman (HJB)
equation associated with the dynamics (1)-(3) and the
value function (17) is given by

λ∗ = min
u∈UACA

[r(X(t), u(t)) +∇V ∗†∞ (AaX +Bau)].

(18)

Then, the following policy

u∗ = −1

2
R−1B†a∇V ∗∞(x) (19)

optimizes the value function (17) and by Lemma 1, it
also minimizes the average value function (12). Next, we
prove that V ∗∞ is quadratic.

Theorem 3 Consider (1)-(5). Let Assumptions 1-3
hold. Assume that the output regulation problem is solv-
able by the controller u∗ = Kfbx+ (Γ−KfbΠ)v. Then,
the infinite horizon value function V ∗∞ is quadratic

V ∗∞ = X†(t)P ∗X(t) =
[
x† v†

] [P ∗x P ∗xv

P ∗†xv P ∗v

][
x

v

]
, (20)

where P ∗x > 0 and P ∗xv uniquely satisfy

A†P ∗x + P ∗xA− P ∗xBR−1B†P ∗x + C†QC = 0, (21)

P ∗xvS + (A−BR−1B†P ∗x )†P ∗xv + P ∗xD − C†QF = 0,

and P ∗v satisfies

S†P ∗v + P ∗v S − P ∗†xvBR−1B†P ∗xv
+ P ∗†xvD +D†P ∗xv + F †QF −M = 0.

(22)

PROOF. Let Kff = Γ − KfbΠ. Using u∗ = Kfbx +
Kffv, the average value function reads

V ∗∞(X(t), u(t)) =

∫ ∞
t

(X†Q̄X − λ∗) dτ, (23)

Q̄ =

[
C†QC +K†fbRKfb −C†QF +K†fbRKff

−F †QC +K†ffRKfb F †QF +K†ffRKff

]
.

The solutions for the differential equations (1) and (3)
using the policy u∗ = Kfbx+Kffv are

x(t+ T, x(t), v(t), u∗) = e(A+BKfb)Tx(t)

+ (

∫ T

0

e(A+BKfb)(T−τ)(BKff +D)eSτ dτ)v(t)

= Lx(T )x(t) + Lxv(T )v(t),

v(t+ T, v(t)) = eST v(t) = Lv(T )v(t).

Using the above solutions in (23) results in (20) with

P ∗x =

∫ ∞
t

L†x(C†QC +K†fbRKfb)Lx dτ,

P ∗xv =

∫ ∞
t

{L†x(C†QC +K†fbRKfb)Lxv

+ L†x(−C†QF +K†fbRKff )Lv} dτ,

P ∗v =

∫ ∞
t

{L†xv(C†QC +K†fbRKfb)Lxv + L†v(F
†QF

− Γ†RKfbΠ−Π†K†fbRΓ + Π†K†fbRKfbΠ)Lv

+ 2L†xv(−C†QF +K†fbRKff )Lv} dτ, (24)

where we have used (16) to derive the last equation. Till
now, we have proved that V ∗∞ is quadratic. Next, we show
that the relations in (21)-(22) hold. Using the quadratic
form (20), the HJB (18) reads[

x† v†
]

(A†aP
∗ + P ∗Aa − P ∗BaR−1B†aP ∗+[

C†QC −C†QF
−F †QC F †QF

]
)

[
x

v

]
− v†Mv = 0.

Substituting (6) in the above, (21)-(22) are concluded.
Note that (21) has a unique positive definite solution P ∗x
based on Assumption 1. Moreover, the solution P ∗xv is
unique because A − BR−1B†P ∗x and −S do not share
any eigenvalues (see Theorem 4.4.6 of [7]).

3.2 Main result

In this subsection, we prove that the controller (19)
which is obtained by minimizing the average cost, solves
the output regulation problem.

Theorem 4 Consider (1)-(5) and let Assumptions 1-3
hold. Let (V ∗∞, u

∗, λ∗) form a solution to (18). Then, the
control u∗ in (19) solves Problem 2 and the output reg-
ulation error e is Uniformly Ultimately Bounded (UUB)

with bound ‖e‖ ≤
√
λ∗/µ(Q).

PROOF. Since (V ∗∞, u
∗, λ∗) form a solution to (18), by

Lemma 1, u∗ also minimizes (12). It remains to show
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Algorithm 1 Model-based routine for average cost
Learning

1: Initialize: u(0) = K(0)X ∈ UACA, k = 0.
2: repeat
3: Apply u(k) and collect the required information.
4: Given u(k), find P (k), λ(k) from

λ(k) =e†Qe+ u(k)†Ru(k)

+ 2X†P (k)†(AaX +Bau
(k)).

(26)

5: Improve the policy by

u(k+1) = −R−1B†aP (k)X. (27)

6: until ‖P (k) − P (k−1)‖+ |λ(k) − λ(k−1)| < ε1

that u∗ solves the output regulation problem. We con-
sider V ∗∞ as the candidate Lyapunov function to prove
stability of ξ = x−Πv in (10) with u∗. Note that V ∗∞ is
a valid Lyapunov function for ξ because V ∗∞(ξ ≡ 0) =∫∞
t

(v†Γ†RΓv− λ∗) dτ = 0 and V ∗∞(ξ) ≥ 0. By (18), the
time derivative of V ∗∞ reads

V̇ ∗∞ = −(e†Qe+ u∗†Ru∗ − λ∗). (25)

Hence, V̇ ∗∞ < 0 if e†Qe > λ∗ which is guaranteed by
‖e‖2µ(Q) > λ∗. As a result, the error is UUB [11] and

‖e‖ ≤
√
λ∗/µ(Q). One can make ‖e‖ arbitrary small by

selecting Q sufficiently large.

4 Reinforcement Learning Frameworks for Op-
timal Average Cost

In this section, we first present a model-based approach
to solve the optimal average cost problem and then, we
propose an off-policy IRL routine which learns the opti-
mal solution without any knowledge about the dynam-
ics.

4.1 Model-based Algorithm

Here, we give Algorithm 1 which is an iterative model-
based routine to solve the optimal control problem in
(18)-(19). Algorithm 1 is essentially a Netwon’s iteration
to solve (18) which is discussed [15] and it is modified
according to the average cost formulation. In Algorithm
1, ε1 is the convergence threshold.

4.2 Model-free Off-Policy Integral Reinforcement Algo-
rithm

Now, we present an off-policy algorithm to learn the op-
timal average cost problem completely model-free. The

Algorithm 2 Off-policy IRL for average cost Learning

1: Initialize: u(0) = K(0)X ∈ UACA, k = 0.
2: repeat
3: Apply u = K(k)X + n and collect the required

information at N sample times.
4: Find P (k), λ(k), K(k+1) from

X†(t)P (k)X(t) =

∫ t+δt

t

(e†Qe+ u(k)†Ru(k)) dτ

+X†(t+ δt)P (k)X(t+ δt))− δtλ(k)

+ 2

∫ t+δt

t

(u− u(k))†RK(k+1)X dτ. (29)

5: until ‖P (k)−P (k−1)‖+ |λ(k)−λ(k−1)|+ ‖K(k+1)−
K(k)‖ < ε2

idea is to apply a behavioral policy u = u(k) + n while
learning a sequence of controllers u(k) which converge
to the optimal control u∗. Note the behavioral policy u
differs from u(k) by an exponentially decreasing probing
noise n. Examples are given in [18]. Using the behavioral
policy, the system in (6) can be written as

Ẋ = AaX +Bau
(k) +Ba(u− u(k)). (28)

Differentiating V
(k)
∞ along with (28) reads

V̇ (k)
∞ =∇V (k)†

∞ (AaX +Bau
(k)) +∇V (k)†

∞ Ba(u− u(k)).

Integrating V̇
(k)
∞ along [t, t+δt], using (26)-(27), we have

V (k)
∞ (X(t+ δt))− V (k)

∞ (X(t))

=

∫ t+δt

t

∇V (k)†
∞ (AaX +Bau

(k) +Ba(u− u(k)))dτ

=

∫ t+δt

t

(λ(k) − r(X,u(k)))dτ

− 2

∫ t+δt

t

X†K(k+1)†R(u− u(k))dτ.

By considering the quadratic form V
(k)
∞ (X(t)) =

X†(t)P (k)X(t), (29) is concluded. This equation can be
used to find P (k), K(k+1) and λ(k) simultaneously. The
off-policy IRL routine is summarized in Algorithm 2,
where ε2 > 0 is the convergence threshold. The follow-
ing theorem concerns monotonicity and convergence of
Algorithm 2

Theorem 5 Consider (1)-(5). Let Assumptions 1-3

hold. Let {V (k)
∞ , λ(k), u(k)}∞k=1 satisfy (29) in Algorithm

2. Then, (i) The improved policy (29) is ACA. (ii) Let

V
(k)
a = Va(x(t), u(k)(t)). Then V

(k+1)
a ≤ V

(k)
a . (iii) The
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sequence of {V (k)
∞ , λ(k), u(k)}∞k=1 uniformly converges to

{V ∗∞, λ∗, u∗}.

PROOF.

(i) We show that properties (a-d) in Definition 1 hold
for u(k+1) = K(k+1)X. (a-b) are immediately con-
cluded from u(k+1) = K(k+1)X. (c) Set v ≡ 0 and
n ≡ 0. Since (1) is stabilizable, then λ(k) = 0. Let

V̄∞ = V
(k)
∞ (v ≡ 0). Since u(k) and V

(k)
∞ satisfy (29),

one has

∇V̄ (k)†
∞ Ax = −r(x, u(k))−∇V̄ (k)†

∞ Bu(k).

Consider the Lyapunov function V̄
(k)
∞ for the sys-

tem (1) driven by the policy u(k+1) = u(k+1)(x,0).
Using the above equation, the time derivative of

V̄
(k)
∞ reads

˙̄V (k)
∞ (x, u(k+1)) = ∇V̄ (k)†

∞ Ax+∇V̄ (k)†
∞ Bu(k+1)

=− r(x, u(k))−∇V̄ (k)†
∞ B(u(k) − u(k+1)). (30)

It has been shown in Lemma 1 of [15] that the
off-policy algorithm produces the same sequence of
value functions and improved policies as Algorithm
1 for learning a discounted cost. A similar proof can
be brought also for the average cost learning. As a
result, by using K(k+1) = −R−1B†aP (k) in (27) and
completing the squares, we have

˙̄V (k)
∞ (x, u(k+1))

=− r(x, u(k)) + 2u(k+1)†R(u(k) − u(k+1))

=− x†Qx− u(k+1)†Ru(k+1)

− (u(k) − u(k+1))†R(u(k) − u(k+1)) < 0

which shows that ẋ = Ax+Bu(k+1)(x,0) is asymp-
totically stable. (d) Since both x and v are bounded
u(k+1) is also bounded. Hence, the average cost in
(13) is finite.

(ii) Evaluate two Lyapunov candidate functions V
(k+1)
∞

and V
(k)
∞ along the system trajectory by policy

u(k+1)

V (k)
∞ − V (k+1)

∞

=

∫ +∞

t

{V̇ (k+1)
∞ (X,u(k+1))− V̇ (k)

∞ (X,u(k+1))} dτ

=

∫ +∞

t

{∇V (k+1)†
∞ (Aa +Bau

(k+1))

−∇V (k)†
∞ (Aa +Bau

(k+1))} dτ.

Because we evaluate the system trajectory by policy
u(k+1), we set n ≡ 0. Then, using the fact that

{V (k)
∞ , λ(k), u(k)}∞k=1 satisfy (29)

V (k)
∞ − V (k+1)

∞ =

∫ +∞

t

{−u(k+1)†Ru(k+1) + λ(k+1)

+u(k)†Ru(k) − λ(k) +∇V (k)†
∞ Ba(u(k) − u(k+1))} dτ.

Using (27), the above equation reads

V (k)
∞ − V (k+1)

∞ +

∫ +∞

t

(λ(k) − λ(k+1)) dτ (31)

=

∫ +∞

t

(u(k) − u(k+1))†R(u(k) − u(k+1)) dτ.

By (12) and (17) we have

lim
T→∞

V (k)
∞ +

∫ t+T

t

λ(k) dτ = lim
T→∞

TV (k)
a . (32)

Using the aforementioned expression, (31) reads

V (k)
a −V (k+1)

a =

lim
T→∞

1

T

∫ +∞

t

(u(k) − u(k+1))†R(u(k) − u(k+1)) dτ

≥ 0. (33)

Hence, {V (k)
a }∞k=1 is a decreasing sequence and it is

lower bounded by V ∗a .

(iii) Since V
(k)
a is continuous in X and by the re-

sult in part (ii), ∇V (k)
a → ∇V ∗a and by (32),

∇V (k)
∞ → ∇V ∗∞. As a result u(k) → u∗. The

triple {V (k)
∞ , λ(k), u(k)}∞k=1 satisfies (29). Because

of pointwise convergence of∇V (k)
∞ and u(k) to their

optimal values, the pointwise convergence of λ(k)

and V
(k)
∞ to λ∗ and V ∗∞ is also concluded.

4.3 Least-Square Implementation of Algorithm 2

Here, we discuss the Least-Squares (LS) implementation
of Algorithm 2. Equation (29) reads

θ(t)†W (k) = φ(t), (34)

W (k) =


vecs(P (k))

vec(K(k+1))

λ(k)

 , φ(t) =

∫ t+δt

t

r(X,u(k)) dτ,

θ(t) =


vecv(X(t))− vecv(X(t+ δt))

−2
∫ t+δt
t

X ⊗R(u− u(k)) dτ
δt

 .
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Hence, a least square estimation of W (k) is given by

W (k) = (ΘΘ†)−1ΘΦ, (35)

Θ = [θ(t1), ..., θ(tN )], Φ = [φ(t1), ..., φ(tN )]†,

with N ≥ (n + q)(n + q + 1)/2 + m(n + q) + 1. After
convergence of Algorithm 2, one can estimate the kernel
of the average cost M by selecting random initial con-
ditions v0i for the exo-system and measuring the asso-
ciated average costs λ(v0i) for NM ≥ q(q + 1)/2 times.
Then, a least square estimation of M can be made.

5 Simulation Results

Consider an output regulation problem for the F16 air-
craft system with the following dynamics [15]

ẋ =


−1.019 0.905 −0.002

0.822 −1.077 −0.176

0 0 −1

x+


0

0

5

u+


0 1

0 0

0 0

 v,
y =

[
1 0 0

]
x, (36)

v̇ =

[
0 1

−0.01 0

]
v, w =

[
1 0

]
v. (37)

Let Q = 100, R = 1. The analytical solution to the
output regulation problem using full model information
is summarized in Table 1.

We use Algorithm 2 to solve this output regulation
problem completely model-free. We set δt = 0.1, N =
100, K(0) = 0. We randomize the state of the system
after each 5 samples to ensure that we have enough inde-
pendent samples for the least square estimation in (35).
We select the probing noise as n = 0.01e−0.1t sin(t).
From a practical point of view, the behavioral policy
is applied to (36) and the information of the system
(X(t), X(t + δt) and the integral in (29)) is recorded
at N sampled times. This information is then used to
obtain the improved controller gain by Algorithm 2.

Algorithm 2 converges after 9 iterations and after con-
vergence, we estimate M using 100 different initial con-
ditions for the exo-system. Figure 1 shows the evolu-
tion of vecs(P (k)) and K(k+1), and the converged values
are reported in Table 1. From Table 1, we can see that

P
(9)
x , P

(9)
xv and the feedback gain converge to the same

value obtained analytically but the feedforward gain and
M̂ differ slightly from the analytical solutions. We use
the converged optimal controller u(10) = K(10)X to con-
trol the system in (36)-(37) for t = 100 s. From Fig. 2,
we can see that using the converged optimal controller,
the F16 aircraft (36) successfully tracks the exo-system

0 10 20 30 40 50 60 70 80 90 100
t(s)

-1000

-500

0

500

1000

1500

2000

2500

3000

(a) The weight vecs(P (k))

0 10 20 30 40 50 60 70 80 90 100

t(s)

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

100

(b) The controller gain K(k+1)

Fig. 1. The evolution of vecs(P (k)) and K(k+1) during learn-
ing

(37) without knowing the dynamics models and the av-

erage cost of the tracking is given by λ = v†0Mv0 where
v0 is initial state of the exo-system.

Table 1. Solutions by the analytical method and Algorithm
2. � indicates an unspecified value.

Analytical method

vecs(P ∗x ) = [50.61 17.26 -1.01 9.12 -0.68 0.07]

vec(P ∗†xv ) = [-72.61 -7.59 -29.41 -5.71 2.00 0.75]

vecs(P ∗v ) = [� � �]

K∗ = [5.03 3.41 -0.33 -10.0 -3.74]

vecs(M) = [ 0.11 0 10.25]

Algorithm 2

vecs(P
(9)
x ) =[50.61 17.26 -1.01 9.12 -0.68 0.07]

vec(P
(9)†
xv ) =[-72.61 -7.59 -29.41 -5.71 2.00 0.75]

vecs(P
(9)
v )=[110.24 19.96 -1.10]

K(10) = [5.03 3.41 -0.33 -9.98 -3.77]

vecs(M̂) = [ 0.18 0.02 10.53]
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Fig. 2. y and w using K(9)

6 Conclusion and Future Works

In this paper, we have suggested the theory of optimal
average cost learning for output regulation controller de-
sign of linear systems. We have developed a completely
model-free online integral reinforcement learning algo-
rithm to solve this problem. Important features of our
RL algorithm for output regulation controller design are
that a discounting factor is not needed, and the off-policy
algorithm is completely model-free. Our future works
will focus on extending these results when the control
constraints appear and when the system is time-variant.
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