
IN DEGREE PROJECT TECHNOLOGY,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2019

Handheld container stabilizer

ALEXANDER MURTAZA

OSCAR STENSTRÖM

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Handheld container stabilizer

ALEXANDER MURTAZA
OSCAR STENSTRÖM

Bachelor Thesis at ITM
Examiner: Nihad Subasic

TRITA ITM-EX 2019:36

Abstract
Self-stabilizing systems can be found in many contexts.
They are used in aircraft and camera gimbals to name a
few. In this project, a self-stabilizing container was con-
structed. The construction consists of three parts. An in-
ner ring which rotates around the Z-axis, an outer ring
which rotates around the Y-axis and a handle with space
for three DC motors and a microcontroller. In this project
an Arduino Nano was used. To detect inclination an IMU
(Inertial Measurement Unit) was deployed. An IMU is a
sensor consisting of three gyroscopes and three accelerom-
eters, one for each coordinate axis. The software for the
construction consists of four parts; angle reading, a Kalman
filter, two PID-controllers and a motor controller. When
a container is inserted into the construction the four-part
system keeps the container horizontal and stable. Experi-
mental data shows that in 84% of the tests the construction
could stabilize the container.

Keyword: Mechatronics, Stable, Self-stabilizing Container,
Arduino, MPU6050, PID-controller

Referat
Självstabiliserande behållare

Självstabiliserande system kan man finna i m̊anga olika
sammanhang. N̊agra exempel p̊a självstabiliserande system
är flygplan och kamerastabilisatorer. I detta projekt kon-
struerades en självstabiliserande beh̊allare. Konstruktionen
best̊ar av tre delar. En ring som kan rotera runt Z-axeln, en
ring som kan rotera runt Y-axlen och ett handtag med plats
för likströmsmotorer och mikrokontroller. I detta projekt
användes Arduino Nano. För att avläsa vinklarna användes
en tröghetsmätare. En tröghetsmätare är en sensor som
best̊ar av tre gyroskop och tre accelerometrar, en för var-
je axel. Mjukvaran i konstruktionen best̊ar av fyra delar;
vinkelavläsning, ett Kalmanfilter, tv̊a PID-regulatorer och
motorkontroller. Beroende p̊a vilken vinkel konstruktionen
har kommer n̊agon av motorerna att korrigera vinkeln p̊a
beh̊allaren. Testerna visade att konstruktionen kunde sta-
bilisera beh̊alaren i 84% av alla tester.

Nyckelord: Mekatronik, Stabil, Självstabiliserande beh̊allare,
Arduino, MPU6050, PID-regulator

Acknowledgements

We would like to thank the course examiner Nihad Subasic for his lectures and assis-
tance during this project. We would also like to express gratitude to lab assistants
Sresht Iyer and Seshagopalan ”Sesh” Thorapalli Muralidharan for all the support
they have provided.

Contents

1 Introduction 3
1.1 Background . 3
1.2 Purpose . 3
1.3 Scope . 4
1.4 Method . 4

2 Theory 5
2.1 Microcontroller . 5

2.1.1 PWM-signals . 6
2.2 DC-motors . 6
2.3 Inertial Measurement Unit . 6

2.3.1 Collection of input data . 7
2.4 Kalman filter . 8
2.5 PID-controller . 8

3 Demonstrator 11
3.1 Hardware . 11

3.1.1 The construction . 11
3.1.2 The electronic part . 12

3.2 Software . 13
3.2.1 The PID implementation . 13
3.2.2 Determining the duty cycle 14

4 Results 17
4.1 Test description . 17
4.2 Stabilizing in Z-axis results . 17
4.3 Stabilizing in Y-axis . 17
4.4 Test success rate . 18

5 Conclusions and discussion 19
5.1 Discussion . 19
5.2 Conclusions . 20

6 Recommendations and future work 21

Bibliography 23

Appendices 24

A Program code 25

List of Figures

1.1 The final prototype . 4

2.1 Arduino Nano . 5
2.2 PWM signals . 6
2.3 MPU6050 . 7
2.4 MPU6050, the orientation of the axes 7
2.5 Kalmanfilter . 8
2.6 PID-controller . 9

3.1 Rendered model of the prototype . 11
3.2 Wiring diagram . 12
3.3 Flowchart . 13
3.4 IMU mounted on inner ring. Wire connection points 1,2 and 3 are high-

lighted . 14

List of Tables

3.1 Table of the PID-constants . 14

4.1 Stabilizing in Z-axis results . 17
4.2 Stabilizing in Y-axis . 17

List of Abbreviations

abs Absolute value

DC-motor Direct Current motor

IDE Integrated Developed Environment

IMU Inertial Measurement Unit

ms milliseconds

PID Proportional–Integral–Derivative controller

PWM Pulse Width Modulation

RPM Revolutions Per Minute

1

Chapter 1

Introduction

1.1 Background
Self-stabilizing systems can be found in many contexts. They are used in aircraft
and camera gimbals applications to name a few. People with some form of motor
disability may require aid to perform tasks such as eating or drinking. Different
types of self-stabilizing systems could facilitate these people. In a previous project
a self-stabilizing spoon was designed[1].

In this project, the aim was to construct a self-stabilizing container. The main
task of the construction is to keep a container horizontal at all times and adapt to
whatever change in inclination the container is experiencing. The only exception to
this is when the user is drinking; here tilt should be allowed. In order to accomplish
this, a switch will be added to the construction.

1.2 Purpose
The purpose of this project was to investigate how a microcontroller from Arduino
can be implemented to stabilize a container. Other questions that were investigated
in this project were:

• With regards to the container, what level of stability can be achieved?

• How quickly can the system respond if the container is being tilted?

• How should the respective duty cycles of the motors used be determined?

3

CHAPTER 1. INTRODUCTION

1.3 Scope
A series of possible designs were investigated aiming to allow the user to rotate a
handle in different directions while the container remains horizontal. The connec-
tion between the handle and container was initially not defined. Close to friction
free rotation around two axes was desired as well as the ability to apply force to
the area where the container is mounted. The construction should also remain
lightweight and compact, since its applications require it to be handheld.

The final prototype resembled a spherical gimbal, see Figure 1.1. Material was
added to allow components to be mounted on the outer ring (the handle). Although
supposedly different containers could be stabilized by the prototype only a plastic
coffee mug was used during the project.

Figure 1.1: The final prototype

1.4 Method
The construction and other components that could not be easily found in stores
were designed in Solid Edge ST 10[2] and then 3D-printed with a printer from
Ultimaker. The programming of the construction was written in Arduino’s IDE
(Integrated Developed Environment).

To answer the purpose, some experiments were conducted. The experiments were
designed to test the stability of the construction for each axis.

4

Chapter 2

Theory

2.1 Microcontroller

To control the electronics a programmable microcontroller was used. A microcon-
troller is a small computer. Just like a regular computer a microcontroller has
a CPU (Central Processing Unit) and RAM (Random Access Memory). On the
microcontroller, pins are mounted where you can connect electronic components.
Normally when the pin is set to ”one” the pin has an output voltage of 5 V[3].

Arduino Nano was the chosen microcontroller for this project, see Figure 2.1. It has
digital and analog input switches which allow input signals from sensors. Its PWM
(Pulse Width Modulation) outputs can be used to vary the RPM (Revolutions Per
Minute) of a DC-motor (Direct Current-motor) to balance the container.

Figure 2.1: Arduino Nano[4]

5

CHAPTER 2. THEORY

2.1.1 PWM-signals

PWM is a method to control electronics through a microcontroller. The PWM
output signals are shaped like square waves as they are periodically switched on
and off at a certain peak value voltage, see Figure 2.2. The percentage of time when
the voltage is ”on” is a duty cycle. Consequently, the duty cycle will determinate
the RPM of a motor. If the duty cycle is 100 percent the current will be supplied
continuously, and the motor will have maximum RPM[5].

Figure 2.2: Square wave PWM signals[5]

2.2 DC-motors
In this project, three DC-motors were used. A DC-motor may be supplied with
direct current from batteries. The electric effect that is supplied from batteries is
converted to mechanical effect. The difference between the electric effect and the
mechanical effect is considered losses[3].

2.3 Inertial Measurement Unit
An Inertial Measurement Unit(IMU) is a sensor consisting of three gyroscopes and
three accelerometers, one for each coordinate axis. The IMU can detect angle
changes and may be used to measure how much inclination a system is experienc-
ing. The accelerometers detect how much a system accelerates, in a similar sense.
This technique is used e.g in aircraft[6].

The accelerometer can only estimate the roll and pitch angle (horizontal plane)
because it bases its measurements on gravitational (vertical) forces. This causes
the gyroscope to set the yaw angle to 0° [7]. The chosen IMU model for this project

6

2.3. INERTIAL MEASUREMENT UNIT

was the MPU6050 from InvenSense Inc, see Figure 2.3[8]. Both its accelerometers
and its gyroscopes have flaws which must be accounted for.

The accelerometer is sensitive to vibrations. This causes measurement errors to
increase over time. The gyroscope has a drift error. Gyro values will drive far from
real values even when no movement is occuring[9].

Figure 2.3: The chosen IMU for the project, model MPU6050[12]

2.3.1 Collection of input data

The microcontroller program to be used requires input data from the IMU. This
model MPU6050 acts as a ”slave” device when used in conjunction with the Arduino
Nano microcontroller[10].

The measured data is stored on the different registers of the IMU. In code the
data is collected by dereferencing the addresses of the correct registers. The regis-
ters are specified in the register map of the MPU6050[11]. By reading and writing
to its registers the IMU can also be set up as needed. Its coordinate axes are shown
in Figure 2.4 below.

Figure 2.4: The orientation of the measurement axes of the IMU[8]

7

CHAPTER 2. THEORY

2.4 Kalman filter
A Kalman filter is an optional recursive algorithm. The filter is useful when the
information received from a dynamic system is unpredictable (for this application
the angle of the container to be stabilized). With a variety of incomplete, noisy
measurements or other random perturbations, the algorithm can estimate the real
state of the dynamic system. The algorithm uses statistical methods and acquired
measurements to optimize final values[13]. See Figure 2.5 for an illustrated imple-
mentation.

Figure 2.5: A Kalman filter implementation[14]

2.5 PID-controller
The proportional–integral–derivative controller (PID-controller) is one of the most
common feedback mechanism deployed to control a system. With the steady-state
error

e(t) = r(t)− y(t) (2.1)

the input of the system u(t) can be calculated. r(t) is the desired value and y(t) is
the actual value. Figure 2.6 shows a typical feedback mechanism. u(t) is calculated
by the formula

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + KD

d

dt
e(t) (2.2)

8

2.5. PID-CONTROLLER

Figure 2.6: A PID-controller implementation[15]

Equation (2.2) has three parts: a proportional, an integral and a derivative term.
The proportional part can compensate for disturbances but cannot eliminate their
effect. The proportional part cannot eliminate the steady-state error. The integral
part can eliminate the steady-state error but the system can be unstable for larger
values of Kp and Ki. The derivative part grants improved stability overall[16].

9

Chapter 3

Demonstrator

3.1 Hardware

3.1.1 The construction

Similarly to other self-stabilizing systems, a two-axis gimbal design was utilized in
this project. A two-axis gimbal can stabilize something in two axis[17]. In this
project the construction should stabilize the container around both the Y- and Z-
axis.

The construction consists of three parts. An inner ring rotating around the Z-
axis, on which the container and gyroscope is mounted, an outer ring that can
rotate freely around the Y-axis and an outer handle with space for the DC motors
and Arduino Nano.

The construction has three motors which are utilized to correct the container when
it tilts. To enable this, wires are connected between the revolving axes of the motors
and the inner ring of the construction. Figure 3.1 displays a rendered model of the
prototype base onto which additional hardware could be mounted.

Figure 3.1: Rendered model of the prototype frame[18]

11

CHAPTER 3. DEMONSTRATOR

3.1.2 The electronic part

The electronic parts of the construction consist of a microcontroller, Arduino Nano,
three DC-motors from Maxon, the IMU MPU6050 and three transistors. The tran-
sistors were connected to the microcontroller, the power supply and the motors.
The input to the system was the angles received from the MPU6050 and the output
was the duty cycle of the DC-motors. For the complete wiring diagram, see Figure
3.2.

Figure 3.2: Wiring diagram[19]

12

3.2. SOFTWARE

3.2 Software

The software for the construction was programmed in Arduino IDE. The program
is divided into four parts; the angle reading and data collection, the Kalman filter,
the PID-controller and the motor controller. Depending on the received change of
inclination different motors correct the angle of the container. The full Arduino
code can be found in Appendix A and an overview is shown in Figure 3.4.

Figure 3.3: Flowchart of programmable software [15]

3.2.1 The PID implementation

In this project two PID-controllers were necessary, one for the Z-direction and one
for the Y-direction. The constants of the PID-controllers Kp, Ki and Kd were chosen
to allow the system to correct the tilting container as quickly as possible without
considerable overshoots and/or steady-state errors. In this project the input is the
angle and the output is the duty cycle. Table 3:1 show the chosen values.

13

CHAPTER 3. DEMONSTRATOR

Table 3.1: Table of the PID-constants

Z Y
Kp 0,047 0,05
Ki 0,0035 0,002
Kd 0,00000019 0,00000019

3.2.2 Determining the duty cycle

How the duty cycle of each motor should be determined was dependent on the
conditions of this particular project. In this thesis, a method was suggested which
accounts for both the total inclination of the container to be stabilized and for the
dominant direction of this inclination.

The container is mounted on the innermost ring. This ring is being pulled by
wires connected as shown in Figure 3.3.

Figure 3.4: IMU mounted on inner ring.[15]

14

3.2. SOFTWARE

Inclination around the Y- and Z-direction should be translated into motor out-
puts, allowing the wires to apply force on the connected points. These connected
points are fixed in the coordinate system of the IMU. Consequently a unit vector
corresponding to each connection point of each motor can be found (these are not
direction vectors, although similar):

~e1 = (1, 0) (3.1)

~e2 = (−1/2,−
√

3/2) (3.2)

~e3 = (−1/2,
√

3/2) (3.3)

In the IDE program an output vector is produced by the PID-controller, containing
required outputs in Y- and Z-directions. This output vector is projected onto the
unit direction vectors of the motors i = 1, 2, 3.

(ProjectedOutputofmotori) = (InclinationY, InclinationZ) · ~ei (3.4)

The value of this projection is used directly to scale the RPM of the motors. The
projection is multiplied by an appropriate constant causing the duty cycle to range
from 0 to 255.

15

Chapter 4

Results

4.1 Test description
The experiments were designed to test the stability of the construction for each
axis. An additional MPU6050 was utilized and placed on the handle. Using the two
MPU6050 the respective angles of the handle and the container could be noted.

How rapid the construction stabilized was investigated during the experiments. The
present angles after 250, 500 and 1000 ms were noted. During the experiments, the
construction was tilted from 0° to an arbitrary random angle. The absolute value
(abs) of the received angle average was calculated. The results can be seen in Table
4.1 and 4.2.

4.2 Stabilizing in Z-axis results

Table 4.1: Stabilizing in Z-axis results

The abs of the angle after 250 ms 9,58°
The abs of the angle after 500 ms 9,42°
The abs of the angle after 1000 ms 7,80°

4.3 Stabilizing in Y-axis

Table 4.2: Stabilizing in Y-axis

The abs of the angle after 250 ms 13,46°
The abs of the angle after 500 ms 11,04°
The abs of the angle after 1000 ms 7,10°

17

CHAPTER 4. RESULTS

4.4 Test success rate
Each experiment also received a grade between 1-3, where 1 was considered unsatis-
fying and 3 was considered excellent. A steady-state error smaller than the absolute
value of 15° was deemed successful. Experiments with a steady-state error greater
than 15° received grade 1 and experiments with errors less than 15° received the
grade 2 or 3, depending on possible overshoot behaviour. 84 % of the tests received
grades 2 or 3 as a result of this.

18

Chapter 5

Conclusions and discussion

5.1 Discussion
As displayed in table 4.1 and 4.2 the construction stabilizes faster in the Z-direction
than in the Y-direction. This may be due to the positioning of the wire connection
points displayed in figure 3.3, where the Z-axis of rotation aligns with connection
point no. 1. This means that only motors 2 and 3 cause rotation around the Z-axis.
This eliminates possible errors occurring when three motors are deployed, which
otherwise is the case when rotation around the Y-axis is required.

Conducted tests indicates that the construction is sensitive to disturbances. Vibra-
tions from the hand, the motors or the surroundings can affect the system causing
oscillation. A reason could be the MPU6050:s sensitivity to vibrations and possible
manufacturing errors. To combat this, during testing both Arduino units had to be
repeatedly restarted to reset the IMU:s.

Duty cycles and experiment results were notably dependent on precise mounting of
the IMU:s. The axes of both units had to align as displayed in figure 3.3, which
was difficult in practice. This may result in inaccurate motor unit vectors. Also
this could have caused errors in measured starting angles of the handle during test
experiments.

In general the construction works as intended but some hardware problems have
been identified. Improvements to software is also possible. For example, appropriate
PID-controller constants Kp, Ki and Kd are dependent on the current inclination
of the system. They also depend on the current inclination errors present. Having
these constants vary for different inclinations and inclination errors of the container
could improve overall performance of the system.

19

CHAPTER 5. CONCLUSIONS AND DISCUSSION

5.2 Conclusions
Some conclusions can be made with respect to the research questions of the project.
Increased level of stability is achieved, where in 84 % of cases forced inclination
was reduced to below 15°. The system responds quickly as a result of its design,
however, the resulting tilt is not always satisfying. A method is suggested by which
to determine the duty cycles of each of the three motors. This is done by projecting
inclination (around the Y-axis and Z-axis, respectively) onto the unit vectors of each
motor. The test results are an indication of this suggested methods applicability
and success, although refinement is possible.

20

Chapter 6

Recommendations and future work

Some possible changes have been identified which if performed may improve the
stabilizer. A more dynamic PID-controller where the constants can be changed
would be useful. These would be depending on the mass and inertia of the con-
tainer that is being stabilized by the construction. A machine learning algorithm
could possibly be implemented to determine these dynamic PID-constants. They
would be depending on the different properties of the container.

Hardware changes could also be performed. Different material for the wire holders
is desired since wire tangling was causing difficulties. In this project polylactic
acid is used. A different placement of the wire connection points may also improve
performance since motor connection point 1 currently aligns with the Z-axis of the
IMU. The IMU itself is sensitive to vibrations but this issue is hard to address.

21

Bibliography

[1] J. Abrahamsson and J. Dano, The Stabilizing Spoon. Bachelor Thesis, KTH
Royal Institute of Technology, School of Industrial Engineering and Manage-
ment, 2016

[2] Solid Edge ST 10. [Software] Available: https://solidedge.siemens.com/en/

[3] H. B Johansson, Elektroteknik KTH Royal Institute of Technology, School of
Industrial Engineering and Management, 2006

[4] Arduino ARDUINO NANO [Online] 2019-04-21 Available: https://store.
arduino.cc/arduino-nano

[5] Arduino.cc, T. Hirzel PWM [Online] 2019-03-24 Available: https://www.
arduino.cc/en/Tutorial/PWM

[6] G.Hasan, K.Hasan, R.Ahsan, T.Sultana, and R.C.Bhowmik, Evaluation of
a Low-Cost MEMS IMU for Indoor Positioning System IJESE, vol 1, pp
70-77, 2013, Available: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.683.7012&rep=rep1&type=pdf

[7] Y. C Han, K. I Wong, I. Murray, 2-Point Error Estimation Algorithm for 3-D
Thigh and Shank Angles Estimation Using IMU IEEE, vol 18, pp 8525-8531,
2018, Available: https://ieeexplore-ieee-org.focus.lib.kth.se/stamp/
stamp.jsp?tp=&arnumber=8438479

[8] InvenSense Inc. MPU-6000 and MPU-6050 Product Specification Re-
vision 3.4 [Online] 2019-03-24 Available: https://www.invensense.com/
wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf

[9] A. Cismas, I. Matei, V. Ciobanu, G. Casu, Crash detection using IMU sensor
CSCS pp 672-676, 2017, Available: https://ieeexplore-ieee-org.focus.
lib.kth.se/stamp/stamp.jsp?tp=&arnumber=7968631

[10] Arduino MMPU-6050 Accelerometer + Gyro [Online] 2019-03-24 Available:
https://playground.arduino.cc/Main/MPU-6050/

23

https://solidedge.siemens.com/en/
https://store.arduino.cc/arduino-nano
https://store.arduino.cc/arduino-nano
https://www.arduino.cc/en/Tutorial/PWM
https://www.arduino.cc/en/Tutorial/PWM
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.683.7012&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.683.7012&rep=rep1&type=pdf
https://ieeexplore-ieee-org.focus.lib.kth.se/stamp/stamp.jsp?tp=&arnumber=8438479
https://ieeexplore-ieee-org.focus.lib.kth.se/stamp/stamp.jsp?tp=&arnumber=8438479
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://ieeexplore-ieee-org.focus.lib.kth.se/stamp/stamp.jsp?tp=&arnumber=7968631
https://ieeexplore-ieee-org.focus.lib.kth.se/stamp/stamp.jsp?tp=&arnumber=7968631
https://playground.arduino.cc/Main/MPU-6050/

BIBLIOGRAPHY

[11] InvenSense Inc. MPU-6000 and MPU-6050 Register Map and Descriptions
Revision 4.2 [Online] 2019-03-24 Available: https://www.invensense.com/
wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf

[12] Indiamart MPU-6050 MPU6050 Module IMU 6 DOF 3 Axis Gyro 3 Axis
Accelerometer Sensor [Online] 2019-03-24 Available: https://5.imimg.com/
data5/IU/JN/MY-44787231/mpu6050-02-500x500.jpg

[13] Peter S. Maybeck, Stochatic models, estimation and control volume 1, 1979,
Available: https://www.cs.unc.edu/˜welch/kalman/media/pdf/maybeck_
ch1.pdf

[14] Y. Chinniah, R. Burton, S. Habibi, Failure monitoring in a high performance
hydrostatic actuation system using the extended Kalman filter Mechatronics,
vol 16, pp 643-653, 2016 Available: https://www-sciencedirect-com.focus.
lib.kth.se/science/article/pii/S0957415806000663

[15] Draw.io Available: https://www.draw.io/

[16] T. Glad och L. Ljung, Reglerteknik Grundläggande teori Studentliteratur,
Lund, 2006

[17] B. Ahi and A. Nobakhti, Hardware Implementation of an ADRC Con-
troller on a Gimbal Mechanism IEEE, vol 6 pp 2268-2275, 2018, Avail-
able: https://ieeexplore-ieee-org.focus.lib.kth.se/stamp/stamp.jsp?
tp=&arnumber=8059856

[18] Keyshot 6.4 [Software] Available: https://www.keyshot.com/

[19] Fritizing [Software] Available: http://fritzing.org

24

https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://www.invensense.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://5.imimg.com/data5/IU/JN/MY-44787231/mpu6050-02-500x500.jpg
https://5.imimg.com/data5/IU/JN/MY-44787231/mpu6050-02-500x500.jpg
https://www.cs.unc.edu/~welch/kalman/media/pdf/maybeck_ch1.pdf
https://www.cs.unc.edu/~welch/kalman/media/pdf/maybeck_ch1.pdf
https://www-sciencedirect-com.focus.lib.kth.se/science/article/pii/S0957415806000663
https://www-sciencedirect-com.focus.lib.kth.se/science/article/pii/S0957415806000663
https://www.draw.io/
https://ieeexplore-ieee-org.focus.lib.kth.se/stamp/stamp.jsp?tp=&arnumber=8059856
https://ieeexplore-ieee-org.focus.lib.kth.se/stamp/stamp.jsp?tp=&arnumber=8059856
https://www.keyshot.com/
http://fritzing.org

Appendix A

Program code

/∗ Author : Alexander Murtaza and Oscar S t e n s t r m
Name o f the p r o j e c t : Dynamic disp lacement c a n c e l l a t i o n

conta ine r
Name o f the program : CDEPR
TRITA NUMBER: ITM−EX 2019:36
Date : 2019−05−05

// MPU Connection to Arduino
VCC−>5V
GMD−>GMD
SCL−>A5
SDA−>A4
motor pin D9 , D10 , D11

∗/

/∗ Copyright (C) 2012 Kr i s t i an Lauszus , TKJ E l e c t r o n i c s . Al l
r i g h t s r e s e rved .

This so f tware may be d i s t r i b u t e d and modi f i ed under the
terms o f the GNU

General Publ ic L i cense v e r s i on 2 (GPL2) as pub l i shed by the
Free Software

Foundation and appear ing in the f i l e GPL2.TXT inc luded in
the packaging o f

25

APPENDIX A. PROGRAM CODE

t h i s f i l e . P lease note that GPL2 Sect i on 2 [b] r e q u i r e s that
a l l works based

on t h i s so f tware must a l s o be made p u b l i c l y a v a i l a b l e under
the terms o f

the GPL2 (” Copyle f t ”) .

Contact in fo rmat ion
−−−−−−−−−−−−−−−−−−−

Kr i s t i an Lauszus , TKJ E l e c t r o n i c s
Web : http ://www. t k j e l e c t r o n i c s . com
e−mail : k r i s t i a n l @ t k j e l e c t r o n i c s . com
∗/

#inc lude <Wire . h>
#inc lude <Kalman . h> // Source : https : // github . com/

TKJElectronics / KalmanFilter
#inc lude <PID v1 . h>
#d e f i n e RESTRICT PITCH // Comment out to r e s t r i c t r o l l to

90deg in s t ead − p l e a s e read : http ://www. f r e e s c a l e . com
/ f i l e s / s e n s o r s /doc/ app note /AN3461 . pdf

// Create the Kalman i n s t a n c e s
Kalman kalmanX ;
Kalman kalmanY ;

/∗ IMU Data ∗/
f l o a t accX , accY , accZ ;
f l o a t gyroX , gyroY , gyroZ ;
// i n t 1 6 t tempRaw ;

f l o a t gyroXangle , gyroYangle , gyroZangle ; // Angle c a l c u l a t e
us ing the gyro only

f l o a t compAngleX , compAngleY ; // Calcu lated ang le us ing a
complementary f i l t e r

f l o a t kalAngleX , kalAngleY , kalAngleZ ; // Calcu lated ang le
us ing a Kalman f i l t e r

f l o a t g y ro Z a ng l eF i l t e r =0;
u i n t 3 2 t t imer ;
u i n t 8 t i2cData [1 4] ; // Buf f e r f o r I2C data

//PID data Z
double SetpointZ =0, InputZ , OutputZ ;

26

double KpZ=0.047 , KiZ=0.0035 , KdZ=0.00000019;
PID PIDZ(&InputZ , &OutputZ , &SetpointZ , KpZ, KiZ , KdZ,

DIRECT) ;

// PID data Y
double SetpointY =0, InputY , OutputY ;
double KpY=0.05 , KiY=0.002 , KdY=0.00000019;
PID PIDY(&InputY , &OutputY , &SetpointY , KpY, KiY , KdY,

DIRECT) ;

// TODO: Make c a l i b r a t i o n rou t in e
void setup () {

pinMode (11 , OUTPUT) ; // pin 11 to output
pinMode (9 , OUTPUT) ; // pin 9 to output
pinMode (10 , OUTPUT) ; // pin 10 to output
S e r i a l . begin (115200) ; // Sets the data ra t e in b i t s per

second (baud)
Wire . begin () ; // I n i t i a t e the Wire l i b r a r y and j o i n the I2C

bus as a master or s l a v e
#i f ARDUINO >= 157

Wire . se tClock (400000UL) ; // Set I2C frequency to 400kHz
#e l s e

TWBR = ((F CPU / 400000UL) − 16) / 2 ; // Set I2C frequency
to 400kHz

#e n d i f

i2cData [0] = 7 ; // Set the sample ra t e to 1000Hz − 8kHz
/(7+1) = 1000Hz

i2cData [1] = 0x00 ; // Disab le FSYNC and s e t 260 Hz Acc
f i l t e r i n g , 256 Hz Gyro f i l t e r i n g , 8 KHz sampling

i2cData [2] = 0x00 ; // Set Gyro Fu l l Sca l e Range to
250deg / s

i2cData [3] = 0x00 ; // Set Acce lerometer Fu l l Sca l e Range
to 2g

whi l e (i2cWrite (0 x19 , i2cData , 4 , f a l s e)) ; // Write to a l l
f our r e g i s t e r s at once

whi l e (i2cWrite (0x6B , 0x01 , t rue)) ; // PLL with X a x i s
gyroscope r e f e r e n c e and d i s a b l e s l e e p mode

whi l e (i2cRead (0 x75 , i2cData , 1)) ;
i f (i2cData [0] != 0x68) { // Read ”WHO AM I” r e g i s t e r

S e r i a l . p r i n t (F(” Error read ing senso r ”)) ;
whi l e (1) ;

27

APPENDIX A. PROGRAM CODE

}

delay (100) ; // Wait f o r s enso r to s t a b i l i z e

/∗ Set kalman and gyro s t a r t i n g ang le ∗/
whi l e (i2cRead (0x3B , i2cData , 6)) ;
accX = (i n t 1 6 t) ((i2cData [0] << 8) | i2cData [1]) ;
accY = (i n t 1 6 t) ((i2cData [2] << 8) | i2cData [3]) ;
accZ = (i n t 1 6 t) ((i2cData [4] << 8) | i2cData [5]) ;

// Source : http ://www. f r e e s c a l e . com/ f i l e s / s e n s o r s /doc/
app note /AN3461 . pdf eq . 25 and eq . 26

// atan2 outputs the value o f − to (rad ians) −
s ee http :// en . w ik iped ia . org / wik i /Atan2

// I t i s then converted from rad ians to degree s
#i f d e f RESTRICT PITCH // Eq . 25 and 26

double r o l l = atan2 (accY , accZ) ∗ RAD TO DEG;
double p i t ch = atan(−accX / s q r t (accY ∗ accY + accZ ∗ accZ

)) ∗ RAD TO DEG;
#e l s e // Eq . 28 and 29

double r o l l = atan (accY / s q r t (accX ∗ accX + accZ ∗ accZ)
) ∗ RAD TO DEG;

double p i t ch = atan2(−accX , accZ) ∗ RAD TO DEG;
#e n d i f

kalmanX . setAngle (r o l l) ; // Set s t a r t i n g ang le
kalmanY . setAngle (p i t ch) ;
gyroXangle = r o l l ;
gyroYangle = p i t ch ;
compAngleX = r o l l ;
compAngleY = pi tch ;

t imer = micros () ;

// Convert the ang l e s to PWM−s i g n a l s b ig angle−−>big PWM
s i g n a l

i f (kalAngleX <0){
InputZ=map(kalAngleX ,0 , 30 , 0 , 255) ;}

e l s e {
InputZ=−map(kalAngleX ,0 , 30 , 0 , 255) ;}

i f (kalAngleY <0){

28

InputY=map(kalAngleY ,0 , 30 , 0 , 255) ;}

e l s e {
InputY=−map(kalAngleY ,0 , 30 , 0 , 255) ;}

//The d e s i r e d value
SetpointY =0;
SetpointZ =0;

//Turn the PID
PIDZ . SetMode (AUTOMATIC) ;
PIDY. SetMode (AUTOMATIC) ;
PIDZ . SetSampleTime (10) ;
PIDY. SetSampleTime (10) ;

} }

void loop () {
/∗ Update a l l the va lue s ∗/
whi l e (i2cRead (0x3B , i2cData , 14)) ;
accX = (i n t 1 6 t) ((i2cData [0] << 8) | i2cData [1]) ;
accY = (i n t 1 6 t) ((i2cData [2] << 8) | i2cData [3]) ;
accZ = (i n t 1 6 t) ((i2cData [4] << 8) | i2cData [5]) ;
// tempRaw = (i n t 1 6 t) ((i2cData [6] << 8) | i2cData [7]) ;
gyroX = (i n t 1 6 t) ((i2cData [8] << 8) | i2cData [9]) ;
gyroY = (i n t 1 6 t) ((i2cData [1 0] << 8) | i2cData [1 1]) ;
gyroZ = (i n t 1 6 t) ((i2cData [1 2] << 8) | i2cData [1 3]) ; ;

double dt = (double) (micros () − t imer) / 1000000; //
Ca l cu la te d e l t a time

t imer = micros () ;

// Source : http ://www. f r e e s c a l e . com/ f i l e s / s e n s o r s /doc/
app note /AN3461 . pdf eq . 25 and eq . 26

// atan2 outputs the value o f − to (rad ians) −
s ee http :// en . w ik iped ia . org / wik i /Atan2

// I t i s then converted from rad ians to degree s
#i f d e f RESTRICT PITCH // Eq . 25 and 26

double r o l l = atan2 (accX , accY) ∗ RAD TO DEG;
double p i t ch = atan (accZ / s q r t (accY ∗ accY + accX ∗ accX)

) ∗ RAD TO DEG;
#e l s e // Eq . 28 and 29

29

APPENDIX A. PROGRAM CODE

double r o l l = atan (accY / s q r t (accX ∗ accX + accZ ∗ accZ)
) ∗ RAD TO DEG;

double p i t ch = atan2(−accX , accZ) ∗ RAD TO DEG;
#e n d i f

double gyroXrate = gyroX / 1 3 1 . 0 ; // Convert to deg/ s
double gyroYrate = gyroY / 1 3 1 . 0 ; // Convert to deg/ s
double gyroZrate = gyroZ / 1 3 1 . 0 ; // Convert to deg/ s

#i f d e f RESTRICT PITCH
// This f i x e s the t r a n s i t i o n problem when the

acce l e romete r ang le jumps between −180 and 180 degree s
i f ((r o l l < −90 && kalAngleX > 90) | | (r o l l > 90 &&

kalAngleX < −90)) {
kalmanX . setAngle (r o l l) ;
compAngleX = r o l l ;
kalAngleX = r o l l ;
gyroXangle = r o l l ;

} e l s e
kalAngleX = kalmanX . getAngle (r o l l , gyroXrate , dt) ; //

Ca l cu la te the ang le us ing a Kalman f i l t e r

i f (abs (kalAngleX) > 90)
gyroYrate = −gyroYrate ; // Inve r t rate , so i t f i t s the

r e s t r i c e d acce l e romete r read ing
kalAngleY = kalmanY . getAngle (pitch , gyroYrate , dt) ;

#e l s e
// This f i x e s the t r a n s i t i o n problem when the

acce l e romete r ang le jumps between −180 and 180 degree s
i f ((p i t ch < −90 && kalAngleY > 90) | | (p i t ch > 90 &&

kalAngleY < −90)) {
kalmanY . setAngle (p i t ch) ;
compAngleY = pi tch ;
kalAngleY = pi t ch ;
gyroYangle = p i t ch ;

} e l s e
kalAngleY = kalmanY . getAngle (pitch , gyroYrate , dt) ; //

Ca l cu la te the ang le us ing a Kalman f i l t e r

i f (abs (kalAngleY) > 90)
gyroXrate = −gyroXrate ; // Inve r t rate , so i t f i t s the

r e s t r i c e d acce l e romete r read ing
kalAngleX = kalmanX . getAngle (r o l l , gyroXrate , dt) ; //

Ca l cu la te the ang le us ing a Kalman f i l t e r

30

#e n d i f

gyroXangle += gyroXrate ∗ dt ; // Ca l cu la te gyro ang le
without any f i l t e r

gyroYangle += gyroYrate ∗ dt ;
gyroZangle += gyroZrate ∗ dt ;
// gyroXangle += kalmanX . getRate () ∗ dt ; // Ca l cu la te gyro

ang le us ing the unbiased ra t e
// gyroYangle += kalmanY . getRate () ∗ dt ;

compAngleX = 0.93 ∗ (compAngleX + gyroXrate ∗ dt) + 0 .07 ∗
r o l l ; // Ca l cu la te the ang le us ing a Complimentary

f i l t e r
compAngleY = 0.93 ∗ (compAngleY + gyroYrate ∗ dt) + 0 .07 ∗

p i t ch ;
// Reset the gyro ang le when i t has d r i f t e d too much
i f (gyroXangle < −180 | | gyroXangle > 180)

gyroXangle = kalAngleX ;
i f (gyroYangle < −180 | | gyroYangle > 180)

gyroYangle = kalAngleY ;

/∗ Pr int Data ∗/
#i f 0 // Set to 1 to a c t i v a t e

// S e r i a l . p r i n t (accX) ; S e r i a l . p r i n t (”\ t ”) ;
// S e r i a l . p r i n t (accY) ; S e r i a l . p r i n t (”\ t ”) ;
// S e r i a l . p r i n t (accZ) ; S e r i a l . p r i n t (”\ t ”) ;

// S e r i a l . p r i n t (gyroX) ; S e r i a l . p r i n t (”\ t ”) ;
// S e r i a l . p r i n t (gyroY) ; S e r i a l . p r i n t (”\ t ”) ;

S e r i a l . p r i n t (”\ t ”) ;
#e n d i f

// Set the org in
kalAngleX=kalAngleX +90;
kalAngleY=kalAngleY−8;

// Convert the ang l e s to PWM−s i g n a l s b ig angle−−>big PWM
s i g n a l

i f (kalAngleX <0){
InputZ=map(kalAngleX ,0 , 30 , 0 , 255) ;}

31

APPENDIX A. PROGRAM CODE

e l s e {
InputZ=−map(kalAngleX ,0 , 30 , 0 , 255) ;}

i f (kalAngleY <0){
InputY=map(kalAngleY ,0 , 30 , 0 , 255) ;}

e l s e {
InputY=−map(kalAngleY ,0 , 30 , 0 , 255) ;}

//compute the output
PIDZ . Compute () ;
PIDY. Compute () ;

// S e r i a l . p r i n t (r o l l) ; S e r i a l . p r i n t (”\ t ”) ;
// S e r i a l . p r i n t (gyroXangle) ; S e r i a l . p r i n t (”\ t ”) ;

// S e r i a l . p r i n t (compAngleX) ; S e r i a l . p r i n t (”\ t ”) ;
S e r i a l . p r i n t (” | gX = ”) ;
S e r i a l . p r i n t (kalAngleX) ; S e r i a l . p r i n t (”\ t ”) ;

S e r i a l . p r i n t (”\ t ”) ;

// S e r i a l . p r i n t (p i t ch) ; S e r i a l . p r i n t (”\ t ”) ;
// S e r i a l . p r i n t (gyroYangle) ; S e r i a l . p r i n t (”\ t ”) ;
// S e r i a l . p r i n t (compAngleY) ; S e r i a l . p r i n t (”\ t ”) ;
S e r i a l . p r i n t (” | gY = ”) ;
S e r i a l . p r i n t (kalAngleY) ; S e r i a l . p r i n t (”\ t ”) ;

// #i f 0 // Set to 1 to p r i n t the temperature
// S e r i a l . p r i n t (”\ t ”) ;

// double temperature = (double)tempRaw / 340 .0 + 3 6 . 5 3 ;
// S e r i a l . p r i n t (temperature) ; S e r i a l . p r i n t (”\ t ”) ;

// #e n d i f

S e r i a l . p r i n t (”\ r \n”) ;
de lay (50) ;

// Determining the duty c y c l e

double e1x= 1 ;
double e1y= 0 ;

32

double e2x= −0.5;
double e2y= −s q r t (3) /2 ;

double e3x= −0.5;
double e3y= s q r t (3) /2 ;

i f (kalAngleX <0){
OutputZ=−OutputZ ;

}

i f (kalAngleY <0){
OutputY=−OutputY ;
}

double theta1= OutputY∗e1x+OutputZ∗e1y ;
double theta2= OutputY∗e2x+OutputZ∗e2y ;
double theta3= OutputY∗e3x+OutputZ∗e3y ;

S e r i a l . p r i n t (” | theta1= ”) ;
S e r i a l . p r i n t (theta1) ; S e r i a l . p r i n t (”\ t ”) ;
S e r i a l . p r i n t (” | theta2= ”) ;
S e r i a l . p r i n t (theta2) ; S e r i a l . p r i n t (”\ t ”) ;
S e r i a l . p r i n t (” | theta3= ”) ;
S e r i a l . p r i n t (theta3) ; S e r i a l . p r i n t (”\ t ”) ;

f l o a t PWM1, PWM2, PWM3;
i f (theta1 <0){ //The PWMM of motor 1

PWM1=80+map(theta1 , −35, 0 , −80, 0) ;}

e l s e i f (theta1 >0){
PWM1=80+map(theta1 , 0 , 35 , 0 , 180) ;}

i f (theta2 <0){ //The PWMM of motor 2
PWM2=80+map(theta2 , −35, 0 , −80, 0) ;}

33

APPENDIX A. PROGRAM CODE

e l s e i f (theta2 >0){
PWM2=80+map(theta2 , 0 , 35 , 0 , 180) ;}

i f (theta3 <0){ //The PWMM of motor 3
PWM3=80+map(theta3 , −35, 0 , −80, 0) ;}

e l s e i f (theta3 >0){
PWM3=80+map(theta3 , 0 , 35 , 0 , 180) ;}

S e r i a l . p r i n t (” | PWM1 = ”) ;
S e r i a l . p r i n t (PWM1) ; S e r i a l . p r i n t (”\ t ”) ;
S e r i a l . p r i n t (” | PWM2 = ”) ;
S e r i a l . p r i n t (PWM2) ; S e r i a l . p r i n t (”\ t ”) ;
S e r i a l . p r i n t (” | PWM3 = ”) ;
S e r i a l . p r i n t (PWM3) ; S e r i a l . p r i n t (”\ t ”) ;

analogWrite (9 , PWM1) ; //Motor 1
analogWrite (10 , PWM2) ; //Motor 2
analogWrite (11 , PWM3) ; //Motor 3

}

34

ISSN TRITA ITM-EX 2019:36

www.kth.se

