A large new *Wareniccona* (Bivalvia: Vesicomydidae) from a Pliocene methane seep deposit in Leyte, Philippines

Tomoki Kase
National Museum of Nature and Science, Tokyo
Department of Geology and Paleontology
Tsukuba, Ibaraki 305-0005, JAPAN
neritopsis@gmail.com

Shinji Isaji
Natural History Museum and Institute, Chiba
Chiba 260-8682, JAPAN
isaji@chiba-muse.or.jp

Yolanda M. Aguilar
Mines and Geosciences Bureau
Marine Geological Survey Division
Quezon City, PHILIPPINES
yolanda.maac@yahoo.com

Steffen Kiel
Swedish Museum of Natural History
Department of Palaeobiology
10405 Stockholm, SWEDEN
steffen.kiel@nrm.se

ABSTRACT

A new species of the genus *Wareniccona*, *W. mercenarioides*, belonging to the chemosymbiotic bivalve subfamily Pliocardinae (family Vesicomydidae), is described from a Pliocene methane-seep deposit at Liog-Liog on Leyte Island, Philippines. With a length of almost 12 cm, this species is significantly larger than the six extant species currently considered as belonging to *Wareniccona*. In addition to being very large, *W. mercenarioides* is more inflated and has a considerably more rounded shell outline compared to the oval shells of other *Wareniccona* species. This is the first fossil record of *Wareniccona*. Considering the overall similarity of the Leyte seep fauna to species living at vents and seeps in the vicinity of southern Japan, we anticipate that similarly large, and closely related species, might still be extant in the Indo-West Pacific region.

Additional Keywords: Indo-Pacific Ocean, hydrothermal vents, shell size, deep-sea

INTRODUCTION

Vesicomyd bivalves are a major component of faunal communities around many deep-sea hydrothermal vents, methane-seeps, and sunken whale carcasses (Boss and Turner, 1980; Paull et al., 1984; Smith et al., 1989; Kojima et al., 2004; Krylova and Sahling, 2010; Johnson et al., 2017). They thrive in these environments because they live in symbiosis with sulfur-oxidizing bacteria from which they obtain most, if not all, of their nutrients (Arp et al., 2014). Although vesicomyd bivalves do not show the diversity of symbiotic associations as bathymodiolids do, vesicomyd clades show a diversity of sulfide-binding affinities that enable (or restrict) them to colonize distinct niches within methane seep sites related to sulfate flux and availability (Barry and Kochevar, 1999; Goffredi and Barry, 2002; Decker et al., 2001). Future studies of shell size and sulfide-binding affinities could provide new insights into the long-term evolution of these traits through Earth’s history.

MATERIALS AND METHODS

Several methane-seep deposits have been discovered in deep-water strata of the Visayan back-arc basin along the northwestern coast of the island of Leyte in the Philippines (Majima et al., 2007; Majima et al., 2010). These massive mudstones were mapped as Bata Formation and initially considered late Miocene in age (Corby et al., 1951; Porth et al., 1989; Mines and Geosciences Bureau, 2010). The
specimens reported here were obtained from a giant calcareous concretion packed with chemosynthetic bivalves, found exposed at Liog-Liog Point between Tabango and Campano bays, at 11°17'37.7" N, 124°21'57.5" E (Majima et al., 2007). Ongoing stratigraphic and micropaleontologic work indicates that the Bata Formation exposed around the Liog-Liog Point ranges in age from late Pliocene to early Pleistocene, and the giant concretion is likely to have been derived from the upper Pliocene part of the Bata Formation. The type material is deposited at the National Museum of Nature and Science, Tsukuba, Japan (NMNS PM 28168, PM 28169) and the National Museum, Manila, Philippines (NMP-2148).

To observe the hinge structure, we performed non-destructive analysis using an X-ray microfocus CT system (TESCO TXS320 ACTIS) at the National Museum of Nature and Science, Tokyo, at experimental conditions of 247 kV and 240 μA. The resolution of the square slice CT was 97 mm per 1024 pixels, and the spacing between each CT slice was 0.1 mm. Analysis and surface rendering were performed using the software OsirX version 3.9.2 32-bit (an open-source DICOM viewer for Macintosh).

SYSTEMATICS

Family Vesicomyidae Dall and Simpson, 1901

Genus Wareniconcha Cosel and Olu, 2009

Type Species: Vesicomya guineensis Thiele and Jaeckel, 1931; Recent, from ca. 2500 to 4000 m depth on the West African continental margin (Cosel and Olu, 2009).

Remarks: Cosel and Olu (2009) included only the type species in Wareniconcha. In a subsequent review of vesicomyid species, Krylova and Sahling (2010) considered also the following species as belonging to Wareniconcha: Vesicomya compressa Prashad, 1932, Vesicomya cretacea Smith, 1906, Vesicomya lepta Dall, Vesicomya mercenarioides new species; holotype (NMNS PM 28168). 1. Left valve. 2. Right valve. 3. Dorsal view. 4. Hinge and ligament nympha of left valve, micro-CT scan. 5. Hinge and ligament nympha of right valve, micro-CT scan.
1895, *Vesicomya ovalis* Dall, 1895, and *Vesicomya winckworthi* Prashad, 1932.

Wareniconcha mercenarioides new species (Figures 1–9)

Diagnosis: Large and inflated *Wareniconcha* species that is about as high as wide, with a broad ligament nymph plate.

Description: Large, inflated shell, up to 12 cm long, slightly longer than high; umbones large, blunt, strongly prosogyrate; shell surface sculpture by fine, regular growth increments; anterior part short, somewhat pointed; posterodorsal margin broadly and evenly rounded, with angular transition to the equally broadly and evenly rounded ventral margin. Right valve with strong cardinal 1 radiating anteriorly, positioned anterior of umbo, cardinal 3a thin and short, positioned just anterior of umbo, cardinal 3b short, moderately strong, pointing posteriorly. Left valve with strong and elongate cardinal 2a subparallel to dorsal margin, cardinal 2b strong, quadrate, just beneath umbo, cardinal 4 thin, elongate, pointing posteriorly; nymph plate long and broad.

Type Locality: The Liog-Liog seep deposit.

Type Material: Holotype: NMNS PM 28168, articulated specimen (length 11.3 cm, height 9.7 cm, width 6.5 cm); Paratype 1: NMP-2148, articulated specimen (length 11.3 cm, height 10.1 cm, width 5.7 cm); Paratype 2: NMNS PM28169, disarticulated specimen (length ca. 12 cm, height, ca. 10 cm) consisting of incomplete right valve.

Distribution and Habitat: Pliocene methane-seep carbonates at Liog-Liog Point, Tabango municipality in Leyte, Philippines.
Etyymology: For its shell shape resembling the venerid
genus Mercenaria.

Remarks: Wareniconcha mercenarioides differs from all
species assigned to Wareniconcha (see list above in the
remarks about Wareniconcha.) by being larger, more
inflated, and being roughly as wide as high, whereas all
other Wareniconcha species are oval in an anterior-
posterior direction. Furthermore, W. guineensis, W.
compressa, and W. lepta have a narrower hinge plate than
W. mercenarioides.

Many of the accompanying bivalve species at the type
locality belong, or are very similar to, extant species from
vents and seeps in Japanese waters and especially in the
Okinawa Trough (including, for example, Bathymodiolus
securiformis (Okutani et al., 2004), Archivesica soyae
(Okutani, 1957), Archivesica similis (Okutani et al.
1997), Archivesica kawamurai (Kuroda, 1943), and
Pliocardia kuroshimana (Okutani et al. 2000); TK and SK,
unpublished). Therefore, we anticipate that Wareniconcha
mercenarioides or a very closely related species may still
be extant somewhere around the Indo-West Pacific.

ACKNOWLEDGMENTS

We would like to thank L. L. Jasareno (Director, Mines
and Geosciences Bureau, Philippines) for a research
permit, W. Mago, F. Kanoda, and E. Azurin (Mines and
Geosciences Bureau of the Philippines) for their assistance
in fieldwork, and H. Hayashi (Shimane University),
A. Gil S. Fernando (the University of Philippines) for the
microfossil analyses, C. Sakata (National Museum of
Nature and Science, Tsukuba) for running the CT scans,
and Elena Krylova (P.P. Shirshov Institute of Oceanology,
Moscow) for her kind review of the manuscript. Financial
support to TK was provided by the Japan Society for the
Promotion of Science, Japan through Grant-in-Aid for
Scientific Research 16K05600, and to SK by the Swedish
Science Foundation (Vetenskapsrådet) through grant
2016-03920.

LITERATURE CITED

vesicomyid species (Bivalvia) from Wakayama in southern

Amano, K. and S. Kiel. 2007. Fossil vesicomyid bivalves from the
North Pacific region. The Veliger 49: 270–293.

Amano, K. and S. Kiel. 2011. Fossil Adulomya (Vesicomyidae,
Bivalvia) from Japan. The Veliger 51: 76–90.

and blood gas transport characteristics of the hydrothermal vent
bivalve, Calyptogena magnifica. Physiological Zoology 57:
648–662.

differing chemosynthetic life styles among vesicomyids in
Monterey Bay cold seeps. Cahiers de Biologie Marine 39:
329–331.

Boss, K.J. and R.D. Turner. 1980. The giant white clam from the
Galapagos Rift, Calyptogena magnifica species novum.

Corby, G.W. et. al. 1951. Geology and oil possibilities of the
Philippines. Republic of the Philippines, Department of

Cosel, R.V., and K. Olu. 2009. Large Vesicomyidae (Mollusca:
Bivalvia) from cold seeps in the Gulf of Guinea off the
coasts of Gabon, Congo and northern Angola. Deep-Sea
Research II 56: 2350–2379.

Dall, W.H. 1895. Diagnoses of new species of mollusks from the
west coast of America. Proceedings of the U.S. National

Decker, C., N. Zorn, N. Potier, E. Leize-Wagner, K. Olu, and
A.C. Andersen. 2014. Globin’s structure and function in
vesicomyid bivalves from the Gulf of Guinea cold seeps
as an adaptation to life in reduced sediments. Physiological
and Biochemical Zoology 87: 855–869.

symbioses in marine invertebrates. Reviews in Aquatic
Sciences 2: 399–436.

sulfide physiology between closely related Vesicomyid

Johnson, S.B., E.M. Krylova, A. Anzljizonyte, H. Sahling, and
R.C. Vrijenhoek. 2017. Phylogeny and origins of chemosynthetic

Kanie, Y. and T. Kuramochi. 2001. Two new species of the
Vesicomyidae (Bivalvia; Mollusca) from the Pliocene
Shiramazu Formation of the Chikura Group in the Boso
Peninsula, Japan. Science Report of the Yokusuka City

Kojima, S., K. Fujikura, and T. Okutani. 2004. Multiple trans-
Pacific migrations of deep-sea vent/seep-endemic bivalves
in the family Vesicomyidae. Molecular Phylogenetics and

a new species of vesicomyid bivalve from Monterey Bay,

current taxonomy and distribution. PLoS ONE 5: e9957.

a new genus of the family Vesicomyidae (Bivalvia) from deep
water vents and seeps. Journal of Molluscan Studies 76:
107–132.

Kuroda, T. 1943. Abeiconcha, a new pelecypod genus. Venus
13: 14–18.

Lorion, J., S. Kiel, B.M. Faure, M. Kawato, S.Y.W. Ho, B.A.
Adaptive radiation of chemosymbiotic deep-sea mussels.
Proceedings of the Royal Society B 280: doi.org/10.1098/
rspb.2013.1243

Majima, R., R.G. Jenkins, T. Kase, Y.M. Aguilar, T. Nanjo, R.
Wani, H. Wada, A.G.S. Fernando, and H. Hayashi. 2010. In
situs Calyptogena colonies from Pliocene back-arc basin fills
Society of Japan 116: XV–XVI.

Majima, R., T. Kase, S. Kagawa, Y.M. Aguilar, K. Hagnio, and
M. Maeda. 2007. Fossil cold-seep assemblages from Leyte
(with pictorial figures).

Mines and Geosciences Bureau. 2010. Geology of the Philip-
Ppines. Second Edition. Department of Environment and

T. Kase et al., 2019 Page 29

Notice

THE 2019 R. TUCKER ABBOTT VISITING CURATORSHIP

As part of the celebrations of the 100th Anniversary of its Founding Director, Dr. R. Tucker Abbott, the Bailey-Matthews National Shell Museum is pleased to invite applications for the 2019 R. Tucker Abbott Visiting Curatorship. The Curatorship, established originally in accordance with Tucker Abbott’s wishes, is awarded to enable malacologists to visit the museum for a period of one week. Tucker Abbott Fellows are expected, by performing collection-based research, to assist with the curation of portions of the Museum’s collection. The Museum collection consists of marine, freshwater, and terrestrial specimens. The entire collection has been digitally catalogued and the catalogue via iDigBio at http://ipt.idigbio.org/resource?r=bnmsm-shell. The R. Tucker Abbott Visiting Curatorship is accompanied by a stipend of $1,500.

Interested? Send a copy of your curriculum vitae and a letter detailing your areas of taxonomic expertise and research objectives to:

Dr. José H. Leal, Science Director & Curator
The Bailey-Matthews National Shell Museum
P.O. Box 1580
Sanibel, FL 33957 USA
jleal@shellmuseum.org

Applications for the 2019 Visiting Curatorship should be sent electronically to the above e-mail address no later than June 1st, 2019, or postmarked by that date if sent by regular mail. The award will be announced by early July 2019.