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Abstract We derive analytic solutions to the scalar and vector advection equa-
tion with variable coe�cients in one spatial dimension using Laplace transform
methods. These solutions are used to investigate how accuracy and stability are
influenced by the presence of discontinuous wave speeds when applying high-order-
accurate, skew-symmetric finite di↵erence methods designed for smooth wave speeds.
The methods satisfy a summation-by-parts rule with weak enforcement of bound-
ary conditions and formal order of accuracy equal to 2, 3, 4 and 5. We study accu-
racy, stability and convergence rates for linear wave speeds that are (a) constant,
(b) non-constant but smooth, (c) continuous with a discontinuous derivative, and
(d) constant with a jump discontinuity. Cases (a) and (b) correspond to smooth
wave speeds and yield stable schemes and theoretical convergence rates. Non-
smooth wave speeds (cases (c) and (d)), however, reveal reductions in theoretical
convergence rates and in the latter case, the presence of an instability.
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1 Introduction

Variable-coe�cient problems arise in a wide variety of applications including geo-
physics (material heterogeneities in the solid Earth, spatially varying fluid proper-
ties in volcanic conduits), aeroacoustics (Euler equations), electromagnetics (Max-
well’s equations with heterogeneous permeabilty and permittivity), and problems
with complex geometries in which coordinate transformations are used [2,8,14,10].
Coe�cients can be pre-defined explicitly, or obtained through other means (such
as the numerical solution of a steady-state equation) and can be non-smooth at
known (or unknown) locations.

Exact solutions to the governing equations are often quite di�cult to obtain in
most applications, thus numerical solutions are sought in order to study the tem-
poral evolution of the phenomena under consideration. Care should be taken, how-
ever, so that the discretization predicts an accurate approximation to the growth
or decay that is physically present. In order to assess whether this is done, ana-
lytical solutions for canonical problems are an asset.

In this work we provide analytic solutions to the scalar and vector advection
equation with variable wave speeds, which allow us to study the performance of a
class of high-order-accurate finite di↵erence methods satisfying a summation-by-
parts (SBP) property [11,12,23]. SBP methods together with a weak enforcement
of boundary conditions through the simultaneous-approximation-term (SAT) tech-
nique provide a framework for provably stable numerical discretizations for prob-
lems with su�cient smoothness properties and exist for a large class of operators
including finite di↵erence, finite volume and finite element methods, see [3,24,
21] and references therein. We apply an SBP-SAT discretization to the governing
equations using a skew-symmetric splitting, which mixes conservative and non-
conservative forms, and for smooth problems has the desirable property that the
semi-discrete energy rate mimics that of the continuous problem [15,4,19]. The
technique of skew-symmetric splitting is widely used when solving a variety of
challenging physical problems that involve variable coe�cients, nonlinearities and
shocks, including the nonlinear Burgers’ equation and the shallow water equations
[5,22,6,20].

When coe�cients are non-smooth at known locations, they are often treated
as interfaces, and numerical solutions are obtained within the sub-domains where
the coe�cients are smooth. See, for example, [14], for an overview of finite-volume
methods applied to these types of problems. However, in practice these locations
are not always known and it is unclear how these discretization methods perform
when applied without some special procedure (such as an interface treatment)
to problems with non-smooth wave speeds. In this paper we will experimentally
investigate how accuracy and stability are a↵ected when naively applying these
operators to problems with discontinuous wave speeds, using new exact analytical
solutions.

The paper is organized as follows: in section 2 we derive the exact solution to
the scalar advection equation with variable wave speed and introduce the skew-
symmetric SBP-SAT framework for computing numerical approximations. Piece-
wise linear wave speeds (which are non-smooth in some cases) are considered
and convergence rates with and without the incorporation of an interface are re-
ported. In section 3 we derive exact solutions to the vector advection equation, as
well as derive the spectrum of the associated di↵erential operator. The SBP-SAT
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framework for the vector problem is detailed, convergence rates are reported, and
comparisons made between continuous and discrete spectra. We summarize our
findings and discuss future studies in section 4.

2 The scalar equation

We begin by considering the scalar advection equation in non-conservative form
on the domain x 2 [0, 1], namely

ut + a(x)ux = 0 (1a)

u(t, 0) = h(t) (1b)

u(0, x) = f(x). (1c)

In this work we seek continuous solutions to (1), assuming the wave speed a(x) > 0
is potentially non-smooth, with an integrable reciprocal, i.e. that

Ia(x) =

ˆ x

0
1/a(y)dy (2)

exists. If a(x) is di↵erentiable on (0, 1) (which is not true for all the cases we
consider), we can apply the splitting

a(x)ux =
1
2
[(au)x + a(x)ux]�

1
2
axu (3)

and an energy estimate for (1) can be obtained by multiplying by u and integrating
over the domain. Taking h(t) = 0, this leads to

d||u||22
dt

= �a(1)u(t, 1)2 +

ˆ 1

0
axu

2
dx. (4)

If ax 2 L1(0, 1), we have the final estimate [19]

||u(t, ·)||22  e
||ax||1t


||f ||22 �

ˆ t

0
a(1)e�||ax||1⌧

u
2(⌧, 1)d⌧

�
. (5)

Alternatively (for example, if a(x) is not di↵erentiable), we can define the weighted
norm

||u||2a�1 =

ˆ 1

0

1
a(x)

u
2(t, x)dx (6)

if a(x) �  > 0 (i.e. a(x) is bounded away from 0 by a constant , which is true
for all the cases we consider), which leads to the energy estimate

||u(t, ·)||2a�1 = ||f ||2a�1 �
ˆ t

0
u
2(⌧, 1)d⌧. (7)

Energy estimates are useful for determining both location and number of boundary
conditions needed to bound the solution, as well as provide a means for proving
uniqueness of solutions to linear problems and insights into reasons for error-
growth and error-boundedness, see [17,9,18]. In the section that follows we show
existence (by construction) of a continuous solution to (1), and uniqueness and
stability to perturbations in data follow from (5) or (7).
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2.1 Analytic, closed-form solution via the Laplace method

To solve (1) analytically, we start by denoting the Laplace transform of a locally
integrable function h(t) by

L[h] =
ˆ 1

0
h(t)e�st

dt, s 2 C. (8)

Laplace transforming (1) in time and solving the resulting ordinary di↵erential
equation yields the solution in Laplace space given by

û(s, x) = ĥ(s)e�sIa(x) +

ˆ x

0

f(⇠)
a(⇠)

e
�s(Ia(x)�Ia(⇠))

d⇠, (9)

where we use a hat to denote the Laplace transformed function. We denote the
last term on the right of (9) by

F (s, x) =

ˆ x

0

f(⇠)
a(⇠)

e
�s(Ia(x)�Ia(⇠))

d⇠. (10)

Next we apply integration by substitution by letting

⌧ = Ia(x)� Ia(⇠), (11)

so that integration in (10) is with respect to ⌧ rather than ⇠. This allows us to
re-write (10) as

F (s, x) =

ˆ Ia(x)

0
f(⇠)e�s⌧

d⌧ (12)

=

ˆ 1

0
f(⇠)H(⇠)e�s⌧

d⌧, (13)

where H is the Heaviside function and we understand that ⇠ = ⇠(⌧, x).
This procedure allows us to recognize that F (s, x) = L[f(⇠)H(⇠)] where ⇠ is

the characteristic variable defined implicitly through (11). Note that (11) should
be interpreted as the time required to transport information a distance x � ⇠ at
speed a(x). Inverting (9) thus provides the solution in the time domain

u(t, x) = h(t� Ia(x))H(t� Ia(x)) + f(⇠(t, x))H(⇠(t, x)). (14)

Note that (14) provides the solution in closed form if Ia(x) is invertible, in which
case we can use (11) to solve for ⇠(t, x), namely

⇠(t, x) = I
�1
a (Ia(x)� t). (15)

In the case of constant coe�cients, we recover the well-known characteristic vari-
able ⇠(t, x) = x� at.
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Fig. 1: Time snapshots of the exact solution (smooth curves) and numerical
solution (dotted curves) for a piecewise linear wave speed corresponding to (a)
a(x) constant (case 1) (b) a(x) 2 C

1 (case 2) (c) a(x) 2 C
0\C1 (case 3) and

(d) a(x) /2 C
0 (case 4).

2.1.1 An example

The exact solution (14) requires the calculation of the characteristic variable ⇠, as
well as Ia(x). As an illustration, consider a wave speed given by

a(x) =

(
1 + ✏x if 0  x < 1/2

1 + ✏/2 if 1/2  x  1
, (16)

which is piecewise linear, non-smooth (at x = 1/2), and where ✏ is a small, positive
number. Then

Ia(x) =

(
1
✏ ln(1 + ✏x) if 0  x < 1/2
1
✏ ln(1 + ✏/2) + 1/(1 + ✏/2)(x� 1/2) if 1/2  x  1

, (17)

and using (11) to solve for ⇠ yields

⇠(t, x) =

8
><

>:

(1+✏x)e�t✏�1
✏ if 0  x < 1/2

d(t, x)H (1/2� d(t, x))+

(x� ct)H (x� ct� 1/2) if 1/2  x  1

, (18)

where d(t, x) = 1
✏

h
ce

(✏/c)(x�1/2)�✏t � 1
i
, and c = 1+ ✏/2. Thus the exact solution

(14) is known in closed form.
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2.2 Discretization and stability

To compute numerical solutions to (1), we consider finite di↵erence methods sat-
isfying a summation-by-parts (SBP) rule, with weak enforcement of boundary
conditions through the simultaneous-approximation-term (SAT), which provide a
provably stable, high-order accurate semi-discretization [11,12,23,1,3,24]. These
operators represent centered di↵erences in the interior of the domain, with a tran-
sition to one-sided di↵erences near the domain boundaries. We apply the diagonal
norm SBP-SAT operators from [23] that have been derived with a formal order
of accuracy given by p = 2, 3, 4 and 5. These operators have an interior order
of accuracy given by 2p � 2 and boundary accuracy of p � 1. The operators are
denoted by matrix D which approximates @/@x.

We let u = u(t) denote the grid vector approximating the function u(t, x), i.e.
ui ⇡ u(t, xi), where xi = ih, i = 0, ...N is a discretization of the unit interval into
N+1 equidistantly-spaced grid points with grid spacing h = 1/N . NowD = H�1Q
where H is a diagonal, positive definite matrix defining the discrete inner product
and norm, given by

(u,v)H = uTHv, ||u||2H = uTHu. (19)

The matrix Q is almost skew-symmetric, i.e. Q + QT = diag[�1, ... 0, 0, 0, ...1].
This construction allows the integration-by-parts rule

ˆ 1

0
u
dv

dx
dx = u(1)v(1)� u(0)v(0)�

ˆ 1

0

du

dx
vdx (20)

to be mimicked discretely, namely

uTHDv = uNvN � u0v0 � (Du)THv. (21)

To explore convergence rates of high-order accurate SBP-SAT methods we apply
the skew-symmetric discretization from [19] to equation (1), which will allow us
to obtain a semi-discrete energy estimate mimicking (4). Note that we apply this
method without any special procedure applied near points where wave speed a(x)
might be non-smooth. The discretization is given by

ut +
1
2
[AD+DA]u� 1

2
UDa = �H�1(u0 � h(t))e0, (22a)

u(0) = f , (22b)

where e0 = [1, 0, 0, ..., 0]T and f is the vector of initial data evaluated on the
grid. The right side of (22a) represents the SAT term that enforces boundary
condition (1b) weakly using the penalty parameter �. Matrix A has the values of
a(x) injected onto its diagonal, vector a has values of a(x) evaluated at the grid,
and matrix U = diag[u0, u1, ...uN ] so that UDa ⇡ axu. Multiplying (22a) by
uTH (and taking h(t) = 0) and adding its transpose yields

d||u||2H
dt

= (a0 + 2�)u2
0 � aNu

2
N + (u,UDa)H, (23)

which mimics (4) (exactly if � = �a0/2) and requires �  �a0/2 for stability.
With grid refinement, (22) yields a semi-discrete energy rate (23) which converges
to (4) for smooth coe�cients.
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Fig. 2: Time snapshots of absolute error, plotted in dashed lines, between the
exact and numerical solutions for a piecewise linear wave speed corresponding
to (a) a(x) constant (case 1) (b) a(x) 2 C

1 (case 2) (c) a(x) 2 C
0\C1 (case

3) and (d) a(x) /2 C
0 (case 4).

2.3 Convergence rates

We investigate the convergence rate of the scheme (22) using the analytic solution.
Throughout this work we apply Matlab’s ode45, a fourth order accurate, adaptive
Runge-Kutta time stepping scheme with error control. We set absolute and rela-
tive tolerances to 10�12 to minimize temporal error accumulation. Letting ✏ be a
positive parameter, we consider four cases for a linearly varying wave speed a(x),
namely a(x) = 1, a(x) = 1 + ✏x,

a(x) =

(
1 if 0  x < 1/2

1� ✏/2 + ✏x if 1/2  x  1,
(24)

a(x) =

(
1 if 0  x < 1/2

1 + ✏/2 if 1/2  x  1,
(25)

and refer to each, respectively, as case 1-4. Case 1 corresponds to constant a(x)
and allows us to illustrate known results, while case 2 corresponds to a(x) 2 C

1.
Case 3 represents a(x) 2 C

0\C1, and case 4 represents wave speeds with a jump
discontinuity, i.e. a(x) /2 C

0. The exact solutions for all four cases are detailed in
appendix A.

In Figure 1 we take ✏ = 0.8 and plot the wave speed a(x) for all four cases, as
well as the exact and numerical solution at various snapshots in time using SBP
operators with p = 3 and N = 27 +1 grid points. For this illustration, we have set

the initial data to be a Gaussian, namely f(x) = e
�(x�0.25)2/.001, and boundary

data h(t) = 0. Figure 1(a) illustrates the standard results for constant wave speed
(case 1), showing information propagating to the right at a constant speed, with
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initial data plotted in blue dots, and at later times in green and black dots. Figure
1(b) corresponds to a(x) 2 C

1 (case 2), where information travels at a faster
rate (and is consequently spread out - as evidenced by the increasing width of the
initial Gaussian) compared to the constant wave speed counterpart from Figure
1(a). Figure 1(c) corresponds to piecewise linear wave speeds a(x) 2 C

0\C1 (case
3) which is not smooth at x = 1/2. Once the information crosses this point it is
propagated at an increasingly faster speed. Figure 1(d) corresponds to wave speeds
with a jump discontinuity (case 4, with a(x) /2 C

0) and information travels at a
constant, faster speed once information crosses x = 1/2.

In Figure 2 we plot the absolute error in space

e(t, xi) = |u(t, xi)� ui(t)| (26)

at the same snapshots in time as in Figure 1. Figure 2(a) reveals error growing
in magnitude as the wave propagates at a constant speed. Figures 2(b) and 2(c)
show similar features to that of Figure 2(a), but due to increasing wave speeds,
information has reached the right boundary by t = 1/2. For a(x) /2 C

0 (case 4),
Figure 2(d) reveals error propagating backwards once information crosses x = 1/2.
This result is not unexpected as the use of centered di↵erence approximations can
propagate error in both directions.

We denote the total error in the discrete H-norm at time t by

E(t) = ||u(t, ·)� u(t)||H, (27)

where u(t, ·) is the exact solution evaluated on the grid. In Figure 3 we show con-
vergence results, where the total error is computed at t = 1/2, for SBP operators
with p = 2, 3, 4, 5. Figure 3(a) corresponds to constant wave speeds (case 1) and
we observe convergence rates that are slightly higher than those theoretically pre-
dicted. Figure 3(b) corresponds to a(x) 2 C

1 (case 2) and reveals convergence at
the theoretical rates. Wave speeds corresponding to a(x) 2 C

0\C1 (case 3), show
convergence rates drop to second order for all p, as seen in Figure 3(c). We also
observe in Figure 3(c) that for small N the total error is reduced with increasing
p but that for large N the total error is only reduced when going from p = 2 to
p = 3 (and not reduced further for higher order methods). Wave speeds with a
jump discontinuity (case 4) show convergence rates drop to 1 for all p considered
(consistent with theoretical estimates from [7, page 194]) as evidenced by Figure
3(d), and for large N the total error is not reduced at all with higher order meth-
ods.

We are also interested in how the total error evolves over longer time periods,
thus we plot E(t) up to t = 3 in Figure 4 with N = 27+1 grid points. Because the
initial Gaussian pulse exits the domain by t = 1, we modify the boundary data to
send in periodic pulses, namely, we set the boundary data to be

h(t) =
5X

j=0

e
�(t�0.25(2j+1)2/0.001

. (28)

Figures 4(a)-4(c) show results from cases 1-3 and we see that increasing the order
of accuracy decreases the maximum error levels (also evident in the convergence
plots in Figures 3(a)-3(c)), and that error remains bounded for all time. Figure 4(d)
corresponds to a(x) /2 C

0 (case 4). Although the error remains bounded in time,
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Fig. 3: Convergence rates for SBP operators with global order of accuracy
p = 2, 3, 4, 5 for a piecewise linear wave speed corresponding to (a) a(x) constant
(case 1) (b) a(x) 2 C

1 (case 2) (c) a(x) 2 C
0\C1 (case 3) and (d) a(x) /2 C

0

(case 4). Total error computed at t = 1/2. (a) and (b) give expected rates,
while (c) reveals second order convergence for all p, and (d) reveals a drop to
first order convergence for all p.

maximum levels decrease when going from p = 2 to p = 3, but do not decrease
further with even higher-order accurate methods. And as evidenced in Figure
3(d), with larger N we would not expect any decrease in maximum error level for
increasing p. We found that although convergence rates drop to 2 for a piecewise
linear wave speed a(x) 2 C

0\C1, error decreases with increasing p (at least on
coarse grids) and error decreases on fine grids when increasing p from 2 to 3. For a
piecewise constant wave speed with a jump discontinuity, there is some gain when
increasing p from 2 to 3 on coarse grids, but no decrease in error on fine grids. In
all cases we considered, we found that high order methods are still accurate even
for wave speeds that contain discontinuities, and do no worse than the low-order
methods. However, high-order methods come at a greater computational cost due
to the wider stencil present and smaller time-step requirements.
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Fig. 4: Total error as a function of time, computed in the discrete H-norm with
N = 27 + 1 gridpoints, for a piecewise linear wave speed corresponding to (a)
a(x) constant (case 1) (b) a(x) 2 C

1 (case 2) (c) a(x) 2 C
0\C1 (case 3) and

(d) a(x) /2 C
0 (case 4). Error remains bounded in time for all cases.

2.3.1 Introducing an interface

Theoretical convergence rates can be restored in the previous cases if an interface
is placed at the location where the wave speed is non-smooth. However, keep in
mind that in many practical applications this location is not known.

The wave speeds we consider in this section are non-smooth at x = 1/2. Placing
an interface here renders equation (1) a coupled set of equations (one on each side
of the interface). On the left side of x = 1/2 we have

u
L
t + a

L(x)uL
x = 0, x 2 (0, 1/2), (29a)

u
L(t, 0) = h(t), (29b)

u
L(0, x) = f

L(x), x 2 (0, 1/2) (29c)

and on the right side we have

u
R
t + a

R(x)uR
x = 0, x 2 (1/2, 1) (30a)

u
R(t, 1/2) = u

L(t, 1/2) (30b)

u
R(0, x) = f

R(x), x 2 (1/2, 1). (30c)
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Note that (30b) couples (29) and (30), enforcing continuity of the solution across
the interface. Wave speeds a

L(x) and a
R(x) are defined and smooth everywhere

on x 2 [0, 1/2] and x 2 [1/2, 1], respectively. For example, case 3 now refers the
two wave speeds

a
L(x) = 1 (31)

a
R(x) = 1 + ✏x. (32)

Applying the energy method to (29-30) (with h(t) = 0) as done in section 2, yields
the estimate

d
�
||uL||22 + ||uR||22

�

dt
=

h
a
R(1/2)� a

L(1/2)
i
u
L(t, 1/2)2+

� a
R(1)uR(t, 1)2 +

ˆ 1/2

0
a
L
x (u

L)2dx+

ˆ 1

1/2
a
R
x (u

R)2dx.

(33)

Note that the first term on the right of (33) vanishes for a continuous wave speed,
corresponds to energy dissipation if aR(1/2) < a

L(1/2) and to growth if aR(1/2) >
a
L(1/2).

To solve (29)-(30) numerically, we discretize each side of the domain with
N/2 + 1 grid points, namely

x
L
i = ih, x

R
i = 1/2 + ih, i = 0, ..., N/2 h = 1/N. (34)

Using the skew-symmetric discretization as before, the semi-discrete equations are
given by the (coupled) initial value problem

uL
t +

1
2

h
ALD+DAL

i
uL � 1

2
ULDaL = �1H

�1(uL
0 � h(t))e0

+ �2H
�1(uL

N � u
R
0 )eN , (35a)

uR
t +

1
2

h
ARD+DAR

i
uR � 1

2
URDaR = �3H

�1(uR
0 � u

L
N )e0, (35b)

uL(0) = fL, (35c)

uR(0) = fR, (35d)

where vectors fL and fR are f(x) evaluated at the left and right grids, respectively.
The energy method applied to (35) (taking h(t) = 0) yields

d
�
||uL||2H + ||uR||2H

�

dt
=(uL

,ULDaL)H + (uR
,URDaR)H + (aL0 + 2�1)(u

L
0 )

2

� a
R
N (uR

N )2 + (aR0 � a
L
N )(uL

N )2 + yTMy (36)

where matrix M =
⇥
�a

0
R + 2�2 ��2 � �3 � �2 � �3 2�3 + a

R
0

⇤
and vector y =

[uL
N u

R
0 ]

T . We take �1 = �a
L
0 /2 so that the continuous energy estimate (33)

is mimicked exactly, with some added dissipation if M is negative semi-definite.
This is true with the choice �2 = 0,�3 = �a

R
0 , corresponding to fully up-winding

at the interface. See [13] for a discussion of other choices of penalty parameters.
With the interface present, Figure 5 shows that the theoretical convergence rates
are recovered, and Figure 6 shows that the total error in the H-norm is reduced
in all cases when using higher order methods.
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Fig. 5: Convergence rates after introducing an interface, for SBP operators
with global order of accuracy p = 2, 3, 4, 5, for a piecewise linear wave speed
corresponding to (a) a(x) constant (case 1) (b) a(x) 2 C

1 (case 2) (c) a(x) 2
C

0\C1 (case 3) and (d) a(x) /2 C
0 (case 4). Total error computed at t = 1/2.

By introducing an interface the theoretical convergence rates are obtained in
all cases.

3 The vector equation

Next, we consider the linear system of equations in non-conservative form

ut + a(x)ux = 0, (37a)

vt � b(x)vx = 0, (37b)

where a(x), b(x) > 0, x 2 (0, 1) and t � 0. For simplicity in the analysis, we
assume non-zero initial data for u, and zero initial data for v (non-zero initial data
for v can be included but increases the complexity of the constructed analytical
solution). Thus we take

u(0, x) = f(x), (38a)

v(0, x) = 0, (38b)

and boundary conditions given by

u(t, 0) = ↵v(t, 0), (39a)

v(t, 1) = �u(t, 1), (39b)



Accuracy of FD Methods with Non-smooth Wave Speeds 13

0 1 2 3
t

10-4

10-2

100

E(
t)

(a)

0 1 2 3
t

10-4

10-2

100

E(
t)

(b)

0 1 2 3
t

10-4

10-2

100

E(
t)

(c)

0 1 2 3
t

10-4

10-2

100

E(
t)

(d)

Fig. 6: Total error as a function of time after introducing an interface, for
N = 27 +2 total grid points, computed in the discrete H-norm for a piecewise
linear wave speed corresponding to (a) a(x) constant (case 1) (b) a(x) 2 C

1

(case 2) (c) a(x) 2 C
0\C1 (case 3) and (d) a(x) /2 C

0 (case 4). Error remains
bounded in time, with maximum levels reduced with higher order methods in
all cases.

where ↵ =
p

b(0)/a(0) and � =
p

a(1)/b(1) are chosen so that the boundary terms
in the continuous energy estimate cancel exactly.

Multiplication of (37) by u, v (respectively), and integrating over the domain
yields the energy estimate (if ax, bx 2 L

1(0, 1))

d

dt

⇣
||u||22 + ||v||22

⌘
=

ˆ 1

0
(axu

2 � bxv
2)dx. (40)

Alternatively, as done in the scalar case, we can compute the energy estimate using
a weighted norm, which yields

d

dt

⇣
||u||2a�1 + ||v||2b�1

⌘
= (↵2 � 1)v2(t, 0) + (�2 � 1)u2(t, 1) (41)

Note that (40) illustrates that for constant wave speeds, the energy is conserved.
The relation (41) illustrates how energy growth/decay is dictated by the bound-
ary conditions: ↵,� > 1 dictates energy growth, while for ↵,� < 1 there is en-
ergy decay. As we will see from the spectrum (computed in the next section),
growth/decay of solutions is more specifically dictated by the sign of ln(↵�).
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3.1 The continuous spectrum

To compute the continuous spectrum for (37)-(39) we set initial data for u and
v to zero (i.e. we also take f(x) = 0 in (38)), and we define Ia(x), Ib(x) by (2).
Laplace transforming (37)-(38) in time yields the system of di↵erential equations

sû+ a(x)ûx = 0, (42a)

sv̂ � b(x)v̂x = 0, (42b)

which corresponds to

s


û

v̂

�
�D


û

v̂

�
= 0, D =


�a(x)@/@x 0

0 b(x)@/@x

�
. (43)

Thus s corresponds to the eigenvalues of the di↵erential operator D.
The solution to (42) are the functions

û(s, x) = C1(s)e
�sIa(x)

, (44a)

v̂(s, x) = C2(s)e
+sIb(x)

, (44b)

where e
�sIa(x) and e

+sIb(x) are the eigenfunctions of D. To solve for the unknown
constants in (44) we insert boundary conditions (39), yielding the linear system
A(s)c(s) = 0, where matrix

A(s) =


1 �↵

�e
�sIa(1) �e

+sIb(1)

�
, (45)

and vector c(s) = [C1(s) C2(s)]
T . Non-trivial solutions for C1(s), C2(s) will exist

when det A(s) = 0. This occurs for discrete eigenvalues sn given by

sn =
2⇡ni+ ln(↵�)
Ia(1) + Ib(1)

, forn 2 Z. (46)

These eigenvalues form the spectrum of operator D, and lie on a vertical line in
the complex plane, corresponding to ⌘c = Re(sn) = ln(↵�)/ [Ia(1) + Ib(1)]. Since
Ia(1), Ib(1) > 0, the sign of ⌘c is determined by the sign of ln(↵�).

3.2 Construction of the analytic solution

For general initial data f(x), solutions to (37)-(38) in Laplace space take the form

û(s, x) = C1(s)e
�sIa(x) + F (s, x), (47a)

v̂(s, x) = C2(s)e
+sIb(x)

, (47b)

where F (s, x) is defined by (10). Applying the boundary conditions (39) allows us
to solve for the coe�cients
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C1(s) = R(s)

ˆ 1

0

f(w)
a(w)

e
sIa(w)

dw, (48)

C2(s) = C1(s)/↵, (49)

where

R(s) =
↵�e

�sIa(1)

esIb(1) � ↵�e�sIa(1)
. (50)

Now R(s) can be expressed as the geometric series

R(s) =
1X

n=0

h
↵�e

�s(Ia(1)+Ib(1))
in+1

=
1X

n=1

(↵�)ne�stn (51)

where
tn = n(Ia(1) + Ib(1)), (52)

which converges for

Re(s) >
ln(↵�)

Ia(1) + Ib(1)
. (53)

Note that (53) corresponds to the half-plane to the right of the line of eigenvalues
sn given by (46). Relation (52) corresponds to the time it takes information to
travel across the domain and back at speeds a(x), b(x) (respectively) n times.

Substituting (51-52) into (47) we re-write the solution as

û(s, x) =
1X

n=1

(↵�)n
ˆ 1

0

f(!n)
a(!n)

e
�s(Ia(x)�Ia(!n)+tn)

d!n + F (s, x), (54a)

v̂(s, x) =
1
↵

1X

n=1

(↵�)n
ˆ 1

0

f(�n)
a(�n)

e
�s(�Ib(x)�Ia(�n)+tn)

d�n. (54b)

Inverse Laplace transforming (54) (applying the same substitution techniques used
in section 2) yields the solution in the time domain

u(t, x) = f(⇠)H(⇠) +
1X

n=1

(↵�)nf(!n)H(!n)H[t� (tn + Ia(x)� Ia(1))], (55a)

v(t, x) =
1
↵

1X

n=1

(↵�)nf(�n)H(�n)H[t� (tn � Ib(x)� Ia(1))], (55b)

where ⇠,!n, �n are characteristic variables defined implicitly through the relations

Ia(⇠) = Ia(x)� t, (56a)

Ia(!n) = Ia(x) + tn � t, (56b)

Ia(�n) = �Ib(x) + tn � t. (56c)

Note that (55) provides the solution in closed form and further illustrates that
solutions decay if ↵� < 1 (corresponding to ⌘c < 0), grow if ↵� > 1 (corresponding
to ⌘c > 0) and neither grow nor decay if ↵� = 1 (corresponding to ⌘c = 0).

In practice, to evaluate the exact solution (55) up to a specified time T , we
use (52) to find the smallest k 2 N such that both T � (tk + Ia(x)� Ia(1)) < 0
and T � (tk � Ib(x)� Ia(1)) < 0 holds for all x 2 [0, 1], then truncate the series
in (55) at n = k.
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Fig. 7: Four cases of piecewise linear wave speeds, where a(x), b(x) are (a)
constant, (b) 2 C
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0\C1 and (d) /2 C

0.

3.2.1 An example

To illustrate how to construct the analytic solution, we consider wave speeds that
vary as

a(x) =

(
1� ✏x if 0  x < 1/2

1� ✏/2 if 1/2  x  1
(57)

b(x) =

(
1 + ✏x if 0  x < 1/2

1 + ✏/2 if 1/2  x  1
, (58)

which are piecewise linear, non-smooth (at x = 1/2), and where ✏ is a small, posi-
tive number. Solving (56) for ⇠,!n and �n (which requires Ia, Ib to be invertible)
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Fig. 8: Time snapshots of the numerical solutions u and v (plotted in blue
circles and red dots, respectively) for wave speeds (a) a(x), b(x) constant (b)
a(x), b(x) 2 C

1 (c) a(x), b(x) 2 C
0\C1, and (d) a(x), b(x) /2 C

0.

yields

⇠(t, x) =

8
><

>:

�(1/✏)(1� ✏x)e✏t�1 if 0  x < 1/2

�d1(t, x)H (1/2 + d1(t, x))+

(x� t/c1)H (x� t/c1 � 1/2) if 1/2  x  1

, (59)

!n(t, x) = ⇠(t� tn, x), (60)

�n(t, x) =

8
><

>:

1
✏ (1 + ✏x+ e

✏(tn�t))/(1 + ✏x) if 0  x < 1/2

d2(t, x)H (1/2� d2(t, x))+

d3(t, x)H (d3(t, x)� 1/2) if 1/2  x  1

, (61)

where

d1(t, x) =
1
✏

h
c1e

�✏(x�1/2)/c1+✏t � 1
i
, (62)

d2(t, x) =
1
✏

h
ce

c(x�1/2)�✏(tn�t) � 1
i
, (63)

d3(t, x) =(x� (tn � t)/c), (64)
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c1 = 1 � ✏/2 and c = 1 + ✏/2 (as in section 2). These characteristic variables,
along with Ia(x), Ib(x) (which are easily computable), allow us to form the exact
solution (55).

3.3 The numerical approximation for the system

We again discretize the domain using N + 1 gridpoints, and apply the skew-
symmetric SBP-SAT discretization of [19] to (37-39) given by

ut +
1
2
[AD+DA]u� 1

2
UDa = �LH

�1(u0 � ↵v0)e0, (65a)

vt �
1
2
[BD+DB]v +

1
2
VDb = �RH

�1(vN � �uN )eN , (65b)

where eN = [0, 0, ..., 0, 1]T , �L,�R are penalty parameters, and all other terms
are defined in section 2. The discrete energy method applied to (65) yields

d
�
||u||2H + ||v||2H

�

dt
= (u,UDa)H � (v,VDb)H + yT

0 M0y0 + yT
NMNyN (66)

where vectors yT
0 = [u0 v0], y

T
N = [uN vN ] and matrices

M0 =


a0 + 2�L �↵�L

�↵�L �b0

�
, MN =


�aN ���R

���R bN + 2�R

�
.

The semi-discrete estimate (66) mimics the continuous (40), with some additional
damping by choosing penalty parameters �L = �a0, �R = �bN which render M0

and MN negative semi-definite.
As in section 2, we consider four cases of piecewise linear wave speeds a(x), b(x)

with di↵erent smoothness conditions. Constant wave speeds will always correspond
to eigenvalues with ⌘c = 0, while non-constant coe�cients can generate eigenvalues
sn with real part ⌘c in either the left or right half planes, or on the imaginary axis.

3.4 Convergence rates

To verify convergence of the method, we consider wave speeds illustrated in Figure
7, the latter three corresponding to ⌘c < 0. These are given by case 1, with a(x) =
b(x) = 1, case 2 with a(x), b(x) 2 C

1, defined by a(x) = 1 � ✏x, b(x) = 1 + ✏x.
Case 3 corresponds to a(x), b(x) 2 C

0\C1, namely

a(x) =

(
1� ✏x if 0  x < 1/2

1� ✏/2 if 1/2  x  1,
(67)

b(x) =

(
1 + ✏x if 0  x < 1/2

1 + ✏/2 if 1/2  x  1,
, (68)
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Fig. 9: Convergence rates for SBP operators with order of accuracy p = 2, 3, 4, 5
for four cases of piecewise linear wave speeds a(x), b(x) that are (a) constant
(case 1) (b) 2 C

1 (case 2) (c) 2 C
0\C1 (case 3) and (d) /2 C

0 (case 4). Total
error computed at t = 2. (a) and (b) reveal convergence at the expected rates,
while rates drop to second order for (c) and first order for (d).

and case 4, corresponding to a(x), b(x) /2 C
0, namely

a(x) =

(
1 if 0  x < 1/2

1� ✏/2 if 1/2  x  1,
(69)

b(x) =

(
1 if 0  x < 1/2

1 + ✏/2 if 1/2  x  1
. (70)

The exact solutions for all four cases are detailed in appendix A.
We take ✏ = 0.8, and initialize the problem by

f(x) = 1/2e�(x�0.25)/0.001 + e
�(x�0.75)/0.001 (71)

g(x) = 0, (72)

i.e. f(x) is the sum of two Gaussians of di↵erent heights (to facilitate their tracking
in time). In Figure 8 we plot the numerical solutions at constant time increments,
with approximations to u shown in blue circles and to v shown in red dots. Figure
8(a) is a proof of concept result for constant wave speeds. The two initial pulses
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that form u (in blue circles) propagate to the right at which point v (in red dots)
reflects o↵ the right boundary and propagates to the left. There is no dissipation
of energy since ⌘c = 0. In contrast, Figure 8(b) illustrates how u (in blue circles)
initially propagates to the right more slowly (and the initial pulses narrow) than
in the case of constant coe�cients, because a(x) is a decreasing function. v (in red
dots) reflects o↵ the right boundary with a decreased amplitude (because � < 0),
and the reflected red pulse is wider because b(x) > a(x). Figures 8(c)-8(d) also
reveal reflections o↵ the right boundary with decreased amplitude (again because
� < 0), and the pulse narrows or widens depending on the value of the wave speed
carrying it. These latter three cases correspond to energy dissipation, as ⌘c < 0,
which we will illustrate in more detail in the next section.

We again compute the error in the discrete H-norm, this time at t = 2. Results
are given in Figure 9 for the four cases of wave speeds. Constant wave speeds
(case 1) and smoothly linearly varying wave speeds (case 2) yield the standard
convergence results. As in the scalar case, wave speeds with a(x), b(x) 2 C

0\C1

(case 3) and a(x), b(x) /2 C
0 (case 4) reveal convergence rates reduced to 2 and 1,

respectively.
Figure 9 also reveals that for smooth coe�cients (cases 1 and 2), the error is

reduced when increasing p. However, for large N and wave speeds a(x), b(x) 2
C

0\C1 (case 3), the error is reduced when increasing p from 2 to 3 to 4, but
there is no decrease with p = 5. With a(x), b(x) /2 C

0 (case 4), there is some
gain in increasing p from 2 to 3, but not to 4 or 5. In summary, as found in the
scalar case the higher order methods are still accurate when wave speeds contain
discontinuities and do no worse than the lower order methods except that higher-
order methods come at a greater computational cost due to the wider stencil
present and smaller time step requirements.

Theoretical convergence rates can be reinstated as in the scalar case if interfaces
are placed where the wave speeds are not smooth (i.e. at x = 1/2). The details for
incorporating an interface are given in Appendix B.

3.5 Comparing continuous and discrete spectra

Next we compute the discrete spectrum for the semi-discrete equations with and
without an interface. For the equations without an interface, for example, we re-
write (65) as

Yt �DhY = 0, (73)

where YT = [uT vT ] and

Dh =


Ma 0
0 Mb

�
+


H�1 0
0 H�1

�
S,

for

Ma = �1
2
[AD+DA] +

1
2
diag(Da), (74)

Mb =
1
2
[BD+DB]� 1

2
diag(Db), (75)

and penalty matrix S (of size 2N⇥2N), a matrix of all zeros except with �L in the
(1, 1) position, �↵�L in the (1, N) position, ���R in the (2N,N) position, and �R
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in the (2N, 2N) position. The eigenvalues of Dh thus constitute the spectrum of
the discrete operator. The discrete spectrum for the semi-discrete equations with
an interface, given in (97), can be computed similarly.

We are interested in how well the discrete spectrum approximates that of
the continuous operator, when ⌘c lies in di↵erent regions of the complex plane.
Specifically, we want to explore in which cases dissipative strict stability is obtained.
A strictly stable method is one for which the growth/decay rate of the discrete
scheme converges to the growth/decay rate of the continuous problem [16]. This
is important for long-time calculations so that high frequency errors do not grow
and destroy the accuracy, see [16] for more details. We say it is of dissipative type
if the eigenvalues of discrete operator converge to the continuous ones from the left
hand side. Convergence from the left is important since our discretization should
not allow for growth at a rate faster than that predicted by the physical problem.

We consider four cases of linearly-varying wave speeds corresponding to either
⌘c = 0, ⌘c < 0, or ⌘c > 0. As an initial study we consider constant wave speeds
a(x) = b(x) = 1 (corresponding to ⌘c = 0) and refer to this as case 1 throughout
this section. In Figure 10(a) we plot the continuous spectrum sn in blue stars,
along with the discrete spectra for p = 3 and di↵erent numbers of grid points
N . Increasing N shows convergence to the continuous spectrum from the left, an
indication of dissipative strict stability.

Next, we consider linearly varying wave speeds with ⌘c = 0, with case 2 refer-
ring to a(x) = b(x) = 1� ✏x, case 3 referring to

a(x) = b(x) =

(
1� ✏x if 0  x < 1/2

1� ✏/2 if 1/2  x  1
, (76)

and case 4 referring to

a(x) = b(x) =

(
1 if 0  x < 1/2

1� ✏/2 if 1/2  x  1
. (77)

We again plot the continuous and discrete spectra for increasing N and ✏ = 0.8,
shown in Figures 10(b) - 10(d). This time, wave speeds a(x), b(x) 2 C

1 (case 2)
and with a discontinuous derivative (case 3) reveal convergence from the left. A
discontinuous wave speed (case 4) results in discrete eigenvalues that have posi-
tive real parts, indicating that dissipative strict stability is not obtained. Because
⌘c = 0, this in fact corresponds to an instability. Note that energy estimate (40)
does not apply for discontinuous coe�cients, thus there is no (or a very weak) the-
oretical bound and instabilities cannot be ruled out. The eigenvalues that lie to the
right of the imaginary axis in Figure 10(d) correspond to unstable modes that are
associated with poorly resolved eigenfunctions. While not explored in the present
study, a su�cient amount of artificial dissipation could be added to the scheme to
push these unstable modes to the left half-plane and stabilize the scheme.

Next we consider the non-constant, linearly varying wave speeds with ⌘c < 0,
defined in section 3.4 (cases 2-4), again with ✏ = 0.8. Figure 11 shows continuous
and discrete spectra for wave speeds a(x), b(x) 2 C

1 (case 2) and convergence
from the left is observed. Figures 11(b) and 11(c) show similar plots for a(x), b(x) 2
C

0\C1 (case 3) and a(x), b(x) /2 C
0 (case 4), respectively. The discrete spectrum

for both of these cases lies in the left half plane (an indication of stability), however,
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Fig. 10: Continuous spectrum (plotted in blue stars) for linearly varying wave
speeds corresponding to ⌘c = 0. Discrete spectra also shown, for increasing N ,
for a(x), b(x) (a) constant (case 1), (b) 2 C

1 (case 2), (c) 2 C
0\C1 (case 3)

and (d) /2 C
0 (case 4).

some are to the right of the continuous, indicating that dissipative strict stability
is no longer obtained.

As a final study, we consider linearly varying wave speeds with ⌘c > 0, with
case 2 now referring to a(x) = 1 + ✏x, b(x) = 1� ✏x, case 3 referring to

a(x) =

(
1 + ✏x if 0  x < 1/2

1 + ✏/2 if 1/2  x  1
, (78a)

b(x) =

(
1� ✏x if 0  x < 1/2

1� ✏/2 if 1/2  x  1
, (78b)
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Fig. 11: Continuous spectrum (plotted in blue stars) for linearly varying wave
speeds corresponding to ⌘c < 0. Discrete spectra also shown, for increasing N ,
for a(x), b(x) (a) 2 C

1 (case 2), (b) 2 C
0\C1 (case 3) and (c) /2 C

0 (case 4).

and case 4 referring to

a(x) =

(
1 if 0  x < 1/2

1 + ✏/2 if 1/2  x  1
, (79a)

b(x) =

(
1 if 0  x < 1/2

1� ✏/2 if 1/2  x  1
. (79b)

In Figure 12 we plot the continuous and discrete spectra for these cases, again with
✏ = 0.8. Figures 12(a)-12(b) reveal discrete spectra converging to the continuous
from the left for a wave speed in C

1 (case 2) and for a wave speed in C
0\C1.

Figure 12(c), however, reveals that for wave speeds with a jump discontinuity
(case 4) there exist discrete eigenvalues with real parts that lie to the right of the
continuous.

In Figure 13 we plot the continuous and discrete spectra after introducing
an interface at x = 1/2, for the cases where dissipative strict stability was not
obtained. For ⌘c = 0 and ⌘c > 0 corresponding to a wave speed with a jump
discontinuity, Figures 13(a) and 13(d) illustrate that dissipative strict stability
can be recovered by including an interface. For ⌘c < 0, however, some of the
discrete eigenvalues still lie to the right of the continuous spectrum, as observed
in Figures 13(b)-13(c). A similar result has been found for the scalar case, where
dissipative strict stability is not obtained for discontinuous wave speeds even when
including an interface, see [13].

3.6 Energy growth and decay

In this section we study growth rates of the exact and numerical solutions in the
time domain and compare them with theoretical prediction from the continuous
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spectrum. Note that in this section we consider discretizations that do not include
an interface where wave speeds are non-smooth. We compute the time series of
the energy (the squared H-norm of the numerical solution), namely,

E(t) = ||u||2H + ||v||2H, (80)

with initial conditions given by (71). In Figures 14 - 16 we plot the energy E(t)
for the exact (in solid blue) and the numerical solution (in red), with N = 29 + 1
grid points, and interior order of accuracy p = 3. We also plot (in dashed green)
the right hand side of the semi-discrete energy estimate (66), letting

r(t) = (u,UDa)H � (v,VDb)H + yT
0 M0y0 + yT

NMNyN (81)

denote the energy decay rate, i.e. Ė = r(t). We consider the four cases of wave
speeds given in the previous section, corresponding to ⌘c = 0, ⌘c < 0 and ⌘c > 0.
In all figures we also plot (in black circles) a theoretical measure of growth given
by ||f ||2e2⌘ct (i.e. the exponential growth/decay of the squared-norm of the initial
data as predicted by the continuous spectrum).

Figure 14(a) shows the time series for the constant coe�cient case, where
⌘c = 0, for 0  t  10. The energy E(t) corresponding to the exact solution
neither grows nor decays, as predicted by the spectrum as well as the energy
estimate (40). That the energy corresponding to the numerical solution does not
grow is evidence of stability of the numerical discretization as illustrated by the
corresponding discrete spectrum in Figure 10(a). Figures 14(b)-14(d) show the
temporal evolution for the three cases of non-constant wave speeds corresponding
to ⌘c = 0. There is no exponential growth or decay, simply oscillatory motion
predicted by purely imaginary eigenvalues. Note that the energy decay rate r(t)
(in dashed green) is non-zero, as would be expected by non-constant a(x), b(x),
and corresponds to the time derivative of E(t).

Figure 15 shows the temporal evolution for the three cases of non-constant
wave speeds corresponding to ⌘c < 0 and those corresponding to ⌘c > 0, and we
see a good match between the decay/growth of the exact and numerical energies as
compared to theoretical rate, at least on the time interval 0  t  10. The lack of
dissipative strict stability is primarily an issue for long-time simulations for which
small di↵erences in exact and numerical growth rates can destroy the accuracy
of the approximation, see [16]. For ⌘c = 0, a loss of dissipative strict stability
implies, even more importantly, a loss of numerical stability. The spectra plotted
in Figure 10(d), for example, shows this loss of stability for a discontinuous wave
speed corresponding to ⌘c = 0 where discrete eigenvalues cross the imaginary axis.
The long-time series (0  t  3000) for this case is plotted in Figure 16, where
exponential growth of the energy of the numerical solution is clearly observed.

4 Conclusions

We have investigated high-order-accurate, skew-symmetric SBP-SAT methods for
hyperbolic problems with non-smooth variable coe�cients. These skew-symmetric
methods are based on a splitting that assumes that the variable coe�cients are
di↵erentiable everywhere. However, when the coe�cients are piecewise continuous
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and discontinuous, the splitting is no longer justified. In this case, it is not un-
derstood what the consequences are in terms of accuracy and stability. To begin
addressing this question, we have derived analytic solutions to the scalar and vector
advection equation with spatially-variable wave speeds and used these to compute
convergence rates of numerical solutions when considering piecewise linear wave
speeds that are non-smooth in some cases. Smooth wave speeds show convergence
at the theoretically predicted rates for formal order of accuracy p = 2, 3, 4, 5, while
wave speeds in C

0\C1 reveal a reduction to second-order convergence for all p con-
sidered. Wave speeds with a jump discontinuity reveal a reduction to first order
convergence for all p considered. We showed however, that theoretical convergence
rates can be recovered by including an interface where wave speeds are not smooth.

We computed the spectrum of the di↵erential operator for the vector equation
and compared it with that of the discrete operator. For wave speeds that gener-
ate continuous eigenvalues with negative real part, the skew-symmetric SBP-SAT
method is stable for all wave speeds considered. However, for non-smooth wave
speeds, some eigenvalues of the discrete operator lie to the right of the continu-
ous spectrum, even with an interface present, an indication that dissipative strict
stability is not achieved. For wave speeds corresponding to purely imaginary eigen-
values, stability is obtained for smooth wave speeds and continuous wave speeds
with a discontinuous derivative. Wave speeds with jump discontinuity, however,
generate discrete eigenvalues with positive real part, an indication of an instability.
Stability is recovered in this case, however, if an interface is included where the
wave speed is not smooth. For wave speeds corresponding to eigenvalues of the
continuous operator with positive real part, the discrete spectrum converges from
the left to the continuous spectrum for smooth coe�cients and for that with a dis-
continuous derivative. For the discontinuous wave speeds we considered, however,
we again observe discrete eigenvalues that lie to the right of the continuous spec-
trum, indicating a numerical growth rate that is faster than that dictated by the
continuous problem. This issue is mitigated by incorporating an interface where
the wave speeds are not smooth.

We have considered piecewise linear wave speeds with di↵erent smoothness
conditions, and reported on convergence rates of numerical solutions and discrete
spectra. If the wave speeds are not smooth we found that convergence rates for
high-order accurate methods drop significantly, and (for large N) the overall error
remains constant with increasing order of accuracy p. The higher-order methods
in this case o↵er no added benefit and would be more computationally expensive
than the lower order methods due to the larger stencil (and smaller time-step
required). We also found that smooth, linear wave speeds as well as continuous,
linear wave speeds with a discontinuous derivative correspond to methods with
dissipative strict stability. Without any special treatment, such as including an
interface, discontinuous wave speeds can lead to instabilities. Finally, our results
suggest the need for a theory on how well the discrete spectrum approximates the
continuous one for general wave speeds, if they are to be used to understand the
stability of more general physical problems.
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A Detailed analytic solutions

Below we provide detailed analytic solutions for the scalar and vector equations considered.
The code for computing these is available online at https://github.com/brittany-erickson/
analytic_wave/.

https://github.com/brittany-erickson/analytic_wave/
https://github.com/brittany-erickson/analytic_wave/
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Fig. 15: Time series of energy E(t) and energy decay rate r(t) for ⌘c < 0, with
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A.1 Analytic solution to the scalar equation

The scalar equation (1) has analytic solution given by (14) which requires the calculation of
Ia(x) and ⇠(t, x) given by (2), (15), respectively. These are provided below for the four cases
of wave speeds considered in section 2.3.
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For case 1,

Ia(x) = x, (82a)

⇠(t, x) = x� t. (82b)

For case 2,

Ia(x) =
1

✏
ln |1 + ✏x| (83a)

⇠(t, x) =
1

✏

⇥
e
�✏t(1 + ✏x)� 1

⇤
. (83b)

For case 3,

Ia(x) =xH(x0 � x) +

✓
x0 +

1

✏
ln |1� ✏x0 + ✏x|

◆
H(x� x0), (84a)

⇠(t, x) =d1(t, x)H(x0 � x)H(x0 � d1(t, x))+

d2(t, x)H(x� x0)H(x0 � d2(t, x))+

d3(t, x)H(x� x0)H(d3(t, x)� x0), (84b)

where

d1(t, x) = x� t, (85a)

d2(t, x) = x0 +
1

✏
ln |1� ✏x0 + ✏x|� t, (85b)

d3(t, x) =
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For case 4,
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⇠(t, x) =d4(t, x)H(x0 � x)H(x0 � d4(t, x))+

d5(t, x)H(x� x0)H(x0 � d5(t, x))+
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where

d4(t, x) = x� t, (87a)

d5(t, x) = x0 +
x� x0

1 + ✏x0
� t, (87b)

d6(t, x) = x� t(1 + ✏x0). (87c)
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A.2 Analytic solution to the vector equation

The vector equation (37) with initial/boundary conditions given by (38)-(39) has analytic
solution given by (55) which requires the calculation of Ia(x), Ib(x) and three characteristic
variables ⇠(t, x),!n(t, x) and �n given by (2) and (56) respectively. These are provided below
for the four cases of wave speeds considered in section 3.4.

For case 1,

Ia(x) = x, (88a)

Ib(x) = x, (88b)

⇠(t, x) = x� t, (88c)

!n(t, x) = x+ tn � t, (88d)

�n(t, x) = �x+ tn � t. (88e)

For case 2,
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k11(t, x)H(x� x0)H(k11(t, x)� x0), (92e)

where

k6(t, x) = x0 +
x� x0

1� ✏x0
� t, (93a)

k7(t, x) = x� (1� ✏x0)t, (93b)

k8(t, x) = x+ tn � t, (93c)

k9(t, x) = x0 + (1� ✏x0)(x� x0 + tn � t), (93d)

k10(t, x) = �x0 �
x� x0

1 + ✏x0
+ tn � t, (93e)

k11(t, x) = x0 + (1� ✏x0)

✓
�1�

x� x0

1 + ✏x0
+ tn � t

◆
. (93f)

B Including an interface

By placing an interface at x = 1/2, the vector equation (37) becomes

u
L
t + a

L(x)uL
x = 0, (94a)

v
L
t � b

L(x)vLx = 0, (94b)

u
L(t, 0) = ↵v

L(t, 0), (94c)

v
L(t, 1/2) = v

R(t, 1/2), (94d)

u
L(0, x) = f

L(x), (94e)

v
L(0, x) = 0 (94f)
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and

u
R
t + a

R(x)uR
x = 0, (95a)

v
R
t � b

R(x)vRx = 0, (95b)

v
R(t, 1) = �u

R(t, 1), (95c)

u
R(t, 1/2) = u

L(t, 1/2), (95d)

u
R(0, x) = f

R(x), (95e)

v
R(0, x) = 0, (95f)

where ↵ =
p

bL(0)/aL(0), � =
p

aR(1)/bR(1). The energy method applied to (94)-(95) yields

d
�
||uL||22 + ||vL||22 + ||uR||22 + ||vR||22

�

dt
=

h
a
R(1/2)� a

L(1/2)
i
u
L(t, 0.5)2

�
h
b
R(1/2)� b

L(1/2)
i
v
R(t, 1/2)2+

+

ˆ 1/2

0
a
L
x (u

L)2 � b
L
x (v

L)2dx

+

ˆ 1

1/2
a
R
x (uR)2 � b

R
x (vR)2dx (96)

and again we note that the first two terms on the right of (96) are zero if the wave speeds are
continuous across the interface.

The discrete equations are given by

u
L
t +

1

2

h
A

L
D+DA

L
i
u
L �

1

2
U

L
Da

L = �1H
�1(uL

0 � ↵v
L
0 )e0

+ �2H
�1(uL

N � u
R
0 )eN (97a)

v
L
t �

1

2

h
B

L
D+DB

L
i
v
L +

1

2
V

L
Db

L = �3H
�1(vLN � v

R
0 )eN , (97b)

u
R
t +

1

2

h
A

R
D+DA

R
i
u
R �

1

2
U

R
Da

R = �4H
�1(uR

0 � u
L
N )e0 (97c)

v
R
t �

1

2

h
B

R
D+DB

R
i
v
R +

1

2
V

R
Db

R = �5H
�1(vR0 � v

L
N )e0

+ �6H
�1(vRN � �u

R
N )eN . (97d)

A discrete energy estimate can be obtained as in previous sections, yielding

d
�
||uL||2

H
+ ||vL||2

H
+ ||uR||2

H
+ ||vR||2

H

�

dt
= (uL

,U
L
Da

L)H + (vL
,V

L
Db

L)H

+ (uR
,U

R
Da

R)H + (vR
,V

R
Db

R)H

+
⇣
a
R
0 � a

L
N

⌘
(uL

N )2

�
⇣
b
R
0 � b

L
N

⌘
(vR0 )2

+ y0
T
M0y0 + yN

T
MNyN

+ y1
T
M1y1 + y2

T
M2y2 (98)

where matrices

M0 =


a
L
0 + 2�1 �↵�1

�↵�1 �b
L
0

�
, MN =


�a

R
N ���6

���6 2�6 + b
R
N

�
, (99a)

M1 =


�a

R
0 + 2�2 ��2 � �4

��2 � �4 a
R
0 + 2�4

�
, M2 =


b
L
N + 2�3 ��3 � �5

��3 � �5 �b
L
N + 2�5

�
(99b)
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and vectors y
T
0 = [uL

0 v
L
0 ],yT

N = [uR
N v

R
N ],yT

1 = [uL
N u

R
0 ],yT

2 = [vLN v
R
0 ]. The semi-

discrete estimate (98) mimics the continuous estimate (96), with some additional dissipation
if the matrices (99) are negative semi-definite. This can be accomplished by choosing for the
boundary SAT terms �1 = �a

L
0 ,�6 = �b

R
N , and interface penalties corresponding to full

upwinding, namely �2 = �5 = 0, �3 = �b
L
N ,�4 = �a

R
0 .
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