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Abstract

Solid or deformable particles suspended in a viscous fluid are of scientific and
technological interest in a broad range of applications. Pyroclastic flows from
volcanoes, sedimentation flows in river bed, food industries, oil-well drilling,
as well as blood flow in the human body and the motion of suspended micro-
organisms in water (like plankton) are among the possible examples. Often,
in these particulate flows, the carrier fluid might exhibit an inelastic or a
visco-elastic non-Newtonian behavior. Understanding the behavior of these
suspensions is a very difficult task. Indeed, the complexities and challenges of
multiphase flows are mainly due to the large number of governing parameters
such as the physical properties of the particles (e.g., shape, size, stiffness,
density difference with suspended fluid, solid volume fraction), the large set of
interactions among particles and the properties of the carrier fluid (Newtonian or
non-Newtonian); variations of each of these parameters may provide substantial
quantitative and qualitative changes in the behavior of the suspension and
affect the overall dynamics in several and sometimes surprising ways. The aim
of this work is therefore to provide a deeper understanding of the behavior
of particle suspensions in laminar Newtonian and non-Newtonian (inelastic
and/or visco-elastic) fluid flows for a wide range of different parameters. To
this purpose, particle-resolved direct numerical simulations of spherical particles
are performed, using an efficient and accurate numerical tool. The code is
based on the Immersed Boundary Method (IBM) for the fluid-solid interactions
with lubrication, friction and collision models for the close range particle-
particle (particle-wall) interactions. Both inelastic (Carreau and power-law),
and visco-elastic models (Oldroyd-B and Giesekus) are employed to investigate
separately the shear-thinning, shear-thickening, viscoelastic and combined shear-
thinning visco-elastic features of the most commonly encountered non-Newtonian
fluids. Moreover, a fully Eulerian numerical algorithm based on the one-
continuum formulation is used to examine the case of an hyper-elastic neo-
Hookean deformable particle suspended in a Newtonian flows.

Firstly, we have investigated suspensions of solid spheres in Newtonian, shear
thinning and shear thickening fluids in the simple shear flow created by two walls
moving in opposite directions, considering various solid volume fractions and
particle Reynolds numbers, thus including inertial effects. The results show that
that the non-dimensional relative viscosity of of the suspension and the mean
value of the local shear-rate can be well predicted by homogenization theory,
more accurately for lower particle concentrations. Moreover, we show that in
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the presence of inertia, the effective viscosity of these suspensions deviates from
that of Stokesian suspensions.

We also examine the role of fluid elasticity, shear-thinning and combined
shear-thinning visco-elastic effects on the simple linear Couette shear flow
of neutrally-buoyant rigid spherical particles. It is found that the effective
viscosity grows monotonically with the solid volume fraction and that all the
Non-Newtonian cases exhibit a lower effective viscosity than the Newtonian
ones; in addition, we show that elastic effects dominate at low elasticity whereas
shear thinning is predominant at high applied shear rates. These variations in
the effective viscosity are mainly due to changes in the particle-induced shear
stress component.

We then study the settling of spherical particles in quiescent wall-bounded
Newtonian and shear-thinning fluids at three different solid volume fractions.
We find that the mean settling velocities decrease with the particle concentration
as a consequence of the hindering effect and that the mean settling speed is
always larger in the shear thinning fluid than in the Newtonian one, due to the
reduction of the local fluid viscosity around the particles which leads to a lower
drag force acting on the particles.

Finally, the inertial migration of hyper-elastic deformable particle in laminar
pipe flows is also investigated. We consider different flow rates and various levels
of particle elasticity. We observe that the particle deforms and experiences a
lateral movement while traveling downstream through the pipe, always finding
a stable position at the pipe centerline.

Key words: inertial suspensions, rheology, non-Newtonian fluids, visco-elastic,
sedimentation, deformable particle, hyper-elastic.
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Numerisk studie av partikelsuspensioner i Newtonska och
icke-Newtonska vétskor

Dhiya Abdulhussain Alghalibi

Linné FLOW Centre, KTH Mekanik, Kungliga Tekniska Hogskolan
SE-100 44 Stockholm, Sverige.

Sammanfattning

Suspensioner av solida eller deformerbara partiklar i viskosa vitskor &r av
vetenskapligt och teknologiskt intresse for ett stort spann av applikationer.
Nagra typiska exempel inkluderar pyroklastiska fléden fran vulkaner, sedimente-
rande fléden i flodbaddar, livsmedelsindustrin, oljebrunnsborrning, blodflédet i
minniskokroppen samt rorelsen hos mikroorganismer (till exempel plankton)
i havet. I dessa partikelfloden kan den barande vitskan ha ett icke-elastiskt
eller viskoelastiskt icke-Newtonskt beteende. Att forsta beteendet hos dessa
suspensioner dr en mycket svar uppgift. Komplexiteten hos, och utmaningen
med, multifasfléden beror till storsta delen pa det stora antal styrande para-
metrar. Dessa inkluderar de fysikaliska partikelegenskaperna (till exempel form,
storlek, styvhet, densitetsskillnad mot det birande mediet samt volymfraktion),
den stora méangden interaktioner mellan partiklarna samt egenskaperna hos
den birande fluiden (Newtonsk eller icke-Newtonsk). Variationer i vardera av
dessa parametrar kan leda till stora kvantitativa och kvalitativa forandringar
i suspensionens beteende och kan paverka den overgripande dynamiken pa
manga, ibland 6verraskande, séitt. Malet med denna avhandling &r déarfor att ge
en djupare forstaelse av partikelsuspensioner i laminéra, Newtonska och icke-
Newtonska (icke-elastiska och/eller visko-elasiska), floden for ett stort spann av
parametrar. For detta anvinds ett effektivt och precist simuleringsverktyg som
tillater partikelupplosta, numeriska simuleringar av sfiriska partiklar. Koden &r
baserad pa Immersed boundary-metodiken (IBM) for fluid-strukturinteraktion
med lubrikations-, friktions- och kollisionsmodeller fér partikel-partikel- och
partikel-vigginteraktioner. Bade icke-elastiska (Carreau och power-law) och
viskoelastiska (Oldroyd-B och Giesekus) modeller betraktades for att, i isole-
ring, undersoka effekterna av skjuvfortunnande, skjuvfortjockande, viskoelasti-
citet samt kombinationen av skjuvfortunning och viskoelastik, vilka vanligen
férekommer hos icke-Newtonska fluider. Darutéver anvéndes en Eulerisk nume-
risk algoritm baserad pa en en-kontinuumformulering for att undersocka fallet
med en hyperelastisk, neo-Hookisk och deformerbar partikel i en Newtonsk
vétska.

Till att borja med undersoks suspensioner av solida sfiarer i Netwonska,
skjuvfértunnande samt skjuvfoértjockande fluider i ett skjuvflode genererat mel-
lan tva viggar som ror sig i motsatt riktning. Varierande volymfraktioner (av
partiklar) och partikel-Reynoldstal (dvs inkluderande av fluidtroghet) betraktas.
Resultaten visar att den dimensionslosa relativa viskositeten hos suspensionen
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och medelvirdet av den lokala skjuvhastigheten kan vil forutségas av homoge-
niseringsteori, speciellt tillforlitligt vid laga partikelkoncentrationer. Darutéver
visas att den effektiva viskositeten hos dessa suspensioner avviker fran suspen-
sioner i Stokesflode nér flodestroghet inkluderas.

Dérutover undersoktes rollen hos elasticitet, skjuvfértunnande samt kom-
binerad skjuvfortunnande och viskoelasticitet i det barande mediet pa ett
linjért Couetteflode med densitetsmatchade, rigida och sfiriska partiklar. Den
effektiva viskositeten vixer monotont med partikelvolymfraktionen och alla
icke-Newtonska fall uppvisar en lagre effektiv viskositet &n de motsvarande
Newtonska fallen. Det visas dven att elastiska effekter dominerar vid lag elas-
ticitet medan skjuvfértunnande effekter dominerar vid hoga skjuvhastigheter.
Dessa variationer i effektiv viskositet beror frimst pa forandringar i den parti-
kelinducerade komponenten av skjuvspanningen.

Efter detta studeras sedimentering av sfiriska partiklar i ett stillastaende
flode mellan tva viggar. Bade Newtonska och skjuvfértunnande vétskor be-
traktas vid tre olika partikelvolymfraktioner. Det visas att medelvirdet av
sedimenteringshastigheten minskar med partikelkoncentration pa grund av den
hindrande effekten av omgivande partiklar. Darutéver dr medelsedimentations-
hastigheten alltid storre i en skjuvfortunnande dn en Newtonsk vitska pa grund
av reduktionen i lokal fluidviskositet runt partiklarna, vilket leder till en lagre
motstandskraft.

Slutligen undersotks dven troghetsinducerad migration av hyperelastiska
och deformerbara partiklar i ett laminért rorflode. Olika floden och nivaer
av elasticitet hos partikeln betraktas. Partikeldeformation och lateral rorelse
observeras for partiklarna nér de ror sig nedstroms langs roret, vilket leder till
att partiklarna alltid finner en stabil position vid rérets centerlinje.

Nyckelord: tréghetsbehiftad suspension, reologi, icke-Newtonska fluider, vis-
koelastik, sedimentering, deformerbara partiklar, hyperelastik.

viii



Preface

This PhD thesis deals with the numerical study of the behavior of finite-size
particle suspensions in Newtonian and non-Newtonian fluids in different flow
cases. A brief introduction on the involved physics and methods is presented in
the first part. The second part contains four articles. The papers are adjusted
to comply with the present thesis format for consistency, but their contents
have not been altered as compared with their original counterparts.

Paper 1. D. ALGHALIBI, I. LASHGARI, S. HORMOZI AND L. BRANDT ,

2018. Interface-resolved simulations of particle suspensions in Newtonian, shear
thinning and shear thickening carrier fluids. J. Fluid Mech. 852, 329-357.

Paper 2. D. ArgHALIBI, M. E. RosTI AND L. BRANDT, 2019. Interface-

resolved simulations of particle suspensions in visco-elastic carrier fluids. Sub-
mitted to J. Fluid Mech..

Paper 3. D. ALGHALIBI, W. FORNARI, M. E. RosTI AND L. BRANDT, 2019.
Sedimentation of finite-size particles in quiescent wall-bounded shear-thinning
and Newtonian fluids. International Journal of Multiphase Flow, under first
review.

Paper 4. D. AvGgHALIBI, M. E. RosTi AND L. BRANDT, 2019. Inertial
migration of a deformable particle in pipe flow. Physical Review Fluids 4 (10),
104201.

December 2019, Stockholm
Dhiya Abdulhussain Alghalibi
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Overview and summary






CHAPTER 1

Introduction

Suspensions of solid/deformable particles in fluids are found almost everywhere
in our lives from natural and geophysical to biological and industrial flows.
Environmental phenomena cover pyroclastic flows from volcanoes, avalanches,
sedimentation flows in river bed, dust storms, cloud and planetary flows as well
as different biological flows such as blood cells flow in vessel, and the motion of
suspended micro-organisms in water (e.g. plankton). Particle suspensions also
occur in various industrial applications including food industries, particulate
flows in fluidized beds, slurry transportation, oil-well drilling and pulp fibers in
paper making (see figure 1.1). Often, in these particulate flows, the carrier fluid
might exhibit non-Newtonian behaviors where the relation between the applied
shear stress and shear-rate in the flow is no longer linear and instantaneous,
opposite to the behavior of the Newtonian fluids, and the governing equations
of the flow motion are more sophisticated as they account for these differences.
This wide range of applications motivates many scientists to study the behavior
of the complex flows from both microscopic and macroscopic point of views to
advance our knowledge about these flows.

Non-Newtonian fluids may display numerous peculiar behaviors, such as
shear-thinning, shear-thickening, elasticity and memory effects under different
conditions. Shear-thinning and shear-thickening fluids show an apparent viscos-
ity which decreases and increases with the applied shear rate. Elastic effects
characterize the trend of the complex structures to relax back to their original
configurations after being stretched by the flow. Memory effect has a close
link to the fluid elasticity, but also to the short-range interactions among the
particles defining the microstructure. The flow may remember the history of its
past deformation over a duration specified by the relaxation time.

Differently from a single phase flow where, for example, the pressure drop
can be precisely predicted as a function of the Reynolds number, Re, which is
defined as the ratio between inertial to viscous effects of the flow (Pope 2000)
and of the wall surface properties such as roughness and permeability (Orlandi
& Leonardi 2008; Rosti et al. 2018b), it is still complicated to estimate the
force needed to drive suspensions in spite of the numerous studies that have
exposed various complex features of suspension flows, the origin of many of
which are not yet fully understood (see Stickel & Powell 2005). The complexities
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Figure 1.1: Examples of particle laden flows (a) Pyroclastic flows from
the Sinabung volcano, Indonesia, 2017 (source: www.volcanodiscovery.com);
(b) a giant dust storm ready to engulf Gilbert, Arizona, a suburb of
Phoenix, 2018 (source: epod.usra.edu); (c) lipid and red blood cells flowing
through vessels (source: finance.yahoo.com); (d) slurry transportation (source:
www.rdi.uwa.edu.au).

and challenges of multiphase flows are mainly due to the numerous additional
parameters such as the physical properties of the particles (e.g., shape, size,
stiffness, density difference with suspended fluid, solid volume fraction), the large
set of interactions among particles (e.g., hydrodynamic, contact, inter-particle
forces) and the properties of the carrier fluid (Newtonian or non-Newtonian);
variations of each of these parameters may provide substantial quantitative
and qualitative changes in the behavior of the suspension and affect the overall
dynamics in several and sometimes surprising ways (Mewis & Wagner 2012).
This makes the problem of particle suspension multidimensional. From a
mathematical point of view, the complexity in dealing with these suspensions
arises from the fact that it is necessary to solve the governing equations of
the carrier fluid (continuum) phase, often the Cauchy or Navier-Stokes and
continuity equations, with those of the dispersed (particle) phase as well as
appropriate boundary conditions on the surface of each particle (the interface
between the two phases).
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In the following paragraphs, a general introduction about particles dispersed
in a viscous fluid flows is presented to provide the reader with a brief idea of
the broad range of applications of particulate flows and about the complexity
of the problem.

Particles dispersed in simple shear flows

Starting from the simpler case of particles dispersed in a viscous fluid, the
macroscopic behavior of mono-disperse rigid neutrally-buoyant spherical particle
suspensions in a Newtonian carrier fluid has been the object of many previous
studies, the main objective being the the measurement of the suspension shear
viscosity (effective viscosity). The bulk stress of the particle suspensions is
affected by the particle stresslet (i.e., the stress from the particle that resists the
flow deformation Batchelor 1970). Thus, the effective viscosity primarily depends
on the volume fraction of the dispersed phase, ®, more so in the Stokesian
regime when the inertial effects are negligible, i.e., Re, = pfﬁa2 /i — 0 (where
py is the fluid density, + the flow shear rate, a the particle radius and p the fluid
viscosity). In inertial suspension inertia plays a role not only at bulk level but
also at the particle scale and the particle Reynolds number, Re,, is non-zero.
Note that in our study, we have suspensions made out of larger particles (a > 10
pm); i.e. the suspensions are non-colloidal and Brownian motion does not affect
the particle motion. This condition occurs in many applications, such as slurry
transport, where the typical particle size is between (100-1000 pm) much larger
than the size of the colloidal particles, which is about 1 um (Jeffrey & Acrivos
1976).

In the Stokesian regime, the movement of an isolated particle is typically
fully reversible and there is a linear relationship between the particle velocity
and the drag force acting on it. It is noteworthy to mention that irreversible
dynamics is found in suspensions, due to the combined effects of interactions
among particles such as non-hydrodynamic (e.g., collisions, roughness) and
hydrodynamic interactions (Guazzelli & Morris 2011a). If the concentration
is low, the suspension is dilute, the stresslet is almost the same for each
particle additive, which means that the bulk stress increases linearly with
the volume fraction. In this case, the suspension shear viscosity follows the
linear formulation first suggested by Einstein (1906, 1911) pery = p (1 + 2.5®)
where interactions between particles are neglected; at higher concentration the
quadratic formulation by Batchelor (1977) pery = p (1 +2.5® + 6.95®7) is a
good approximation because reciprocal interactions of particle are included. As
the particle concentration increases, the behavior of the suspensions becomes
more complex due to the multi-body and short-range interactions and the
effective viscosity can no longer be predicted with analytical methods, and
empirical fits are commonly used; these are obtained in the form of an increasing
function of the volume fraction diverging at the maximum packing fraction, such
as those by Eilers and Krigher & Dougherty (see for more details the review by
Stickel & Powell 2005). The usual empirical fits are no longer valid if inertia
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at the scale of particles becomes important (i.e., when the particle Reynolds
number Re, is finite), and the rheological observables may significantly vary
from those in the Stokesian regime, i.e. the relation between drag force and
velocity becomes nonlinear for an isolated particle, (see for example, the recent
numerical studies by Kulkarni & Morris 2008a; Picano et al. 2013; Yeo & Maxey
2013). In particular, the study of Picano et al. (2013) shows that the inertia
affects the suspension microstructure, resulting in an enhancement of effective
shear viscosity. As Re, increases, the pair distribution function, quantifying the
particle relative position during flow, becomes more anisotropic, almost zero on
the rear of the particles, effectively reproducing additional excluded volumes.
This anisotrpy increases the effective solid volume fraction, and consequently,
the effective shear viscosity. Taking into account this excluded volume effect
(which depends on both ® and Re,), Picano et al. (2013) scaled the effective
shear viscosity in presence of small inertia to that of Stokesian suspensions.
The behavior of suspensions is even more complex when the carrier fluid
is non-Newtonian, such as generalized Newtonian (when the viscosity is a
complex function of the applied shear, yet the response instantaneous) or visco-
elastic fluids. Only a few studies have been devoted to non-colloidal particles
suspended in non-Newtonian fluids, attempting to address the bulk rheology
from a continuum-level closure perspective. These studies mainly focus on non-
inertial suspensions with few exceptions (see for example the work by Hormozi
& Frigaard (2017)). When the carrier fluid is visco-elastic, as upon addition of
polymers, the resulting stresses are altered by two main mechanisms: (i) the
surface traction change, hence the stresslet contribution may also change and (i)
the solid phae induces additional fluid stress because of the polymers stretching
in the gradients of flow induced by the particles (Yang et al. 2016). This can
lead to unexpected behaviors, such as particle alignment during sedimentation
(Joseph et al. 1994) or chain formation during shear flow (Michele et al. 1977;
Lyon et al. 2001; Scirocco et al. 2004). So far, only few numerical studies
have focused on particle suspensions in visco-elastic fluids, focussing on the
dilute regime (Yang et al. 2016; Yang & Shaqgfeh 2018b,a). To the best of
our knowledge, no other 3D numerical simulations of the rheology of particle
suspensions in visco-elastic fluids exist in literature which explored a wider
range of particle concentrations, polymer relaxation time and applied shear-rate.

Sedimentation

Concerning the settling of particles under the action of gravity in a narrow
channel, the sedimentation of an isolated spherical and non-spherical particle
through Newtonian and non-Newtonian fluids has been extensively examined
in the past, (see for example the references Clift et al. 2005; Chhabra 2006).
The earliest investigations of the sedimentation focussed however on a single
rigid sphere in an unbounded quiescent Newtonian fluid, considered Stokes
flow, where the particle terminal velocity is linked to the particle radius, the
difference between the solid and fluid density and the fluid viscosity. Since then,
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several studies extended the Stokes law by investigating the effects of additional
parameters such as the presence of non-Newtonian media, different particle
shapes, inertia, and soon interactions between particles and the effect of walls
(e.g. Shah et al. (2007); Putz et al. (2008); Zhang et al. (2016)).

When the concentration of particles is further increased, the trajectory and
settling velocity of an individual sedimenting object is affected by the presence of
the others: this leads to a decrease of the mean settling velocity of the suspension,
due to the so-called hindering effect (Davis & Acrivos 1985). The hindering
effect monotonically increases as a function of the solid volume fraction ®, hence,
the mean settling velocity is monotonically decreasing with ®. The behavior of
many particles settling in a complex fluid is a less studied problem (Izbassarov
et al. 2018). Only a few experimental and numerical studies have been devoted to
the sedimentation of particle suspensions in quiescent non-Newtonian fluids, and
the topic remains therefore poorly understood. It was observed in experimental
investigations in the Stokesian regime that the settling particles cluster to form
columns or chains and cause the development of non-homogeneous structures
during the sedimentation in either a shear-thinning fluid (Allen & Uhlherr 1989;
Bobroft & Phillips 1998; Daugan et al. 2004) or a viscoelastic fluid (Allen &
Uhlherr 1989; Joseph et al. 1994; Bobroff & Phillips 1998). In addition, the
aggregation of the particles has been numerically examined in a viscoelastic
fluid (Yu et al. 2002) and in a thixotropic shear-thinning fluid (an inelastic
shear-thinning fluid with memory) (Yu et al. 2006a).

Particle migration

The presence of solid walls induces interesting particle migration phenomena,
such as particle separation (Lim et al. 2014) and focusing (Lu et al. 2017). These
phenomena have been successfully applied for the manipulation of particles and
cells in microfluidic devices. In a Newtonian fluid flow, the two most important
non-dimensional parameters characterizing the motion of deformable particles
are the Reynolds Re and Weber We numbers (or capillary number), quantifying
inertia and particle elasticity, respectively. The Weber number We is defined as
the ratio of inertia to elastic effects acting on the deformable particle. Generally,
in the absence of inertia, a neutrally buoyant rigid sphere follows the fluid motion
without any lateral migration in order to satisfy the reversibility property of the
Stokes flow (Guazzelli & Morris 2011). On the other hand, deformable particles
in the same condition move towards low shear gradient regions, hence, when
suspended in a Poiseuille flow they migrate towards the center of the channel
(Kaoui et al. 2008). In inertial flows, the trajectories of both rigid and deformable
particles do not necessarily follow the behavior observed in the Stokes regime
and particles undergo lateral migration. This is the case for typical inertial
microfuidics applications (Re > 1 and We > 0), when inertial and elastic forces
dominate the cross-streamline migration and determine the final equilibrium
position of the particles. In particular, elasto-inertial microfluidics is emerging
as a powerful tool and research area, with devices where elasticity and inertia
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are being engineered to achieve efficient particle focusing and/or particle sorting
(Stoecklein & Di Carlo 2018).

Lateral migration and focusing of rigid particles were first observed experi-
mentally in a Newtonian circular pipe flow by Segre & Silberberg (1961). In a
pipe flow, initially randomly distributed neutrally buoyant spheres immersed in
a Newtonian carrier fluid migrate radially and focus into a narrow annulus at
around 0.6 the pipe radius, the so-called ”tubular pinch” effect. Numerous stud-
ies exploited this process for microfluidics applications, described as ”inertial
focusing” of particles. Indeed, the equilibrium position of the particles is the net
result of two opposing forces, resulting from the resistance of the solid particle
to the deformation: (i) the shear gradient lift force, which is induced by the
velocity profile curve, that directs the particle away from the channel centerline
towards the wall and (#i) the wall-induced lift force arising from the interaction
of the particle and the neighboring wall, which pushes the particle away from
the wall towards the channel centerline (Martel & Toner 2014). These two
competing forces, determining the lateral trajectory and the final equilibrium
position of the particle, are modified differently by the blockage ratio (Di Carlo
2009) and the flow Reynolds number (Matas et al. 2004), and thus, by properly
designing the geometry of the microfluidic device, the lateral motion can be
used for cell focusing, separation, trapping, sorting, enrichment and filtration
(see the review articles by Di Carlo (2009) and Karimi et al. (2013)).

When the particle is deformable, the dynamics is further complicated by
an additional force called “deformation-induced lift force” arising from the
deformation of the particle shape itself, which moves the particle towards the
centerline and which becomes stronger as the particle deformation increases
(Raffiee et al. 2017; Hadikhani et al. 2018). It is worth noting that the alterations
of the particle shape also affect and modify the two forces discussed previously,
making the problem fully coupled. During the last 10 years, the dynamics of
deformable particles have been studied both experimentally and numerically
(e.g., Mach & Di Carlo 2010; Hur et al. 2011; Kim et al. 2015; Wang et al.
2016). In particular, Hur et al. (2011) showed that particles can be separated
depending on their size and elastic deformability; same behavior was also
observed in numerical simulations (Kilimnik et al. 2011; Chen 2014). In spite
of the fact that all the results indicate that the soft deformable particles move
to the channel centerline, the effect of the flow Reynolds number is not quite
understood and still debated.

Most of the previous works on the dynamics of deformable particles in
Newtonian flows in cylindrical straight pipes have mainly focused on the low
Reynolds number regimes. In addition, it is challenging to capture in experiments
the entire migration dynamics of a deformable particle, such as its trajectory,
the deformed shape and the forces acting on the particle.



1.1. AIM OF THE CURRENT STUDY 7

1.1. Aim of the current study

From the above introduction, one may conclude that many experimentally and
numerically observed behaviors are still far from clear; given the wide range
of parameters involved there is still much to explore in each of the different
flow regimes and in different non-Newtonian fluid types. In addition, the
combined effects of the non-Newtonian properties of the suspending fluid, such
as shear-thinning, shear-thickening and visco-elastic effects, with a dispersed
solid phase at moderate and high volume fractions makes the dynamics of
such flows, which are mostly unexplored, extremely complex. Because of these
complexities and challenges, our general understanding of the problem is still
incomplete. Therefore, the aim of this work is to use interface-resolved numerical
simulations to provide a deeper understanding of the behavior of suspensions
in laminar Newtonian and non-Newtonian (inelastic and/or visco-elastic) fluid
flows for a wide range of different parameters, including the effect of physical and
mechanical properties of the particles and the fluid that surrounds them. The
fully-resolved simulations improve our fundamental understanding by providing
access to the local values of fluid and solid phase velocities, solid volume fraction
and shear rate, i.e. it is possible to obtain new insight on the interactions among
the different phases and the resulting transport mechanisms and suspension
microstructure. However, given their costs, simulations are limited to some
selected cases, often in simple canonical configurations, so that a wider parameter
space can be inevitably covered by experiments. Moreover, short-range particle
interactions/collisions as well as the properties of the carrier fluid need to
be assumed and modelled. Nevertheless, we hope this thesis shows that by
judiciously choosing the simulation setup new fundamental understanding can
be obtained from the analysis of the numerical data. In particular, in the present
work, to fill in the literature gaps as discussed previously, it was of special to
answer the following research questions:

e For inelastic non-Newtonian carrier fluids, can the suspension shear
viscosity be predicted by the homogenization theory of Chateau et al.
(2008) in Stokesian regime at a wide range of volume fraction? Is it still
valid when adding inertia to the system?

e How will the visco-elastic and shear-thinning effects alter the microstruc-
ture and rheology of the suspensions at moderate and high volume
fraction and fluid elasticity?

e What is the role of inertia on the rheology of particle suspensions with
different types of fluids?

o What is the effect of a shear-thinning fluid on the settling behavior of
suspensions in a quiescent wall-bounded environment with finite particle
Reynolds number at moderate and high volume fractions?

e What are the effects of inertia and elasticity of a deformable particle on
the migration dynamics and the equilibrium position?
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To assess these questions appropriate methodologies are required. In this
work, we have employed efficient numerical methods to study particle suspensions
in different non-Newtonian fluids. The models used to represent some of the
non-Newtonian features of complex fluids and the numerical methods adopted
are explained and discussed in the next chapters. In particular, two inelastic and
two visco-elastic non-Newtonian models employed in this work are introduced
in chapter 2. The governing equations and numerical method used to simulate
the suspension of finite size rigid particles are given in chapter 3, followed by
chapter 4, where the governing equations for the motion of a single deformable
viscous hyper-elastic particle suspended in a Newtonian fluid flow are discussed
together with the numerical method used here. Finally, in chapter 5 and 6
the main results and conclusions are summarized and an outlook on possible
future works is provided. The thesis work resulted in four papers, which are all
included in the back.



CHAPTER 2

Non-Newtonian fluid models

Unlike Newtonian fluid, e.g. water and oil, many of the fluids usually dealt with
in industrial applications are non-Newtonian in behavior due to the existence
of macromolecular complex structures suspended or dissolved in the liquid.
Among these we recall gels, blood, paints, colloidal suspensions and polymer
solutions. In Newtonian fluids, having isothermal and incompressible flow, the
fluid shear stress is linearly dependent on the applied strain rate with a constant
coefficient that is called fluid viscosity. On the contrary, non-Newtonian fluids
may reveal a nonlinear relationship between the fluid stress and an applied shear
rate (Bird et al. 1987). The interactions between the macromolecular structures
in non-Newtonian fluids are very complex in many rheologically interesting
systems hence, the chemical and physical properties of these liquids cannot be
easily modelled. As an alternative, constitutive equations are derived based
on the continuum mechanics to predict the non-Newtonian fluid behaviors.
Different constitutive equations can be used to classify the systems into inelastic
and elastic fluids. In the inelastic fluid models, e.g. Carreau, Power-law and
Bingham models, the focus is mostly on the instantaneous change of the fluid
viscosity with the applied shear rate. These models are comparatively simple to
be utilized in the numerical and analytical investigations, however, they cannot
capture all the features of the different non-Newtonian fluids such as memory
and elasticity effects. In the elastic fluid models, e.g. Maxwell, Oldroyd-B,
Giesekus and FENE-P models, the fluid stress does not change instantaneously
with the shear rate to account for the memory effect of the flow. To model
visco-elastic non-Newtonian fluids, often the viscous and elastic effects are
put together based on an identical principle as a mechanical system including
dashpots and nonlinear elastic spring (Morrison 2001). In spite of the fact
that the non-Newtonian models are idealized, they can capture the different
behaviors of various real fluids under specific conditions. In the current study, we
employ the Carreau, power-law, Oldroyd-B and Giesekus models to investigate
the shear-thinning, shear-thickening and visco-elastic effects of non-Newtonian
fluids on a rigid particle suspensions. These models describe the viscosity and
stress well-enough for most engineering computations (Bird et al. 1987).
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2.1. Inelastic fluid models

When the fluid flows are governed by effects of the fluid viscosity, then it makes
sense to model the fluid viscosity function precisely. Inelastic, or generalised
Newtonian, fluid models describe the behavior of purely viscous fluids, where the
extra fluid stress tensor, 7, is proportional to the instantaneous flow deformation
rate tensor, but the coefficient of proportionality (the fluid viscosity), uy, is
allowed to depend on the instantaneous flow shear rate:

T =2;(4)®, (2.1)

where © is the symmetric part of the velocity gradient tensor (© = 3 (Vu +
Vu?)). The second invariant of the strain-rate tensor is indicated as 4 and is

computed by the dyadic product, ¥ = 1/2{©;; : ©;;}, (see Bird et al. 1987).

2.1.1. Shear-thinning fluid model

Shear thinning (pseudoplastic), the decrease of fluid viscosity with flow shear
rate, is a popular behavior and is exhibited by paints, concentrated polymer
solutions, and dispersed systems such as emulsions, inks and latex (Braun &
Rosen 2013). Various forms for the viscosity have been suggested for these fluids;
the most common one is the Carreau model. This model supposes anisotropic
viscosity proportional to some power of the instantaneous flow shear rate %
(Morrison 2001),
Ho — Hoo

(L+ 2232

pr () = poo + (2.2)

In this equation, there are four parameters: uo, is the lower limit of the fluid
viscosity at infinite-shear-rate, g is the upper limit of the viscosity at zero-shear-
rate, \. is a time constant that represents the degree of shear-thinning (this
constant has no relation to the relaxation time of the fluid) and its magnitude
can be connected to the molecular structure of several polymeric solutions
(Morrison 2001; Phan-Thien & Mai-Duy 2017), and n is called the power-index
which characterizes the fluid behavior. For 0 < n < 1 the fluid is shear thinning.
For n = 1, the model represents the Newtonian fluids where the viscosity
becomes independent of the shear-rate.

2.1.2. Shear-thickening fluid model

The behavior of the shear thickening (dilatant) fluids, where the viscosity in-
creases reversibly as the applied shear rate increases, is not as common as shear
thinning. Examples of dilatant fluids are corn starch solution, suspensions
of concentrated clay, glass rods suspensions (Braun & Rosen 2013), ceramic
suspensions (casting slurries), dental dilling masses (dental composites) and
special composite materials for protective clothing (Mezger 2015). For these
type of fluids, we utilize the Power-law model to calculate the fluid viscosity,

pp(§) = miy" (2.3)
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which creates a monotonic increase of the fluid viscosity with the local shear
rate when n > 1. The constant m is called the consistency index and denotes
the slope of the viscosity profile. This model also can describe the Newtonian
fluids. In that case n =1 and m = uy. However, the major disadvantage of this
model is that it collapses in zones where the local shear rate tends to zero - in
these zones the fluid viscosity is infinite, and regularization might be necessary.

2.2. Visco-elastic fluid models

Many polymeric fluids are also called visco-elastic fluids (e.g., Molten polymers,
shampoos, glues, eggs white, Bouncing Putty and offset printing inks). This
means that the fluids display a mixture of viscous and elastic behavior when
sheared. Viscous properties are associated with the appearance of irreversible
deformations that enhance with time and stay upon removal of the stress. On the
other hand, elastic properties relate to the occurrence of reversible deformations
as in a solid, which vanish automatically and directly upon removal of the stress.
However, the prevalence of the elastic or viscous behavior depends on the time
scale of the applied deformation. Generally, it can be concluded that a more
quick deformation of the material relates to larger elasticity, and in an opposite
way, a slower deformation triggers a viscous response of the material. These
properties rely on the macromolecular structure, the existence of particles, and
interactions of particles in the investigated material (Izdebska & Thomas 2015).
The relative visco-elastic effect, i.e. the ratio of elastic to viscous forces, is
usually measured by the dimensionless Weissenberg number Wi, calculated
by the product of a characteristic relaxation time A, of the material and a
characteristic deformation rate 4 of the flow:

Wi = Ap?. (2.4)

Different models have been developed to capture the visco-elastic behavior of
some common non-Newtonian fluids. In the current study, we use the quasi-
linear Oldroyd-B model to consider a purely elastic fluid, although this model is
not physical consistent as it allows an infinite stretching of the polymer chains,
and the non-linear Giesekus model for the combined shear-thinning and elastic
effects. Both models can be derived from kinetic theory (Izdebska & Thomas
2015), assuming that polymer molecules behave like a suspenshon of Hookean
dumbbells (i.e. two beads connected with an elastic spring) in a Newtonian
solvent (Giesekus 1982; Tirtaatmadja & Sridhar 1995; Zhu et al. 2012). For
these two constitutive models, the total deviatoric stress tensor, 7, can be split
into a purely viscous contribution, corresponding to the instantaneous response
of the solvent, and a polymeric contribution, accounting for the microsturcture
memory:

T ="Ts+ T (2.5)

The solvent stress is defined as,

Ts = 2/14597 (26)
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where 4 is the solvent viscosity (i.e. the Newtonian part), while the instanta-
neous values of all the components of the additional visco-elastic stress tensor 7,
are found by solving the objectives and frame-independent transport equations
discussed below, which depend on the constitutive models considered here (for
more details, see Giesekus 1982; Larson 1988).

2.2.1. Oldroyd-B fluid model

The Oldroyd-B (or Upper convected Jeffreys) fluid model, originally proposed
by Oldroyd (1950), is used to describe the flow of constant-viscosity elastic fluids,
where the fluids behave like a dilute solution of polymer molecules modeled as
Hookean dumbbells (Bird et al. 1987). The Oldroyd-B constitutive equation
for the polymeric stress 7, is written as:

T + AT, = 214, ©. (2.7)

In this equation, p,, is the polymeric viscosity (i.e. the non-Newtonian part)
and 7,7 denotes the upper convected time derivative of 7,,, and is defined by

T = a;n +u-Vr, -vu' 1, -7, Vu (2.8)

Note that, the total viscosity of the visco-elastic fluid is the sum of the solvent
and the polymeric viscosities, i.e. pf = fts + . This model is no longer linear
because the convected derivative terms introduce nonlinear terms in the velocity
gradient Vu (Morrison 2001), and for this reason Bird et al. (1987) call it
quasi-linear. In a steady state simple shear flow, this model predicts a constant
viscosity of the visco-elastic fluid and a first-normal stress difference which is
quadratically dependent on shear rate over a large shear rate range, as well as
zero second normal-stress difference. The Oldroyd-B model characterizes many
features of the so-called Boger fluids, fluids that show constant viscosity but
also pronounced normal-stress effects (Phan-Thien & Mai-Duy 2017). Hence,
the Oldroyd-B model has been utilized extensively to study these pure elastic
fluids in many flow cases, both theoretically and numerically (Tirtaatmadja &
Sridhar 1995).

2.2.2. Giesekus fluid model

The Giesekus model has been derived by Giesekus (1982) from the kinetic theory
of concentrated polymer solutions. The constitutive equation of this model
contains a nonlinear stress term, including a dimensionless mobility factor «
which is connected with the anisotropic hydrodynamic drag and/or anisotropic
Brownian motion on the constituent polymer molecules (Bird & Wiest 1985):

Am
T + AT, + Am® (T - Tm) = 24m ©. (2.9)

m
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The presence of the nonlinear stress term in the Giesekus model gives shear flow
properties which vary with shear rates. Based on thermodynamic conditions
and realistic properties, @ must be in the range between 0 and 0.5 (Schleiniger
& Weinacht 1991), where the model predicts a shear-thinning behavior, namely,
the polymeric viscosity decreases monotonically with the shear-rate, with the
mobility factor controlling such effect: the larger «, the more pronounced is
the shear-thinning. On the contrary, when o = 0, the polymer has a constant
viscosity and the the Giesekus constitutive equation reduces to the Oldroyd-B
constitutive equation (2.7). Note that, in a simple shear flow, the total fluid
viscosity at zero shear-rate, pf|y—o, is equal (s + ). In general, at any value
of an applied shear-rate, the total fluid viscosity, pf is calculated as,

i (3) = o + 22, (2.10)

v

Here, 7,,12 is the polymer shear stress component. The model also predicts
non-zero first and second normal stress differences, defined below, which can
lead to flow phenomena very peculiar of non-Newtonian fluids (e.g. rod climbing
effect).

Ni = Tim11 — Tmae, (2.11)

No = Tpp29 — Tin3s, (2.12)

where 7,11, Tma2 and T,,33 denote the normal stress along z, y and z directions,
respectively. A more in-depth discussion of these models can be found in Bird
et al. (1987) and Larson (1988).



CHAPTER 3

Rigid particle-laden flows

In this chapter, the governing equations for suspensions of finite size rigid
particles in Newtonian and different types of non-Newtonian carrier fluid models
are discussed. Then, we continue with the numerical approaches to resolve
this problem and finally we introduce the volume penalization IBM which is
considered in this thesis to model the flow in a circular pipe, still using a
cartesian mesh..

3.1. Navier-Stokes and Newton-Euler equations

In a system of rigid particles suspended in a fluid, the dynamics of both solid
and fluid phases are fully coupled. The motion of the particles is determined by
the hydrodynamic forces and moments applied on them via the surrounding
fluid. On the other hand, the fluid motion is substantially affected by the
motion of the particles and, as in the sedimentation case, even entirely driven
by the particle motion.

Generally the carrier fluid is dealt with as a continuum of an infinite
number of fluid particles. Each particle of fluid contains of a large number
of individual molecules or atoms and is described by its averaged properties
(e.g., velocity, pressure, temperature, density and other important quantities).
In this way, we are able to determine these properties at each point of the
fluid. In addition, when the flow velocity is significantly smaller than the
velocity of sound (less than 30%), the fluids (liquids or gases) can be further
supposed to be incompressible (i.e., the total volume of each fluid particle is
always fixed). In many applications, Re, # 0, and thus the inertia of both
the fluid and the particles has to be considered in the model. The final set of
governing equations describing the dynamics of these fluids, Newtonian and
non-Newtonian suspended fluids, is well known as the incompressible Cauchy
momentum and continuity equations,

0
pf (81;+u~Vu) =V .o+ pf, (3.1)

V-u=0. (3.2)

14
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In these equations u = (u, v, w) is the velocity vector with components in the
(x,y, z) coordinate directions. The density of fluid is indicated by py, while the
body force f indicates the forcing from the dispersed phase on the carrier fluid
used to impose the boundary conditions on the solid boundaries through an
Immersed Boundary Method (IBM) in our implementation. Finally, the stress
tensor o is decomposed into a pressure P and a viscous part (deviatoric stress) 7:

o=—PIl+T, (3.3)

in which I is the identity tensor. The total deviatoric stress tensor, T, is
calculated by using various non-Newtonian fluid models as defined previously
in chapter 2.

The motion of the rigid spherical particles is described by the Newton-Euler
equations,

dur
ppva = o-ndS + (pp — pf) Vpg + FC, (34)
v,
Y4
pd(‘;;C - 7{ r x o -ndS + T, (3.5)
v,

where U? and w? are center velocity and rotation rate of the particle p, while
Ppy Vp = 4ma®/3 and I, = 2p,V,,a? /5 are the mass density, volume and moment-
of-inertia of a sphere with radius a. In these equations, 9V, represents the
surface of the particles with outwards normal vector n, g is the gravitational
acceleration, the radial distance from the center to the surface of each particle
is indicated by r. The force and torque, F. and T, act on the particle as a
result of particle-particle or particle-wall collisions, and typically need to be
modelled in numerical simulations. The no-slip and no-penetration boundary
conditions on the particle surface are imposed by forcing the fluid velocity at
each point on the surface of the particle, X, to be equal to the velocity of the
particle at that point, i.e., u(X) = U?(X) = U2 4 w? x r. This condition is not
imposed directly in the Immersed Boundary Method used in the current study,
but instead included via the body force f on the right-hand side of equation
(3.1).

3.2. Numerical method for rigid particle-laden flows

During the last decades, many viable numerical methods and algorithms have
been proposed in the literature to implement interface-resolved direct numer-
ical simulations (DNS) of rigid particle-laden flows. Among these numerical
approaches, we can mention the front tracking method by Unverdi & Tryggva-
son (1992), several algorithms based on the lattice Boltzmann solver for the
fluid phase (Ladd 1994a,b; Hill et al. 2001; Ten Cate et al. 2004), the force
coupling approach by Lomholt & Maxey (2003), the Physalis method (Zhang &
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Prosperetti 2005; Sierakowski & Prosperetti 2016) and the Immersed Boundary
Method (IBM) (Peskin 1972; Uhlmann 2005; Breugem 2012). Needless to men-
tion that each one of these approaches has its own advantages and disadvantages.
Recently, in an overall review survey, Maxey (2017) reported the state-of-the-art
algorithm and the principles and applications of each method.

For the scope of the present study, we use the IBM method due to its
feasibility to exploiting efficient computational algorithms for solving the Navier-
stokes equations on a Cartesian grid in the presence of numerous freely mobile
finite-size rigid particles. In the following sections, the approach and the
numerical treatments will be discussed in detail.

3.2.1. Immersed Boundary Method (IBM)

The immersed boundary method was first suggested by Peskin (1972) and
several modifications and refinements have been developed since then, See
(Mittal & Iaccarino 2005) for more details. Generally, as stated by Mittal &
Taccarino (2005), IBMs can be sorted into two main classes: continuous forcing
or discrete (sometimes referred as direct) forcing approaches, which are based
on the implementation of the extra force term f added to the governing equation
3.1. In the continuous forcing method, f is computed based on the velocity
of the fluid at a point in the interface and the desired velocity at that point,
hence, the the force is incorporated into the continuous momentum equations
before discretization and the expression of the force does not depend on the
numerical scheme, utilized to solve the Navier-Stokes equations. This approach
is attractive for the simulation of elastic boundaries. The successful applications
of the continuous forcing method can be found in many studies, e.g. Unverdi &
Tryggvason (1992); Revstedt & Fuchs (2001); Zhu & Peskin (2003); Revstedt
(2004, 2013). On the contrary, the discrete forcing approach is widely utilized
to for rigid boundaries. In this method, the IB force is introduced after the
governing equations are discretized, and its expression is thus dependent on the
numerical scheme, utilized for discretization and solving momentum equations.
This method is preferred, as it permits for a far better control over the numerical
accuracy, stability, and conservation of the forces(the force should be conserved
between the solid and fluid phases).

A computationally efficient discrete forcing method to fully resolve particle-
laden flows was originally developed by Uhlmann (2005). This approach has
been further modified by Breugem (2012), who proposed several refinements to
make it second-order accurate in space by using a multi-direct forcing scheme
(Luo et al. 2007) to better approximate the no-slip/no-penetration (ns/np)
boundary condition on the particle surface and by applying a slight retraction
of the grid points on the surface of the particle towards the interior. In addition,
the numerical stability of this method for mass density ratios (solid-to-fluid
density ratios) near unity, i.e. neutrally buoyant particle suspensions, was also
improved by directly accounting for the inertia of the fluid contained within
the immersed (virtual) boundaries of the particles (Kempe & Frohlich 2012).
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Figure 3.1: Skech of the quasi-2D Lagrangian and 3D Eulerian grids used in
the immersed boundary approach. The Lagrangian grid points on the surface
of the sphere are represented by small black dots; figure from (Breugem 2012).

This approach has been used extensively in several studies on finite size rigid
particle suspensions for different Reynolds numbers (Lashgari et al. 2014),
concentrations of particles (Picano et al. 2015), particle shapes (Ardekani et al.
2016), particle sizes (Costa et al. 2016), and mass density ratios (Fornari et al.
2016).

In the current work, The IBM version of Breugem (2012) is employed to
simulate the motion of finite-size rigid particles suspended in different types of
carrier fluids. The numerical code combines the flow solver for the Navier-Stokes
equations with IBM to follow the motion of the suspended fluid and particles
in the entire domain. In this method, the fluid field is described in an Eulerian
framework on a uniform staggered, Cartesian grid (Az = Ay = Az) to solve
the governing equations (3.1) and (3.2) on the whole domain, also inside the
rigid particles. In the discretization, the velocity nodes are located on the cell
faces, while fluid viscosity, the pressure and the extra stress components are all
located at the cell centers. On the other hand, the solid phase, considering the
governing equations of the movement of spherical rigid particles (equations (3.4)
and (3.5)), is described by a set of Lagrangian points, uniformly distributed on
the surface of each particle (see figure 3.1). The number of Lagrangian grid
points, Ny, is selected to guarantee that the Lagrangian grid volume AV is as
close as possible equal to the volume of the Eulerian mesh Az3. As mentioned
before, the equations (3.1), (3.2), (3.4) and (3.5) are connected together with
the ns/np boundary conditions on the surface of particle. A summary of the
adopted numerical approach is given below:
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e The Navier-Stokes equation (3.1) is integrated in time without the

IBM force with the explicit low-storage three-step Runge-Kutta scheme
(Spalart et al. 1991; Wesseling 2009) for all terms except the pressure
gradient, i.e. for the viscous (in the inelastic fluids) and polymeric stress
(in the visco-elatic fluids), where the Crank-Nicolson scheme is employed.
The first prediction velocity u* is calculated at each Runge-Kutta sub-
step by:

i) For generalised Newtonian fluids,
* -1 At -3/2 q—1
u* = u? +7p [— (g + By) V! —prag (V-u®u)
f

— By (Ve ueu)i 24 (%‘2"50

+ W (V-7)77Y. (3.6)

(V)

Where At is the computational time step from " to t"*!, while the
superscript ¢ indicates the Runge-Kutta sub-step, with ¢ = 0 and ¢ = 3
corresponding to times n and n + 1. The Runge-Kutta constants can
be found in e.g. Wesseling (2009): a3 = 32/60, 51 = 0, ay = 25/60,
B2 = —17/60, ag = 45/60, B3 = —25/60. It is noteworthy to mention
that the viscosity of the inelastic fluids is obtained explicitly from the
local shear-rate, using the velocities from the previous sub-step of the
Runge-Kutta time integration scheme, and then 7 is computed from
equation (2.1).

ii) For visco-elastic fluids (Izbassarov et al. 2018),

At _
ut = ul !t 4 7[— (g + By) qu73/2 —prag (V-u® u)? !
f

—Pfﬁq(V-u@?u)q_Q+W(V-TS+V-M)‘Z
- w (Vor+ Vorm). (3.7)

A sufficient condition for a stable temporal integration is specified by
the following criterion:

(3.8)

A2
Atgmin<1'65 prAz V3Azx )

12 (US + Mmy Z?:l |uq

K3

Note that the spatial derivatives are computed with the second-order
centered finite-difference scheme, except for the advection term (u-VT,,)
in equations (2.7) & (2.9), where the fifth-order weighted essentially
non-oscillatory (WENO) scheme is adopted (Liu et al. 1994; Shu 2009;
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Sugiyama et al. 2011; Rosti & Brandt 2017a; Shahmardi et al. 2019).
Furthermore, to avoid the well-known numerical problems at high Weis-
senberg number for the Oldroyd-B and Giesekus fluid models, the log-
conformation approach is applied to solve equations (2.7) & (2.9) (see
section 3.2.2 for more details).

The IBM force is calculated in three steps:

1) Interpolate u* from the Eulerian grid to the Lagrangian points on
the particle surface, U} (equation 3.9a), employing the regularized Dirac
delta function d4 of Roma et al. (1999). This function is utilized to trans-
fer between the two grids by interpolating the velocity and spreading
the force through three adjacent Eulerian grid points (i.e. 3Az). Hence,
it produces a smooth interface, effectively identical to a porous surface,
which avoids high frequency oscillations of the force and torque on the
particles and gives second-order accuracy in the velocity interpolation
only if considering the effective diameter of the particle. The force and
torque that fluid and particle exert onto each other , in the interpolation
and spreading procedure, should be preserved. Therefore, the distribu-
tion of both Eulerian and Lagrangian grid points is equi-spaced with
similar spacing.

2) compute the IBM force (per unit density) on the Lagrangian grid

points, F?fl/ 2, based on the difference between the interpolated first pre-
diction velocity and the particle velocity at those points (i.e. U?4+w? xr).

3) Spread the IBM force from Lagrangian to the Eulerian grid points
by the same regularized Dirac delta function (equation 3.9¢). This IBM
force, indicated as f gﬁcl/ 2, is then added to the first prediction velocity to
obtain a second prediction velocity u** (equation 3.9d). In mathematical
notation, these steps can be written as :

U7 = 3 uiuda (i — X{7) ArdyA, (3.92)
ijk

v (x{) - u;

qul/2 — .

l - , (3.9b)

f‘i]ﬁclﬂ = Z F?71/25d (xijk: — X?il) AV, (3.9¢)
l

utt = ut 4 A2 (3.94)

where, in the above equations, the capital letters denote the variable at



20

3. RIGID PARTICLE-LADEN FLOWS

a Lagrangian point with index . x;;, and X; are the location of the
Eulerian and Lagrangian grid points, respectively. An illustration of the
Fulerian and Lagrangian grids used is presented in figure 3.1. Further-
more, to better enforce the boundary conditions at the moving surfaces,
the IBM forces are iteratively computed by considering the multi-direct
forcing scheme of Luo et al. (2007). The new second prediction velocity
u** is then found by solving the above equations iteratively (typically 3
iterations are sufficient) employing the new u** as u* at the beginning
of the next iteration with equation 3.9b replaced by:

u(xq) - U
At

1 (3.10)

The second prediction velocity u** is utilized to determine the correction
pressure p and update the velocity for the next time step and the pressure
field at the intermediate time step, p9=1/2, following a classic pressure-
correction scheme:

N pf *k
Vip=—" __ V.u , 3.11a
P = (g + B B (3112
A
u? = u** — M Vp., (3.11b)
Pf
q—1/2 _ ,q—3/2 ~

where u? is the velocity at the Runge-Kutta sub-step q.

We take advantage of the simplicity of our geometry and boundary conditions
(e.g., periodic in at least two directions), and the fact that we employ at least
in two directions a regular, Cartesian grid, to solve the Poisson equation with

a fast (FFT-based) direct approach (see for more details, Schumann & Sweet
1988).

Employing IBM and taking into account the the fictitious fluid phase inertia,

enclosed within the particle volumes, equations (3.4) and (3.5) are rearranged
as follows to maintain accuracy,

du?

Ny,
d
Voo —pr ) FiAVi+ oy (/V udV) + (pp — py) Vog + Fo, (3.12)
=1 P

N
dw? d
I, Ez—pf ;21 r; xFlAVl—&—pf& (/‘/IjrxudV) +T., (3.13)
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where r; indicates the distance between the center of a sphere and the [ — th
Lagrangian points on its surface, while the second terms on the right-hand
sides of equations (3.12) and (3.13) are corrections to account for the inertia of
the fictitious fluid inside the sphere. This assists the numerical scheme to be
more stable even for neutrally buoyant particles. These equations are advanced
in time with the same Runge-Kutta method, introduced above, to compute
U? (X7) by (see Breugem (2012), for more details):

UP (XJ) = (U) + @h)? xxf. (3.14)

The force F. and the torque T, from equations (3.12) and (3.13) are employed
to account for short-range hydrodynamic particle-particle and particle-walls
interactions such as solid-solid contact or lubrication. These interactions are
taken into account utilizing lubrication correction and the soft collision model
as described in details in the work by Costa et al. (2015). When the gap
distance between the particles and/or wall becomes less than one Eulerian mesh
size, a mesh dependent lubrication correction based on asymptotic solution
by Brenner (1961) is used to reproduce correctly the interaction between the
particles. At very small gaps before the collision takes place, the lubrication
correction is kept constant to account for the surface roughness. Additionally, a
soft-sphere collision model is employed based on the relative velocity and the
overlap between the two rigid spheres (spheres-wall) where both the normal
and tangential contact force components are taken into account. The moment
that the gap distance decreases to zero, i.e. collision takes place, the lubrication
correction is switched off and the soft-sphere collision force model becomes
active. The same models are employed for the interaction between particles
and walls. Walls are implemented as spheres with infinite radius of curvature.

The volume fraction occupied by a rigid particle in an Eulerian grid cell
with index (4, j, k), used to compute the integrals above, ¢, is computed by
using the signed-distance level-set function s suggested by Kempe & Frohlich
(2012), where ¢ = 0 and ¢ = 1 if a computational cell in the domain is located
inside the fluid or in the solid phase. The sold volume fraction ¢ is determined,
at the pressure (cell center) and the velocity points (cell faces) throughout the
staggered Eulerian grid, as follows:

s~ H(—5n)
8
> n=1 |0l
where H is the Heaviside step function with s < 0 inside and s > 0 outside

the particle and the sum is over all 8 corners of a box of Eulerian cell around
the target point.

Dk = ; (3.15)

The accuracy of the IBM code is investigated extensively among others
in the work by Breugem (2012); Lambert et al. (2013); Costa et al. (2015);
Picano et al. (2015). Also, the numerical code has been extensively validated
for single and multiphase flows of visco-elastic and elastoviscoplastic fluids in
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previous studies, and more details on the algorithm and validation campaign are
described in previous references from the group (De Vita et al. 2018; Izbassarov
et al. 2018; Shahmardi et al. 2019b), where very good agreement with literature
results is obtained for various test cases.

3.2.2. The log—conformation approach

The numerical solutions of the visco-elastic constitutive equations, (2.7) & (2.9),
are notoriously difficult especially in multi-phase flow systems mostly due to
the large variation in time scales and discontinuous difference of visco-elastic
properties through the interfaces (Izbassarov & Muradoglu 2015). In addition,
many previous works revealed that the numerical solutions of these fluids are
unstable, especially in the case of high Weissenberg numbers, because of the
loss of resolution of discretization methods to solve the exponential growth
of stresses at critical points over time (Pimenta & Alves 2017). A popular
indicator of such unfavourable situation is the loss of positive definiteness of
the conformation tensor (Fattal & Kupferman 2004), which can eventually lead
to numerical breakdown. Various numerical approaches have been proposed
to overcome these problems and most of them depend on a change of variable
in the constitutive equation (Fattal & Kupferman 2004, 2005; Afonso et al.
2012; Balci et al. 2011). The log-conformation method, which can be applied to
a wide variety of constitutive laws, suggested by Fattal & Kupferman (2004,
2005) became such a common methodology, This is based on the rewriting of
the constitutive equation in terms of the logarithm of the conformation tensor,
which surely remains positive definite and linearizes the polymer stress field in
regions of exponential growth, hence increases the numerical stability even at
high Weissenberg number (Afonso et al. 2009; Yang et al. 2016). In the current
study, we follow basically this approach, which is briefly described next. For
more details on the mathematics beyond each step, we refer the reader to the
original works of Fattal & Kupferman (2004, 2005).

The relationship between the polymeric extra-stress tensor (for the Oldroyd-
B or Giesekus model) and the conformation tensor, based on a model for the

polymers as microscopic dumbbells with Hookean springs, is defined by (Bird
et al. 1987):

T = ’;—m(c - 1), (3.16)

where C' denotes the polymer conformation tensor scaled by the equilibrium
Hookean spring length. C' is defined as the pre-averaged dyadic product of the
polymer end-to-end vector, C;; = (R;R;), and is hence a symmetric tensor. In
this method, equations (2.7) & (2.9) are written in terms of the conformation
tensor C, and the logarithm of the conformation tensor ¥ = log(C) is em-
ployed in the computations.The essential characteristic of this approach is the
decomposition of the velocity gradient transpose Vu® into two anti-symmetric
tensors indicated by € and B, and a symmetric one specificed by A which
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commutes with the conformation tensor, i.e.,
Vu' =Q+ A+ BC™. (3.17)

The eventual formulation of the evolution equation in the variable ¥ can be
written as (Yang et al. 2016),

%—T—Fu V¥ — (Q¥ —¥NQ)—-2A=RHS, (3.18)
for the sake of simplicity, with RHS = —( ¥ —I)— 2 ¥(e¥ —I)% Note

that, when a= 0, we recover the Oldroyd B evolution equatlon

This equation is integrated using the third-order Runge-Kutta scheme,
introduced in section 3.2.1 (Izbassarov et al. 2018), i.e

O = ¥ 4 At{o, [RHS — (u- V¥ — (Q¥F — ¥Q) —24)]""!

L, (3.19)

—B,[RHS — (u-V¥ — (Q¥ — ¥Q) —24)]"7°}.
¥ is then converted back to the conformation tensor, C = e¥, to compute the
polymer stress T, by using equation (3.16), hence solving equation (3.7) to cal-
culate the first prediction velocity u*. It is worth noting that, the conformation
tensor C' is imposed to be I inside the spheres via a smooth phase indicator
that points to 1 in the fluid phase and gradually varies to 0 within a gap (gap
normal to the surface) of 1.5Ax inside the spheres. Moreover, equation (3.18)
is discretized around the Eulerian cell centers (pressure points on the Eulerian
staggered grid) and the spatial derivatives are again approximated with the
second-order central-difference scheme, except for the advection terms (u - V%),
where the fifth-order WENO scheme is used. WENO schemes are non-linear
finite-volume or finite-difference approaches which can numerically estimate
solutions of hyperbolic conservation laws and other convection controlled prob-
lems with high-order accuracy in smooth zones and substantially non-oscillatory
transition for solution discontinuities (Rosti et al. 2019b).

3.3. Volume penalization IBM

The immersed boundary method can also be used to create a virtual pipe
geometry in the computational domain. In current study we have employed the
Volume penalization IBM to create a virtual circular straight pipe from a simple
square duct domain with a staggered Cartesian grid, by enforcing the no-slip
and no-penetration boundary conditions on the inner surface of the pipe. This
method has been proposed by Kajishima et al. (2001); Breugem et al. (2014),
where the IBM force f and the second prediction velocity u** are determined as
follows:
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Figure 3.2: Solid volume fractions (highlighted area) for mesh cells around
u(i,7) and v(i — 1,5 — 1). Solid boundary is shown by red dashed line; figure
from (Izbassarov et al. 2018).

B =g ——7x— (3.20a)

where, the solid volume fraction in the mesh cells ¢; ; ; is also varied between 1
(wholly located in the fluid phase) and 0 (wholly located in the solid domain)
and u® indicates the solid interface velocity within this mesh cell. Figure 3.2
displays the solid volume fractions (highlighted area) for mesh cells around
u(i,7) and v(éi — 1,7 — 1). In this figure, the solid boundary is indicated by the
red dashed line. For stationary boundaries, us is 0 and equations 3.20 reduce
to:

EES

u; = (1= i k) - (3.21)

The second prediction velocity u** is then employed to update velocities and
pressure following the steps described previously in equations 3.11.

From a numerical point of view, the volume penalization IBM is very efficient,
since the solid volume fractions around velocity points can be computed at the
beginning of the simulation with an accurate approach or it can be found from
different methods such as magnetic resonance imaging and X-ray computed
tomography in case of a complex geometry or flow through porous media
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Figure 3.3: Contours of streamwise velocity in the circular cross section of a
pipe at Re = 400, simulated by volume penalization IBM.

(Breugem et al. 2014). Figure 3.3 displays an example of how the square duct
with a staggered cartesian grid is converted into a pipe via a volume penalization
technique.



CHAPTER 4

Deformable hyper-elastic particles in a flow

In this chapter, we briefly describe the governing equations for the motion of a
single deformable viscous hyper-elastic particle suspended in a Newtonian fluid
flow and the numerical method used to solve them. Hyper-elastic materials
reveal non-linear stress-strain curves and are generally employed to describe
gel- and rubber-like materials; for example, Verma & Kumaran (2013) obtained
a good agreement between experimental and numerical results if a soft gel is
modelled as an incompressible viscous hyper-elastic material such as the one
used here.

4.1. Governing equations

We consider a deformable viscous hyper-elastic particle immerse in a Newtonian
viscous fluid, both the fluid and solid phases are incompressible and their
motion is governed by the conservation of momentum and the incompressibility
constraint:

f
P (811 +u- Vuf> =V-o, (4.1a)

ot
V-u' =0, (4.1b)

ouw®
Ve ) =V o 4.1
p(at—i—u Vu) V.-o®, (4.1¢)
V.ou' =0, (4.1d)

where the superscripts f and ® in the previous equations are utilized to distinguish
the fluid and solid phases, and p is the density, assumed to be the same in
both phases. The kinematic and dynamic interactions between the two phases
are found by forcing the continuity of the velocity (i.e., the no-slip and no-
penetration boundary conditions) and of the traction force (i.e., a traction
balance) at the interface, i.e.,
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where n indicates the normal vector at the interface.The Cauchy stress tensor o
for a Newtonian fluid and for an incompressible viscous hyper-elastic material
experiencing only the isochoric motion, i.e. the motion that preserves the
volume of every part of the material body, can be written as:

o = —PI+ 20", (4.3)

o° = —PI+ 2,°0° + G¢, (4.4)

where pf and p® represent the dynamic viscosity of the fluid and solid phases,
respectively. The last term, G&, is the hyper-elastic stress contribution modeled
as a neo-Hookean material, satisfying the incompressible Mooney-Rivlin law,
where G denotes the modulus of transverse elasticity and & is the deviatoric left
Cauchy-Green deformation tensor (also sometimes called Finger deformation
tensor). The tensor £ is updated by the following transport equation:

%jL(u.v)gfg.vu—Vqu:O, (4.5)

where £ - Vu + Vu” - ¢ describes the stretching of the elastic material due to
the straining action of the flow. This equation comes from the fact that the
upper convected derivative of the tensor £ is identically zero, which is always
true for an hyper-elastic material (Bonet & Wood 1997).

4.2. Numerical method

To numerically solve the fluid-structure interaction at the interface, the so
called one-continuum formulation (Tryggvason et al. 2007) is considered, where
only one set of equations is solved over the whole field. This is obtained by
introducing a monolithic velocity vector field, u, valid everywhere; this is the
weighted average between the values in the two phases, with the weight being a
phase indicator function 1 based on the local solid volumetric fraction in each
cell (Quintard & Whitaker 1994; Takeuchi et al. 2010)

u=(1-1v)u +yu. (4.6)

Thus, 1 changes smoothly from 0 in the fluid phase to 1 in the solid phase. In
particular, the isoline at ¢ = 0.5 represents the interface (see figure 4.1). The
scalar v is computed by solving an additional transport equation

o

o T Ve =0. (4.7)

Hence, the governing equations (4.1) can be rewritten as:
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Figure 4.1: Skech of the 2D Eulerian grids used in the one-continuum for-
mulation approach. The different values of the solid volume fraction v are
represented by different colors. The contour at ) = 0.5 denotes the interface;
figure from (Sugiyama et al. 2011).

p(%?—l—u-Vu) =V.o, (4.8a)

V-u=0, (4.8b)

where the Cauchy stress tensor o is written in a mixture form and defined as

o=(1—-1v¢)a! +o°. (4.9)

The equations (4.7), (4.8) and (4.5) are solved in a fully Eulerian formulation
on a staggered uniform mesh with velocities located on the cell faces and all the
other variables (pressure, fluid and solid stress components) at the cell centers,
as first proposed by Sugiyama et al. (2011). The time integration is based on
an explicit fractional-step method (Kim & Moin 1985), where only the solid
hyper-elastic contribution in equation (4.1) is advanced with the Crank-Nicolson
scheme (Min et al. 2001), while, all the other terms are advanced with the third
order Runge-Kutta scheme, introduced in chapter 3 . All the spatial derivatives
are approximated with the second-order centred finite differences scheme, except
for the advection term in equations (4.5) and (4.7) where the fifth-order WENO
scheme is applied (Shu 2009; Sugiyama et al. 2011; Shahmardi et al. 2019). A
comprehensive review on the effect of different discretization schemes for the
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advection terms was studied by Min et al. (2001). The pressure is computed by
solving the Poisson equation using fast Fourier transforms. In summary, the set
of governing equations are solved as follows (see Rosti & Brandt 2017): (i) the
left Cauchy-Green deformation tensor &;; and the local solid volume fraction
1 are updated first by solving Equations 4.5 and 4.7 (update step); (ii) the
conservation of momentum equation 4.8 are advanced in time by first solving
the momentum equation (prediction step), then by solving a Poisson equation
for the projection variable and finally by correcting the pressure and velocity to
ensure that the velocity field is divergence free (correction step).

The accuracy and validity of the code has been extensively examined in
previous studies, and more details on the numerical scheme and validation
campaign are shown in Refs. (see Rosti & Brandt 2017, 2018; Rosti et al. 2018),
where very good agreement with literature results is found for different test
cases. In addition, for more details on the numerical method, the reader is
referred to Ref. Sugiyama et al. (2011).



CHAPTER 5

Summary of the papers

Paper 1

Interface-resolved simulations of particle suspensions in Newtonian, shear thin-
ning and shear thickening carrier fluids

We present a numerical study of noncolloidal spherical and rigid particles
suspended in Newtonian, shear thinning and shear thickening fluids employing
an Immersed Boundary Method. We consider a linear Couette configuration
to explore a wide range of solid volume fractions (0.1 < & < 0.4) and particle
Reynolds Numbers (0.1 < Re, < 10).

We report the distribution of solid and fluid phase velocity and solid
volume fraction and show that close to the boundaries inertial effects result in a
significant slip velocity between the solid and fluid phase. The local solid volume
fraction profiles indicate particle layering close to the walls, which increases
with the nominal ®. This feature is associated with the confinement effects.

We calculate the probability density function of local strain rates and
compare their mean value with the values estimated from the homogenization
theory of Chateau et al. (2008), indicating a reasonable agreement in the
Stokesian regimes. Both the mean value and standard deviation of the local
strain rates increase primarily with the solid volume fraction and secondarily
with the Re,. The wide spectrum of the local shear rate and its dependency on
® and Re, points to the deficiencies of the mean value of the local shear rates
in estimating the rheology of these noncolloidal complex suspensions.

Finally, we show that in the presence of inertia, the effective viscosity of
these noncolloidal suspensions deviates from that of Stokesian suspensions. We
discuss how inertia affects the microstructure and provide a scaling argument to
give a closure for the suspension shear stress for both Newtonian and power-law
suspending fluids. The stress closure is valid for moderate particle Reynolds
numbers, O(Re,) ~ 10.

Paper 2

30
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Interface-resolved simulations of particle suspensions in visco-elastic carrier

fluids

We study the rheology of a suspension of neutrally buoyant rigid particles
subject to uniform shear in different kinds of non-Newtonian fluids, chosen in
order to disentangle the effect of elasticity and shear thinning on the macroscopic
system behavior. In particular, we adopt the inelastic Carreau, viscoelastic
Oldroyd-B and Giesekus models for the carrier fluid. The rheology of the
suspension is analyzed for a wide range of particle volume fractions (0.1 < & <
0.4), Weissenberg (0.1 < Wi < 3) and Reynolds numbers (0.5 < Re, < 15),
comparing the results with those obtained for a Newtonian carrier fluid.

We report here that the effective viscosity pertaining all the non-Newtonian
cases is always lower than that of the suspension in the Newtonian carrier
fluid and grows monotonically with the solid volume fraction. The shear-
thinning viscoelastic Giesekus fluid behaves similarly to the Oldroyd-B fluid
at low Weissenberg numbers and to the Carreau fluid at high Weissenberg
numbers, indicating that elastic effects dominate at low Weissenberg and shear
thinning is predominant at high Weissenberg number. These variations in the
effective viscosity are mainly due to changes in the particle induced shear stress
component. These data show that, at high shear rates, a viscoelastic carrier
fluid can be modelled as a simple shear-thinning fluid for which theoretical
closures exists, while new models are needed at low Weissenberg numbers to
account for elastic effects such as decreased particle stress.

Finally, when the inertia is increased, the suspension effective viscosity
grows with the particle Reynolds number at the same rate as in a Newtonian
fluid for the Oldroyd-B case, while in a shear-thinning fluid the growth is less
than in the Newtonian fluid. Also in the presence of inertia, therefore, the
shear-thinning behavior dominates the suspension dynamics at relatively high
values of the imposed shear rate and elasticity effects saturate.

Paper 3

Sedimentation of finite-size particles in quiescent wall-bounded shear-thinning
and Newtonian fluids

We study the sedimentation of finite-size particles in quiescent wall-bounded
Newtonian and shear-thinning fluids. The problem is studied numerically
by means of direct numerical simulations with the presence of the particles
accounted for with an immersed boundary method. The suspended phase
consists of Non-Brownian rigid spherical particles with particle to fluid density
ratio p,/ps = 1.5; three different solid volume fractions ® = 1%, 5% and 20%
are considered. The Archimedes number is kept constant to Ar = 36 for all
shear-thinning fluids, while it is changed to Ar = 97 for the Newtonian fluid
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to reproduce the same terminal velocity of a single particle sedimenting in the
shear-thinning fluid.

We show that the mean settling velocities decrease with the particle con-
centration as a consequence of the hindering effect and that the mean settling
speed is always larger in the shear thinning fluid than in the Newtonian one.
This is due to the decrease of the mean viscosity of the fluid which leads to a
lower drag force acting on the particles. We show that particles tend to form
aggregates in the middle of the channel in a shear-thinning fluid, preferentially
positioning in the wake of neighboring particles or aside them, resulting in lower
levels of fluid velocity fluctuation in the gravity direction than in a Newtonian
fluid.

Paper 4

Inertial migration of a deformable particle in pipe flow

We perform fully Eulerian numerical simulations of an initially spherical
hyperelastic particle suspended in a Newtonian pressure-driven flow in a cylin-
drical straight pipe. We study the full particle migration and deformation
for different Reynolds numbers and for various levels of particle elasticity, to
disentangle the interplay of inertia and elasticity on the particle focusing.

We observe that the particle deforms and undergoes a lateral displacement
while traveling downstream through the pipe, finally focusing at the pipe
centerline. We note that the migration dynamics and the final equilibrium
position are almost independent of the Reynolds number, while they strongly
depend on the particle elasticity; in particular, the migration is faster as the
elasticity increases (i.e. the particle is more deformable), with the particle
reaching the final equilibrium position at the centerline in shorter times.

Our simulations show that the results are not affected by the particle initial
conditions, position and velocity. Finally, we explain the particle migration by
computing the total force acting on the particle and its different components,
viscous and elastic.



CHAPTER 6

Conclusions and outlook

During the years of this thesis work, we have examined suspensions of finite-size
rigid spherical particles in simple canonical wall-bounded flow configurations
(e.g., simple shear Couette flow for rheological studies and falling of particles
by the action of gravity in a narrow channel) considering different kinds of
Newtonian and Non-Newtonian fluids, trying to cover a wide range of parameters.
Indeed, many parameters define a particle suspensions, such as particle size and
density, volume fraction, as well as flow parameters like Reynolds number and
fluid relative elasticity, the Weissenberg number. As concerns the non-Newtonian
properties of the flow, we have employed both inelastic (Carreau and power-
law), and visco-elastic models (Oldroyd-B and Giesekus) to examine separately
the shear-thinning, shear-thickening, elasticity and combined shear-thinning
visco-elastic features of the most commonly encountered non-Newtonian fluids.
Particle-resolved direct numerical simulations have been performed using an
immersed boundary method for the fluid-solid interactions to investigate the
interaction between particles and fluid in the different flow cases. In addition, we
have investigated the case of an hyper-elastic neo-Hookean deformable particle
suspended in a Newtonian pressure-driven flows in a cylindrical straight pipe. A
fully Eulerian numerical algorithm based on the one-continuum formulation is
employed to fully resolve the fluid-structure interactions and the stresses in the
liquid and solid phases and to provide an accurate understanding of the mutual
effects of inertia and particle elasticity on the motion of a single deformable
particle in a pipe flow. To this end, we have implemented a volume penalization
IBM, creating virtual walls to simulate a circular pipe flow within a cartesian
implementation with computational efficiency.

Several results are obtained from these simulations; the main conclusions
that have drawn and the suggestions for possible future studies in each subject
are summarized below.

6.1. Concluding remarks

Suspension of rigid spheres in Newtonian and Non-Newtonian fluids
in wall-bounded Couette flows

33
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The study of the rheology of particle suspensions in Newtonian and non-
Newtonian media is essential in a large number of industrial and biological
applications and environmental processes. Among of these we recall concrete
casting, pastes, paints, crude oil flows with rocks, particulate foods processing,
waste disposal, drilling muds, slurry flows, pharmaceutical processes, the blood
flow in the human body, pyroclastic flows from volcanoes and debris flows.
Therefore, we have studied suspensions of neutrally buoyant spheres in both
Newtonian and inelastic non-Newtonian fluids. We have explored four solid
volume fractions, ® = [0.11, 0.21, 0.315, 0.4], from very dilute to semi-dense,
and a wide range of particle Reynolds numbers (0 < Re, < 10) to examine
also the role of inertia. We have initially considered inelastic non-Newtonian
fluids and compared our results with the recently proposed constitutive laws
based on the homogenisation theory (see Chateau et al. 2008), aiming to test
the validity and possibly extend these laws for the cases when inertia is present.
We have demonstrate that the non-dimensional relative viscosity of suspensions
in Carreau shear-thinning and power-law shear-thickening carrier fluids can be
well predicted by the homogenization theory of Chateau et al. (2008) in the
limit of Re, — 0, and more accurately for lower ®. At higher volume fractions,
the shear rates can locally become very large, so that predictions based on mean
values become inaccurate, masking the breadth of the shear-rate distributions
and the role of rare strong events.

In addition, we have shown that adding inertia to the system changes
the microstructure and results in a deviation of the relative viscosity of the
suspensions from the Stokesian prediction, while the main dissipation mechanism
is still viscous. In fact, we have shown that for the parameter range explored here
both particle stresses and fluid stresses are clustered about viscous scalings. We
have therefore adopted the frictional view of Cassar et al. (2005); Andreotti et al.
(2013) to show that the main dimensionless number controlling the mechanics
of suspensions is the so-called viscous number, J ~ puy ﬁlocal)‘y/ P, confirming
that viscous stresses are responsible for the momentum transport even when
the particle Reynolds number is finite. However, due to inertial effects, the
microstructure becomes anisotropic and so-called shadow regions form around
particles (these are regions with zero probability of finding another particle, see
Picano et al. 2013). This enhances the effective particle volume fraction, and
consequently, the viscous dissipation and relative viscosity. We have estimated
the volume of these shadow regions from our simulations and included this
microstructural effect into a functional form for the relative viscosity. In this
way, we have provided a prediction for the added excluded volume due to inertia
and a closure for the suspension stress in the case of both Newtonian and
generalized Newtonian suspending fluids valid for O(Re,) ~ 10 (see paper 1).

Motivated by other typical effects present in non-Newtonian fluids, we
have also examined the role of fluid elasticity and shear thinning and of the
combination of shear-thinning and visco-elastic effects on the simple shear flow
of neutrally-buoyant rigid spherical particles in suspension. To this end, we have
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used different models for the carrier fluid (Oldroyd-B, Carreau and Giesekus for
purely elastic, shear-thinning and a possibly more realistic shear-thinning visco-
elastic polymer suspension). We have analyzed the rheology of the suspension
by discussing how the suspension effective viscosity picy ¢ is affected by variations
of the particle volume fraction ®, the Weissenberg number Wi and the particle
Reynolds number Re, for all the different fluids, comparing the results with
those obtained for a Newtonian carrier fluid. We have observed that, at low level
of inertia, the effective viscosity for all fluids considered grows monotonically
with the solid volume fraction ® and that all the Non-Newtonian cases exhibit
a lower effective viscosity than the Newtonian ones. In particular, we have
found that the shear-thinning fluid has the highest effective viscosity among
the Non-Newtonian fluids, while the Oldroyd-B fluid has the lowest values.
The effective viscosity is only slightly dependent on the Weissenberg number
Wi: at low Weissenberg number the shear thinning effect is weak and the
Carreau fluid exhibits a high effective viscosity jier¢ close to the value found in
a Newtonian fluid; on the other hand, the elastic effects in the Giesekus and
Oldroyd-B fluids are always present even at low Wi. We have observed that
the Giesekus fluid behaves similarly to the Oldroyd-B one at low W+i when the
elasticity dominates, while it behaves similarly to the Carreau fluid at high W4
when the shear thinning effect is predominant. When inertia is considered, but
still limited to low values where the total stress are viscosity dominated, the
suspension effective viscosity grows with the particle Reynolds number. The
Oldroyd-B fluid exhibit a very similar behavior to the Newtonian carrier fluid,
with fierr growing at the same rate. The shear thinning fluid instead grows
less than the Newtonian fluid and thus effectively reduces the inertial shear
thickening of the suspension. The Giesekus fluid shows an effective viscosity
similar to the Oldroyd-B one at low Re, when elasticity dominates over the
shear thinning and to the Carreau one at high Re, when the shear thinning
becomes predominant (see paper 2), which again confirms that at high shear
rates or high Weissenberg numbers, the shear-thinning behavior dominates
also in suspensions.

Sedimentation

The gravity-driven motion of finite-size heavy particles in a viscous fluid
is relevant in many environmental, biological and industrial applications, yet
this has mainly been investigated for sedimentation of spherical particles in
Newtonian fluid. We have therefore investigated numerically the effect of
a shear-thinning fluid on the settling behavior of monodisperse rigid sphere
suspensions in a quiescent wall-bounded environment with fixed ratio between
the particle diameter and channel width equal to 1/18, particle to fluid density
ratio p,/py = 1.5 for three different solid volume fractions, ® = [0.01, 0.05,
0.2], and compared the results with those obtained in a Newtonian fluid. The
Archimedes number is set to Ar = 36 for all non-Newtonian fluid cases while
it is increased to Ar = 97 for the Newtonian ones to obtain almost the same
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value of the settling velocity of an isolated particle (same terminal Reynolds
number Re; = 3.89) as in the shear-thinning case. In particular, we have
examined the mean particle settling and fluid velocities, the standard deviation
of the different velocities, wall effects and microstructure of these complex
suspensions. We have found that the mean settling velocity of a suspension
decreases with ® and increase in the shear-thinning fluid. This is the result
of the competition between two opposite effects, related to different physical
mechanisms: i) the hindrance effect, which reduces the mean settling velocity
and monotonically increases with ®; ii) the shear-thinning effect, which also
increases with ® as a consequence of the reduction of the local fluid viscosity
around the particles and leads to an increase of the mean settling velocity.
By analysing the probability density function of the settling velocity, we have
reported a high probability of particles settling faster than the mean settling
velocity at low concentrations, while the opposite trend has been found for high
volume fractions. This effect is present in both fluids, but it is strengthened in
the shear-thinning fluid. We have also found a large value of the fourth-order
moment in the non-Newtonian fluid, indicating a highly intermittent behavior
at low volume fractions, which eventually vanishes at higher concentrations. At
low volume fraction, we have shown that intrinsic convection occurs through
the channel in both carrier fluids, which induces an increase of the particles
settling velocity in the channel center. Interestingly, this convection is reversed
at the highest volume fraction investigated, especially in the Newtonian fluid.
We have also revealed the tendency to form aggregates in a shear-thinning fluid,
with particles preferentially positioning in the wake or beside each other, which
overall results in lower levels of velocity fluctuations in the gravity direction
than in a Newtonian fluid (see paper 3).

Deformable particle in pipe flow

We have studied the motion of an hyper-elastic deformable particle immersed
in a Newtonian Poiseuille flow in a cylindrical straight pipe at different finite
Reynolds and Weber numbers, in order to evaluate the effects of inertia and
elasticity on the particle focusing. We have focused on the lateral motion of
the particle and compared the entire migration dynamics, the trajectory, and
the final equilibrium shape of the particle to shed more light onto the particle
lateral displacement mechanism. We have shown that the particle deforms and
undergoes a lateral displacement while traveling downstream through the pipe,
always focusing at the pipe centerline. While the particle final equilibrium
position is independent of the Reynolds and Weber numbers considered, its
migration dynamics strongly depends on the particle elasticity while it is only
slightly affected by the Reynolds number. In particular, the migration is faster
as the elasticity increases, with the particle reaching the final equilibrium
position at the centerline in shorter times when more deformable. We also have
shown the effect of the solid to fluid viscosity ratio and observed that high solid
viscosity makes the particle effectively more rigid, so that it requires a longer



6.2. OUTLOOK 37

time to reach the equilibrium position when compared to cases with low values
of solid viscosity (see paper 4).

6.2. Outlook

In future, we would like to expand our knowledge in the field of particle
suspensions in non-Newtonian fluids. Concerning the suspension in simple
shear flows, this work provides new insights on the rheology of suspensions of
rigid objects in Non-Newtonian fluids, and proves the existence of a variety
of non-trivial effects brought by the coupling of shear-thickening particulate
suspensions and non-Newtonian fluids. This work can be extended in a number
of ways, where additional simulations and experiments are needed to provide
new closures for particle-laden suspensions in non-Newtonian matrices. Also,
the effect of particles with different shapes, such as oblate or biconcave red-blood
cells, should be considered, especially for analysis in confined geometries. In
addition, it would be interesting to consider slightly more complex configurations,
such as oscillating shear and separating flows, to gain a better understanding
on the interactions between a time-dependent flow, the fluid memory and the
modifications of the particle microstructure.

Regarding the sedimentation of particles in quiescent wall-bounded fluid,
with this investigation we have estimated the effect of a shear-thinning fluid
on the sedimentation of a suspension of inertial particles. Future works should
extend the analysis to more complex non-Newtonian fluids, taking into account,
for example, the role of elasticity and yield stress. In addition, it will be
interesting to explore more in detail the parameter space defined by the particle
shape, Archimedes number and density ratio. To this end, experiments may
appear as a viable tool, given the cost of interface-resolved numerical simulations.

In the context of the inertial migration of deformable particles in pipe flows,
these results provide useful knowledge for the design of a microfluidic cylindrical
system at finite inertia e.g. for flow focusing of deformable particles and flow
sorting based on particle elasticity G. In particular, for the design of devices of
high throughput, it would be important to consider suspensions of deformable
particles in dilute conditions as well as the effect of the presence of smaller rigid
particles in the flow, both in cylindrical pipes and square ducts, as it is the
case in several biomedical applications. The interaction between the particle
and fluid elasticity, i.e. the case of a viscoelastic suspending fluid, might also
provide useful suggestions for the design of microfluidic systems.
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