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Efficient Robust Model Predictive Control using Chordality

Shervin Parvini Ahmadi1, Anders Hansson2 and Sina Khoshfetrat Pakazad3

Abstract— In this paper we show that chordal structure can
be used to devise efficient optimization methods for robust
model predictive control problems. To this end, first the problem
is converted to an equivalent robust quadratic programming
formulation. We then illustrate how the chordal structure can
be used to distribute the computations in a primal-dual interior-
point method among computational agents, which in turn allows
us to accelerate the algorithm by efficient parallel computations.
We investigate performance of the framework in Julia using
numerical examples.

I. INTRODUCTION

Model Predictive Control (MPC) is a class of controllers
which predicts the future response of a plant using an explicit
process model. It is an important control strategy which has
been widely used in industry in recent years, [26]. Its root
goes back to [6]. The main reason for its application in
industry is its capability in handling constraints on control
signals and states. In the early years, however, its usage was
restricted to traditional process industry since the computa-
tional power was limited in terms of speed. A significant
amount of research has been conducted since then and as
the computational power has grown, the applicability has
been extended to faster and more time critical processes. As
was mentioned in [15], ”one avenue has been what is called
explicit MPC, [2], where the optimization problem is solved
parametrically off-line. Another avenue has been to exploit
the inherent structure of the optimization problems stemming
from MPC, [11], [31], [28], [3], [32], [27], [13], [14], [29],
[17], [1], [7], [4], [30], [16], [8], [9], [19], [23]. Typically
this has been to use Riccati recursions to efficiently compute
search directions for Interior Point (IP) methods or actives
set methods to solve the optimization problem.” It is argued
in [15] that these exploited structures can be summarized as
chordal structure. Therefore, the same structure exploiting
software can be used to accelerate all computations for
MPC. This holds irrespective of what MPC formulation is
considered, and what type of optimization algorithm is used.
In this paper we will in detail discuss robust MPC, which was
not discussed in the above mentioned reference. We assume
that the reader is familiar with the receding horizon strategy
of MPC and we will only discuss the associated constrained
finite-time optimal control problem. We will from now on
refer to the associated problem as the MPC problem.
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The remaining part of the paper is organized as follows.
We will in Section II state the robust MPC problem which
is formulated using a scenario tree. In Section III we will
see that a robust MPC problem is a special case of general
Robust Quadratic Programs (RQPs). In Section IV we will
discuss how chordal sparsity arises and how it can be utilized
in convex optimization problems. In Section V we will
discuss some technicalities regarding the implementation
in Julia. We will test performance of the framework in
Section VI. Finally, we will give some conclusions and
discuss generalizations of our results in Section VII.

Notation

We denote with R the set of real numbers, with Rn the
set of n-dimensional real-valued vectors and with Rm×n the
set of real-valued matrices with m rows and n columns. We
denote by N the set of natural numbers and by Nn the subset
{1, 2, . . . , n} of N. For a vector x ∈ Rn the matrix X =
diag(x) is a diagonal matrix with the components of x on
the diagonal. For two matrices A and B the matrix A⊕B is
a block-diagonal matrix with A as the 1,1-block and B as the
2,2-block. For a symmetric matrix A the notation A(�) � 0
is equivalent to A being positive (semi)-definite.

II. ROBUST MPC
There are many ways to define robust (linear) MPC

problems. However, they all fall into the category

min
u(p)

max
p∈P

1

2

N−1∑
k=0

[
xk(p)
uk(p)

]T
Q

[
xk(p)
uk(p)

]
+

1

2
xN (p)TSxN (p)

s.t. xk+1(p) = A(p)xk(p) +B(p)uk(p) + vk(p), x0 = x̄

Cxk(p) +Duk(p) ≤ ek
where P is some set. Here A(p) ∈ Rn×n and B(p) ∈ Rn×m.
We also assume that there are q inequality constraints for
each k and that the dimensions of the other matrices and
vectors are compatible with this. Above ek is not a basis
vector. One usually makes the assumption that p depends
on k and that uk only depends on values of p prior to
k, the so-called non-anticipativity constraint. Since point-
wise maximum over convex functions preserves convexity,
it follows that the above problem also is convex. It should,
however, be stressed that it is in general not tractable unless
further assumptions are made on P , such as e.g. finiteness.
It is possible to also let C, D, Q, S, and ek depend on p
without destroying convexity.

We will consider a special important case that is obtained
by letting the dynamics evolve as

xk+1(p̄k) = A(pk)xk(p̄k−1) +B(pk)uk(p̄k−1) + vk(pk)



where x0 = x̄ and p̄k = (p0, p1 . . . , pk), with pk ∈ Pk,
where Pk are finite sets with cardinality Mk. We realize that
the number of equality constraints grows exponentially with
k in case the cardinality is independent of k. In order to get
tractable problems one often let Mk = 1 for k > Nr for
some integer Nr. Then the problem can be written

min
u

max
p̄N−1∈P̄N−1

1

2

N−1∑
k=0

[
xk(p̄k−1)
uk(p̄k−1)

]T
Q

[
xk(p̄k−1)
uk(p̄k−1)

]
+

1

2
xN (p̄N−1)TSxN (p̄N−1)

s.t. xk+1(p̄k) = A(pk)xk(p̄k−1) +B(pk)uk(p̄k−1) + vk(pk)

Cxk(p̄k−1) +Duk(p̄k−1) ≤ ek

where x0 = x̄, u = (u0, u1(p̄0), . . . , uN−1(p̄N−1)), and
where P̄k = P0 × P1 × · · · × Pk.

We will now reformulate the problem into an equivalent
problem with more variables and constraints. We let all states
and control signals depend on p = p̄Nr ∈ P = P̄Nr with
cardinality M = M0 ×M1 × · · · ×MNr

, i.e. we introduce
M independent scenarios which we constrain using so-called
non-anticipativity constraints:

min
u

max
p∈P

1

2

N−1∑
k=0

[
x̄k(p)
ūk(p)

]T
Q

[
x̄k(p)
ūk(p)

]
+

1

2
xN (p)TSxN (p)

s.t. x̄k+1(p) = A(pk)x̄k(p) +B(pk)ūk(p) + vk(pk)

Cxk(p) +Duk(p) ≤ ek

where x0(p) = x̄,

ūk(p0, . . . , pk, p
1
k+1, . . . , p

1
Nr

) =

ūk(p0, . . . , pk, p
2
k+1, . . . , p

2
Nr

)

for all p1
k+1, . . . , p

1
Nr

; p2
k+1, . . . , p

2
Nr

, and where

u = (ū0(p), . . . , ūN−1(p))

We further define an enumeration of all scenarios using an
index j ∈ {1, 2, . . . ,M} which make it possible to define
the equivalent problem

min
u

max
1≤j≤M

1

2

N−1∑
k=0

[
xjk
ujk

]T
Q

[
xjk
ujk

]
+

1

2
(xjN )TSxjN (1)

s.t. xjk+1 = Ajkx
j
k +Bjku

j
k + vjk, xj0 = x̄ (2)

Cxjk +Dujk ≤ ek (3)
C̄u = 0 (4)

where u = (u1, u2, . . . , uM ) with uj = (uj0, u
j
1, . . . , u

j
N−1),

and where

C̄ =


C1,2 −C1,2

C2,3 −C2,3

. . . . . .
CM−1,M −CM−1,M


where

Cj,j+1 =
[
I 0

]

and where I is an identity matrix of dimension m times
the number of time instances that scenarios j and j + 1
have a control signal in common. Notice that several of the
matrices Ajk, Bjk and vjk are also constrained, but that we do
not have to write that out, since they are not optimization
variables. Several other authors have investigated how the
structure stemming from scenario trees can be exploited in
a stochastic setting, e.g. [12], [22], [20], [10].

III. ROBUST QP
The robust MPC problem is a special case of a so-called

Robust Quadratic Program (RQP). Consider the RQP

min
τ,t,z

τ (5)

s.t.
1

2

(
zj0

)T
Qj0z

j
0 + tj1 ≤ τ, j ∈ NM (6)

1

2

(
zjk

)T
Qjkz

j
k + tjk+1 ≤ t

j
k, j ∈ NM , k ∈ NN−1

(7)
1

2

(
zjN

)T
QjNz

j
N ≤ t

j
N , j ∈ NM , (8)

Az = b (9)
Cz ≤ d (10)

where Qjk � 0, i.e. positive semidefinite, where A has
full row rank, and where the matrices and vectors are of
compatible dimensions. Here z = (z1, . . . , zM ) with zj =
(zj0, . . . , z

j
N ), and the inequality in (10) is component-wise

inequality.
The problem in (1–4) is equivalent with the problem in

(5–10). To see this we let Qjk = Q and zjk = (xjk, u
j
k) for

k = 0, . . . , N − 1, and QjN = S and zjN = xjN . We also let

bj = (x̄, vj0, v
j
1, . . . , v

j
N−1)

ej = (e0, e1, . . . , eN−1)

and

Aj
=



I

−Aj
0 −Bj

0 I

−Aj
1 −Bj

1 I

. . .
−Aj

N−1 −Bj
N−1 I


Dj

=
[
C D

]
⊕
[
C D

]
⊕ . . .⊕

[
C D

]
Finally we let A = ⊕Mj=1Aj ⊕ C̃, D = ⊕Mj=1Dj ,
b = (b1, . . . , bM ) and e = (e1, . . . , eM ). Here C̃ is a
matrix obtained from C̄ by combining its columns with zero
columns such that the non-anticipatively constraint holds.

IV. CHORDAL SPARSITY AND CONVEX OPTIMIZATION

Consider the following convex optimization problem

min
x

F1(x) + · · ·+ FN (x), (11)

where Fi : Rn → R for all i = 1, . . . , N . We assume
that each function Fi is only dependent on a small subset of
elements of x. Let us denote the ordered set of these indexes
by Ji ⊆ Nn. We can then rewrite the problem in (11), as

min
x

F̄1(EJ1x) + · · ·+ F̄N (EJNx), (12)



where EJi is a 0–1 matrix that is obtained from an identity
matrix of order n by deleting the rows indexed by Nn \ Ji.
The functions F̄i : R|Ji| → R are lower dimensional
descriptions of Fis such that Fi(x) = F̄i(EJix) for all
x ∈ Rn and i ∈ NN . For details on how this structure can
be exploited using message passing the reader is referred to
[18].

A brief summary is that we may define a so-called sparsity
graph for the above optimization problem with n nodes and
edges between two nodes j and k if xj and xk appear in the
same term F̄i. We assume that this graph is chordal, i.e. every
cycle of length four our more has a chord.1 The maximal
complete subgraphs of a graph are called its cliques. If the
original graph is chordal then there exists a tree of the cliques
called the clique tree which is such that it enjoys the clique
intersection property. This property is that all elements in the
intersection of two cliques Ci and Cj should be elements of
the cliques on the path between the cliques Ci and Cj . It
is then possible to use the clique tree as a computational
tree where we non-uniquely assign terms of the objective
function to each clique in such a way that all the variables
of the term in the function are elements of the clique. After
this we may solve the optimization problem distributively
over the clique tree by starting with leafs and for each leaf
solve a parametric optimization problem, where we optimize
with the respect to the variables of the leaf problem which
are not variables of the parent of the leaf in the clique tree.
The optimization should be done parametrically with respect
to all the variables that are shared with the parent. After
this the optimal objective function value of the leaf can be
expressed as a function of the variables that are shared with
the parent. This function is sent to the parent and added to its
objective function term. The leaf has been pruned away, and
then the optimization can continue with the parent assuming
all its children has also carried out their local optimizations.
Eventually we reach the root of the tree, where the remaining
variables are optimized. Then we can finally go down the tree
and recover all optimal variables. This is based on the fact
that we have stored the parametric optimal solutions in the
nodes of the clique tree.

Notice that each function F̄i in (12) can contain equality
and inequality constraints using indicator functions, therefore
the RQP in (5-10) is a special case of the problem in (12).

We now study a robust MPC case when Nr = 1,
M0 = M1 = 2 and N = 4 in more detail. Then M = 4.
The corresponding sparsity graph for the equivalent RQP
problem as in (5-10) is shown in Figure 1. The reason
for using dashed line is to make the edges more obvious,
otherwise there is no difference between dashed and solid
edges. Moreover we do not show all the edges related to the
nodes xj0 and uj0 since this would clutter the graph. Actually
all of the eight variables xj0 and uj0 have edges connecting
them. We realize that the sparisty graph is not chordal.
A chordal embedding is obtained by adding edges such

1In case the graph is not chordal we make a chordal embedding, i.e. we
add edges to the graph until it becomes chordal. This corresponds to saying
that some of the F̄i depend on variables that they do not depend on.
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clique tree for the chordal embedding is illustrated in
Figure 2, where Cjk+1 = {xjk, u

j
k, x

j
k+1, t

j
k+1, t

j
k+2} with

k ∈ NN−2. To assign functions to nodes in the clique tree,
let us first define the following sets for j ∈ NM

C j
0 = {(xj0, u

j
0, τ, t

j
1) :

1

2

[
xj0
uj0

]T
Q

[
xj0
uj0

]
+ tj1 ≤ τ}

C j
k = {(xjk, u

j
k, t

j
k, t

j
k+1) :

1

2

[
xjk
ujk

]T
Q

[
xjk
ujk

]
+ tjk+1 ≤ t

j
k}, k ∈ NN−1

C j
N = {(xjN , t

j
N ) :

1

2
(xjN )TSxjN ≤ t

j
N}

Dj
k = {(xjk, u

j
k) : Cxjk +Dujk ≤ e}, k ∈ NN−1

E j
k = {(xjk, u

j
k, x

j
k+1) :

xjk+1 = Ajkx
j
k +Bjku

j
k + vjk}, k ∈ NN−1

F j = {xj0 : xj0 = x̄}

and the sets

G j = {(uj0, u
j+1
0 ) : uj0 = uj+1

0 } j ∈ NM−1

H j = {(uj1, u
j+1
1 ) : uj1 = uj+1

1 } j ∈ {1, 3}

The assignments of functions then become for C0

τ +

M∑
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{IC j
0
(xj0, u

j
0, τ, t

j
1) + IDj

0
(xj0, u

j
0)+

IE j
0
(xj0, u

j
0, x

j
1) + IF j (xj0)}+
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0 )

for C1
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for Cjk+1, where j ∈ NM , k ∈ NN−3
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Fig. 1: Sparsity graph for the problem in (5-10) for N = 4
and M = 4.

where IX is the indicator function for the set X . Notice
that A1

0 = A2
0, A3

0 = A4
0, B1

0 = B2
0 , B3

0 = B4
0 , v1

0 =
v2

0 and v3
0 = v4

0 due to non-anticipativity constraints. Now,
solving the problem in (5–10) using a primal-dual interior-
point method can be done distributedly using the clique tree,
as described in [18]. It is worth mentioning that it is possible
to introduce even more parallelism for computations on each
branch of the tree as described in [15].

V. IMPLEMENTATION

The distributed primal-dual interior-point algorithm pro-
posed in [18] is implemented in Julia, [5] in such a way
that we can take advantage of parallel computations using
multiple processors. This is an extension of the work pre-
sented in [25] and [24]. The problem formulation considered
in [25] is a coupled QP with affine equality and affine
inequality constraints, whereas in this paper we consider
coupled convex problems with affine equality and convex
inequality constraints. It should be stressed that the proposed
algorithm in [18] requires exact gradients and hessians of the
objective function and the inequality constraints. Therefore,
functions have to be provided that evaluate these quantities.
The general idea in the implementation is as follows. A
tree is implemented as a data structure using linked lists.
Hence, a node in the tree has information regarding the
assigned subproblem, information regarding the processor
IDs in which its parent or child nodes are defined and finally
a list of references to children and parent nodes.

C0

C1
1

C1
2

C1
3

C3
1

C3
2

C3
3

C2
2

C2
3

C4
2

C4
3

Fig. 2: Clique trees for the problem in (5-10) for N = 4 and
M = 4.

The algorithm consists of different phases which are con-
ducted at each iteration. There are, in particular, search di-
rection, step size and termination criteria calculation phases.
These calculations rely on performing message passing up-
wards and downwards through the tree. Therefore, a recur-
sive function is defined for each phases of the algorithm such
that starting from the root node, the whole tree is traversed
once and a particular function is called while visiting a node.
Among various approaches for tree traversal, the so-called
pre-order traversal method is employed. In this method, first
the root node is visited, then a pre-order traversal of the
most left subtree is done recursively which is followd by a
recursive pre-order traversal of the second most left subtree
and so on. For instance, a pre-order traversal for the tree in
Figure (2) is [C0, C

1
1 , C

1
2 , C

1
3 , C

2
2 , C

2
3 , C

3
1 , C

3
2 , C

3
3 , C

4
2 , C

4
3 ].

Notice that when a node is visited, return values of the
functions can be interpreted as a message from child node
to parent node or vice versa. As it is explained in [25], the
way that we benefit from parallelism is that we first store
different subtrees of the main tree in different processors.
Then for any phase of the algorithm, when a node is visited
and a particular function is called, first it is checked if there
are children nodes which are defined in other processors,
and if so, then for all of those children nodes, the same
function is called and without waiting for the return values,
i.e. messages, the same function is called on the children
nodes which are defined in the same processor, if there are
any. Finally, the messages from children nodes defined in
other processors are fetched as soon as their computations
are finished.

VI. NUMERICAL EXPERIMENTS

For the problem in (1–4), we generate randomly 20 linear
systems with n = 5, m = 3 and q = 1. We consider neither
unstable systems nor systems whose Controllability Gramian
is larger than 100. We also randomly generate Q and S such
that they are positive semidefinite. Furthermore, the initial
starting point x̄ is chosen so that it is feasible with respect
to inequality constraints, as it is required for the algorithm
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Fig. 3: Clique trees for the problem in (1–4) for 2, 4 and 8
scenarios (M ) from left to right.

in [18]. We consider problems with 2, 4, 8 and 16 scenarios
(M ) and 7 different time horizons (N ) between 20 and 800.
The clique trees for the problems with 2, 4 and 8 scenarios is
illustrated in Figure (3). We evaluate the algorithm in [18] in
two separate setups. In the first setup, we store the tree in a
single processor and carry out the computations sequentially.
Hence we do not take advantage of parallel computations.
In the second setup, we store different subtrees of the tree
in separate processor and carry out the computations such
that we can benefit from parallel computations. There is not
a unique way for selection of subtrees. However, in order
to fully benefit from parallel computations, we select the
subtrees using the following rule. Let us say that C is the
ordered set of nodes when a pre-order traversal method is
performed. Then the first subtree will be a subset of C which
contains the first element which is the root node, until the
first element which does not have a child node. The second
subtree will be a subset of C starting from the element
which is right after the first element which does not have
a child node, until the second element of C which does not
have a child node. We repeat this procedure until we split
the tree in M subtrees and then we store each subtree in
a separate processor. For example using this rule, the first,
second, third and fourth subtrees of the tree in Figure (2) are
{C0, C

1
1 , C

1
2 , C

1
3}, {C2

2 , C
2
3}, {C3

1 , C
3
2 , C

3
3} and {C4

2 , C
4
3},

respectively.
We run the algorithm in Julia 0.6.2 which is installed on
an Intel Xeon X5675 @3.07 GHz processor with 24 cores
and a Linux operating system. The α and β parameters for
step size calculations are set to 0.01 and 0.8. The initial
iterates for dual variables are chosen to be λ(0) = v(0) = 1.
There are three parameters for checking the termination of
the algorithm at each iteration. Two of them are primal
and dual residual norms. It is observed that for all of the
examples, these parameters are within the tolerance of 10−6,
after a few iterations. The third parameter is the so-called
surrogate duality gap. It is observed that the reduction rate
of the surrogate duality gap might be very low for some
examples which in turn lead to too many iterations if we
want to have a small tolerance. This is specially the case for
big-size problems. Therefore, in order to deal with this issue,
we set the stopping criteria for surrogate duality gap to 0.1

Fig. 4: The average computational time spent at each iteration
of the algorithm for the problems with 2, 4, 8 and 16
scenarios over 20 randomly generated systems using the two
setups.

and we terminate the algorithm if there are more than 150
iterations. It turns out that, out of 1120 runs of the algorithm,
204 of them required more than 150 iterations in order to
meet the criteria for surrogate duality gap. We believe that
the problems which require many iterations for convergence
are ill-conditioned problems.

We illustrate the average computational time spent at each
iteration of the algorithm for the problems with 2, 4, 8 and 16
scenarios over 20 randomly generated systems using the two
above-mentioned setups in Figure (4). As can be seen, the
computations are accelerated for all the problems by using
multiple processors. Nevertheless, it is more advantageous
to use multiple processors for big-size problems, especially
the ones which have small decrease rate of surrogate duality
gap. Notice that the speed-up obtained is not equal to the
number of processors used. There are several reasons for
this. One is communication overhead. Another is difference
in workload due to imperfect balancing. The third is that
while we run the algorithm on multiple processors, there
is also another type of parallelization taking place which is
imposed by the programming language. In fact, the linear
algebra operations that we use are carried out using multiple
processors to increase efficiency. This, in turn, affects the
computational time of the algorithm. See [21] for more
details on parallelization for linear algebra.

VII. CONCLUSIONS

We have in this paper shown how it is possible to make use
of the inherent chordal structure of a robust MPC problem
in order to exploit IP methods that make use of any chordal
structure to distribute its computations over several compu-



tational agents that can work in parallel. We have evaluated
the efficiency of the framework in Julia, using numerical
experiments. We argue that this level of abstraction, i.e.
chordality, is more appropriate than a more detailed level of
abstraction where one tries to see Riccati recursion structure.
The reason for this is that chordality is a more general
concept. It also appears when the dynamic equations are
obtained from spatial discretization of partial differential
equations. Hence we believe that this structure can be utilized
using the same formalism as we have presented above. How
to carry out these extensions is left for future work. We will
also investigate how to deal with ill-conditioned problems
and look into alternative primal-dual methods which might
cope better with ill-conditioned problems.
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