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Abstract

In recent years, automated mineralogy has become an essential tool in geometallurgy.
Automated mineralogical tools allow the acquisition of mineralogical and liberation data
of ore particles in a sample. These particle data can then be used further for particle-
based mineral processing simulation in the context of geometallurgy. However, most
automated mineralogical tools currently in application are based on two-dimensional
(2D) microscopy analysis, which are subject to stereological error when analyzing three-
dimensional (3D) object such as ore particles. Recent advancements in X-ray microcom-
puted tomography (µCT) have indicated great potential of such system to be the next
automated mineralogical tool. µCT’s main advantage lies in its ability in monitoring 3D
internal structure of the ore at resolutions down to few microns, eliminating stereological
error obtained from 2D analysis. Aided with the continuous developments of comput-
ing capability of 3D data, it is only the question of time that µCT system becomes an
interesting alternative in automated mineralogy system.

This study aims to evaluate the potential of implementing µCT as an automated min-
eralogical tool in the context of geometallurgy. First, a brief introduction about the role
of automated mineralogy in geometallurgy is presented. Then, the development of µCT
system to become an automated mineralogical tool in the context of geometallurgy and
process mineralogy is discussed (Paper 1). The discussion also reviews the available data
analysis methods in extracting ore properties (size, mineralogy, texture) from the 3D
µCT image and how these properties relate to processing behaviour (Paper 2). Based
on the review, it was found that the main challenge in performing µCT analysis of ore
samples is the difficulties associated to the segmentation of mineral phases in the dataset.
This challenge is adressed through the implementation of machine learning techniques us-
ing Scanning Electron Microscope (SEM) data as a reference to differentiate the mineral
phases in the µCT dataset (Paper 3).
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Chapter 1

Introduction

In this chapter, a brief introduction to the concept of geometallurgy, and how automated
mineralogy fits in the framework of geometallurgy is discussed. Based on this discussion,
a problem statement is formulated as a basis of this work. The problem statement is
then developed into the research questions as well as the approaches and limitations to
address the questions.

1.1 Geometallurgy

Geometallurgy is a multi-disciplinary approach that combines geology, mineralogy, ore
properties, as well as mineral processing and metallurgy (Lund and Lamberg, 2014; Lam-
berg, 2011). Such approach aims to maximize economical value, reduce risk, optimize
production planning, guide the managerial decision-making process, as well as keeping the
project sustainable through efficient resource management (Dominy et al., 2018; Lishchuk
et al., 2020). A geometallurgical program is an implementation of geometallurgy in a
mining operation. The implementation is mainly done by creating a spatial model of the
orebody that preditcs how each ore block behaves in the mineral processing circuit (Lund
et al., 2013; Aasly and Ellefmo, 2014; Koch, 2017). By that definition, a geometallurgical
program would require two components:

• Spatial model, which includes a 3D block model of the orebody that contain various
geometallurgical data.

• Process model, which includes a set of mathematical equations that is able to de-
scribe the mineral processing operations. These equations would take the geomet-
allurgical data in the spatial model as the input and predict the mineral processing
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4 Introduction

performance as the output. The performance can be described through various
parameters such as recovery, grade, particle size distribution, energy consumption,
and profitability.

An implementation of geometallurgical program can vary depending on the level of de-
tails, but can be roughly divided into three types (Lishchuk et al., 2015):

• Traditional approach, which is based on elemental assays obtained from analysis of
drill core samples from each block in the orebody. These elemental assays are then
used to predict the recovery of the mineral processing circuit using simple recovery
functions.

• Proxies approach, which incorporates lab-scale tests to characterize metallurgical
behaviour the ores.

• Mineralogical approach, which includes the use of quantitative mineralogical assays
of the ore samples in both the spatial and process models. This approach can be
further classified by the level of informations needed:

– One-dimensional (1D), requires chemical and mineralogical composition of the
ores.

– Two-dimensional (2D), same as 1D but requires particle size classes. This
allows the definition of chemical and mineralogical composition for each size
class.

– Three-dimensional (3D), same as 2D but requires liberation classes for each
size class. This then add a new dimension to the data, in which composition
can be defined for each size class and each liberation class.

Lamberg, 2011 has created a geometallurgical concept called ”particle-based geometal-
lurgy”, in which particles are used to transfer the information from the spatial model to
the process model. The particles would inherit the ore properties (mineralogy, chemical
composition, size, and texture) of each ore block through the use of breakage models, and
used as an input for the process models to forecast production. Then, the output of the
process models in the form of performance indicators (recovery, grade, profitability, etc.)
is stored back in the spatial model. The whole chain of the particle-based geometallurgy
is shown in Figure 1.1.

1.2 Automated mineralogy in geometallurgy

In recent years, automated mineralogy has been widely used in the mining industries,
with around two hundreds systems installed worldwide (Gu et al., 2014). Automated
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Figure 1.1: Particle based geometallurgy, after Lamberg (2011)

mineralogical tools such as Quantitative Evaluation of Minerals by Scanning Electron
Microscopy (QEMSCAN) (Gottlieb et al., 2000) and Mineral Liberation Analyzer (MLA)
(Fandrich et al., 2007) have been rapidly widespread in the industry. These tools are
usually a complimentary tool together with the Scanning Electron Microscopy and Energy
Dispersive X-ray Spectroscopy (SEM-EDS) analysis. These set of tools allow automated
measurement of mineralogy and mineral liberation (Fandrich et al., 2007), particle size
and shape (Leroy et al., 2011; Sutherland, 2007), as well as stationary textures (Pérez-
Barnuevo et al., 2018, 2013) of ore samples.

Traditionally, the development automated mineralogy was considered a breakthrough
in the field of process mineralogy in what now known as Modern Process Mineralogy
(Lotter et al., 2018b). Process mineralogy itself is a discipline that is closely related
to geometallurgy, as it is described as the practical study of mineral characteristics and
properties with relation to their beneficiation process (Lotter et al., 2018b; Henley, 1983).
The thinking behind process mineralogy is simple: mineral characteristics are thought to
be critical in relation to the mineral processing performances, therefore, the evaluation
of mineral processing shall not only consider process parameters but also the mineralogy
and ore characteristics. In essence, it basically aims to push mineralogical knowledge to
mineral processing operations, therefore breaking the separation between mineralogy and
mineral processing (Dominy et al., 2018). Many case studies (Lotter, 2011; Gu et al.,
2014; Lotter et al., 2018b) have demonstrated the value of ore mineralogical and textural
information for optimization of process performances such as flotation (Alves dos Santos
and Galery, 2018; Alves dos Santos, 2018; Tungpalan et al., 2015), comminution (Little
et al., 2017, 2016; Tøgersen et al., 2018; Jardine et al., 2018), and leaching (Ghorbani
et al., 2011; Fagan-Endres et al., 2017).

In relation to geometallurgy, process mineralogy can be considered as a part of geometal-
lurgy in Figure 1.1 by serving as a connection between mineralogy and texture to particles
behaviour. Similar to geomatallurgy, process mineralogy also pushes the developments
to move away from the traditional qualitative description of mineralogy and texture to
quantitative numbers that can be used in process models to predict the ore behaviour in
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the beneficiation process (Yildirim et al., 2014; Jardine et al., 2018; Donskoi et al., 2016;
Whiteman et al., 2016).

However, in contrast to geometallurgy, process mineralogy does not consider spatial mod-
els and orebody variability, therefore only considering the mineralogy and mineral pro-
cessing part while ignoring the geology part. Additionally, geometallurgy goes beyond
process mineralogy; it evaluates the whole mining value chain which then also includes
mining and environmental management (Lishchuk et al., 2020). In fact, Lishchuk et al.
(2020) further argued that the notion of geometallurgy as a ”bridge” between geology
and mineral processing is often confused with process mineralogy. Both Dominy et al.
(2018) and Lishchuk et al. (2020) highlighted that the orebody variability (spatial or
block models) and the subsequent prediction of variations in the process responses, is the
main feature of geometallurgy. The management of orebody variability and its effect on
a mining project as a whole would ultimately help in production planning in order to
reduce risk and maximize profit; which is the main reason why geometallurgy is invented.

With that being said, it is logical that process mineralogy is also an important link
in geometallurgy. Therefore the automated mineralogy’s role in geometallurgy is also
important. In Figure 1.1, automated mineralogy comes to play in the first step, in
which it is used to acquire mineralogical and texture information of the orebody to be
transferred to the breakage model. This transfer of information relies heavily on accurate
and representative sampling techniques; something which has been considered as well in
process mineralogy (Lotter et al., 2018a).

In Figure 1.1, it is shown that the mineralogical and textural information are used in the
breakage model to generate the particles, in which the particles is then fed to process
models. However, a more experimental based approach can also be used, namely by
performing experimental breakage (comminution) on the samples from the ore blocks to
generate the particles, as illustrated in Figure 1.2. Such experimental approach can be
considered as the midway between proxy-based geometallurgy (Lishchuk et al., 2015) and
particle-based geometallurgy. In this approach, the particles are generated directly from
comminution tests and analyzed using automated mineralogy to get their mineralogical
and textural information. This information is used in process simulation to obtain the
particles behavior information. Similar to Figure 1.1, the particles behavior information
can be used for production forecasting and inputted back to the spatial model (Lamberg,
2011).

Upon examination of both Figure 1.1 and Figure 1.2, several differences become clear:

• The particle based approach requires a representative mineralogy and texture mea-
surement of the ore blocks from the spatial model. In experimental particle based
approach, the focus is shifted to the particle; an accurate representation of the par-
ticles is required. This means shifting the role of automated mineralogy from the
analysis of ore blocks (often sampled in the form of drill cores) to the analysis of
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Figure 1.2: Experimental particle based geometallurgy

comminution products (particles). In any case, both approaches require proper and
accurate sampling as the ore characteristics are determined by the sample analyzed
/ tested.

• The particle based approach relies on an accurate breakage model that can forecast
liberation distribution of the progeny particles based on mineralogy and texture
information of the ore block. In experimental particle based approach, the breakage
model is replaced with actual comminution tests to generate the particles. The
focus of the comminution tests should be on the generation of the particles instead
of measuring rock properties such as grindability. This means shifting the challenge
from selecting the suitable breakage model to selecting the suitable comminution
test method.

Nevertheless, an accurate breakage model would often require calibration and validation
with experimental comminution tests. Conversely, with the analysis of progeny particles
from the comminution tests, a breakage model for that ore type can be constructed.
Therefore the experimental particle based approach shown in Figure 1.2 should rather be
seen as a compliment instead of substitute to the particle based geometallurgy in Figure
1.1.

1.3 The problem of stereology

While automated mineralogy offer a rapid and automated data acquisition and processing
of ore samples, it possesses an obvious weakness due to loss of dimensionality. Particles
are three-dimensional (3D) objects, while current automated mineralogical tools only
produce a two-dimensional (2D) cross section analysis of the ore samples. This loss of
dimensionality can lead to overestimation of the mineral liberation, as the cross section of
the sample might not represent the actual state of the particles (Lätti and Adair, 2001).
This phenomenon is known as stereological error / bias, and illustrated in Figure 1.3.
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Figure 1.3: The effect of stereological bias on different particles with varying degree of liberation
(Spencer and Sutherland, 2000). The possible cross sections analyzed are indicated by the red
lines crossing the particles

In order to address this issue, many studies (Ueda et al., 2018a,b, 2017; Lätti and Adair,
2001; Fandrichi et al., 1998; Miller and Lin, 1988; Spencer and Sutherland, 2000; Gay
and Morrison, 2006; King and Schneider, 1998) have been devoted to make use the 2D
liberation data more accurately, i.e. to estimate the actual 3D liberation data based on
the obtained cross-sectional 2D liberation. This estimation is often called stereological
correction. However, these correction methods are barely applied in practice and their
applicability to various types of particles have not yet been studied extensively(Ueda
et al., 2018b). This is quite understandable as it can be seen in 1.3, stereological bias
is highly dependent on the internal structure of the minerals in the particles. The bias
is large when the particles contain large mineral grains (the middle particle in Figure
1.3) while on the other hand the bias is small when the particle contain small dispersed
grains (the left particle in Figure 1.3). Nevertheless, as Figure 1.3 would suggest, the
quantification of stereological bias in the Y-axis is merely conceptual. It is unclear what
parameters should be taken into account in estimating and quantifying the sterological
bias (Ueda et al., 2018a).

It is also worth mentioning that in 2D liberation analysis, a certain number of particles
must be analyzed for statistically sound liberation measurement (Mwanga et al., 2014).
This is largely due to the stereological effect; by having multiple cross sections of the
particle, the stereological bias could be minimized, and therefore more statistically reli-
able result can be obtained. Ueda et al. (2016) have discussed the issue about statistical
variability of the liberation measurement as a function of the number of particles, in
which they proposed a model to determine the minimum amount of particles needed to
obtain statistically reliable liberation analysis both in 2D and 3D (through stereological
correction). This model was then validated through a number of numerical simulations,
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in which it aims so that the liberation measurement satisfies the designated confidence
level (Ueda et al., 2018c, 2016).

1.4 X-ray microcomputed tomography - a 3D min-

eral analysis tool

The inherent stereological bias within the 2D automated mineralogical tools paved the
way for the more sophisticated instruments that are capable of acquiring 3D data from ore
samples. Over the last decades, the development of X-ray microcomputed tomography
(µCT) in geosciences have received wide attentions. The main advantage of µCT lies on
its ability to non-destructively analyze the 3D interior of an object. Many studies have
been done to evaluate the potential applicability of µCT system in mineral processing
and ore characterization (Miller et al., 1990; Kyle and Ketcham, 2015; Lin and Miller,
1996) as well as geoscience in general (Cnudde and Boone, 2013; Mees et al., 2003).

The µCT system has been demonstrated to be capable of extracting ore properties in
3D, including porosity (Lin and Miller, 2005; Peng et al., 2011; Yang et al., 2017; Zan-
domeneghi et al., 2010), mineralogy and mineral liberation (Ghorbani et al., 2011; Lin
and Miller, 1996; Reyes et al., 2017, 2018; Tiu, 2017), size and shape (Wightman et al.,
2015; Lin and Miller, 2005), and to some extent stationary textures (Jardine et al., 2018).
Additionally, the µCT system also offers new information that would not have been avail-
able using traditional 2D analysis, such as information about depth and mineral surface
exposure (Miller et al., 2003; Reyes et al., 2018; Wang et al., 2017). This new depth of
information has been demonstrated to be useful for evaluating process that are dependent
on surface properties such as leaching (Fagan-Endres et al., 2017; Lin et al., 2016a) and
flotation (Miller and Lin, 2016, 2018; Reyes et al., 2019). Furthermore the development
of µCT systems have also contributed for evaluating statistical reliability of liberation
measurement and stereological correction models; Ueda (2019) have recently performed
experimental validation of their model (Ueda et al., 2016) with the use of 3D liberation
analysis using µCT systems.

However, the implementation of µCT system as an automated mineralogical tool is not
without challenge. While the µCT system’s effectiveness in measuring structural prop-
erties such as size, shape, and porosity has been well demonstrated, its effectiveness in
differentiating mineral phases in the sample is lagging behind due to lack of contrasts
between mineral phases (similar attenuations between some minerals), limited resolu-
tion, and lack of automated mineralogical analysis software. These challenges have been
addressed by several researchers through optimization of scanning parameters (Reyes
et al., 2017; Kyle et al., 2008; Bam et al., 2019), calibration with pure minerals (Ghor-
bani et al., 2011), and using another 2D automated mineralogy data as a reference (Reyes
et al., 2017).
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1.5 Problem statement and scope of work

Geometallurgy relies on accurate mineralogical and textural information of the ore blocks
in which such information are then used as a basis for the predictive modelling and
production forecasting. These information are currently obtained through 2D automated
mineralogy system, which entails dimensionality loss and stereological error. µCT offers
a non-destructive 3D analysis of ore samples, but challenges and hurdles prevail in the
process of establishing µCT system as an alternative automated mineralogy tool. These
challenges and hurdles in using µCT system for ore characterization are the main issue
that this work tries to tackle.

This work aims to evaluate and explore the current state and potentials of µCT appli-
cation as an automated mineralogical tool in the context of geometallurgy. The main
hypothesis that serves as the backbone of this work is that there exist significant differ-
ences between the 3D and 2D ore properties, which then necessitates the use of µCT for
ore characterization. In particular, this work addresses the following questions:

1. How can ore properties such as mineralogy and texture be extracted accurately
using µCT systems?
This question can be broken down into two parts of the ore properties: mineralogy
and texture. By defining what constitutes a ”texture”, the latter part could be
broken down further. In this study, texture is defined as three categories, namely
structural textures, stationary textures, and surface textures. Structural texture
refer to grain and particles morphology (size, shape, orientation), while stationary
textures refer to the spatial relationship between the grains in the ore (Lobos et al.,
2016). Surface texture, which is unique to 3D, is defined as the topology (surface
properties) such as roughness, roundness, and mineral exposure.

2. How to use the extracted (3D) ore properties from the µCT data in a geometallur-
gical program? This question is focused more to the utilization of 3D ore properties
in the context of particle-based geometallurgy (Figure 1.1).

In order to address these questions, the following approaches are used. These approaches
are illustrated further in Figure 1.4.

• Literature review. The possible µCT data processing methods for extracting min-
eralogy and texture of ore samples are systematically reviewed in Chapter 2 (Paper
1 and Paper 2). The review focuses more on current methods and examples applied
on ore samples as well as the implications for mineral processing. Other methods
applied for other type of samples such as rocks and aggregates are briefly discussed.
The review also serves to establish a step-by-step working pipeline in processing
µCT data, in which various alternatives of data analysis methods are presented for
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each step. In the end of the chapter, a library of applicable data analysis methods
for different purposes of ore characterization is presented.

• Method development. After systematically reviewing the current state of µCT
data analysis methods for ore characterization, the gaps for future developments
are then identified. Chapter 3 (Paper 3) then addresses exactly this; a new data
analysis method for 3D µCT data is developed. The performance of this method
is benchmarked against traditional automated mineralogical techniques.

• Process modelling and simulation. In order to address the second research question,
the data extracted using potential techniques reviewed and developed in Chapter
2 and 3 respectively would be used in a process simulation. Similarly, the result of
the simulation can be benchmarked against the the same simulation but using 2D
mineralogy and texture data. This approach however is not yet discussed in this
licentiate thesis, but it is included in the whole framework of the PhD thesis.

Figure 1.4: General workflow of this thesis. Solid lines and blue boxes refer to the work done
in the licentiate, while dashed line and white boxes are planned in the scope of the whole PhD
work. §The numbers denote the papers published as a result of this work.

The author is aware that the possibility of using µCT in the context of geometallurgy
is potentially huge. Therefore there is a need to define the limit of the work, which is
illustrated in Figure 1.5. The term ”ore properties” in this context is limited to the
mineralogy and texture properties of the ores, as explained earlier in the first research
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question. The relevance of these ore properties to the processing behaviour is established
through the literature review and benchmark studies. Regarding the tool (µCT), more
focus would be placed on the use of conventional laboratory-µCT systems, as they are
more prevalent compared to synchrotron systems.

Figure 1.5: The limitation and scope of this work, divided into three main components of the
work, which are the material (ore), the method (µCT), and the application (geometallurgy).
The main focus of the work are the ones inside the green squares

In terms of the relationship with geometallurgy, the work is limited in applying the tool
(µCT) as an automated mineralogy system in the context of geometallurgy shown in
Figure 1.2. The working pipeline from (2D) automated mineralogy data to the particle-
based process simulation has been established by Lamberg and Vianna (2007), and has
been evaluated in the modelling of wet low intensity magnetic separation (WLIMS) op-
erations by Parian et al. (2016). This work would simply test the established working
pipeline but using 3D µCT data as an input.

Other potentials of applying µCT systems in geometallurgy may include the use of in-
situ experiments such as breakage (Alikarami et al., 2015) and leaching (Dobson et al.,
2017) which is potentially useful for the proxy-based geometallurgy. In-situ breakage
experiments could give some information on how crack and fracture propagates in the
ore, which in turn could be very valuable in establishing a breakage model in the context
of particle-based geometallurgy (Figure 1.1). The possibility of using more powerful
synchrotron CT systems that enable phase-contrast tomography (PCT) and diffraction-
contrast tomography (DCT) is also of an interest as it may increase the capability of
µCT systems in differentiating phases in the samples. While these potentials are out of
scope of this work, they will be succinctly discussed.



Chapter 2

Mineral characterization with µCT

In this chapter, the current state and potential applications of µCT systems for mineral
characterization are discussed. The term ”mineral characterization” is defined more as
extraction of mineralogical and textural information from an ore sample, whether it be
particulate or intact (drill core) samples.

2.1 Principles of µCT analysis

A configuration of µCT system is shown in Figure 2.1. During acquisition, the sample
is exposed to the incident X-ray beam and rotated through 180° to obtain a number
of projections (typically between 600 - 3600 projections). These projections are then
reconstructed to create 2D slices (projection images) of the measured volume. The pixels
in the 2D slices retain spatial information regarding the originating volume elements
(voxels), so that the slices could be stacked and rendered to visualize the 3D volume of
the sample. These 2D slices are usually considered the ”raw data” in which it is subjected
to various image processing procedures aiming to obtain information about the sample.

The principle of µCT measurement is that it records the differences in X-ray attenuation
of the object. Attenuation is described as the proportion of the X-ray that interacts with
the material and represented by the gray intensities in the reconstructed slice images.
The interaction between material and the X-ray beam decrease the intensity of the X-ray
as it passes through the object. This decrease of intensity can be described by Lambert-
Beer law (Equation 2.1), in which I(x) is the intensity measured at the detector (units:
mas time−3), I0 is the intensity of the original incident beam from the X-ray source, x is
the length of X-ray path within the material, and µ is the attenuation coefficient of the
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Figure 2.1: Measurement and data acquisition using µCT. The X-ray source originates form a
small focal spot and illuminates a planar detector. This configuration resembles the most widely
used modern laboratory cone beam scanning configuration

material (units: length−1), which depends on the material atomic number and density.

I(x) = I0e−µx (2.1)

Due to stage rotation, the beam angle (α) is varied, which in turn affects the attenuation
coefficient. Deriving from Equation 2.1, the correlation between beam angle and the
attenuation coefficient for a given length of X-ray path (L) is given in Equation 2.2.

ln(
I(L, x)

I0(α))
= −

∫ L

0

µ(x, α)dx (2.2)

The attenuation coefficient is then related to the theoretical coefficient values for different
ore minerals (µc). These theoretical values can be calculated as a function of the X-ray
energy (ε, units: mass length2 time−2), and mineral density (ρ, units: mass length−3).
Such calculation is given in Equation 2.3, in which µmass refers to the mass attenuation
coefficient that depends on the X-ray energy used in the measurement. The dependency
of µmass on energy can be described in Equation 2.4, in which a and b are the energy-
dependent coefficients, and Z is the bulk atomic number of the material.
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µc(ε) = ρµmass(ε) (2.3)

µmass = a+ b
Z3.8

ε3.2
(2.4)

Depending on the energy spectrum, different attenuation mechanism prevails. In the
lower energy spectra (50-100 keV), photoelectric absorption predominates, in which the
incoming X-ray photon ejects the inner electron by occupying the inner shell of the
atom. This imbalance causes the electron from the outer shell to jump to the inner
shell. The resulting attenuation coefficient (µ) based on this mechanism is proportional
to Z4−5. In the higher energy range (up to 5-10 MeV), Compton scattering is more
prevalent, in which the incoming photon only interacts with outer electron and deflects
it to a different direction. With this mechanism, the attenuation coefficient (µ) will
be proportional to Z. The relation between Z and µ would suggest that in Compton
scattering, the attenuation coefficient is less dependent on the material atomic number
as opposed to that in photoelectric absorption. Instead, in Compton scattering, the
attenuation would be more affected by the material density (atomic number per unit
mass). Both photoelectric absorption and Compton scattering are shown in Figure 2.2.

Figure 2.2: Interaction of X-ray photons to the subjected atom, showing (a) photoelectric ab-
sorption, and (b) Compton scattering

Keeping these different mechanisms in mind, observe also that in laboratory µCT sys-
tems, the X-ray beam generated by the source is polychromatic. This means that the
beam consists of a spectrum of different energies as opposed to single energy (monochro-
matic) beams used in synchrotron µCT. Polychromatic beam is subject to a commonly
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known phenomena called beam hardening. This phenomena happens due to the prefer-
ential absorption of lower energy beams, leaving behind the higher energy beams, hence
the name ”beam hardening” (Cantatore and Müller, 2011). The longer the X-ray beam
travels through the object, the more lower energy beams are absorbed, increasing the
beam energy penetrative capability while decreasing its attenuation. If this is not cor-
rected, the grayscale values of the reconstructed image of an uniform object would appear
more attenuated near the edges (Bam et al., 2016). The reconstructed image now possess
artifacts, i.e. the property in the image that does not reflect the physical feature of the
sample (Cantatore and Müller, 2011).

In order to address the beam hardening effect, several measures can be taken: (a) External
(pre-hardening) filters; (b) Reducing sample size; (c) correction during image reconstruc-
tion. External filters are usually made from materials such as aluminum, copper, or brass
(Cantatore and Müller, 2011), which aim to pre-absorb the lower energy spectra, or in
other words ”filter out” the the lower energy beams (hence the name ”pre-hardening”).
Using smaller sample size has also been shown to minimize the beam hardening effect,
as the longer the X-ray path, the more pronounced the beam hardening effect is. Lastly,
correction can also be done during the reconstruction process, typically by correcting the
attenuation coefficient so that it is linearly varied depending on sample thickness. Other
correction methods also exist and discussed elsewhere (Ketcham and Hanna, 2014; Bam
et al., 2019).

2.1.1 Limitations for mineral characterization

Understanding the attenuation mechanisms and their relation to the attenuation coeffi-
cient is the key in understanding how can µCT be used to differentiate minerals in the
sample. Higher energy means better penetrative capability of the beam, producing bet-
ter signal-to-noise ratio. However, the attenuation differences become less, which make
mineral segmentation more difficult. Using lower energy will alleviate this issue, but then
it reduces the penetrative capability of the X-ray which makes exposure time longer to
achieve a good signal-to-noise ratio. This trade-off can be explained due to the fact that
in lower energy spectra, the attenuation is highly dependent on the atomic number (µ is
proportional to Z3−4) so that differences in atomic number is exemplified in the attenu-
ation coefficient. On the other hand in the high energy spectra, the attenuation is less
dependent on atomic number (proportional to Z), and more dependent by density of the
material. This create a rather challenging situation for mineral segmentation, as many
minerals have similar densities. This dependency of attenuation coefficient of different
minerals to the X-ray energy is available some database such as XCOM by National
Institute of Science and Technology (NIST) (Berger, 2010).

The issue of finding an ”optimum” X-ray energy where sufficient contrast between the
minerals can be achieved in a reasonable amount of acquisition time has been investigated
by several researchers. Reyes et al. (2017) have found that copper sulphide minerals were
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able to be distinguished from at 50 kV X-ray energy. The differentiation was also made
possible by using SEM-EDS data as reference. Nevertheless, the differentiation between
different copper sulphide minerals (e.g. chalcopyrite, bornite) was not possible at that
energy level. Reducing sample size is also one of the measure that can be taken to reduce
long exposure time (Kyle and Ketcham, 2015; Bam et al., 2019). Kyle et al. (2008) has
demonstrated that differentiation between chalcopyrite and bornite at 180 keV is possible
using cores with diameter less than 22 mm.

Other measure that can be taken to help differentiating between minerals is by calibrating
the µCT with pure minerals of known density so that the correlation of attenuation
coefficient with material density can be obtained. Alternatively, dual-energy scanning
(scanning at two different energy levels) can be performed so that the density of the
material could be obtained directly by correlating the attenuation coefficients in the
two energy levels (Ghorbani et al., 2011; Van Geet et al., 2000). However, dual-energy
scanning has been reported to be sensitive to noise (Van Geet et al., 2005).

The ability of µCT to distinguish minerals is also limited by the spatial resolution. Spatial
resolution defines how the volume is discretized, i.e. the volume over which Equation
2.2 is integrated. This then means that objects smaller than the spatial resolution could
not be detected. A typical µCT scanner has spatial resolution ranging from 10 - 50 µm
(Ducheyne et al., 2017). Some newer µCT systems can go below 1 µm (sub-µCT) or
even at nano scale (nano-CT) (Kastner et al., 2010). Similarly, spatial resolution is also
connected with the acquisition time; longer acquisition time is required when using high
spatial resolution as higher number of projections is required.

It is also worth noting that some of the problems associated with mineral differentiation
with µCT system can be alleviated by the use of monochromatic (synchrotron) X-ray
sources instead of polychromatic sources that are commonly employed in lab-µCT sys-
tems. The use of synchrotron sources allows the use of diffraction-contrast tomography
(DCT) and phase-contrast tomography (PCT). These contrast modes are useful when
differentiating minerals, as it allows high contrast between different phases and crystals
(Sun et al., 2018; Kikuchi et al., 2017; Toda et al., 2017; Herbig et al., 2011). Synchrotron
systems also allow the use of complimentary tomography methods such as X-ray diffrac-
tion tomography (XRD-CT) and X-ray fluorescence tomography (XRF-CT). XRD-CT
has found applications mostly for crystalline materials (Artioli et al., 2010; Takahashi
and Sugiyama, 2019), while XRF-CT is mostly used for evaluation of inclusions in ge-
ological samples (Laforce et al., 2017; Suuronen and Sayab, 2018). Nevertheless, these
synchrotron sources are less widely available than conventional laboratory µCT systems
mainly due to high operating costs (Cnudde and Boone, 2013). The current technology
of laboratory µCT systems has not met the level of synchrotron sources yet (Bam et al.,
2019), but recent developments have extended their capabilities further. For example,
some works have shown that phase- and diffraction-contrast tomography are possible for
laboratory µCT systems (King et al., 2014; Olivo and Castelli, 2014; Viermetz et al.,
2018).
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2.2 Processing of µCT data

In principle, the processing techniques applied for µCT data would be based on vari-
ous digital image processing techniques. Although many conventional image processing
techniques that are commonly applied on 2D images can be extended to 3D images, ad-
justment is often needed to reduce the computational cost. Currently, there are several
available softwares (both commercial and open-source) that are able to process and visual-
ize (render) 3D images such as Avizo (http://www.vsg3d.com/), Fiji/ImageJ (Schindelin
et al., 2012), Dragonfly (https://www.theobjects.com/dragonfly/), Dristhi (Limaye,
2012), Morpho+ / Octopus (Vlassenbroeck et al., 2007; Brabant et al., 2011), and many
more.

A typical workflow of processing µCT data for mineral characterization is given in Figure
2.3. The 2D µCT data slices are stacked into a 3D image. This 3D image is then pre-
processed prior to segmentation. Segmentation and classification of the phases in the
data are then performed to get the volume of interests (VOI), which usually represents
different mineral phases in the sample. The features from that VOI are then extracted.
Volume rendering here is done to produce a 3D view on a 2D display screen.

2.2.1 Pre-processing

Pre-processing step is required before segmentation to clear out noises and artifacts in
the data. Artifacts are part of the µCT slices that were not found in the original sample.
Artifacts could originate from the physical interaction between the materials and the X-
ray beam, or from the detectors. Pre-processing step could also be necessary to prepare
the data for the subsequent segmentation, for example by enhancing contrasts between
the pixels.

Filter is one of the most common pre-processing technique that is used in image process-
ing. Filters are a set of mathematical equation that is implemented in a pixel and its
neighbors. The simplest filter is a kernel (matrix) containing a set of values to be con-
voluted with the image. Depending on the kernel values, various tasks can be performed
on the image, which include:

1. Denoising and blurring. This filter mainly aims to clear out noises in the image by
smoothing (averaging) the pixels. The drawback of such filter is it blurs the details
in the image, such as phase boundaries that are critical for the segmentation process.
Example of such filters are Gaussian and mean filters.

2. Edge-preserving filters. Similar to the denoising and blurring filters, it aims to
clear out noises in the image, but by also preserving the edges (phase boundaries).
Example of these filters are median, non-local mean, and bilateral filters. Variation
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of these filters have been applied in several cases of µCT rock analysis (Müter et al.,
2012; Brabant et al., 2011)

3. Sharpening and edge detecting filters. These filters increase the contrast between
phase boundary, hence the name ”edge detecting”. These filters are especially
useful in detecting crack and pores in rock samples (Peng et al., 2011; Chun and
Xiaoyue, 2009) as well as phase boundary enhancement for segmentation (Schlüter
et al., 2014). Example of these filters include Laplacian, Sobel (Sobel, 2014), Canny
(Canny, 1986), and Prewitt (Prewitt, 1970) filters.

2.2.2 Mineral Segmentation

Segmentation of µCT data refers to the identification and isolation of voxels that have
the same features into a single category (Mart́ınez-Mart́ınez et al., 2007). In most cases
the feature that is evaluated is then the voxels’ grayscale, which corresponds to the
attenuation coefficient (and therefore the material’s density and atomic number). In the
case of µCT mineral characterization, segmentation mostly refers to the classification of
the voxels to different mineral phases in the data. The amount of voxels in each mineral
phase corresponds to the proportion of each mineral phase in the sample. Therefore,
segmentation is useful to deduce mineralogical composition of the ores, which can also
provide some information about the liberation of particulate samples.

Several methods have gain popularity in terms of mineral segmentation for µCT ore
characterization. The relevant methods are discussed in this subsection.

2.2.2.1 Thresholding

Tresholding introduces a threshold / limit value on an image, thereby segmenting the
voxels with grayscale value lower than the threshold. There are basically two major types
of thresholding algorithms:

• Global thresholding. The threshold value is determined from all the grayscale values
in the image.

• Local thresholding. The threshold value is determined ”locally”, i.e. only consid-
ering a certain part of the image instead of the whole image.

In general the main problem that many different algorithms try to address is that the
determination of optimum threshold value.

One of most popular thresholding algorithm is the Otsu thresholding (Otsu, 1979). Otsu
thresholding is widely used in the context of µCT ore characterization, especially in the
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Figure 2.4: Otsu thresholding for segmentation, showing: (a) original slice of drill core stack
from µCT; (b) global thresholding with Otsu; and (c) multi-level thresholding with Otsu. It
can be seen that directly using global thresholding will only segment the drill core from the
background; multi-level thresholding is needed to extract the mineral grains from the drill core

initial segmentation between the air/pores and the rock matrix (Yang et al., 2017; Reyes
et al., 2017; Andrä et al., 2013; Lin et al., 2016a, 2015). While Otsu thresholding is gen-
erally effective in such cases, it may not work perfectly when the sample is heterogenous
and the VOI (Volume of Interest) is large. If the VOI is large, it should be sub-sampled
to produce smaller VOIs, in which the threshold value is determined from these smaller
VOIs (Yang et al., 2017). Such approach can be then classified as local thresholding,
as the threshold value is determined locally in the smaller VOIs. Furthermore, Otsu
thresholding may not work properly in cases where boundaries between high and low
grayscale value voxels exist. This is due to boundaries would potentially not be properly
segmented due to partial volume effect (Wang et al., 2015).

Otsu thresholding could also be extended to obtain multiple threshold values so that
more than two phases can be segmented, as illustrated in Figure 2.4.

Another commonly used thresholding algorithm is the maximum entropy algorithm (Ka-
pur et al., 1985). Such algorithm has found applications in segmenting between the
mineral grains and the gangue matrix (Lin et al., 2015, 2016a). In studies by Lin et al.
(2015), Otsu algorithm was used for the initial segmentation between the ore particles
and the air, while maximum entropy algorithm was used to identify the metal sulphide
grains within the mineral matrix. The reasoning behind this was that the occurrences of
metal sulphide in the matrix is minimum, so that the sulphide peaks could not be clearly
identified in the histogram.

Local thresholding is considered as a refinement of the global thresholding based on
local spatial information (Iassonov et al., 2009). Such thresholding technique is used for
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example in distinguhing between pores and cracks in rocks in a µCT data (Deng et al.,
2016). In general this thresholding technique is useful for small features like cracks, pores,
fluid inclusions, and small grains. Other algorithm that can be used to segment small
inclusions in a grain is gradient-based segmentation (Godel, 2013). In such algorithm a
gradient line is placed in the grain, and the gradient of the grayscale value intercepted by
the line is computed. The threshold value is obtained in the points where the gradients
are high, indicating phase boundaries. Such technique while effective for small features
such as inclusions, it require user manually determine the locations of the lines to get the
intercepts.

2.2.2.2 Watershed segmentation

Watershed segmentation is another popular segmentation technique useful for mineral
segmentation. Watershed itself refers to a ridge that divide areas drained by different
river systems; it separate different catchment basins. As the name suggest, watershed
segmentation treats the image as a topographic surface, in which the depth / height of the
catchment basin is defined as the grayscale values of the image. Then, each catchment
basin is considered as a distinct object in an image. In case of mineral segmentation,
each catchment basin can be considered as an individual grain or particle in the sample.

Intuitively, a problem remains when using watershed segmentation which is how to ex-
actly determine that a catchment basin corresponds to an individual grain/particle. It
can be that one catchment basin represents multiple grains (under-segmentation), or vice
versa, two catchment basins represent one single grain (over-segmentation). Avoiding this
problem requires some modifications in the watershed algorithm. One example of such
modification is by introducing markers to the grains. These markers can be based on
the depth of the basin, i.e. by defining that basins that have depth less than a certain
value (shallow basins) would not be treated as a unique basin. In the image, this is done
by eliminating areas which gradients are less than the limiting value. Marker-controlled
segmentation is illustrated in Figure 2.5

Several researchers have applied marker-controlled watershed segmentation for segment-
ing different phases in the µCT image (Wang et al., 2015; Lin et al., 2010; Lin and
Miller, 2010). Wang et al. (2015) found that watershed segmentation works best for min-
eral particles greater than the scale parameter of 30. Scale parameter is defined as the
ratio of between particle size and voxel size. In Wang’s case, the watershed segmentation
is modified by introducing markers to the grains, so that each marked grain is preserved.

Additionally, by filtering out basins that are less than a certain depth, it is assumed
that the grain size in the ore is not extremely heterogeneous. If the grain size is highly
varied, it would be difficult to obtain a threshold value that would balance the two sides:
removing unwanted basins while retaining the basins of interest (Kong and Fonseca,
2017). In this case, alternative ways of introducing markers do exist. For example, by
taking the topography of the basin, and the threshold value is set as a fraction of the zone
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Figure 2.5: Marker-controlled watershed segmentation for separating touching grains, showing:
(a) binary image showing touching grains; (b) distance transformation of (a), indicating that
the two grains are connected; (c) markers are introduced to define which objects shall constitute
as the basins; (d) watershed of (c), showing a thin ridge is now formed between two grains; and
(e) the distance transform of (d) showing the grains are now separated

around the basin (Shi and Yan, 2015). The zone corresponding to the fraction is then
flattened down, so that the flattened zone would be considered as part of adjacent basin,
therefore merging both basins. Again, Kong and Fonseca (2017) have demonstrated that
while such algorithm is less affected by highly varied grain size, it does affected by varying
grain shape , which is representative of the basin’s topography. Kong and Fonseca (2017)
offered an iterative technique that perform watershed segmentation in each basin zone
to identify potential new basins within the zone. Such methods have been demonstrated
to be effective in segmenting grains with varying shape and size.

2.2.2.3 Unsupervised classification

Classification in terms of image processing is considered as clustering the pixels into
several clusters based on their similarity (Baklanova and Baklanov, 2016). Usually, pixels
with similar grayscale values are grouped together. Unsupervised classification then
means the algorithm decides for itself the optimum classification (which pixel shall belong
to which cluster). This can be done for example by minimizing the variance within the
cluster or maximizing the variance between different clusters.

K-means classification is one the most popular unsupervised classification technique. As
the name suggest, it classify the pixels in the image into K numbers of clusters (Duran
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and Odell, 2013). The user initiates the algorithm by setting the number of clusters
(K) as well as the initial guess of the cluster centroids (ck). Then the squared euclidean
distance between the pixel to the each cluster centroid is calculated as in Equation 2.5.
dk−means refers to the distance and px,y refers to the pixel in xy coordinate. This can
be extended to 3D dimension or xyz coordinate. Each pixel is classified to clusters that
corresponds to the shortest distance. After all pixels are classified to the clusters, new
cluster centroid is calculated by averaging the grayscale values of all pixels in the cluster.
This process is reiterated until the cluster centroids are stable around a certain value.

dk−means = ‖px,y − ck‖2 (2.5)

The initial selection of the centroids could be done arbitrarily, or by using available
algorithms such as one developed by Arthur and Vassilvitskii (2007). The centroids are
selected using a weighted probability distribution, in which the probability is proportional
to the distance between the newly selected centroids and previously selected centroids.
This means that the algorithm by Arthur and Vassilvitskii (2007) tries to avoid selection
of two similar centroids. Example of mineral segmentation using K-means algorithm is
shown in Figure 2.6

Figure 2.6: (a) Drill core volume acquired from µCT; (b) multilevel Otsu thresholding, showing
around 10% sulphide content; and (c) K-means segmentation, showing around 6% sulphide
content. Observe the similarity of both images yet quite different sulphide content

Another alternative in unsupervised classification is Fuzzy C-means clustering (FCM).
The term fuzzy refers to classification technique where the clusters have no distinctive
boundary (Zaitoun and Aqel, 2015). A pixel in FCM can be a member of multiple clusters,
depending on the fuzzifier constant (m). The constant affects the distance calculation
(dFCM), which in turns affect how a pixel is classified to a cluster centroid, as shown in
Equation 2.6.
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dFCM = wmk .dk−means;
1

wk
=

c∑
j=1

(
‖px,y − ck‖
‖px,y − cj‖

) 2
m−1

(2.6)

In which j = 1, ..., c with c as the number of clusters, m ∈ R with m ≥ 1 and wk is
the weight of the membership function. As it can be seen in Equation 2.6 that large
fuzzifier constant leads to smaller weight, or in other words decreases the weight assigned
to clusters that are close to the pixel. In the lower limit of m = 1, the weight increases
for clusters that are close to the pixel, indicating less fuzzy classification similar to the
K-means. Typically the fuzzifier constant is set to 2 (Siddique et al., 2018), unlesss some
information is known about the data.

Both techniques (K-means and FCM) have been applied in Chauhan et al. (2016b,a) for
segmentation of pores in rock samples. The performance of both classification techniques
are compared and benchmarked against experimental porosity measurements using pyc-
nometer.

When comparing performance between classifiers, several measures can be used. First
and foremost, the computational speed can be compared, as the fastest algorithm would
be preferable. In terms of accuracy, several metrics such as entropy and purity can be
used. Entropy refers to class distribution across the clusters, i.e. how likely a member
of class i belongs to cluster j. Purity then refers to the most common class in a cluster,
with values ranging between 0 and 1. If a cluster contain all pixels that belongs to the
same class, then such cluster is considered pure with purity value of 1.

Nevertheless, these metrics can only be calculated if the ground truth is available, i.e.
the actual information about the classes (mineral phases) of the pixels.That is why these
metrics are considered as an ”external validation” in which the validation requires exter-
nal data as the ground truth. If such data is not available, then internal validation can
be done by using sum of squared error (SSE). The error is the distance metrics, so that
the SSE is the summation of Equation 2.5 and 2.6 for all pixels in each cluster.

Further applications of both classification tehcniques for mineral segmentation of µCT
data is also subject to the third paper (Guntoro et al., 2019) and are discussed further
in Chapter 3.

2.2.2.4 Supervised Classification

Supervised classification refers to classification algorithms in which the user trains the
classifiers using a training data or ground truth. Supervised classifications have been used
for mineral and pores segmentation in of µCT data of ore and rock samples (Guntoro
et al., 2019; Wang et al., 2015; Chauhan et al., 2016b,a). Some relevant algorithms are
discussed here. A comparison of supervised classification with unsupervised classification
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in terms of mineral segmentation is illustrated in Figure 2.7.

Figure 2.7: (a) 3D image of a drill core sample; (b) unsupervised classification performed on
the data; and (c) supervised classification performed on the data. Observe that in (b), pyrite
and chalcopyrite is regarded as one phase, while (c) both minerals can be separated

Classification tree is a decision tree with a binary test in each branch, illustrated in Figure
2.8. Decision tree is built by examining all possible binary splits on the data, in which
optimum split is obtained when the resulting branches have the most purity. Random
forest (Breiman, 2001) is then a technique where multiple classification trees are built
by repeatedly by sampling the training data uniformly and with replacement (bagging).
This creates multiple classification trees that are built based on different parts of the
training data. The pixels are then classified by majority voting of the classification trees.
Such method aims to reduce overfitting of the trees to the training data. Building more
trees would lead to better performance and lower error at the expense of computational
cost.

Another similar classification technique is k-nearest neighbors, or kNN. kNN is often
termed as lazy learning, as it has no prior hypothesis about the training data but rather
directly learn from the training data (Russell and Norvig, 2016). In comparison to
random forest where a classifier (forest of decision trees) is build based on the training
data, kNN directly classify pixels by comparing similar pixels in the training data. This
is done by calculating the distance between the pixel to the similar (neighbor) pixels in
the training data, and by looking on the class majority of the k amount of closest pixels
in the training data. In layman’s term, kNN classify a pixel into a class by looking the
class of similar pixels in the training data. This is illustrated in Figure 2.9

Other classification algorithms that have been applied for µCT data for ore and rock
samples include Support Vector Machines (SVM) (Vapnik et al., 1995) and Artificial
Neural Network (ANN)(Hepner et al., 1990). Both techniques have been applied by
Chauhan et al. (2016b,a) in segmentation of different phases (rock, mineral matrix, and
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Figure 2.8: Example of a classification tree. Binary decisions are placed in each branch, query-
ing the voxel’s value in order to classify the voxel

Figure 2.9: kNN classification with k = 3 (A) and k = 5 (B). Different k will affect how a voxel
is classified; in (A) the majority of the three closest neighbors are green, therefore the voxel
would be classified as green. In (B), the majority of the five closest neighbors are red, threfore
the voxel is classified as red

pores) in the µCT image. ANN has been also applied by Cortina-Januchs et al. (2011)
to classify pores in a µCT image of soil sample. Random forest classification is used by
Wang et al. (2015) to classify ore particles from the background, as it has been previously
stated that the marker-controlled watershed segmentation did not perform well for fine
and low density particles; around 10-15% decrease in error was obtaiuned when supervised
classification was used instead of the watershed segmentation.
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The application of these supervised classification techniques is also subject to the third
paper (Guntoro et al., 2019) and further discussed in Chapter 3

2.2.3 Extraction of textural features

The term feature in the context of mineral characterization would mostly refer to the
textural information of the minerals in the sample. Feature extraction is then the extrac-
tion of textural information from the mineral sample. In µCT mineral characterization,
usually feature extraction is done after mineral segmentation, so that the features of each
mineral in the sample can be obtained. It would then logically follow that the accuracy
of the features extracted is very much dependent on the previous mineral segmentation.

Texture, in terms of mineral characterization and ore geology, is defined as the relative
size, shape, and spatial interrelationship between the mineral grains in the ore. Size,
shape, and orientation of the grains are considered as structural texture, while the spatial
relationship between the grains is considered as stationary texture (Lobos et al., 2016).
The advantage of 3D data obtained from µCT for evaluating textures is quite clear;
features such as size and shape could be more accurately quantified as there is no loss of
dimensionality.

On the other hand, stationary textures have traditionally been extracted qualitatively,
as it is quite challenging to describe the spatial distribution of mineral grains in an ore
using a single number. These textures have usually been described using experiences
and textural archetypes. There are several studies and researches devoted to quantita-
tively analyze stationary textures of ore samples, mainly using 2D computer vision and
image processing techniques (Lobos et al., 2016; Koch et al., 2019; Parian et al., 2018;
Pérez-Barnuevo et al., 2018; Zhang and Subasinghe, 2012). Some recent studies have
further extended the dimensionality of stationary texture quantification to 3D with the
use of µCT system (Jardine et al., 2018; Fatima et al., 2019; Voigt et al., 2019). The
advancement of µCT system and its data processing routines would certainly open up a
new depth of information, as more accurate description of textures can be achieved from
3D data.

2.2.3.1 Size features

Extracting size information from particulate ore samples is relatively straightforward;
many experimental techniques are available such as sieving and laser diffraction. How-
ever, extracting grain size information from intact ore samples (such as drill cores) re-
quires computer visions such as microscopy (both optical and electron). Furthermore,
with optical microscopy alone, the grain size is often described qualitatively as fine-
grained or coarse-grained. With the use of µCT systems, it would be a missed oppor-
tunity if sizes are still described qualitatively. In this subsection some of the relevant
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methods for quantification of size features from µCT 3D image are discussed.

The most common method for extracting size distribution from images is using the con-
cept of mathematical morphology (Serra, 1983; Serra and Soille, 2012). The method
takes binary image as an input and make uses of a structuring element to extract mor-
phological features of the binary image. The structuring element can be thought as a
moving sieve with predetermined size and shape, in which if grain image fits to the struc-
turing element, then the shape and size of the grain can be inferred. Morphological image
analysis has been used in various application for µCT images especially for quantifying
size and structures of pores, grains, and particles in ore and rock samples (Pierret et al.,
2002; Tiu, 2017; Wu et al., 2007).

Morphological opening is an operation that removes any pixels in the image that is
smaller than the size of the structuring element. This method is analogous to sieving,
where particles smaller than the sieve size is passed through the sieve, i.e. not retained in
the sieve. By performing morphological opening repeatedly with incrementally increas-
ing structuring element size, the size distribution can be extracted. This sequence of
operations is often termed as granulometry by opening, as shown in Figure 2.10

Figure 2.10: Granulometry by opening. A structuring element / sieve is operated on a 3D binary
image, in which it represents the mineral grains. The sieve size is incrementally increased in
which the percentage of pixels remained in each sieve size is used to calculate the size distribution

Some limitations exist in granulometry. As it has been suggested, granulometry requires
repeated opening operation on the whole image, which logically would be computation-
ally expensive. Moreover, as the size of the structuring element increase, the operation
also becomes more computationally expensive as more pixels are now included in the
operation. For example by using spherical structuring elements, by increasing its radius,
the total amount of voxels processed is increased to the power of three of the incremental
radius (Pierret et al., 2002). A 32-faced polyhedron could be used instead to alleviate
some of the computational costs (Pierret et al., 2002).



30 Mineral characterization with µCT

2.2.3.2 Shape features

While the role of particle size on various mineral processing operations is relatively well
established, the same cannot be said for particle shape. For example in flotation, when
bubbles are attached to the particles’ surface, the shape of the surface would theoretically
affect how can the bubbles be attached to the surface. Particles with rough surface and
sharp edges would have effects on rupturing of the bubbles, which in turns affect the
effectiveness of bubble attachment to the particles (Koh et al., 2009). If the particles are
not properly attached to the bubble, they would not be recovered in the flotation.

Particle shape was found to be correlated to the flotation rate of coal particles, in which
more round (higher roundness) particles floated slower as opposed to less round particles
(Wen and Xia, 2017). Other studies also found similar result for coal flotation, in which
particles with more elongated shape have a higher flotation recovery (Ma et al., 2018).
Particle shapes are also found to have a role in floatability of recycled materials such as
plastics and glass fragments (Xia et al., 2018; Pita and Castilho, 2017). Other exam-
ples include the faster flotation rate of plate-like molybdenite particles in comparison to
more ground-shaped particles (Triffett and Bradshaw, 2008). However in other study of
flotation of chalcopyrite ores, particle shape was not found to contribute significantly to
the flotation rate (Vizcarra et al., 2011). Similarly in the case of UG2 ores flotation, the
flotation rate was unlikely to be affected by particle shape (Little et al., 2017)

It is also quite understood that breakage mechanism (i.e. selection of mill types) would
produce different particle shapes (Little et al., 2017, 2016; Kaya et al., 2002). Never-
theless, the Little et al. (2017) have stated that the effect of different milling types is
disproportionate on top size fraction of the particles; in the top size fraction, increasing
grinding time led to more elongated products while in finer size fraction such phenomena
was not observed. If breakage mechanism affects the progeny particles’ shape which in
turn affect the flotation process, interesting process mineralogical question may be raised
about whether the ground ore particle shape can be selectively controlled by using spe-
cific milling type and operating conditions so that it is more favorable for the flotation
process (Guven and Çelik, 2016).

Vizcarra et al. (2011) have stated that one of the main challenge in assessing the effect
of particle shape on mineral processing operations is the characterization of the shape
itself. As particles are irregular objects, defining and quantifying shape on such objects
are not so straightforward. Many shape parameters exist such as roundness, aspect ratio,
sphericity, in which all of these could contribute differently on the mineral processing
behaviour. These parameters are generally obtained by measuring the dimensions of
the 2D cross-sections of the particles obtained from microscopy. With the use of µCT
systems, 3D representations of the particles could be obtained so that particle shapes
can be more accurately described.

As it has been discussed, particles and grains of ore samples are often irregular. Never-
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theless, the shape of such particles can be approximated using a set of defined geometrical
objects such as polygons. This is the key concept in computational geometry techniques
such as convex hull, Voronoi diagram, and Delaunay triangulation (De Berg et al., 2000).
These techniques attempt to use convex polygons to represent an irregular object, i.e.
the object is tessellated into a set of convex polygons so that the properties of the object
can be estimated from the properties of the polygons. These methods naturally have
weaknesses for non-convex particles, but nevertheless the error of using these methods
can be easily quantified by comparing the actual volume of the object to its convex vol-
ume, also known as solidity. Other measures that can be measured using convex hull is
convex surface area of the object.

Other technique include the use of a bounding object, i.e. an object that would bound
the particle inside it. The dimensions of the bounding object can be taken as an approxi-
mation of the particle’s dimension. The bounding object’s volume can be minimized until
it tightly fits the particle so that the particle could be better represented. The bounding
object could take form of either sphere or box. If box is used, shape parameters such
as aspect ratio, elongation index, and flatness index can be extracted from the major,
minor, and intermediate dimensions of the box (Zhao et al., 2015). Convex hull and
bounding box of a particle is illustrated in Figure 2.11

Figure 2.11: Computational geometry to extract shape features from a particle. (a) Scatter plots
representing the particle; (b) convex hull of the particle; (c) minimum volume bounding box of
the particle, which is the same as the minimum bounding box of the convex hull

Few studies have extended the concept of computational geometry for 3D image analysis
of µCT data, especially for rock and ore samples (Vecchio et al., 2012; Zhao et al., 2015;
Pamukcu et al., 2013). In the study by Pamukcu et al. (2013), it was stated that the
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limitation of convex hulls is that it could not evaluate non-convex glass inclusions in the
volcanic rock samples. This limitation is even illustrated in Figure 2.11, in which due to
the non-convex shape of the particle, the convex hull of the particle differs significantly
from the original particle.

Besides using polygons, spheres have also been used to approximate particle shape. The
maximum inscribed sphere has been used by Van Dalen et al. (2012) to measure the local
thickness of particles. The local thickness of a point inside the particle can be defined
as the diameter of maximum inscribed sphere on that point. The maximum inscribed
sphere applied together with 3D distance transformation has been used to generate a
new shape descriptor for particles termed as the bluntness index (Pirard et al., 2009).
Such index has been demonstrated to be able to distinguish blunt particles from sharp
particle at a resolution as low as 5000 voxels per particle.

Other method of evaluating particle shape include mathematical functions such as spher-
ical harmonic analysis (Garboczi and Bullard, 2017; Garboczi, 2002). If the previous
methods of convex hulls cannot describe properly non-convex particles, spherical har-
monics overcome this limitation under one condition: the non-convex particles should be
star-shaped. Many natural particles from the ground and inorganic particles in grinding
processes are considered star-shaped but not necessarily convex (Garboczi and Bullard,
2017; Bullard and Garboczi, 2013). The definition of both convex and star shaped are
as follows, and example illustration is given in Figure 2.12.

• A region is considered as convex if for every pair of points within the region, all
points the on the straight line that connects the pairs is also within the region.

• A region is considered as star-shaped, if there is a fixed point in the region for which
a straight line drawn from that fixed point to any other point inside the region lies
entirely within the region.

• If both conditions are not fulfilled, then the particle is neiher convex nor star-
shaped. This is typically for particles with overhangs (crescent shape) and voids
(annulus or donut-shaped).

Spherical harmonics, as the name suggest, attempts to describe a particle as a spherical
function of r(θ, φ) = R, in which θ and φ are the azimuthal and polar angles respectively
as well as r as the distance from the origin in the direction specified by both angles.
Spherical harmonics gives an analytical mathematical equation that describe the surface
of the particle (Garboczi, 2002). The advantage of spherical harmonics in shape ana-
lyis, besides its ability to adress non-convex star particles, is that after the spherical
harmonics of a particle is constructed, geometric quantities such as the major, minor,
and intermediate dimensions of the particle can be determined. Furthermore, due to its
analytical nature, integrals of the function can be calculated as well to obtain the volume
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Figure 2.12: (A) Convex particle, in which every lines in the region lies entirely within the
region. (B) Non-convex particle, as pointed out by the red line in which portion of the line is
located outside the region. The particle is however star-shaped, as all lines drawn from the fixed
red point in the center lie entirely within the region. (C) Non-convex and non-star particle.
Both conditions are not fulfilled

and surface area of the particle (Bullard and Garboczi, 2013). From the dimensions,
volume, and surface area, Wadell shape descriptors (Wadell, 1932) such as roundness
and sphericity indexes can be calculated. Spherical harmonics have been applied mostly
for 3D analysis of sand and aggregate particles (Garboczi and Bullard, 2017; Garboczi,
2002; Cepuritis et al., 2017; Bullard and Garboczi, 2013; Masad et al., 2005), as it is
believed that sand particles’ morphology affects the performance of concretes (Cepuritis
et al., 2016).

Perhaps one of the most potential geometallurgical use of 3D particle shape is to evaluate
breakage mechanism and modelling, as it can give an idea whether the breakage is ran-
dom or non random. In random breakage, the particle properties such as particle shape,
exposed grain surface area, interfacial area of the mineral, and mineral grade do not vary
with particle size (Barbery, 1991; Little et al., 2016). Each mineral would have the same
possibility to report to each size fraction, thereby the use of the term ”random”. Little
et al. (2017) have shown that by evaluating the conservation and variation of shapes in
each size fraction of the progeny particles, the prevalence of phase boundary breakage can
be inferred. Phase boundary breakage itself is defined as the breakage mechanism along
grain boundaries, in which such mechanism would improve mineral liberation (Xu et al.,
2013). As the breakage mechanism is dependent on the grinding action (compression,
impact, or shear) and subsequently mill types, the question raised earlier on how to selec-
tively controlling particle shape for favorable liberation and downstream processing can
potentially be answered by evaluating the shapes of the progeny particles. Furthermore,
as it has been stated by Little et al. (2016), with the availability of 3D data from µCT as
well as in-situ µCT compression tests (Garcia et al., 2009; Xu et al., 2013), such research
topic could potentially become more attractive.
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2.2.3.3 Stationary textures

Stationary texture is also one of the important features of ores that have been mostly de-
scribed qualitatively. Textural attributes of rocks are one of the important aspect during
core logging as it may relates to the ore lithology, alteration, and even some idea about
formation of the deposit. The importance of ore texture in mineral processing has also
been recognized, but it is quite challenging to integrate texture information into a process
models. In fact, in relation to geometallurgy, the quantification and integration of rock
textures to be used in process simulation have been investigated by several researchers
(Koch, 2017; Pérez-Barnuevo et al., 2018).

The quantification of textures have been done mostly by the use of computer vision and
digital image processing. With the use of such system, different ore types can be classified
accordingly depending on its textures (Koch et al., 2019; Pérez-Barnuevo et al., 2018).
Ores that belongs to the same texture category can be predicted to behave similarly in a
mineral processing circuit. Nevertheless, such texture classification should be automated
and rapid, which means that a proper texture descriptor (quantifier) is needed as a basis
for the classification. Some relevant methods to extract these textural descriptors that
have been applied in 3D image are discussed here.

As stationary texture is defined as the spatial interrelationship between mineral grains in
the ore volume, pixel neighborhood information in the image can be utilized as quantifi-
cation tool. Local Binary Pattern (LBP) (Ojala et al., 1996), is one such common tool.
In the algorithm, the grayscale value of the pixel is compared with the neighboring 3x3
pixels. If the neighboring pixels are greater than the centre then a value of 1 is assigned
to the pixel, otherwise 0 is assigned. These binary values are combined to form an 8-bit
binary string, in which it stores both the binary value and the location of the pixel in the
neighborhood. The advantage of this technique is its computational simplicity. LBP has
been applied by Rahimov et al. (2017) for classification of different textures of carbonate
rocks 3D image acquired by µCT systems. In Rahimov’s work, the textural classifica-
tioon is based on the spatial correlation of the pores with the solid phases, as the study
is more focused towards reservoir properties for oil recovery.

Other alternative is by using graylevel Co-occurence Matrices (GLCM) (Haralick and
Shanmugam, 1973), with the same concept of comparing grayscale value of the neigh-
boring pixels. The GLCM is composed of an nxn matrix in which n is the number of
possible grayscale values in an image, i.e. 256 for an 8-bit image. GLCM shows the
frequency of a pair of grayscale values co-exist in a pixel neighborhood, as well as the
directional adjacency of such pairs. In a 3D volume, this neighborhood is illustrated in
Figure 2.13, while example of GLCM texture analysis is illustrated in Figure 2.14

Another advantage of the GLCM is that it also gives some statistical parameters based
on the matrix. Four of these parameters are related to stationary textures, such as en-
ergy, correlation, contrast, and homogeneity. GLCM has been applied to 3D µCT drill
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Figure 2.13: Neighborhood and directional voxel pairs in relation to GLCM analysis, adapted
from Jardine et al. (2018). All three planes are in a 26-connected neighborhood of voxels, in
which there exist 13 unique directional pairs with the origin voxel (0, 0, 0). Keep in mind that
mirrored direction does not count as a unique direction, e.g., direction (0, 1, 0) has the same
direction with (0, -1, 0), direction (0, 0, -1) has the same as (0, 0, 1), and so on

Figure 2.14: GLCM matrix on direction (0,1,0) extracted from a drill core image. (a) Drill
core volume showing horizontal slices (b) and (d), and their GLCM heat map (c) and (e)
respectively. The results clearly show difference in the GLCM as slice (d) has more sulphide
mineralization as compared to slice (b). This can be seen as the higher correlation frequency
between the brighter phases, which usually indicates the sulphide minerals
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core images by Jardine et al. (2018), in which it was shown that there exist some corre-
lations between various textures and their GLCM statistics. Nevertheless, such statistics
captured only the bulk mineralogy (relations between phases), while grain textures (fine
versus coarse) were not observed to be correlated with the statistics. Such technique
is also very dependent on the voxel pair direction chosen when calculating the GLCM,
especially for anisotropic textures. In such textures, several directions of GLCM might
be needed to adequately quantify the textural characteristic of the sample, thereby in-
creasing the computational cost.

The orientation of the phases and grains in an ore could also be used as a textural
descriptor. In the case of volcanic rocks, the orientation of vesicles in the rock can be
attributed to the magma nature and dynamics (Zandomeneghi et al., 2010). In case of
ores, the orientation of mineral grains could reveal some idea about the isotropic nature
of the ore. Texture orientation could be determined in 3D by using Mean Intercept
Length (MIL), in which several parallel lines are generated in a certain direction. The
number of intercepts between the lines with the grains can be used for estimating the
overal orientation of the grains. As it has been mentioned earlier, this technique has
found applications for evaluating the vesicle orientation in volcanic rocks (Zandomeneghi
et al., 2010).

2.2.3.4 Surface texture

µCT systems also offers a new information about depth and surface. In 2D images, the
notion of stationary texture refers to the correlation between phases in an xy dimension,
while in 3D a new dimension z is introduced. As many metallurgical processes such
as flotation and leaching are dependent on ore surfaces, this new depth of information
becomes critical. With µCT, the ”surface exposure” of the grains can be identified,
which can be useful to deduce leaching and flotation kinetics, or to deduce the breakage
mechanism that is able to produce such particles.

The concept of surface exposure has been evaluated by several researchers (Miller et al.,
2003; Garcia et al., 2009; Wang et al., 2017; Reyes et al., 2019), in which its significance
for flotation, leaching, and particle breakage was evaluated. In order to get an estimation
of the surface properties, marching cube algorithm (Lewiner et al., 2003) is used. Such
algorithm is similar in principle to the computational geometry, in which a set of cubes
are used to estimate the topography of the particle. In Wang et al. (2017), the marching
cube was performed on two different volume of interest which represent the whole particle
and the valuable mineral grains. After the marching cube algorithm is performed, the
vertices of the two marching cube volumes were matched (superimposed) so that the
portion of the grains that are exposed on the particle surface can be identified.

Wang et al. (2017) reported that there exist correlation between the proportion of the ex-
posed mineral grains the particle’s floatability, in which a particles should have sufficient
area of exposed surface grains in order to be recovered in flotation. This surface area is
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in turn affected by the proportion of the grain on the surface, as well particle size (larger
particle would have larger surface area). The results also revealed some idea about the
size of the exposed grain; for the same proportion of surface exposure, particles with fine
and disseminated grain surface would not be recovered in contrast to particles with one
or more large exposed grain. The results clearly opened up new understanding about
texture and size effect on flotation process.

The mineral exposure analysis is also useful to deduce some idea about the possible
breakage mechanisms. As it has been previously stated, random breakage is where the
conservation of interfacial area is observed throughout different particle sizes. In principle
a liberation process aims to reduce grain interfacial area, in which complete liberation is
achieved when interfacial area is zero. This means there are no area in which two different
grains (phases) are in contact; all grains are liberated. Calculation of interfacial area
requires the information about particle surface area, grain exposed surface area, gangue
surface area, and area of internal grains Garcia et al. (2009). All of this parameters
would require a 3D data on the particle, and that is where µCT comes to play. Garcia
et al. (2009) used µCT systems to quantify the interfacial area of particles before and
after comminution and inferred that if the interfacial area is reduced after the breakage, it
means that some preferential breakage occurred within the grain boundaries. Correlating
this with different breakage energy would gives some idea of suitable breakage mechanism
in which significant reduction of interfacial area can be obtained.

In terms of leaching, Miller et al. (2003) have reported some results on the use of mineral
exposure analysis. Such analysis could be coupled by particle size analysis to infer which
size class where most of the mineral surfaces are exposed (more liberated). Miller et al.
(2003) have shown that ultimate heap leaching recovery can be predicted for a specific
particle size distribution if the exposure analysis is done so that a correlation between
particle size and grain exposure is established. As such parameter of exposure requires
information about depth in 3D, it was therefore necessary to use µCT systems to evaluate
the surface exposure. The predicted recovery can then be compared to actual recovery
from leaching column tests.

Furthermore, the information about mineral grain’s location within the particle (whether
it is exposed or locked) can be coupled with leaching kinetics, so that the spatial vari-
ability of leaching kinetics can be evaluated. The grain’s location within a particle can
be extracted using distance transformation, in which it transform a binary image into a
function of distance of each pixel to the nearest zero pixels. In essence, each voxel in the
particle volume is transformed into a value that represent the nearest distance of that
voxel to the particle surface. As leaching is mostly modelled after the shrinking core
model (Liddell, 2005), it is expected that grains nearer to the surface would be leached
faster than the internal grains. The 3D spatial variability of leaching kinetics and recov-
ery have been evaluated using µCT systems have been evaluated by Lin et al. (2016b)
and Fagan-Endres et al. (2017), in which both reached similar conclusion that grains that
are located further from the surface exhibited lower recovery and leaching rates.
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2.3 Summary

In this section, some methods that have been used for different applications for µCT
mineral characterization are summarized. This summary is illustrated in Figure 2.15 and
Table 2.1 for mineral segmentation.

Figure 2.15: A workflow showing different features that can be extracted from 3D µCT ore data
as well as the methods applicable to extract said features. Most of these methods have been
applied for geological materials such as ores, sands and aggregates, as well as different types of
rock

Connecting to geometallurgy, the relevance of these features to mineral processing and
metallurgical operating principles are summarized as follows:
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Table 2.1: Summary of methods applicable for mineral segmentation of 3D data
Case Methods Applicability

Segmentation between air and
solid materials (e.g. particles)

1. Otsu global thresholding
(Yang et al., 2017; Lin et al., 2015, 2016a)
2. Marker-controlled watershed
(Wang et al., 2015; Lin et al., 2010)
3. Adaptive watershed
(Kong and Fonseca, 2017; Shi and Yan, 2015)
4. Removal of boundary regions
(Wang et al., 2017)
5. Feature-based random forest
classification (Wang et al., 2015)

1. Implemented in most simple cases
2. Used to address touching particles
3. Same with no 2, but better suited
for highly varying particle morphology
4. Correct partial volume effects
5. Same with no 2, but boundary effects
are minimized

Segmentation between minerals
with significant contrast.

1. Maximum entropy thresholding
(Reyes et al., 2017)
2. Unsupervised classification
(Chauhan et al., 2016b)
3. Supervised classification
(Chauhan et al., 2016b)

1. Useful for minerals that are less abundant
in the sample
2. Rapid classification between rock matrix
and mineral phases
3. Similar to number 2, but less rapid.

Segmentation between minerals
with lacking contrast

1. Local thresholding using gradient
information (Godel, 2013)
2. Lower energy scanning (Kyle et al., 2008)
3. Using smaller sample size (Bam et al., 2019)
4. Dual energy scanning and calibration
withpure minerals (Ghorbani et al., 2011)
5. Calibration of thresholding values
with SEM-EDS dataset (Reyes et al., 2017)

1. Enhanced phase boundary detection
useful for capturing small inclusions
2. At energy of 180 keV bornite and
chalcopyrite could be segmented
3. Reduce beam hardening effect
4. Sphalerite, pyrite, galena and silicates
were able to be segmented.
5. Chalcopyrite and pyrite were distinguished

• Mineralogy. Minerals are the building blocks of ores in process streams, and it is
of a great importance for evaluating mineral processing behaviors. Mineralogical
information can be extracted in 3D using methods presented in Table 2.1. One
aspects that is also of importance is the statistical reliability of mineral liberation
analysis. While it is true that the 3D mineral liberation eliminates the sterological
bias exhibited in 2D mineral liberation (therefore requiring multiple cross sections),
the number of particles evaluated in a 3D mineral liberation analysis should also
be sufficiently large for statistically sound result.

• Particle size. The effect of particle size on mineral processing operations such as
comminution, flotation, and gravity separation is widely studied. It is considered as
the most important factor in mineral processing together with mineralogy. While
the methods of granulometry by opening for extracting particle size distribution
is well established, there is still lack of studies that actually compare these 2D-3D
particle size information and their effect on mineral processing models.

• Grain size. The grain size distribution could be used as a textural descriptors
especially useful for breakage modelling (Evans et al., 2015). Jardine et al. (2018)
have also stated that their 3D GLCM textural analysis could not captured the grain
size information which could be useful for textural descriptors. Grain size has also
been shown to hold some significances in evaluating grain-scale leaching behaviour
using µCT systems (Lin et al., 2016b).

• Particle shape. In contrast to size, the significance of shape for mineral processing
operations is less studied. Several researchers have indicated the effect of particle



40 Mineral characterization with µCT

shape to flotation using various shape descriptors such as roundness (Wen and Xia,
2017), elongation ratio (Ma et al., 2018), flatness (Triffett and Bradshaw, 2008).
Shape descriptor such as roundness also describe the surface texture (more rough
or smooth), which in turns affects particle-bubble attachment in flotation process
(Koh et al., 2009). Particle shape has also been used to get some idea about
breakage mechanism and breakage modelling (Little et al., 2016, 2017).

• Grain shape and orientation. These information can also be used for textural
descriptors. The shape and orientation of vesicles have been demonstrated to hold
significance for textural analysis of volcanic rocks (Zandomeneghi et al., 2010).

• Spatial relationship between grains / phases. This information is also key for de-
scribing rock textures, and the possibility of quantifying such relationship through
3D methods shown in Figure 2.15 would be useful in classification of different ore
texture types. Extending the classification of ore textures by including the met-
allurgical response of these ore textures is the cornerstone of geometallurgy. This
can be achieved by quantifying the texture and using it in a process simulation
(Koch, 2017) or by performing metallurgical tests for different ore textures (proxy
approach) (Lund et al., 2015).

• Surface exposure. The amount and distribution of the mineral grains on the parti-
cle’s surface have been reported to affect the flotation recovery (Wang et al., 2017).
The amount of mineral grains exposed on the surface is also useful to calculate the
interfacial area, which in turns gives some idea for the prevailing breakage mecha-
nism (Garcia et al., 2009). In leaching, recovery and kinetics have been shown to
vary depending on the location of the grain relative to the surface; exposed grains
leached faster than locked grains (Lin et al., 2016b; Fagan-Endres et al., 2017).

2.4 Challenges and Gaps

After comprehensively reviewing the potential of µCT systems for mineral characteriza-
tion, several challenges and gaps for future development are identified as follows:

• It can be suggested that the bottleneck of µCT mineral characterization lies on the
mineral segmentation; different mineral phases often exhibit low contrast, making
it difficult for segmentation. This issue has been addressed by several researchers as
shown in Table 2.1. The review suggested that additional information from calibra-
tion or SEM-EDS is needed to properly extract the mineralogical information from
the data, which somehow compromises one of the advantages of µCT in less sample
preparation. Moreover, in cases where significant contrast do exist, partial volume
effects prevail (Wang et al., 2017), especially for particulate samples. Future works
should evaluate how can µCT extract mineralogical information independently and
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accurately, and if such extraction is not possible then what additional data can be
used effectively as an additional information.

• Particle size effect’s on mineral processing operations is understood to be significant,
and µCT offers a more accurate representation of such data. Several researchers
(Reyes et al., 2017; Evans et al., 2015) have evaluated the difference between 2D
and 3D grain size distribution, which in turns affect the expected liberation size of
the ore. Evans et al. (2015) have stated that the difference may entails some errors
in the design of grinding circuit, but there is still lack of studies that evaluate to
how such error could affect the grinding process and how it varies with different
ore types. If geometallurgy is a predictive discipline, then this difference in size
distribution between 2D-3D data should readily be quantified with how it will
affect the downstream process (recovery) and even the profitability.

• As it has been noted by Koh et al. (2009), the challenge in evaluating particle
shape’s effect on mineral processing lies on the characterization of shape itself as
many different shape descriptors exist. With µCT system, these shape descrip-
tors can be evaluated more accurately, as in previous studies 2D measurement
techniques have been used. The review suggested that effect of particle shape on
flotation varies significantly with ore types; coal flotation has been reported to be
affected by particle shape (Wen and Xia, 2017; Ma et al., 2018), while the same
was not observed on chalcopyrite (Vizcarra et al., 2011) and UG2 ores (Little et al.,
2017). More studies are required to get more information about shape effects on
flotation. Furthermore, these varying results beg the question whether other factors
such as mineralogy and texture plays more role in flotation, especially in the case
of chalcopyrite and UG2 ores. Therefore, a proper texture and mineralogy classifi-
cation is indeed needed to isolate these two factors so that the effect of shape can
be accurately identified.

• Connected to the previous point, texture classification in the context of geomet-
allurgy is important due to the understanding that texture plays significant role
in mineral processing operations. With the availability of 3D data, the notion of
texture should be expanded from spatial variability of grains (stationary textures)
to include surface exposure of grains by adding the third (z) dimension. This
would open up more ideas in evaluating the effect of textures in mineral process-
ing. While surface exposure effects have been evaluated and quantified (e.g. on
flotation and leaching processes), the same cannot be said for stationary textures.
Proper 3D quantification of textures and utilization of such quantified information
for predicting process behaviour is the research front that needed to be opened up
in geometallurgy.
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Chapter 3

Machine learning for mineral
segmentation of µCT data

This chapter addresses one of challenges identified in Chapter 2, which is mineral seg-
mentation. The focus of the chapter would be in the method development and the
applicability of such method through case study.

3.1 Background

As it has been identified in Chapter 2, mineral segmentation remains one of the defining
challenge in establishing µCT as an automated mineralogical system. This is due to
similar attenuation between mineral phases, limited resolution, and lack of automated
mineralogical software. Broadly speaking, this challenge has been addressed through two
major methods :

• Pre-scanning methods, refer mostly to all measures that are done during and before
scanning as well as in reconstruction step. This could include optimization of
scanning conditions as well as calibration with pure minerals. Optimization of
scanning conditions include sample size, scanning energy, and even the use of filters.

• Post-scanning methods, refer to image processing procedures applied to the ac-
quired µCT dataset. This basically include all sort of image processing techniques
such as thresholding, partial volume correction, image filtering, machine learning,
etc. It also includes any combination of additional data from other analytical tools
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(microscopy, SEM-EDS, visual observation) as a reference for obtaining mineralog-
ical information from µCT data.

Machine learning is one of the promising avenue of attack in extracting mineralogical
information from µCT data. In general, machine learning is defined as the use of mathe-
matical models to interpret the underlying patterns in a dataset. By learning this pattern,
a computer system can make predictions or classifications on the dataset. Machine learn-
ing can be divided into unsupervised and supervised learning. Supervised learning means
that the user pre-defines the underlying pattern of the data, and the computer builds a
prediction model based on the pre-defined pattern (training data). Unsupervised learning
lets the computer interpret the pattern by itself without user’s supervision.

Cortina-Januchs et al. (2011) have applied machine learning techniques to extract the
pore spaces from µCT image of soils. Compilations of both supervised and unsupervised
techniques such as K-means, Fuzzy C-means, Self Organized Maps (SOM), Artificial
Neural Network (ANN) were used and their performances evaluated. Chauhan et al.
(2016b,a) extended the study further for segmentation between pore, matrix, and mineral
phase in rock µCT data by evaluating other supervised technique such as Support Vector
Machine (SVM) and ensemble classifiers (boosting and bagging). The argument put
forward by Chauhan was that ANN used in Cortina-Januchs et al. (2011) is more biased
towards priori information (training data), therefore it is generally anticipated that it
would achieve high accuracy. By using more unbiased techniques such as SVM and
ensemble classifiers, the generality of the classifier can be evaluated.

For ore samples, Tiu (2017) evaluated random forest classification for segmenting between
chalcopyrite and pyrite in a 3D drill core image, using SEM-EDS mineral map as training
data. Similarly, Wang et al. (2015) also employed random forest classification to segment
ore particles from the background, due to unsatisfactory results obtained from simple
thresholding and watershed segmentation methods. Nevertheless, there is still lack of
studies regarding the use of machine learning specifically for mineral segmentation of
µCT data.

In this Chapter, the application of various machine learning techniques in mineral seg-
mentation of a µCT dataset is evaluated. Both supervised and unsupervised techniques
are included. Additionally, an automated image registration technique is introduced to
align a Back Scattered Electron (BSE) mineral map with a corresponding slice in a 3D
µCT data, which is then used as the training data to classify the other µCT slices. Fur-
thermore, besides using grayscale values as the dataset, the possibility of classification
using features such as edges, corners, and blobs (regions with similar grayscale values)
is also evaluated. The accuracy and computational costs of these methods are evaluated
and compared to give insight on the most suitable method for various tasks related to
mineral segmentation of a µCT dataset.
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3.2 Experimental methodology

3.2.1 Ore samples

The drill core sample used in this study was obtained from Boliden’s Aitik copper mine
in Northern Sweden, shown in Figure 3.1. The deposit is described as a metamorphosed
porphyry Cu-Au deposit, with chalcopyrite, pyrite, and pyrrhotite as the main sulfide
minerals; magnetite and ilmenites were found as the oxide minerals (Wanhainen et al.,
2003). Other minerals that can be found in the deposit include quartz, amphibole, biotite,
garnet, tourmaline, and zeolites.

Figure 3.1: Map of Sweden, showing mines in operation as of January 2019. The sample
originated from Aitik deposit shown as the red star in the northern region of Sweden. Map
taken from www. sgu. se
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3.2.2 Image acquisition with µCT

A cylindrical sample with a diameter of 25 mm was analyzed using a Zeiss Xradia 510
Versa 3D microscope at Lule̊a University of Technology (LTU), Sweden. The whole
sample was placed in the scanning chamber and measured under the scanning conditions
summarized in Table 3.1. Reconstruction of projections was done with beam hardening
correction. ORS Dragonfly®software was used for volume rendering and visualization
of the 3D image. The scanning conditions used in this study were optimized so that a
good image with reasonable acquisition time could be achieved. The µCT volume of the
sample is shown in Figure 3.2.

Table 3.1: Scanning conditions
Voltage 160 kV
Power 10 W
Exposure time 14 s
Objective 0.4x
Bin 1
Filters Zeiss HE3 filter
No. of projections 2201
Spatial resolution 13 µm

Figure 3.2: (A) µCT volume of the sample, showing clear amphibole phenocrysts (lighter gray)
inside biotite-feldspar matrix (darker gray). A high intensity amphibole-plagioclase vein with
rich chalcopyrite and pyrite grains (bright gray) is also observed in the sample. (B) µCT volume
showing chalcopyrite and pyrite grains as well as their vein mineralization (cyan) inside the drill
core volume
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Despite the use of filters and beam hardening corrections during reconstruction phase,
the final 3D image acquired in this study still possessed some artifacts, most notably
that the grayscale values varies significantly for the biotite-feldspar matrix throughout
the slices (vertically) as shown in Figure 3.3.

Figure 3.3: Plot of biotite-feldspar matrix average grayscale values of each slice, showing signif-
icant variation in the top and bottom hundred slices. Despite the fact that the matrix’s grayscale
values are different for each slice, the variation should be small (as seen in the plateau in the
middle slices). Significant variation in the top and bottom slices is most likely associated with
the beam hardening effect

This problem can be seen as an uneven illumination problem, and it can be addressed
using top hat filtering (Wang et al., 2014). This is achieved by morphologically opening
(removing) the grains from the slice, thereby obtaining an estimation image of the biotite-
feldspar matrix. This image is then represents the unevenly illuminated background
which must be homogenized. The homogenization is done basically by replacing this
background with the correct and constant background taken from one of the middle
slices.

The top hat filtering affects all grayscale values of all the phases in the slice, which
can lower the contrast between the matrix and the grains. Therefore, following the
filtering process, contrast adjustment was performed. The adjustment was done by simply
stretching the range of the grayscale values of the images up until the phase contrast is
sufficient for segmentation. A comparison of uncorrected and corrected (after contrast
adjustment) slice is shown in Figure 3.4.
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Figure 3.4: Correction of grayscale values showing (A) original slice, (B) corrected slice, (C)
segmented image of original slice (A), (D) segmented image of corrected slice (B). Clear im-
provement is seen in the segmentation results (D) as compared to (C)

3.2.3 SEM-EDS as a reference data

SEM-EDS analysis was performed on top part of the cylindrical sample after the µCT,
as a comparison and reference. The cylindrical sample was mounted in epoxy resin
and polished prior to SEM-EDS analysis. A Zeiss Merlin FEG-SEM system was used for
SEM analysis, and Aztec Energy 2.2 software from Oxford Instruments was used for EDS
analysis. The resulting back-scattered electron (BSE) image was subjected to mineral
mapping. The BSE image has a resolution of 3 µm per pixel, allowing sharper contrast
and better segmentation between phases. Based on EDS measurements, mineral mapping
of the BSE image was performed using the Trainable Weka Segmentation (Arganda-
Carreras et al., 2017) in the Fiji/ImageJ software (Schindelin et al., 2012). The resulting
BSE mineral map is shown in Figure 3.5.
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Figure 3.5: Simplified mineral map of BSE image. Due to the high resolution the BSE image,
fine-grained minerals of quartz, magnetite, and biotite are also detected. These fine-grained
mineral phases are grouped together

3.2.4 Machine learning classification algorithm

Both unsupervised and supervised classification algorithms are evaluated. The follow-
ing system configuration is used for performing the classification and image processing:
Intel®Core™i7-7500U CPU @2.7 GHz, 2904 MHz, 2 Core(s) and 4 logical processors,
24GB RAM and 64-bit OS. The implemented machine learning algorithms are as follows,
and detailed explanation about these algorithms have been discussed in Chapter 2.

• K-means clustering (unsupervised). The determination of the number of clusters
(K or C in case of FCM) for these algorithms must be initiated by the user. Looking
at Figure 3.5, it could be expected that six clusters exist in the mineral map, which
corresponds to six mineral groups and one background. Nevertheless, the value of
K could be lower as well, for example the mineral group ”Quartz + Magnetite +
Biotite” could be unclassified due to the low amount of such minerals in the dataset.
In order to be sure with the selection of the number of the clusters, various K values
were evaluated. The evaluation is done by performing internal validation using sum
of squared error.

• Fuzzy C-means clustering (unsupervised). The number of cluster (C) is determined
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in similar fashion as in K-mean clustering. The fuzzifier constant is set to two.

• Random forest (supervised). The determination of number of trees (ntree) is done
by evaluating the random forest classification using different ntree values. In gen-
eral, more trees would lead to better performance and lower error at the expense of
computational cost. By running several random forest classification using different
ntree values, one can determine an optimum point where no significant improve-
ment in performance is obtained when the ntree is increased (Oshiro et al., 2012).
Nevertheless, Breiman (2001) stated that while using more trees is often unneces-
sary and computationally expensive, it does not harm the model.

• k-nearest neighbors (kNN) (supervised). Similar to other algorithms evaluated in
this study, the determination of optimum number of neighbors is not straightfor-
ward (Naidoo et al., 2012). Small number of neighbors would increase the noise
effect on the result, while large number of neighbors could supress the noise effect
at a higher computational cost. Some methods have been developed elsewhere to
determine optimum number of neighbors (Thanh Noi and Kappas, 2018; Hall et al.,
2008), but essentially one could also try similar approach as in previous algorithms.

3.2.4.1 Feature-based supervised classification

The previously mentioned classification algorithms classify the voxels based on their
grayscale values. An alternative to that is by using features of the voxels instead. Such
features could be edges, corners, or blobs in the image. These features are extracted
by convoluting the image using kernel functions, thereby generating a feature map of
the image to be classified. Example of a Sobel kernel (Sobel, 2014) which extract the
vertical (y-direction) edges in the image is shown in Equation 3.1. Rotating the kernel
90° would produce a new kernel for extracting the horizontal (x-direction) edges in the
image. The modified image is referred as a feature map, in which different feature maps
can be generated by convoluting the image with different kernels.

 1 2 1
0 0 0
−1 −2 −1

 (3.1)

In order to add another dimension in the feature based classification, the image can also
be scaled in a Gaussian scale-space representation. This simply means that beside the xy
space, the image is also represented as a family of images blurred with Gaussian filter of
varying standard deviations (σ), or commonly referred as varying scales (t = σ2) (Linde-
berg, 2007). This then gives the possibility to extract the same feature (edges, blobs) but
on a different scales. The scale itself affects the features that can be extracted from the
image; at larger scales (higher standard deviation and more blurred) the image would
lose details on smaller gangue grains while conversely at smaller scales more features
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from smaller grains can be extracted. Mathematical illustration of feature extraction at
different scales is shown in Figure 3.6.

Figure 3.6: Feature extraction in Gaussian scale-space, showing (a) Sobel feature extraction from
image at scale 1 and (b) Sobel feature extraction from image at scale 4. The image is convoluted
with Gaussian kernel of varying standard deviation, creating multiple images in different scales.
The feature is extracted from the images in different scales, creating feature maps of different
scales. The feature map in (b) is different from (a), which indicates that different image scales
generate different feature maps

After collecting the feature maps at different scales, these features are matched with
the training data. Then a classifier is built based on the training information, and
consequently has more criteria to classify a voxel by looking at these different features.
This of course comes with a cost; the classification process would be more computationally
expensive. Feature based classification is shown in Figure 3.7

In this study, feature-based classification is performed to evaluate its applicability com-
pared to grayscale-based classification. Edge features are extracted using 3 x 3 Sobel filter
(both horizontal and vertical), while blobs and corners are extracted with difference of 3 x
3 Gaussians (Lindeberg, 2015) and the determinant of Hessian matrix (Lindeberg, 2013).
Random forest classifier was trained using these features and the training data. All the
feature extraction methods and random forest classifiers are available in the Trainable
Weka Segmentation in Fiji/ImageJ. Some examples of these features extracted from the
drill core µCT slice is shown in Figure 3.8
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Figure 3.7: Feature-based classification. The image is blurred with Gaussian filter at varying
standard deviations, representing various scales of the original image. The edge features are
then extracted at different scales using Sobel filter, producing two feature maps of the mineral
grains in the drill core (here the edge images are dilated for easier viewing). The two features
are then matched with the training data, so that it can be used to train a classifier

Figure 3.8: Example of feature maps used in this study, showing (A) original µCT slice, (B)
Sobel Edge features, (C) Difference of Gaussians blob features, and (D) Hessian corner (and
blob) features. These feature maps were fed to the classification scheme in Fig. 11 so that the
applicability of each feature map in supervised classification of pyrite and chalcopyrite phases
could be evaluated

3.2.4.2 Statistical methods in evaluating the classifiers

Statistical measures were taken to evaluate the performance of the classifiers by com-
paring to the ground truth. K-fold cross validation was used to evaluate the supervised
classifiers. The method randomly sub-sampled the training data intoK sub-samples. The
training was done so that classifiers was trained based on the K - 1 of the sub-samples,
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holding out one sub-sample for validation. The training is then repeated K amount of
times with all sub-samples, in which after each training, validation was performed with
the hold-out subsample, producing K amount of validation results. These K validation
results were then averaged to evaluate the overall performance of the classifier. In this
study, 10 fold cross validation was performed.

The ground truth is used to validate the classified voxels. In the study, the goal is
to identify chalcopyrite out of the sulfide voxels (which consisted of chalcopyrite and
pyrite), so the term positive is used for chalcopyrite, while negative is used for pyrite.
Some statistical measures that can be calculated for validation are as follows:

• The True Positive Rate (TPR) and False Negative Rate (FNR), shown in Equation
3.2

TPR =
correctly classified chalcopyrite voxels

all chalcopyrite voxels
= 1− FNR (3.2)

• The True Negative Rate (TNR) and False Positive Rate (FPR), shown in Equation
3.3

TNR =
correctly classified pyrite voxels

all pyrite voxels
= 1− FPR (3.3)

• The overall accuracy (OA), shown in Equation 3.4

OA =
correctly classified voxels

all voxels
= 1− FNR (3.4)

Furthermore, the behavior of the classifier could be adjusted by changing the probability
threshold (P ). A classifier returns the score on how confident it is in classifying a voxel
to each respective category. This score varies from 0 to 1, in which if the score for
chalcopyrite is x, then for pyrite it will be 1− x. The classifier will only classify a voxel
(vx,y,z) as chalcopyrite only if the score is higher than the probability threshold, as shown
in Equation 3.4

x > P (vx,y,z|chalcopyrite)⇒ vx,y,z = chalcopyrite (3.5)

Varying the threshold would lead to different TPR and TNR values. An ideal classifier
would be able to identify all chalcopyrite (TPR = 1) while at the same time identify
all pyrite (TNR = 1). These differrnt TPR and TNR values can be plotted to build a
receriver operating characteristic (ROC) curve. The curve gives an information on the
discrimination ability of the classifiers as the probability threshold is varied:

• Increasing threshold means that the classifier would only classify a voxel as chal-
copyrite if it is very confident in doing so. This would lead to lower TPR, as the
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”borderline” voxels (that have similar characteristics to pyrite) would not be clas-
sified as chalcopyrite, leading to decrease of correctly classified chalcopyrite voxels.

• Decreasing the threshold results in less sensitive classifiers. It would classify voxels
as chalcopyrite even if it is not very confident. This would naturally increase the
TPR, but at the same time more pyrite voxels would be mis-classified to chalcopy-
rite.

• The area under the ROC curve (AUC) also gives an idea about the classifier’s
performance. The aforementioned accuracy measures (TPR, TNR, OA) only gives
information about the classifier in one operating point of probability threshold,
AUC gives an idea about the classifier’s performance over a range of probability
threshold values (Bradley, 1997).

The confidence score of the classifiers can be obtained as follows:

• The confidence score of random forest classifier is based on the fraction of total of
number of trees that vote for chalcopyrite.

• For kNN classifier, similar method is also applied. The confidence score is the
fraction of the k nearest neighbors that belongs to chalcopyrite.

3.2.5 Image registration and creation of ground truth

Since that BSE mineral map in Figure 3.5 is acquired from different set of instruments
(therefore different image characteristic), a method must be devised on how to directly
use the mineral map information on Figure 3.5 to train the classifiers. The most straight-
forward way would be to manually annotate the corresponding µCT slice according to
the BSE mineral map, but this is quite laborious. In this study, image registration is
employed to align the BSE mineral map to the corresponding µCT slice. Image registra-
tion refers to the transformation of an image into a specified coordinate systems (Brown,
1992). The alignment of both images allows automated annotation of the pixels in the
µCT slice based on the BSE mineral map, creating a ground truth to train the classifiers.

The image registration technique is based on matching the features between two images.
Speeded up robust features (SURF) (Bay et al., 2008) is used to extract these features.
SURF algorithm extract mostly blobs (voxel regions that differ from surrounding regions)
in the image, which in this case the blobs would be the mineral grains. Example of the
features detected using SURF algorithm is shown in Figure 3.9, while the whole procedure
of alignment and image registration is shown in Figure 3.10

The registration procedure shown in Figure 3.10 did produce a good match especially
within the vein area (sulphide phase). Nevertheless, some mismatches can be seen par-
ticularly in the right of the vein. These mismatches can be explained by the fact that
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Figure 3.9: Detected SURF features (denoted in green circles) from (A) BSE image (resolution
3 µm) and (B) µCT slice (resolution 13 µm). These features corresponds well with the sulfide
grains in the core. The points of interest from both images are matched, so that a transformation
matrix that could align both images can be calculated

such registration procedure would not be accurate if the thin section for SEM-EDS is
not cut perfectly parallel with the µCT slice plane. While this issue can be addressed
using 2D-to-3D registration scheme, it would be more complex than the current proposed
algorithm.

Around 84.4% of the sulphide pixels in the BSE mineral map was accurately matched
with the corresponding sulphide pixels in the µCT slice. Out of this, 92.8% of the
chalcopyrite pixels in the BSE mineral map was accurately matched. The registration
and annotation procedure shown in Figure 3.10 was quite fast; it took around 7 s to
create the fully annotated training data shown in Figure 3.10(C).

3.2.5.1 Ground truth for test data

In order to evaluate the generality of the classifiers, the classifiers are tested with an
”unseen data”, i.e. data that have never been used for training. Since cross-validation
was used for training the classifiers, this means that all parts of the training data shown
in Figure 3.10 have already been used. An independent test data is therefore created
from another µCT slice.
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Figure 3.10: Image alignment and training data creation, showing (A) Matched feature points
between two images with arrows showing the transformation direction, (B) both images aligned,
magenta for BSE image, and green for the µCT slice, and (C) 2DµCT slice for training data,
with chalcopyrite pixels annotated based on alignment with BSE mineral map. The same color
coding would be used throughout this chapter, except if other information is given

Then, the question becomes how to create the ground truth for another µCT slice, since
the ground truth for the test data must also be known for validation. Since the µCT data
in this study has a relatively high spatial resolution (13 µm), this means that adjacent
µCT slice represents 13 µm distance in the drill core. It can then be suggested two
adjacent µCT slices would not differ greatly. Therefore, the same transformation matrix
obtained from the previous image registration procedure can be used to align the BSE
mineral map to the adjacent µCT slice. The adjacent µCT slice then is automatically
annotated to create the ground truth which would not be used to train the classifiers,
but used later in the testing part. This test data is shown in Figure 3.11.
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Figure 3.11: Test data. The pixels were annotated using the same procedure shown in Figure
3.10. Approximately 84.6% of sulfide pixels and 92.8% of the chalcopyrite pixels in the BSE
image were accurately matched with the sulfide pixels in the µCT slice. Mineral color legend is
the same as in Figure 3.10(C)

3.3 Results and discussion

The histogram of µCT dataset in this study is shown in Figure 3.12. While peaks gangue
and sulphide mineral groups are visible, differentiating mineral phases within this group
is not straightforward. Several different machine learning algorithms are evaluated to
tackle this problem.

3.3.1 Unsupervised classification

3.3.1.1 Determination of number of clusters

The relationship between classification error and number of clusters is shown Figure
3.13. The problem with using error metrics such as Sum of Squared Error (SSE) is that
in classification problems, the error always goes down if the cluster is increased. In the
extreme point, when the cluster numbers equal number of pixels, the error would go to
zero (as the distance between the pixel and cluster centroid is zero), but it would defeat
the purpose of clustering.

Therefore, the optimum number of clusters can be defined as the point where no signifi-
cant decrease in error is obtained. Such point could be obtained by considering the point
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Figure 3.12: Histogram of µCT dataset (after illumination correction). Major visible peaks
represent air, gangue minerals (Biotite, Feldspars, Amphiboles), as well as the sulfide minerals
(chalcopyrite and pyrite)

where the tangent of the curve starts to level out (plateau is reached), often referred as
the ”elbow” of the curve (Bholowalia and Kumar, 2014) as shown in Figure 3.13. In
order to illustrate this further, some results of the K-means classification are shown in
3.14.

Figure 3.13: Relationship between SSE and K, with the optimum value of K indicated by the
red dot
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Figure 3.14: Some results of the K-means classification with different K values. Adding a new
clusters from three to four clusters produced a new information in the new cluster (a phase was
separated to the new cluster), but increasing to five clusters did not produce any new information
(no phase was separated further)

Table 3.2: Phase percentage of the mineral maps from both K-means and FCM, showing minimal
difference between the classifiers. Minor differences exist in comparison to BSE mineral map
due to difference in spatial resolution between the 2D µCT slice and BSE image, but overall
both techniques show good correspondence
Color Phase K-means (%) FCM (%) BSE Mineral Map (%)

Chalcopyrite, Pyrite, Magnetite 3.4 3.4 4.4
Plagioclase, Quartz, Biotite, Feldspar 57.8 57.3 55.7
Amphiboles, Tourmaline 38.8 39.3 39.9

3.3.1.2 Results of K-means and FCM classification

Using K = 4, the results of both K-means and FCM are shown in Figure 3.15 and
Table 3.2. Both classifications are performed until the centroids are stable within less
than 0.1% difference. The time required is calculated with one µCT slice corresponding
to 2008 x 2048 pixels, with K-means and FCM requiring 4.5 and 11.9 s respectively.
Similar results were obtained for both classification techniques with K-means requiring
slightly less time. The pixel differences between both classification algorithms are mostly
localized in the phase boundaries, as shown in Figure 3.15.

One thing remain clear, both unsupervised classification techniques did not succeed in
segmenting between chalcopyrite and pyrite, as compared to the BSE mineral map in
Figure 3.5. Therefore the use of supervised classification technique is evaluated next.
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Figure 3.15: Mineral mapping using unsupervised classification (k-means and FCM). Three
phases were identified. The “Difference” image shows a binary image with pixels that are
classified differently in the two classification schemes, which corresponds to 86,838 pixels, or
2.11% out of the total 2008×2048 pixels in the image

3.3.2 Supervised classification

3.3.2.1 Tuning of classifiers’ parameters

Both OA and AUC is used to evaluate the classifiers’ performance. While OA is the
most straightforward metric to evaluate the classifier’s performance, it cannot assess the
performance of specific classes (Thanh Noi and Kappas, 2018). Furthermore, as the
training data is imbalanced (chalcopyrite class is less than pyrite class), the OA value
might be deceiving as the rare class might be classified poorly (He and Garcia, 2008).
Therefore AUC is also taken to evaluate the classifiers in order to take into account the
class imbalance in the dataset. After performing classification repeatedly using various
classifiers’ parameters, the value of OA and AUC for both classifiers are shown in Figure
3.16 and 3.17.

The performance of both classifiers was increased up until a certain level in which further
increase of the complexity of the classifiers would not necessarily give better performance.
One noticeable difference between kNN and random forest classifier is that while increas-
ing ntree in random forest would always lead to better or similar performance, the same
cannot be said kNN classifier. As shown in Figure 3.16, the AUC of kNN decreases when
k is increased. The decrease in OA is less clear in Figure 3.17, but around 0.2% decrease
was observed. Therefore in kNN, there exists an ”optimum” point where the increase of
k would worsen the predictive capability of the classifier.
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Figure 3.16: Effect of k to the performance of the kNN classifier

Figure 3.17: Effect of ntree to the performance of random forest classifier

Besides the accuracy, the computational cost must also be considered when determining
the optimum parameter for the classifiers. This is shown in Figure 3.18. In general
the random forest classifier is considerably more complex than kNN classifier, as shown
by the training time. Additionally, increasing the number of trees in random forest led
to significant increase of computational complexity. This increase was less prevalent
for kNN classifiers, especially for less than 50 neighbors. Based on the accuracy and
computational time, the optimum number of tree (ntree) is determined to be 10, while
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Figure 3.18: Effect of ntree and k to the training time of random forest and kNN classifier
respectively. Training time was obtained based on MATLAB implementation of supervised clas-
sification with 10-fold cross-validation

the optimum number of neighbors (k) is determined to be 20.

3.3.2.2 Grayscale-based classification

The grayscale values of each phase in the training data in Figure 3.10(C) was used to
train the classifiers. Observe that since the ground truth creation procedure in Figure 3.10
only able to define chalcopyrite phase, the classification performed only concerns between
pyrite and chalcopyrite. The total training data then becomes 88,980 pixels, which 13.5%
out of the data belongs chalcopyrite, and the rest is pyrite. Cross-valdidation (10-fold)
is used to evaluate the trained classifiers; results are given in Figure 3.19 and Table 3.3.

Table 3.3: Training performance of different algorithms in grayscale-based classification
Algorithm Training time (s) TPR (%) TNR (%)
kNN (k = 20) 4.9 60 97
Random Forest (ntree = 10) 34.2 60 97

After the classifiers are trained, they are evaluated against the test data. The total test
data are 88,644 pixels, in which around 14% of those are chalcopyrite. The test data is
independent of the training data, so that the generality and robustness of the classifiers
can be evaluated. The results of the classifier’s testing are shown in Figure 3.20 and
Table 3.4
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Figure 3.19: Comparison of grayscale-based classified training data with the ground truth

Figure 3.20: Comparison of classified test data with the ground truth

Generally, a classifier is considered as robust if the testing performance is similar as the
training performance (Xu and Mannor, 2012). By comparing Table 3.3 and 3.4, it can
be seen that the accuracy of the classifiers decrease as they are evaluated on the test
data. kNN classifiers showed better robustness as its testing performance fared better
than random forest classifiers. The training time of kNN classifier is also significantly
lower than that of random forest, which is explainable due to the nature of kNN classifier
as lazy learning.

One noticeable result is that while the true negative of the classifiers are high, the same
cannot be said for the true positive. This means that the classifiers only succeed 50-
60% of the time in identifying the chalcopyrite pixels. This can be explained due to the
fatc that there is a significant overlap between the grayscale values of the chalcopyrite
and pyrite as shown in Figure 3.21. Due to this overlap, this means that the grayscale
values of chalcopyrite and pyrite are not mutually exclusive; some of the pixels have the
grayscale values that could be classified as both chalcopyrite and pyrite.
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Table 3.4: Testing performance of different algorithms in grayscale-based classification. The
testing time is taken as the time required by the classifiers to classify the test data.
Algorithm Testing time (s) TPR (%) TNR (%)
kNN (k = 20) 0.4 57 96
Random Forest (ntree = 10) 0.5 50 95

Figure 3.21: Boxplot of grayscale values of chalcopyrite and pyrite obtained from the training
data, showing a considerable overlap between the phases making it difficult to segment these
phases based on their grayscale values

3.3.2.3 Feature-based classification

Due to this overlap, it might be useful to try to use the features instead to classify
between the chalcopyrite and pyrite. Therefore, classifiers are trained using features
extracted from the training data in Figure 3.10(C), and subsequently tested against the
independent test data (Figure 3.11). The results are shown in Figure 3.22 and Table 3.5.

Table 3.5: Classification performance of different feature extractors. Random forest was used as
the classifier. All 4,112,385 pixels in the training data were used to create the feature vectors,
hence the increase in training time. The true positive and true negative is based on the testing
with the test data
Feature Extractor Training time TPR (%) TNR (%)
Sobel filter 3h 35m 8s 60 96
Determinant of Hessian 5h 36m 39s 57 97
Differences of Gaussian 4h 59m 8s 53 97

Feature-based classification was also found to be unsatisfactory. Features such as edges,
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Figure 3.22: Classified test data using feature-based classifications

corners, and blobs of chalcopyrite and pyrite pixels were not found to be the discriminat-
ing factor between both phases. Nevertheless, comparing between Table 3.4 (for random
forest classification) and 3.5, the performance of feature-based classification as relatively
better. This indicates that by using features extracted in different scales, one can build a
classifier that generalizes better than using solely the grayscale values. However, it should
be noted that feature-based classifications require significantly longer training time than
grayscale-based classifications.

3.3.3 Evaluation of performance and results

Unsupervised classification was found to be satisfactory to classify between the gangue,
background, and the sulphide minerals with results showing good correspondence with
the BSE mineral map while requiring short computational time. It needs to be noted
that the difference in grayscale values between these phases are clear enough so that
unsupervised classification can be performed. Nevertheless, supervised classification is
needed to segment between chalcopyrite and pyrite within the sulphide phases.

Using the BSE mineral map as a reference and training data, chalcopyrite and pyrite
can be segmented using supervised classifiers to some extent, as seen in Table 3.4 and
3.5. As discussed earlier, the behavior of the classifiers can be altered to obtain favorable
accuracy, and this is illustrated through the ROC curve shown in Figure 3.23. This
behaviour change is shown by moving the red dot along the curve in Figure 3.23. It
is therefore clear that there would be no point where the classifiers could classify all
pyrite and chalcopyrite voxels correctly, i.e. by reaching 100% TPR and 0% FPR (top
left corner of the graph). Furthermore, due to the class imbalance (pyrite being higher
than chalcopyrite), the classifier tends to decrease the false positive rate, as the 1%
misclassified pyrite weighs higher in the overall accuracy than 1% chalcopyrite being
correctly classified.
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Figure 3.23: ROC curve for Random Forest and kNN classifiers. The curve describes the
relationship between FPR and TPR, with the red dot indicates the current classifier. The test
data was used to generate the curve

Feature based classification did not significantly increase the classifiers’ performance as
seen in Table 3.5. This is due to the fact that features such as edges, corners, and
blobs were also built based on the grayscale values of the pixels, with addition of their
relationship to other pixels in the neighborhood. Since the original grasycale values of the
pixels were too similar and almost indistinguishable, the features would also be difficult
to discriminate. Nevertheless, feature based classification tends to generalize better than
the grayscale-based classification.

Another notable difference between feature-based and grayscale-based classification can
be seen in Figure 3.24. In grayscale-based classification, the voxels’ grayscale value is
the sole criteria in classifying pyrite and chalcopyrite. This leads to many scattered
chalcopyrite voxels in the pyrite grain shown in Figure 3.24(A). This phenomena was
not observed in feature-based classification, as shown in Figure 3.24(B). Feature-based
classification is especially well suited when dealing with grain boundaries (Wang et al.,
2015), as it uses features that could represent grains (voxel regions) when segmenting
between minerals. This in turns produces better segmentation between the grains in the
ore.

Nevertheless, a significant difference is observed when evaluating the mineralogical result
of 3D µCT data and the conventional 2D BSE mineral map. The mineralogical results
given Table 7 shows the typical stereological error exhibited by 2D based analysis in
overestimating the mineralogy. The difference in 2D µCT slice and 2D SEM-EDS can be
explained by the loss of details in the µCT due to lower spatial resolution.
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Figure 3.24: Comparison of random forest classified mineral map showing chalcopyrite (red),
pyrite (green), and gangue (gray), using (A) grayscale based classification, and (B) feature
(determinant of Hessian) based classification. While grayscale based classification operates on
individual voxels, determinant of Hessian operates based on blobs/region of voxels, which resulted
in better segmentation between grains as shown in (B)

Table 3.6: Simplified mineralogy (by area or volume) obtained from SEM and µCT.
Note: kNN=k Nearest Neighbors, RF=Random Forest, SF=Sobel Filter followed by RF,
DoH=Determinant of Hessian followed by RF, and DoG=Difference of Gaussians followed by
RF

Minerals
2D SEM-EDS

(%)
2D µCT

(%)
3D µCT (%)

kNN RF SF DoH DoG
Amphiboles
Tourmaline

39.92 39.29 37.26 37.26 40.33 40.33 40.33

Plagioclase
Quartz
Biotite
Feldspar

55.67 57.28 59.47 59.47 56.77 56.77 56.77

Pyrite
Magnetite

3.7 3.00 2.90 2.91 2.73 2.72 2.73

Chalcopyrite 0.71 0.43 0.37 0.36 0.17 0.18 0.17

3.4 Conclusion

In order to address the challenge of mineral segmentation using µCT, the application of
machine learning algorithms have been presented in this Chapter. The main findings of
this study are as follows:

• Unsupervised classification provided a rapid and satisfactory segmentation between
gangue and sulphide minerals that differs significantly in grayscale values. In deter-
mining the optimum number of clusters, several classification runs were performed
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and the SSE is evaluated. The optimum number of clusters is obtained when the
decrease in error becomes less significant. The result suggested that the perfor-
mance of both K-means and FCM is similar, but with K-means requiring less
computational time.

• Supervised classification was found to address the issue of segmentation between
chalcopyrite and pyrite phases to a certain extent. Using directly the voxel values
in grayscale-based classification offers a simple and rapid approach in segmenting
these minerals with reasonable accuracy. The results suggested that kNN performed
better than random forest classifiers in all aspect; it generalized better and require
less computational time. The classifiers parameters were also tuned by running
several runs of classification, in which the optimum parameters were determined
as the point where further increase of classifiers’ complexity leads to insignificant
performance gain.

• Feature based classification offers a better alternative in segmenting between the
mineral grains. The results of this study also suggested that feature-based classifiers
generalized better than grayscale-based classifiers. Feature-based classifiers could
be an alternative when textural information such as grain size and shape needs to
be extracted after the segmentation.

These concluding points are summarized in Table 3.7

Table 3.7: Applicability of the various categories of machine learning techniques
Method Applicability Notes

Unsupervised
Segmentation between gangues and sulphides
(differs signifiicantly in grayscale values)

Rapid, simple, and straightforward approach
when reference data is not available

Supervised
Segmentation between chalcopyrite and pyrite
(similar grayscale values)

Limited by the overlapping grayscale values
despite the use of reference data

Feature-based Addresses the grain morphology better Limited by the expensive computational cost

Besides the machine learning applications, a methodology to create ground truth for
training and testing data based on SEM-EDS measurement has also been presented.
The methodology is relatively rapid (around 7s) and largely automated; the user only
needs to specify which µCT slice corresponds to BSE mineral map. This need could also
be alleviated by quantifying the errors of the BSE-µCT feature matching process, and
the µCT slice that has the lowest error would be determined as the corresponding slice.

Another advantage of this method is that it works on pixel-level i.e. information of each
pixel that belongs to a phase can be transferred to a µCT slice, therefore allowing the
definition of multi-mineral grains. Moreover, since it is based on features, it is more
robust to characteristic differences between the images. Therefore, the methodology can
potentially be used as a tool to combine mineralogical information from different sets
of analytical equipments such as hyperspectral or microscopy image in order to assist
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the µCT mineral segmentation process. Nevertheless, the methodology is limited on the
parallel cutting of the µCT sample for the thin section, as it must be cut exactly in
parallel to achieve perfect correspondence between the two images.

The main limitation of the application of machine learning in µCT dataset lies on the
dataset itself, particularly whether the grayscale values of mineral phases in the sample
are different enough to be segmented. In this study, due to the significant overlaps in the
grayscale values between chalcopyrite and pyrite, the classifier could not fully differentiate
between the two phases. Increasing the classifier’s sensitivity to one phase will decrease
the sensitivity to the other phase.

This study shows clearly that the data processing method of µCT analysis can only
achieve accuracy as high as the dataset itself allows. If the scanning conditions are not
optimized, then the downstream data processing of the µCT image would not be fully ac-
curate. It is therefore very important to acquire a reliable dataset where the minerals can
be segmented accurately. If the phases in the dataset have a clear difference in grayscale
values, then even a simple unsupervised classification should produce satisfactory results.
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Chapter 4

Conclusion and Future Work

In this chapter, the preliminary conclusions and plans for future work in the scope of the
PhD work are presented.

4.1 Conclusion

Some concluding remarks can be drawn by connecting the main body of the licentiate
which presented in Chapter 2 and 3 to the thesis objectives and research questions pre-
sented in Chapter 1. The research questions are broken down into several parts so that
answers can be given accordingly to each part of the question.

1. How can mineralogical information be extracted accurately using µCT systems?
The mineralogical information can be extracted using various different segmentation
techniques such as thresholding, watershed, and machine learning techniques. Otsu
thresholding can be used for simple cases where the minerals exhibits significant
difference in grayscale values, while maximum entropy thresholding can be used
in similar cases but when the mineral is not abundant in the sample. Watershed
segmentation is particularly useful for particulate samples. Image features such
as edges, blobs, and corners can be used as an alternative to grayscale values for
the basis of the segmentation, and it has been shown further in the case study
in Chapter 3 that it could address the grains and particles morphology better.
In more challenging cases where the grayscale values of the minerals are similar,
machine learning techniques can be used. However, the case study presented in
Chapter 3 revealed that machine learning is as good as the µCT dataset itself;
if the there exist a considerable overlap in grayscale values between the minerals,

71
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it would be very difficult to fully separate the minerals even if additional data
from SEM-EDS is used to guide the segmentation. This work suggested that the
key to obtaining accurate mineralogical information lies on the optimization of the
scanning conditions so that the minerals in the µCT dataset are distinguishable
with simple segmentation techniques.

2. How can structural texture information be extracted accurately using µCT sys-
tems?
Structural texture information such as grain and particle morphology can be ex-
tracted from 3D µCT data using various techniques. Granulometry by opening
is the most widely used technique to extract size distribution information from
the 3D data. Shape information of the particles (or grains) can be extracted by
approximation using regular objects such as polygons and spheres, or analytically
by mapping the particles in a spherical coordinate system. The orientation of the
grains in ores can be extracted using mean intercept length. The accuracy of these
techniques are largely dependent to the preceding mineral segmentation techniques,
as the particles and grains are defined first by the segmentation process.

3. How can stationary texture information be extracted accurately using µCT sys-
tems?
Stationary textures can be extracted quantitatively from 3D µCT data using GLCM
and LBP. The former has been shown to be useful for classification of 3D drill core
textures, while the latter for textural classification of carbonate rocks. Further
studies needs to be devoted to evaluate the applicability of these techniques for
texture quantification and classification of various different ore types.

4. How can surface texture information be extracted accurately using µCT systems?
Surface texture such as mineral exposure can be extracted from 3D image using
distance transformation as well as matching the marching-cube vertices between
the particles and the mineral grains. The concept of mineral exposure is unique to
3D image, and certainly is one of the most promising aspect of 3D µCT mineral
characterization.

5. How to use the extracted (3D) ore properties from µCT data in a geometallurgical
program?
The literature review conducted in the Chapter 2 suggested the relevances of these
3D ore properties in geometallurgy. The information of shape and interfacial area
of the progeny particles could be used for breakage modelling, which is a key step in
particle-based geometallurgy. Mineralogy and texture information (structural, sta-
tionary, and surface) could be used to as a parameter in process modelling, in which
empirical models could be be generated through experiments in the framework of
proxy-based geometallurgy. The ore particles before, during, and after the exper-
iments could be subjected to µCT analysis, in which then the process modelling
can be coupled with the 3D ore properties. The quantification and classification of
mineral textures for geometallurgy could be enriched by the use of 3D information.
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These textural classes represent different ore types that are expected to behave dif-
ferently in the process, therefore the need of more accurate information to describe
textures so that more comprehensive process prediction could be performed.

4.2 Future work

Coming back to the framework of this study given in Figure 1.4, an illustration of the
future plan of this PhD is shown in Figure 4.1. In the near future, the work should be
orientated to evaluate the potential quantification methods of ore textures with 3D µCT.
After the textures are quantified, classification of different textures would be performed
and validated with the core logging information. This work is denoted as ”FW1” in
the Figure 4.1. Further, the work should also evaluate the reliability of µCT systems
in liberation measurements of ore particles and comparing it with traditional automated
mineralogical systems. This work is denoted as ”FW2” in the Figure 4.1. Up until the
writing of this licentiate thesis, some new drill core materials have been obtained as well
as imaged with µCT. These 3D images represented different ore types, so the plan is to
perform some texture quantification of these various ore types and evaluate how these dif-
ferent ore types can be classified. With some information about textures and mineralogy,
a suitable ore type can be selected for comminution and liberation measurement.

Figure 4.1: Future tasks in the scope of the PhD work



74 Conclusion and Future Work

Finally to complete the scope of geometallurgy and using all the µCT data processing
methods that have been reviewed and developed, the 3D µCT particle data would be
used in a particle-based process simulation so that the particle behavior could be pre-
dicted. As a benchmark, the same process simulation should be performed but using 2D
particle data. The particle tracking technique developed by Lamberg and Vianna (2007)
which has been implemented in the particle-based process modelling of wet low inten-
sity magnetic separator (WLIMS) operations by Parian et al. (2016) could be a useful
starting point in working with the 3D particle-based process modelling and simulation.
This work is denoted as ”FW3” in Figure 4.1. The software implementation of particle
tracking algorithm by Lamberg and Vianna (2007) has been largely done together with
Outotec during the secondment period. Sampling campaign has also been performed
in Pyhäsalmi flotation circuit in Finland (a photo taken during the campaign is shown
in Figure 4.2), in which the samples could be used for the particle-based process mod-
elling. The samples then can be imaged with µCT and subsequently used to perform the
particle-based process simulation using 3D data.

Figure 4.2: Sampling of flotation cells in Pyhäsalmi concentrator plant, Finland
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ABSTRACT 
 

In recent years, automated mineralogy has become an essential enabling technology in the field 
of process mineralogy, allowing better understanding between mineralogy and the beneficiation 
process. Recent developments in X-ray micro-computed tomography (μCT) as a non-destructive 
technique have indicated great potential to become the next automated mineralogy technique. μCT’s 
main advantage lies in its ability to allow 3-D monitoring of internal structure of the ore at resolutions 
down to a few hundred nanometers, thereby eliminating the stereological error encountered in 
conventional 2-D analysis. Driven by the technological and computational progress, the technique is 
continuously developing as an analysis tool in ore characterization and subsequently it foreseen that 
μCT will become an indispensable technique in the field of process mineralogy. Although several 
software tools have been developed for processing μCT dataset, but the main challenge in μCT data 
analysis remains in the mineralogical analysis, where μCT data often lacks contrast between mineral 
phases, making segmentation difficult. In this paper, an overview of some current applications of μCT in 
ore characterization is reviewed, alongside with it potential implications to process mineralogy. It also 
describes the current limitations of its application and concludes with outlook on the future 
development of 3-D ore characterization. 
  
Keywords: X-ray micro-tomography (μCT), process mineralogy, ore mineral characterization.  
 

INTRODUCTION 
 

Process Mineralogy  
 

Process mineralogy is defined as the study of mineral characteristics and properties with 
relation to their beneficiation process. The beneficiation process defined here can range from ore 
beneficiation, metallurgical process, as well as environmental and waste management (Henley, 1983; 
Lotter et al., 2018a). The key here is that by evaluating the characteristics of the minerals on a 
representative sample of an ore, one could determine the optimum processing route of such ore based 
on the characteristics of the minerals (both gangue and valuable minerals) in the ore. As the 
characteristics of the ore is determined by the sample analyzed, sampling becomes ever increasingly 
important in terms of process mineralogy (Lotter et al., 2018b). 

 
In contrast to traditional separation between mineral processing and mineralogy, where 

troubleshooting of processes are often focused more on process parameters; process mineralogy aims 
to combine both field so both the characteristics of ore and process parameters can be taken into 
account when designing and troubleshooting mineral processes. Process mineralogy requires 
combination of knowledge from geology, mineralogy, metallurgy, and mineral processing. This can be 
illustrated in Figure 1.  
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PROCESS 
MINERALOGY

Geology
Representative Sampling  

 
Figure 1. Interdisciplinary of fields in process mineralogy (altered from Lotter et al. (2018, 2002)). 

 
Several instruments and analytical techniques have been developed over the years to evaluate 

mineralogical characteristics of an ore sample. The development of automated quantitative 
mineralogical techniques such as Mineral Liberation Analyser (MLA) and Quantitative Evaluation of 
Minerals by Scanning Electron Microscopy (QEMSCAN) was a significant breakthrough in process 
mineralogy, as mineral characteristics of ore samples could now be analyzed in an automated, rapid, 
and statistically reliable way (Fandrich et al., 2007; Gottlieb et al., 2000; Sutherland and Gottlieb, 1991). 
With such system, information about mineral liberation (Fandrich et al., 2007), size and shape (Leroy et 
al., 2011; Sutherland, 2007), and stationary textures (Pérez-Barnuevo et al., 2013, 2018; Tøgersen et al., 
2018) could be obtained and quantified. This information has been demonstrated to hold significant role 
in evaluating ore beneficiation processes such as flotation (Alves dos Santos, 2018; Alves dos Santos and 
Galery, 2018; dos Santos and Galery, 2018; Tungpalan et al., 2015) and comminution (Little et al., 2017, 
2016; Tøgersen et al., 2018). 
  
X-ray Tomography for Ore Characterization 
 

While MLA and QEMSCAN offer a rapid data acquisition and processing, it possesses an obvious 
weakness due to loss of dimensionality. Particles and ore samples are three-dimensional (3D) objects, 
while automated mineralogical techniques produced a two-dimensional (2D) cross section analysis of 
the ore samples. This phenomenon is known as stereological bias / error, in which the mineral liberation 
may be overestimated, as the cross section of the sample might not represent the actual state of the 
particles (Lätti and Adair, 2001) as shown in Figure 2. Over the years, several correction methods have 
been developed to address this error in regards to mineral liberation and texture of the particles 
(Fandrichi et al., 1998; Ueda et al., 2018a, 2018b). 
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Figure 2. The effect of stereological bias on different type of particles with varying degree of liberation 
by Spencer and Sutherland (2000). The possible cross-sections analyzed is indicated by the red lines 
crossing the particles.  
 

This inherent bias gives way to the development of instruments that are capable of acquiring 3D 
data from an ore sample. Over the last decades, the development of X-ray microcomputed tomography 
(μCT) in geosciences have received wide attentions. The main advantage of μCT lies on its ability to non-
destructively analyze the 3D interior of an object. Several reviews have been done in evaluating μCT 
application in geosciences (Cnudde and Boone, 2013; Mees et al., 2003), particularly in relation to ore 
characterization and mineral processing (Kyle and Ketcham, 2015; Miller et al., 1990).  

 
Using μCT, 3D properties of an ore sample such as porosity (Lin and Miller, 2005; Peng et al., 

2011; Yang et al., 2017; Zandomeneghi et al., 2010), mineralogy (Ghorbani et al., 2011; Reyes et al., 
2017; Tiu, 2017), mineral liberation (Lin and Miller, 1996; Reyes et al., 2018), as well as size and shape 
(Cepuritis et al., 2017; Lin and Miller, 2005; Masad et al., 2005) could be obtained. Additionally, as 3D 
data offer additional information about depth, surface properties of an ore can also be evaluated, in 
which such parameter is important for leaching, flotation, and to some extent grinding (Miller et al., 
2003; Tøgersen et al., 2018; Wang et al., 2017; Xia, 2017).   

 
Recent development in μCT instruments also allows in-situ experiments to be carried while 

scanning is performed, therefore obtaining the so-called four-dimensional (4D) data, which consist of 
three dimensional of space plus one dimension of time. With such settings, the evolution of ore samples 
during experiments can be obtained so that the relation of the mineralogical characteristics of the ore to 
the process can be draw.  Such settings have been implemented for example in evaluating ore breakage 
(L. Wang et al., 2015; Wang et al., 2018) and  leaching (Ghorbani et al., 2011). If the key in process 
mineralogy lies in drawing the relations between mineralogy and mineral processing, then in-situ 
experiments with μCT scanning could offer a valuable dataset for process mineralogy.  

 
The main limitation of μCT scanning lies on the principle of the X-ray scanning, where minerals 

are differentiated by their respective attenuation to the X-ray beam. This is reflected in the grayscale 
intensity of the final image. The attenuation of each materials varies depending on the minerals density, 
atomic number, as well as the energy of the X-ray beam (Omoumi et al., 2015). This phenomena creates 
a trade-off situation, where one has to optimize the beam energy so that sufficient contrast between 
minerals could be obtained. Using lower energy beam often means better contrast, as the attenuation is 
more dependent on the atomic number of the minerals due to photoelectric effect, but it requires 
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longer exposure time. Using higher energy would mean less exposure time, but the attenuation is now 
more dependent on density due to Compton effect, therefore making mineral differentiation difficult as 
many minerals have similar density. 

 
CASE STUDIES 

 
Ore Structural Characterization with μCT 
 

At the early stages, μCT analysis of ore samples was more focused on structural analysis, which 
includes pore, shape, as well as size analysis. Analysis with μCT could obtain several information of the 
ore which includes porosity and crack (Deng et al., 2016; Lin and Miller, 2005; Peng et al., 2011; Yang et 
al., 2017; Zandomeneghi et al., 2010), particle and grain size distribution (Tiu, 2017) as well as particle 
shape descriptors such as solidity, elongation, flatness, and aspect ratio (Vecchio et al., 2012; Zhao et al., 
2015). 

 
Pore and crack analysis is one of the most common application of μCT. While pore and crack 

analysis is less emphasized in mineralogy, it holds a significant role in petroleum (Markussen et al., 
2019) and construction engineering (Yang et al., 2019). Nevertheless, pore and crack analysis is often 
indispensable when dealing with processes such as leaching, especially in cases with packed particle bed 
samples, where connectivity of the pores could help in understanding the permeability of the ore (Deng 
et al., 2016; Wu et al., 2007).   

 
Most of the automated mineralogy technique could produce analysis on particle size and shape, 

but as said earlier, these parameters often not used in process mineralogy due to the stereological 
error. Particle and grain size distribution analysis using μCT is quite well established, as several 
researchers have optimized the image processing algorithm in acquiring such distribution analysis (Lux 
et al., 2011; Pierret et al., 2002). One of the most commonly used algorithm is granulometry 
morphological opening, illustrated in Figure 3.  
 

 
 

Figure 3. Grain size distribution in 3D as obtained from μCT analysis with granulometry technique. The 
technique uses a structuring element acting as a sieve, where grain smaller than the sieve is removed. 
The sieve size is then increased gradually, so the cumulative undersize can be obtained. 
 

Particle and grains are irregular objects; therefore, a descriptor of shape is often needed when 
describing such parameters. With μCT system, such descriptors could be better acquired, as now the 3D 
data is available. Most of the available shape descriptors in 3D follow the same logic as the one 
commonly available in 2D. Particle and grain shapes in 3D can be described with convex hull (Pamukcu 
et al., 2013; Zhao et al., 2015), bounding box (Vecchio et al., 2012) as well as relation to sphere shapes 
(Pirard et al., 2009; Van Dalen et al., 2012). Example of bounding box and convex hull of a mineral grain 
is shown in Figure 4.  
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Figure 4. Bounding box and convex hull of an irregular grain. (a) Scatter plots representing the grain; (b) 
convex hull of the particle; (c) minimum bounding box of the grain; (d) minimum bounding box of the 
convex hull. Due to the high irregularity (non-convex) particle, convex objects such as polygons often are 
not the best when describing such particle.  
 

While it is obvious that particle size is of an importance when dealing with most of mineral 
processes, the effect of shape is not so obvious. It is clear that the choice of comminution equipment 
affects greatly the progeny particle shape, which then indicates that grain shape could be an important 
indicator in modelling the breakage mechanism that occurs in the particle (Little et al., 2017, 2016). 
With flotation, several researchers have analyzed the effect of particle shape (Ma et al., 2018; Pita and 
Castilho, 2017; Xia et al., 2018), and it is clear that the effect of shape is intertwined with the particle 
composition and size; in some cases the effect of shape is minimum while in others its effect is more 
prevalent. 

  
Ore Mineralogical Characterization with μCT 
 

The use of μCT in mineralogical characterization is relatively limited, although it is outlined as 
one of the future characterization technique in process mineralogy (Baum, 2014). Mineralogical 
characterization with μCT is often limited to simple mineralogy, such as differentiating the gangue and 
valuable mineral phases. In these cases, simple thresholding technique such as Otsu could work (Andrä 
et al., 2013; Yang et al., 2017). Limitations do exist especially if the sample is heterogeneous (Yang et al., 
2017), or consist of fine particles with high density / high atomic number, as then the boundary between 
particles and the background might not be segmented properly due to partial volume effect (Y. Wang et 
al., 2015).  

 
Several researchers have applied different techniques in dealing with multi-mineral ore samples, 

especially those that contains minerals with similar attenuations. Such problems can be anticipated 
earlier by optimizing the scanning conditions through reduction of sample size (Bam et al., 2019; Kyle 
and Ketcham, 2015), using lower scanning energy (Reyes et al., 2017),  or using dual energy scanning 
(Ghorbani et al., 2011). In other cases, such problem could be addressed later at the data processing 
stage, such as using machine-learning techniques (Chauhan et al., 2016; Tiu, 2017) as well as 
combination with SEM-EDS of XRF (Laforce et al., 2017; Reyes et al., 2017; Suuronen and Sayab, 2018; 
Tiu, 2017). Despite all the steps need to be performing mineralogical analysis with μCT, the 
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mineralogical result does show considerable difference with traditional automated mineralogy 
techniques (Reyes et al., 2017; Tiu, 2017). Example of the usage of machine-learning in μCT 
mineralogical analysis is shown in Figure 5. 

 

 
 

Figure 5. Comparison of different machine learning techniques in mineralogical analysis. (a) Original 3D 
image of a drill core; (b) Unsupervised machine learning classification; (c) Supervised machine learning 
classification. By supervised the learning user can better specify the minerals, as in this example pyrite is 
lacking contrast.  
 
Ore Texture Characterization with μCT 
 

Textural measures such as grain size is well known to have effect to the downstream processes, 
especially in terms of liberation size (Lotter et al., 2018a). Another equally important texture measure is 
the spatial distribution (pattern) of different minerals in the ore, often referred as stationary textures 
(Lobos et al., 2016). While grain size is quantifiable, stationary textures is often descriptive and 
qualitative. Recent developments are leaning toward the quantification of stationary textures with the 
help of microscopy based techniques (Donskoi et al., 2016; Koch, 2017; Lund et al., 2015), accounting 
both grain size and spatial relationship of minerals. Stationary textures have been shown to affect the 
ore behavior in mineral processes (Butcher, 2010; Dey et al., 2017; Tøgersen et al., 2018) and it has been 
used as an important measure in geometallurgy (Lund et al., 2015; Pérez-Barnuevo et al., 2018). 

 
μCT analysis opens up a new potential in analyzing textures, especially stationary textures, as 

now the spatial relationship of minerals can be described in 3D, which in turns leads to better 
understanding of its effect to the downstream processes (Becker et al., 2016). Additionally, information 
about surface texture of the ore could be obtained as well, in which parameter such as grain surface 
exposure affecting leaching processes (Miller et al., 2003; Wang et al., 2017); surface hardness affecting 
grinding processes (Tøgersen et al., 2018); as well as surface roughness affecting flotation process (Xia, 
2017). 

 
In general, μCT ore texture analysis is very limited, as it requires a comprehensive mineralogical 

analysis, in which μCT has a limitation. Several researchers have tried to use μCT to describe texture 
better (Barnes et al., 2018, 2017), while others have used μCT data to quantify stationary textures 
(Jardine et al., 2018). Example of texture quantification in 3D is shown in Figure 6.  
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Figure 6. Textural analysis of 3D drill core image acquired from μCT.  (a) Original 3D image of a drill core; 
(b) and (c) Two μCT slices showing different textures; (d) and (e) shows the texture heat map of the 
slices. The heat map reveals the association of each pixels in the image; more association between high 
grayscale value pixels means more sulphide mineralization, as shown in (e).  
 

CONCLUSION 
 

The future is wide open for μCT in process mineralogy. Additional dimension in μCT analysis 
allows better characterization of ore, leading to better understanding of ore behavior in the 
downstream processes. Future work shall be emphasized to accelerate μCT application in ore 
characterization through development of both instrumentation and data processing workflow. 
Development of instrumentation could include sub-micron resolution, in-situ experiments, and 
combination with μCT other instruments such as XRF, EDS, and XRD. Development of the data 
processing includes better reconstruction techniques, optimized algorithm to handle large datasets, as 
well as benchmarking data processing techniques applied in other field of material science.  
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Abstract: The main advantage of X-ray microcomputed tomography (µCT) as a non-destructive 

imaging tool lies in its ability to analyze the three-dimensional (3D) interior of a sample, therefore 

eliminating the stereological error exhibited in conventional two-dimensional (2D) image analysis. 

Coupled with the correct data analysis methods, µCT allows extraction of textural and mineralogical 

information from ore samples. This study provides a comprehensive overview on the available and 

potentially useful data analysis methods for processing 3D datasets acquired with laboratory µCT 

systems. Our study indicates that there is a rapid development of new techniques and algorithms 

capable of processing µCT datasets, but application of such techniques is often sample-specific. 

Several methods that have been successfully implemented for other similar materials (soils, 

aggregates, rocks) were also found to have the potential to be applied in mineral characterization. 

The main challenge in establishing a µCT system as a mineral characterization tool lies in the 

computational expenses of processing the large 3D dataset. Additionally, since most of the µCT 

dataset is based on the attenuation of the minerals, the presence of minerals with similar 

attenuations limits the capability of µCT in mineral segmentation. Further development on the data 

processing workflow is needed to accelerate the breakthrough of µCT as an analytical tool in mineral 

characterization. 

Keywords: X-ray microcomputed tomography; data analysis; mineral characterization; texture; 

mineralogy 

 

1. Introduction 

Following the widespread development of X-ray microcomputed tomography (µCT) in medical 

applications and in diverse industrial applications, potential applications of µCT have been reviewed 

within the geosciences [1,2], especially for mineral characterization [3,4]. Being a non-destructive 

technique, which allows for three-dimensional (3D) analysis of an object, µCT systems offer a new 

depth of information that has not been available with conventional two-dimensional (2D)-based 

microscopy analysis. Several studies have investigated the application of µCT in performing mineral 

characterization, which includes pore analysis [5–10], liberation and grain exposure analysis [11–15], 

crack and breakage analysis [14,16,17], as well as mineral segmentation analysis [3,17–19]. 

While work towards identifying further potential applications of µCT continues, several studies 

have also been focusing on development of data processing to better analyze µCT datasets [9,18,20–

26]. A typical data processing tool of µCT images in relation to mineral characterization can be 

generalized into several steps that are illustrated in Figure 1. 
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Figure 1. Typical workflow involved in µCT data analysis for mineral characterization. The resulting 

2D µCT slices are stacked and preprocessed into a 3D image. Segmentation and classification are 

performed so that a volume of interest (VOI) can be analyzed further. In relation to mineral 

characterization, this VOI usually represents a phase in the sample (an example here is the sulphide 

phase), so that features of that phase can be extracted (an example here is the grain shape). Volume 

rendering is done to produce a 3D view on a 2D display screen. 

Many reviews have been conducted with regard to µCT applications [1–4,11]. Such reviews 

mostly analyze the applicability and performance of µCT systems for different cases of mineral 

analysis. Potential new applications were identified through addressing the advancement made in 

the µCT instruments, such as dual-energy µCT [1,17], in situ experiments during acquisition [27,28], 

the use of diffraction and phase contrast modes [29,30], as well as sub-micron resolution [1,31,32]. 

While the applicability and usage of µCT in mineral characterization has been reviewed, there 

seems to be lack of studies in evaluating the data analysis methods involved in processing µCT 

datasets. This review aims to address just that; it aims to thoroughly discuss various µCT data 

analysis methods, their limitations, as well as their application in mineral characterization. By 

exploring the data analysis methods, this review can be a reference in determining which data 

analysis methods shall be implemented in various cases of mineral characterization using µCT 

systems. 

The primary sources of studies for this review are those that apply laboratory µCT systems in 

characterizing ore samples. Moreover, this review focuses mainly on absorption-contrast mode 

tomography, as this is the conventional mode in laboratory µCT systems. As the objective of this 

review is also to further explore potential data analysis methods that can be applied in mineral 

characterization, other µCT applications in similar materials, such as different types of rocks, sands, 

powders, and aggregates, are also considered. Some other materials that are less similar to ore 

samples, such as composites, soils, and artificial fibrous networks, are also evaluated. Medical 

application of µCT systems are not considered as the nature of the system is different compared to 

the one used in material science. The algorithms in each step shown in Figure 1 are systematically 

evaluated alongside examples of cases and applications. 

2. µCT Measurement and Data Acquisition 

During acquisition, the sample for the µCT measurement is exposed to the incident X-ray beam 

and rotated through 180° to obtain a number of projections (typically between 600 to 3600 

projections). These projections are then reconstructed to create 2D slices (projection images) of the 

measured volume. The pixels in the 2D slices retain spatial information about their originating 

volume elements (voxels) so that the slices could be stacked to recreate the 3D volume of the 
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specimen. These 2D slices are also the “raw data” that could be put in the µCT data processing 

workflow in Figure 1. An illustrative image describing the processes involved in µCT measurement 

and data acquisition is shown in Figure 2. 

X-RAY SOURCE

SPECIMEN

ROTATING STAGE

DETECTORS

PROJECTION IMAGES / SLICES

3D IMAGE

RECONSTRUCTION

STACKING

 

Figure 2. Specimen analysis and data acquisition using µCT. The X-ray beam originates from a small 

focal spot and illuminates a planar detector. The specimen is fixed in a stage, and rotated to obtain 

several projections over a range of angles and positions. The 2D image slices are reconstructed from 

these projections, whereas afterwards it can be stacked and rendered to create the 3D volume for 

displaying purposes. 

The µCT configuration shown in Figure 2 resembles the most widely used modern laboratory 

cone beam scanning configuration. Other configurations, such as fan beam, near-parallel beam, as 

well as synchrotron-based µCT, are not the main focus in this review; interested readers are referred 

to other reviews [1,3,33]. 

2.1. Measurements 

The principle of µCT is similar to other X-ray based analysis, whereas it records the differences 

in X-ray attenuation by the object. Attenuation is described as the proportion of the X-ray that 

interacts with the material and represented by the gray intensities in the reconstructed slice images. 

The interaction between the material and the X-ray beam decreases the intensity of the X-ray as it 

passes through the volume. This decrease of intensity is described by the Beer–Lambert Law: 

I(x) =  I�  × e�µ� (1) 

where I(x) is the intensity measured at the detector (units: mass time-3), I� is the intensity of original 

incident beam from the X-ray source, x is the length of the X-ray path within the material, and µ is 

the attenuation coefficient of the material (units: length−1), which depends on the material atomic 

number and density. 

Due to the stage rotation, the beam angle (α) is varied, which in turn affects the attenuation 

coefficient. Deriving from Equation (1), the correlation between the beam angle and attenuation 

coefficient (µ) for a given length of X-ray path (L) is given below: 

ln
I(L, x)

I�(α)
= − � μ(x, α)dx

�

�

 (2) 
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The attenuation coefficient is then related to its theoretical values for different ore minerals (µC). 

The theoretical values can be calculated as a function of the X-ray energy (ε, units: mass length2  

time−2), and mineral density (ρ, units: mass length−3). Such calculation is given in Equation (3). 

μ�(ε) =  ρ ×  μ����(ε) (3) 

μ���� refers to the mass attenuation coefficient which depends on the X-ray energy used in the 

measurement. The dependency of μ���� on energy can be expressed by Equation (4) [34], in which a 

and b are the energy-dependent coefficients, and Z is the bulk atomic number of the material. 

μ���� =  a + b
Z�.�

ε�.�
 (4) 

Depending on the energy spectrum, different attenuation mechanisms prevail. In lower energy 

spectra (50–100 keV), photoelectric absorption predominates, in which the incoming X-ray photon 

ejects the inner electron by occupying the inner shell of the atom. This imbalance causes the electron 

from the outer shell to jump to the inner shell. The resulting µ based on this mechanism is 

proportional to Z4–5. In the higher energy range (up to 5–10 MeV), Compton scattering is more 

prevalent, in which the incoming photon only interacts with the outer electron and deflects it to a 

different direction. This mechanism yields attenuation coefficient (µ) that is proportional to Z. As it 

suggests by the relation of µ with Z, photoelectric absorption is highly dependent on the atomic 

number of the material, while Compton scattering strongly depends on density of the material (it is 

less dependent on the atomic number) [35]. Both mechanisms are illustrated in Figure 3. 

 

Figure 3. Interaction of X-ray photons to the subjected atom, showing: (a) photoelectric absorption; 

and (b) Compton scattering. 

The dependence of the X-ray attenuation coefficient to the energy spectrum poses a trade-off in 

differentiating mineral phases within the sample. Higher energy means a better penetrative 

capability of the X-ray beam which, in turn, results in a better signal-to-noise ratio, but it often 

becomes less sensitive in differentiating mineral phases in the rock sample. Decreasing the energy 

could overcome this limitation, but this also decreases the penetrative capability of the X-ray, 

therefore requiring longer exposure time to achieve good signal-to-noise ratio. This could further be 

explained by the circumstance that in lower energy spectra, the resulting µ is proportional to Z4–5, 

which means that it is much more sensitive to changes in the atomic number, therefore better in 

differentiating phases in the sample. This is compared to having higher energy spectra in which µ is 

only proportional to Z, which then the difference in µ is more driven by density differences between 

the materials due to Compton effect. This principle is the key in differentiating minerals using µCT; 

by using lower energy, contrasts between minerals with similar densities can be achieved as it is 

driven more by the difference in atomic number. The dependence of attenuation coefficient of 
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minerals to the X-ray energy is available in some databases, such as XCOM, managed by National 

Institute of Science and Technology (NIST) [36]. 

In fact, several researchers have addressed this issue of differentiating minerals by optimizing 

the scanning conditions of the µCT system. The use of lower energy spectra was evaluated by Reyes 

et al. [18] in which, at 50 kV, copper sulphide minerals were able to be distinguished from pyrite, 

with the help of SEM-EDS measurement as reference data. Reduction of sample size was also 

evaluated [3,37], as lower energy means longer acquisition time; reducing sample size is an 

alternative way to achieve reasonable acquisition time while at the same time minimizing the beam 

hardening effect. Such an effect makes attenuation of the same minerals differ depending on the 

location within the sample, therefore limiting the accuracy of the mineral differentiation [18]. Kyle et 

al. [38] has demonstrated that at scanning energy of 180 keV, differentiation of chalcopyrite and 

bornite is possible using smaller cores (≤22 mm), while Bam et al. [37] have also demonstrated that, 

at similar energy level, the beam hardening effect is minimized when the apatite-magnetite core 

sample size is reduced to 17 mm. 

A calibration step prior to µCT data acquisition can also be performed in order to distinguish 

between minerals. This can be achieved by measuring pure minerals with known density, so that 

correlation between the attenuation coefficient and density is obtained, or by using dual-energy 

scanning so that the density of the material can be obtained directly through the relation between 

attenuation coefficients in two different energy levels [17,39]. However, the latter case is known to be 

sensitive to noise [40]. Such calibration could also be performed after acquisition by correlating the 

µCT data to SEM-EDS data [18,19] or XRF mapping [41,42]. 

The spatial resolution of the µCT system is also critical to produce good results as well as good 

signal-to-noise ratios. Spatial resolution defines how the volume is discretized, i.e., the volume over 

which Equation (2) is integrated. In other words, this resolution is the size of the smallest detectable 

object with µCT. Typically, a µCT scanner would have spatial resolution ranging from 10–50 µm [43]. 

Some newer generations of cone beam µCT systems are even able to reach below 1 µm, or even 

further, which is often termed as sub-µCT [44]. It is worth noting that higher resolution will lead to 

better results, but longer exposure time is needed as a higher number of projections is required to 

achieve such high resolution. In order to reduce cost, samples are often scanned at a lower resolution 

first, then afterwards its region of interest is determined where high-resolution scanning is carried 

out. 

Some artifacts could be present during µCT measurement and data acquisition. Artifacts are 

defined as part of the reconstructed µCT slice images which did not originate from the original 

sample. Artifacts could originate from the physical interaction between the materials and the X-ray 

beam, or from the scanning process (detectors). These artifacts have been thoroughly discussed by 

several other workers [3,37,45,46]. The artifacts that regularly occurred with industrial (non-medical) 

µCT system are summarized in Table 1. 

Table 1. Summary of artifacts that occur with an industrial µCT system. 

Type of Artifact 
Associated 

with 
Source Solution 

Cupping artifacts, 

streaks and dark 

bands 

Physical 

artifact 

Beam hardening—Unequal 

absorption of photons in the 

polychromatic X-ray beam 

Digital filtering, 

calibration correction, 

linearization 

Ring Artifact 
Scanning 

artifact 
Deviation of the detectors 

Recalibration of the 

detectors, 

Digital filtering 

Partial volume effect–

Limited resolution 

effect 

Physical 

artifact 

Voxel comprised of several phases, 

yielding an average CT values of 

those phases 

Interpolation, using 

higher spatial resolution 

It is worth noting that the artifacts and limitations described earlier are mostly found when using 

the laboratory based µCT configurations. For example, the beam hardening effect can be avoided by 
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the use of a monochromatic (synchrotron) source [47]. A synchrotron source also offers higher photon 

flux, allowing more rapid acquisition time, less image noise, and higher spatial resolution in 

comparison with laboratory µCT systems. 

Moreover, some of the issues of mineral differentiation with µCT can be alleviated by the use of 

other contrast modes such as diffraction-contrast tomography (DCT) and phase-contrast tomography 

(PCT), which is mainly available only in synchrotron sources. Both contrast modes have found 

applications mostly in analysis of microstructures in crystalline samples, as it allows the high contrast 

between phases [48–53]. Synchrotron systems also open up possibilities of complimentary 

tomography methods such as X-ray diffraction microtomography (XRD-CT) and X-ray Fluorescence 

microtomography (XRF-CT). XRD-CT finds applications mostly in evaluating crystalline materials 

[54,55], while XRF-CT could be used to detect small features, such as inclusions in geological samples 

[48,56]. 

While these properties of synchrotron µCT systems make it clearly superior to laboratory µCT 

system, the access to such systems is generally limited due to high operational costs [1]. The current 

technology of laboratory µCT systems has not yet met the level of synchrotron source [37], but recent 

developments have extended their capabilities further. For example, recent works [29,30,57] have 

demonstrated the possibilities to perform PCT and DCT with laboratory µCT systems. 

2.2. Reconstruction 

Reconstruction is the process of creating µCT image slices from the projections obtained from 

the µCT measurement. The projections from µCT measurements are reconstructed, mainly by solving 

Equation (2) for all angles and positions using appropriate mathematical transformations [23]. The 

most widely used reconstruction method in µCT systems is the filtered back projection (FBP), which 

is based on Radon transformation. In FBP, all the projection values from the measurement are placed 

back into the appropriate position in the X-ray path/line between the source and detectors depending 

on its acquisition angle (α). 

Prior to the back projection, these values are convoluted with a filter to remove blurring. 

Mathematical derivations and detailed explanations of the FBP method are available elsewhere [58]. 

With the cone beam scanning configurations, modification from the traditional convolution filter and 

back-projection based method is needed. Most of the cone beam µCT systems make use of the FBP 

reconstruction methods developed by Feldkamp [59], i.e., the Feldkamp, Davis, Kress (FDK) method. 

It can be concluded that back projection is accurate only if the projection values are precise and 

clear without any noise. In real applications, the measurements often result in a probability 

distribution of the projection values; a single projection value in a given position and angle is almost 

impossible to achieve. A direct back projection of such values could result in reconstruction artifacts 

in the final image. 

The iterative reconstruction method is another reconstruction method that can overcome the 

limitations of FBP. The method allows input of prior information about the µCT system to the 

algorithm, improving the accuracy of the method. The method itself is based on iteratively forward 

projecting the image and back projecting the projection values until convergence. Usually an initial 

estimate about the image is produced and forward-projected to estimate the projection values. The 

projection values are then compared with the actual measurement. The initial image estimate is then 

improved based on the back-projection values. These procedures are repeated until a convergence 

between the actual and estimated projection values is achieved. While this method can overcome the 

noise limitations, it is well known to be computationally intensive and slow compared to the 

traditional back projection method. Several studies [60–62] have been conducted to improve this 

iterative method, mainly aiming to lower its computational cost. 

After the reconstruction, the reconstruction values or CT numbers are obtained, in which such 

values correspond to the grayscales in the reconstructed images. These numbers are linearly related 

to the attenuation coefficients of the material in each position. In medical systems, a relative scaling 

of this CT number is used which often termed as the Hounsfield Units (HU). The scaling is based on 

the attenuation of water (assigned at 0 HU) and air (assigned at −1000 HU). In the case of ore samples, 



Minerals 2019, 9, 183 7 of 32 

 

often time a mineral phase would not have a single CT value, rather it would have a distribution of 

CT values. This is mostly caused by natural variation of chemical composition in the rocks itself due 

to weathering, solid solutions, zoning, etc. 

3. Pre-Processing 

The projection images are then stacked into a 3D dataset, which is a stack of 2D slice images. The 

pre-processing step is usually necessary in order to prepare the dataset for the subsequent steps. 

3.1. Filtering 

Filters are mathematical algorithms that are implemented in each pixel and its neighbors. These 

filters typically attempt to replace any pixel value that is inconsistent with its neighbors. The simplest 

approach is by convoluting a kernel (matrix) to the image. The kernel holds some values that would 

modify the image, and depending on the values, several tasks, such as denoising, blurring, 

sharpening, and edge detection, can be performed. The dimension of the kernel can be two or three 

dimensions depending on the image. Examples of these filters are listed below: 

 Denoising and blurring filters, such as Gaussian and mean filters. As the name suggests, the 

typical drawback of these filters is that it blurs the image, including the phase boundaries which 

are critical in the segmentation process. This drawback is avoided by using edge-preserving 

filters, such as median, non-local mean, and bilateral filters. Some researchers have applied 

variation of these filters in their specific cases of µCT analysis of rock samples [9,21,63]. 

 Sharpening and edge detection filters, such as Laplacian filters, Sobel, Canny filters, Robert, and 

Prewitt filters [64–66]. These filters are typically used in rock µCT analysis especially in crack 

and pore detection [8,67], watershed segmentation [68], as well as feature extraction for 

supervised classification [15,19,22]. 

4. Segmentation and Classification 

Segmentation refers to the grouping of digital image into several segments by identification and 

isolation of pixels that have the same features into a single category [69]. There are many different 

image segmentation methods, and several investigators have made reviews about their performances 

and applications [70–72]. More than a hundred segmentation algorithms based on these methods 

have also been developed, with many of them combining two or more methods. In this paper, the 

discussion will focus on methods that have been applied in µCT data analysis of ore samples. 

4.1. Histogram Analysis 

The most common segmentation method is based on the histogram analysis of grayscale 

intensities of the pixels in the image; an example is shown in Figure 4. The histogram provides the 

distribution of the grayscale level of each pixels in the image, therefore giving an idea regarding the 

different phases contained in the image. By analyzing the histogram of an image, one can obtain 

global information about the grayscale levels in the image. The analysis itself can be varying, 

including geometrical shape analysis of the histogram, entropy analysis between two classes, 

histogram deconvolution, as well as similarity attributes within one classes [73,74]. Histogram 

analysis can be used for µCT volumes in cases such as background removal [75], and to some extent 

pore extraction from rocks [7,8,74]. 
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Figure 4. Histogram of gray values of a 2D slice. The two peaks indicate a clear threshold value for 

separating two classes, which in this case are the background (left peak) and the drill core (right peak). 

Note that further thresholding for the phases within the drill core would be challenging as it seems 

difficult to separate the right peak into several peaks (phases). 

4.2. Thresholding 

Thresholding is a common term to describe the introduction of threshold/limit value on an 

image, thereby segmenting the features that are below the threshold and others that are above the 

threshold value. The value is usually the grayscale intensity of the pixels. Thresholding is often used 

in the first step of image processing in order to extract the volume of interest from the whole volume. 

There are two major types of thresholding algorithms: 

 Global thresholding, where the threshold value is determined from the entire image properties, 

for example by analyzing the whole histogram of the image as in Figure 4. 

 Local thresholding, which means that instead of considering the whole image, only a certain 

part of the image is considered as a basis in setting a threshold value. 

In the case of global thresholding, an optimal threshold value must be chosen in order to obtain 

a good result. Some algorithms exist that can optimize the threshold value based on the image input, 

one of them developed by Otsu [75]. It remains a widely used algorithm in setting a threshold value 

for 3D µCT image analysis [6,18,20,76,77], especially in terms of segmenting between pores/air and 

mineral matrix. The Otsu thresholding method is an effective way in differentiating mineral phases 

and the pore space, however it may not works perfectly when the sample is heterogeneous and the 

volume of interest (VOI) is large; such large volume shall be sub-sampled to produce a suitable VOI 

that represent the whole volume [6]. Additionally, Otsu thresholding might not work properly in 

cases where boundaries between high density/high atomic number and low density materials exist, 

as the boundaries may not be thresholded properly due to the partial volume effect [22]. 

Otsu thresholding can also be extended to obtain multiple thresholds, so that more than two 

phases can be separated in the µCT volume [78,79]. An example of this is shown in Figure 5. 

Another commonly used algorithm for determining a global threshold value is the maximum 

entropy algorithm [80]. This algorithm is mostly used in segmenting between the grains and mineral 

matrix [76,77]. In studies by Lin et al. [77], the Otsu algorithm was used to distinguish ore particles 

from the air, while the maximum entropy algorithm was used to identify the metal sulphide grains 

within the mineral matrix. The reasoning behind this was that the occurrences of metal sulphide in 

the matrix is minimum, so that the sulphide peaks could not be clearly identified in the histogram. 



Minerals 2019, 9, 183 9 of 32 

 

 

Figure 5. Otsu thresholding, showing: (a) Original slice of drill core stack from µCT; (b) global 

thresholding with Otsu; and (c) multi-level thresholding with Otsu. It can be seen that directly using 

global thresholding will only intercept the drill core volumes from the background; multilevel 

thresholding is needed to extract the mineral grains from the drill core. 

Local thresholding sets the value based on a local domain of voxels within a volume. This 

method is considered as a refinement of the global thresholding method based on local spatial 

information [7]. Deng et al. [26] applied an improved local thresholding algorithm that was capable 

of distinguishing between fractures and pores in rock matrix in a 3D µCT image. In his work, a 

fracture mask was initially created using connectivity operator in which local thresholding is 

performed within the mask. Based on local thresholding, a new fracture mask is obtained. This is 

repeated until the fracture mask volume is stabilized. 

A gradient line computing the gradients of the image intensity intercepted by the line can be 

used also as a local domain where thresholds value should be based on. The threshold value is then 

based on the points where the calculated gradients are high, indicating the phase boundaries. Such a 

technique is referred to as gradient-based segmentation, and has been applied in mineral phase 

segmentation in µCT ore analysis [23]. Nevertheless, such a method would require the user to 

determine the locations of the lines to get them intercept as many phases as possible, thereby 

increasing the number of phases that can be segmented using the thresholds. 

The eventual determination of a threshold value could also be done arbitrarily by the user. 

Arbitrary here means that the user visually estimates the threshold value. This could be done, for 

example, by visually determining the phase boundaries or taking the average grayscale values of the 

phases that have been visually determined by the user. Such a method has been implemented in 

porosity analysis, in which it was found that such method was in agreement with the experimental 

measurement [74]. The limitation of such a technique is that it is very subjective as the threshold 

determination depends very much on the user. 

4.3. Region Growing 

Another segmentation technique is the region growing method. The method is initialized by 

selecting a pixel, followed by the addition of the neighboring pixels to the initial pixel based on their 

similarity in grayscale values, thereby creating a region with similar grayscales. The process is 

repeated until all pixels can be categorized into a region. Grayscale intensities of the pixels are used 

as the similarity criteria [81,82] and, in other cases, gradients between neighboring pixels can also be 

used [23]. 

The region growing method is combined with edge detection in the widely used watershed 

segmentation. Watershed segmentation considers a grayscale image as a topographic surface, where 

the height of the surface is defined as the grayscale intensities of the image. The term “watershed” 

typically refers to a ridge that divides areas drained by different river system. This watershed line 

separates the catchment basins, which are typically the features that are segmented. 

The common problem with watershed is the over segmentation, in which every regional 

minimum is transformed into its own basin, also segmenting features that are not of interest. Several 



Minerals 2019, 9, 183 10 of 32 

 

researchers have developed a way to overcome this problem, including by introducing markers to 

the image [83,84], merging the regions [85], denoising and edge enhancement [86], as well as 

combining watershed segmentation with wavelet transformation [87] and the topological gradient 

approach [88]. 

Marker-controlled watershed segmentation has been applied to 3D µCT images for several 

analyses by Miller et al. [22,89,90]. 3D watershed segmentation has been applied to different types of 

µCT image analysis, including coal washability analysis [89], air bubble sizes [90], as well as analysis 

of particle beds [22]. Wang et al. [22] identified that 3D watershed segmentation works best for 

mineral particles greater than the scale parameter (particle size/voxel size ratio of 30) and density 

lower than 4.0 g/cc. An example of marker-controlled watershed segmentation to separate touching 

grains is shown in Figure 6. 

 

Figure 6. Marker-controlled watershed segmentation process. (a) Binary image showing touching 

grains; (b) distance transformation of (a), showing two grains are connected with each other; (c) 

Markers are introduced by imposing a minima for each grain; (d) watershed segmentation of (c), 

showing a thin ridge is now formed between two grains; and (e) the distance transform of (d) showing 

the grains are no longer connected. 

The markers introduced in Figure 6 were obtained by filtering out the minima that are less than 

a certain threshold value to avoid over-segmentation. Such a method has a clear drawback, if the 

grain sizes in the image are highly varied, it would be difficult to find a threshold value that could 

remove all unwanted minima without removing the minima of interest [91]. An alternative to such a 

technique is by taking into account the topography of the minima; instead of setting a threshold value 

on the minima, such a threshold value is set as a fraction of the zone around the minima [92]. The 

goal would then to find a fraction value (0 to 1) to set that zone fraction to be the same as the minima, 

i.e., to flatten down the basin zone to the level of its minima. The watershed transform would then 

consider the flattened basin to be part of the adjacent basin, therefore merging both basins to avoid 

over-segmentation. While such a procedure is less affected by grain size (basin depth), the procedure 

is still affected by the grain shape (basin topography), therefore making it unsuitable for highly 

elongated grains [91]. 
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The major challenge with the previously described marker-controlled watershed segmentation 

is clear: it would be difficult to obtain a global threshold value that could balance between under-

segmentation and over-segmentation. Kong and Fonseca [91] proposed an iterative technique based 

on information obtained at a local level. Initially the method used a similar method as in Figure 6, 

but then it is followed by iteratively performing watershed segmentation in each basin zone to 

identify potential new basins within the zone. This simply means that each segmentation is adapted 

according to the properties of each basin. The method has been demonstrated to be capable of 

segmenting grains with varying sizes and shapes. 

4.4. Unsupervised Classification 

Classification is defined as the partitioning of a set of elements into several clusters (or classes) 

based on their similarity [93]. In terms of image analysis, the sets of elements are the pixels in the 

image. Unsupervised classifications mean that the classification algorithm is automated by the 

computer, without any training or supervision from the users. However, users can have some degree 

of controls in this technique by specifying the number of classes, maximum iterations, as well as the 

endpoint of the classification (i.e., how much of the data that needs to be classified). 

K-means clustering, is a clustering technique that segments the image in K numbers of clusters 

based on a certain criteria [94]. The K-means technique is one of the most commonly used technique 

in clustering of images, and it has been applied both in microscopic images [93,95], as well as 3D µCT 

images of rocks [25]. 

The K-means algorithm calculates the distance between pixel values and its nearest centroid of 

the cluster. This algorithm continues until the mean square root error of the distance reaches a 

minimum value, meaning that there are no more pixels that need to be assigned to the nearest 

clusters. The performance of K-means algorithm is very much affected by the initial selection of 

centroids as well as the selection of distance function. Poor selection of initial centroids will lead to 

the algorithm terminating without finding the global minimum of the objective function (after only 

finding a local minimum) [70]. Arthur and Vassilvitskii [96] have developed an algorithm that would 

improve the initial selection of centroids, by using a weighted probability distribution that is 

proportional to the distance between the newly selected centroid and the previous centroid. Their 

method is often referred to as K-means++. An example of a K-means segmented drill core volume, 

alongside with multi-level Otsu thresholding is shown in Figure 7. 

K-means clustering has been applied in rock pore matrix analysis using µCT by Chauhan et al. 

(2016) [97]. Rock samples used were Andesite, Berea sandstone, as well as Rotliegend sandstone. In 

Chauhan’s work, the performance of K-means clustering was compared with other unsupervised 

algorithms, such as fuzzy-C means (FCM) and self-organized maps (SOM). 

A fuzzy set is defined as a set of data with no distinctive boundary [72]. In contrast to K-means 

in which each pixel can only be a member of one cluster, a pixel in the FCM scheme can be a member 

of multiple clusters depending on the fuzzifier constant, in which it acts as a weighting factor in the 

calculation of the distance between pixels and their centroids. A larger constant would decrease the 

weight, leading to fuzzier classification. If the constant is decreased to its limit value of 1, the FCM 

scheme simplifies into K-means. 

The performance evaluation of the classifier is based on the entropy and purity of the clusters. 

The entropy of a cluster defines how the pixel values are distributed within the K number of 

clusters—in other words how likely a pixel value is misplaced in another cluster. Meanwhile, purity 

refers to the frequency of the most common category in each cluster. 

A clustering technique is good if the purity is high, while the entropy is low. In Chauhan’s study, 

the K-means clustering technique was found to outperform other unsupervised techniques in terms 

of both entropy and purity, as well as computational speed. Chauhan also found that the porosity 

value of the rock obtained from unsupervised classification corresponded well with the experimental 

values obtained from pycnometer measurements. 
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Figure 7. (a) Original drill core volume obtained from µCT; (b) multilevel Otsu thresholding, showing 

10% of sulphide mineral grain content; and (c) K-means segmented image, showing 6.3% of sulphide 

mineral grains content. While the images look similar, there exists a relatively significant difference 

between the amount of grains segmented using both techniques. 

4.5. Supervised Classification 

In a supervised classification technique, the user trains the computer to classify the image based 

on the training dataset. This can be done by selecting a sample of pixels and assigning them to a 

specific class, in which the computer will use this as a reference in classifying other images. 

Supervised classification has been used to some extent in rock µCT images [19,22,25,97]. Comparison 

of supervised and unsupervised classification is shown in Figure 8. 

 

Figure 8. (a) Original 3D data of the drill core; (b) unsupervised classification performed on the data; 

and (c) supervised classification performed on the data. In (b), both chalcopyrite and pyrite grains are 

regarded as one phase, i.e., unsupervised classification could not distinguish further between the 

phases. In (c) both phases could be segmented using supervised classification depending on how the 

user trains the classifier. 

A classification tree is a supervised classification technique where the computer builds a decision 

tree with a binary test in each of the branches. This tree is grown until a certain point when no new 

information can be obtained from the training dataset. Random forest is then a technique where 

multiples of these classification trees are built based on different subsamples of the training data, 

allowing the building of classification trees based on different parts of the training data. Such a 

technique mainly aims to prevent overfitting of the trees to the training data; it ensures the generality 

of the classification tree. Random forest then classifies pixels by majority voting of the classification 

trees [98]. 

An artificial neural network (ANN) is simply a large number of simple and interconnected 

processors (neurons) working in parallel in a network [99]. The neurons simply calculate the 

probability of the image to be categorized as an object. This is done by assigning weights to the 
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elements of the input image (the nodes) and summing those weighted elements, which then if the 

sum is higher than a certain threshold (or bias) it will be sent to the next layers. This is continued 

until the output layer, where it returns the probability of the input to be an object. During the training 

phase, the user inputs a training dataset for the network. The network then adjusts the weights of 

each nodes by computing the loss function which measures the difference between the true class of 

a pixel in the training set with the output value predicted by the network [100]. 

The main issues with ANNs are that they require a significantly larger amount nodes when 

larger images are fed and it is not translation-invariant (meaning that it depends on the orientation 

of the original training data). Convolutional neural networks (CNNs) are an alternative where the 

full-size image is convoluted first using several different filters to produce feature maps. The strength 

of a CNN is that, instead of using pre-defined filters, these filters could also be trained according to 

the user needs. In most cases the feature maps are then downsampled (pooling) so that the only the 

most important information of the feature maps is preserved and fed to the network. These sets of 

convolution and pooling can be repeated several times until small enough feature maps can be 

inputted to the network. There exist several convolutional neural network architectures that have 

been developed and trained, and can perform various image recognition tasks [101–103]. An 

illustration of a neural network and a convolutional neural network is shown in Figure 9. 

 

Figure 9. (a) ANN applied on a µCT drill core slice images; (b) CNN applied on a µCT drill core slice 

images. In an ANN each pixel in the image is inputted directly, creating an m × n amount of input 

nodes, which is very large for typical µCT slice images. In a CNN the image is convoluted first with 

filters to produce feature maps. These filters can be more than one and are learnable during the 

training phase. The feature map is then pooled, for example by taking maximum values in a 2 × 2 

neighborhood, so it is downsized by the factor of four. This scheme represents the neural network 

application in image recognition (recognizing the texture class of a drill core slice) while, for phase 

segmentation, the input can be changed to the mask image of each phase. 

A support vector machine (SVM) [104] is a supervised classification technique that projects the 

training dataset to a feature space of higher dimension using a kernel function, so that the dataset can 

be segmented using a linear classifier [105]. The linear classifier is set so that it leaves the largest 

possible fraction of points of the same class in the same side while maximizing the distance between 

the different classes from the linear classifier [106]. 
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The use of supervised classification in µCT data analysis has been limited, especially in ore 

mineral cases. Chauhan et al. [25,97] extensively explored different supervised classification 

techniques, such as ANN and least square–SVM in segmenting between rock matrix, minerals, and 

pores in an µCT image of Andesite rock sample. Cortina-Januchs et al. [107] used an ANN to classify 

pores in a µCT images of soil. Tiu [19] utilized a random forest classifier in the Trainable Weka 

Segmentation (TWS) tool [108] to classify mineral phases in a µCT image of a Cu-Au drill core 

samples. A random forest classifier is also used by Wang et al. [22], as the marker-controlled 

watershed segmentation did not perform well for fine and low density particles. 

From Chauhan’s study, it was concluded that both ANN and LS–SVM classification techniques 

yielded a porosity analysis which is in a good agreement with experimental pycnometer 

measurements (relative differences of less than 1%). Furthermore, it was also concluded that LS–SVM 

is superior compared to ANN due to its capability in identifying generalized patterns. However, this 

is compromised by its extensive computational requirements, where LS–SVM took 10 times longer 

to process the same µCT dataset compared to the ANN. 

Tiu [19] attempted to classify mineral phases in a µCT drill core image using a random forest 

classifier with different feature extraction algorithms (i.e., the convolution steps similar to CNN). 

Using a SEM-EDS mineral map as the training dataset, Tiu validated the resulting classification with 

the same 2D µCT slice that was analyzed by SEM-EDS. The differences between the mineral map 

obtained by SEM-EDS and the supervised classification was minimal, in which it underestimates 

chalcopyrite content by 0.2% and overestimates pyrite content by 0.2%. It was further added that the 

performance of such supervised classification techniques is heavily dependent on the training 

dataset, so care must be taken when applying such classifiers to an inherently different dataset. 

In relation to the 3D watershed segmentation by Wang et al. [22], supervised classification was 

performed to overcome the limitations of the current watershed algorithm. Instead of using 

thresholding for extracting the particles from the background, a trainable feature based classification 

was employed using the TWS tool [108] which is based on a random forest classifier. It was found 

that around a 10–15% decrease in calculation error was obtained when the supervised classification 

was used instead of thresholding in the watershed segmentation. 

5. Feature Extraction 

The resulting data from segmentation is most often in the form of a labeled image, in which each 

label represents a segmented phase. These phases would have some features that a machine vision 

can extract. The process of feature extraction reduces the dataset into features of interest. Hence, such 

a process could also be called dimensionality reduction [109]. With a smaller dataset, the 

computational expense of the subsequent data processing can be reduced. 

These features in terms of mineral characterization are often related to the textures of the ore 

minerals. Texture in terms of ore geology is referred as the relative size, shape, and spatial 

interrelationship between grains and internal features of grains in a rock. Size, shape, and orientation 

of the grains in minerals are referred as structural texture, while the spatial relation between the 

grains (pattern) are referred as stationary textures [110]. 

The concept of structural textures is quite easily understandable; by having grain shape, size, 

and orientation information of an ore, one could distinguish different types of ore texture. With the 

use of µCT, more accurate 3D information on these textures can be obtained as well as quantified 

through a variation of data analysis methods. On the other hand, stationary textures are often 

described qualitatively using experiences and textural archetypes. Recent developments are leaning 

towards the use of computer vision and image analysis techniques to quantitatively extract stationary 

textures of rocks [110–113]. Extending these techniques into 3D data would open up a new depth of 

information in describing texture of ore minerals. 

5.1. Distance Transformation 

Distance transform simply transforms a binary image into a function of the distance of each pixel 

to the nearest non-feature pixels (the zero-valued pixels in the binary image) [114]. Such transform 
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function has been demonstrated to be extendable to 3D [115]. Distance transform has found many 

applications in relation to ore characterization with µCT, most notably in analyzing structures of 

pores, grains, and particles [22,116–119]. 

One application of distance transform in segmentation of touching particles and grains 

[22,118,119] has already been shown in Figure 6. With the information of the distance of each voxel 

to the background, one could estimate the center of each grain by taking the voxels with maximum 

distance value. Inverting the distance map would produce a minima at the center of the grains, which 

can then be used as a basis for specifying a marker for the watershed segmentation. 

Distance transform is also important in evaluating surface exposure of mineral grains in a 

particle, which has been applied in µCT analysis of leaching experiments [117,119]. Mineral voxels 

that have low distance value (closer to surface) would be leached faster, i.e., the leaching kinetics and 

recovery is dependent on the position of the minerals relative to the surface. Throughout the leaching 

period, the number of mineral voxels would be decreased gradually due to dissolution, and this 

decrease could be used to evaluate the leaching recovery. Coupled with distance transformation, the 

dependency of leaching recovery to the mineral’s distance from the particle surface can be evaluated. 

The shape and structure of a feature could also be evaluated with distance transformation. The 

skeleton of a feature could be defined as the ridges (local extrema) in a distance function. The skeleton 

is particularly useful when analyzing pore space and connectivity in a sample, which can be used to 

evaluate the permeability of the sample [6,120]. Evaluating the maximum inscribed sphere along 

these skeleton voxels allows comparison of surface topology between the feature and a sphere, giving 

an idea on the bluntness of the feature [116]. 

5.2. Mathematical Morphology 

Mathematical morphology [121,122] is one of the tools that analyze the spatial structure of voxels 

in a 3D dataset. This technique usually takes binary image as an input, in which the structure of the 

volume of interest is analyzed. Morphological image analysis makes uses of a structuring element to 

extract morphological features of the image, in which the structuring elements are operated on the 

entire volume. Morphological image analysis has been used in various applications for µCT volumes, 

especially in quantifying size and structures of pores, grains, and particles in a sample [19,123–126]. 

The shape of the structuring elements defines what kind of features can be extracted from the 

volume. Furthermore, by manipulating the size of the structuring elements, the size function of the 

features could also be extracted. Morphological opening is an operation that removes any of the 

elements in the image that are smaller than the size of the structuring element. Morphological 

opening is then analogous to sieve analysis performed for powder samples, where particles smaller 

than the sieve are passed through the sieve. Sieves of increasing size are stacked vertically to get the 

size distribution. This is done in morphological image opening where the structuring element size is 

incrementally increased, which is often termed as granulometry by opening [121,122], compare 

Figure 10. This operation has been implemented in various µCT 3D volumes, including cellulosic 

fibrous network [124,125], as well as in ore samples [19,120]. 

 

Figure 10. Granulometry by opening. A structuring element/sieve is operated on the stack of binary 

images, in which here represents the mineral grains in the ore sample. After operation, the grains 
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smaller than the sieve are removed. The sieve size is then increased, and the distribution of the grains 

based on their sieve passing size is plotted. The structuring element in here is a stack of 2D structuring 

elements, mimicking a 3D structuring element. 

Limitations do exist in granulometry, as it is highly dependent on the shape and size of the 

structuring elements and on how the features can be interpreted. Lux et al. [125] argued that in a 

fibrous network, the pore size distribution using granulometry does not correspond to actual 

respiratory pore sizes, but rather as a minimum distance between the fibers. Tiu [19] stated that the 

grains in the measurements are more defined as a set of voxels containing similar gray values as 

defined by the previous segmentation, so it is also highly dependent on how it was segmented 

previously. The shape of the structuring elements also defines the computational costs; spherical 

structuring element (which often describes grain and pore quite well), is quite computationally 

extensive as by increasing its radius, the voxels processed increased to the power of three of the 

incremental radius [123]. This for example can be overcome by using a 32-faced polyhedron, which 

could reasonably estimate the shape of a sphere [123]. 

Several other different tools exist in mathematical morphology. These tools allow textural 

extraction from the 3D dataset including: 

 Local orientation of textures. This is achieved by opening of the image using a line structuring 

element and rotating the structuring element to get directional information of the image. Such 

information is useful to obtain information about the isotropy of textures. It has been used in 

analyzing 3D datasets of fibrous networks [125]. 

 Global orientation of textures. While the combination of local orientations could give a good 

estimation on the global orientation, methods for directly determining global orientation also 

exist. The mean intercept length (MIL) is the most popular method to obtain this information. It 

generates several parallel lines in a certain direction in which the number of intercepts of the 

lines with the textures can be used for estimating the orientation. Such a method has been used 

in analyzing orientation of pores and vesicles in CT images of volcanic rocks [10]. 

 Skeleton of the textures. In addition to using the distance transform, the skeleton of the texture 

could also be obtained by eroding the features up to a certain point where its homotopy is still 

preserved. Such a technique is often referred to as morphological thinning. 

 Shape descriptors of textures through Minkowski functionals. The Minkowski functionals are 

geometric measures applied to binary structures, in which for n dimensional plane, n + 1 of such 

functional exists. Such functionals have been applied in 3D pore analysis of soil structure [126]. 

These functionals are: 

M�(X) = V(X) (5) 

The zeroth functional, Equation (5), calculates the mass of the object: 

M�(X) =  � ds 
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The first functional, Equation (6), is the integral over the surface δX of the unit. This is simply 

the total surface area of the object (units: length2): 
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The second functional, Equation (7), is the mean curvature (units: length−1) of the surface area 

obtained from the previous functional. Both r1  and r2 define the minimum and maximum radius 

of the curvature: 

M�(X) =  �
1

r1r2
ds

 

��

  (8) 

The third functional, Equation (8), is the total curvature, which can be used to measure the 

topological properties of the object (convex, concave, or saddle). 
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5.3. Computational Geometry 

One of the key features of µCT is that it can extract the three-dimensional representation of the 

samples, i.e., it is not subject to stereological error as in 2D-based image analysis. This permits more 

accurate geometrical representations of the sample, which then can be further exploited in order to 

extract shape representations (sphericity, surface area, aspect ratio, etc.) of the sample. 

Computational geometry is a systematic study of algorithms and data structures for geometric objects 

[127], allowing users to extract features using the geometrical properties of the object. 

The shapes of ore particles and grains are often irregular, i.e., a method is needed to approximate 

the shape of such objects using geometrical objects. One of the geometrical objects that can be used 

to approximate particles are a set of polygons. This can be achieved using the three major concepts 

in computational geometry: convex hull, Voronoi diagram, and Delaunay triangulation. Formal 

definitions of these concepts are available elsewhere [127], but essentially all of these concepts make 

uses of convex polygons in order to represent an object, i.e., the object is tessellated into a set of convex 

polygons so that the properties of the object can be approximated from the properties of the polygons. 

One of the properties that can be obtained is the surface area of the object, which is useful to deduce 

the sphericity of the object. 

Another way is to create a geometrical object that would bound all parts of the irregular shape 

inside it. This bounding object can be minimized so that it could better represent the sample. In 

computational geometry this is termed the minimum bounding object problem, and the bounding 

object can be a sphere or a box. The properties of the bounding object can describe features of the 

shape bounded by it. Furthermore, many of shape descriptors can be calculated if the major, minor, 

and intermediate dimensions of the object is known, e.g., the aspect ratio, elongation index, and 

flatness index [118]. This is illustrated in Figure 11. 

 

Figure 11. Using geometry to extract shape features of a particle. (a) Scatter plots representing the 

particle; (b) convex hull of the particle; (c) minimum volume bounding box of the particle, which is 

the same as the bounding box for the convex hull (d). From the convex hull, convex surface area and 

solidity (ratio of convex volume and actual volume of a particle) can be obtained, while from the 

bounding box, major, intermediate, and minor dimensions of the particle can be obtained. 

Computational geometry has been applied mainly in extracting shape parameters of a 3D 

volume obtained from µCT. Vecchio et al. [128] described the applications of bounding box in 

describing different types of particle shape, and the errors associated with it. Zhao et al. [118] 

investigated shape descriptors of a particle before and after fracture using convex hull of that particle, 
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particularly its solidity. Pamukcu et al. [129] have used convex hulls to analyze glass inclusions in an 

igneous rock, in which it was stated such a method cannot properly describe non-convex inclusions. 

This limitation for non-convex particles is even illustrated in Figure 11, where the particle shown is 

non-convex, and the convex hull of the particle differs significantly from the original particle. In 

general, this is the main limitation of computational geometry; errors always arise when regular 

objects (polygons) are used to estimate an irregular object (rock particles, grains). 

In addition to polygons, spheres have also been used in approximating size and shape. The 

maximum inscribed sphere has been used by Van Dalen et al. [130] to measure the local thickness of 

a particle. By inscribing a sphere in each point of a particle, the thickness of that point can be obtained 

by the diameter of the maximum inscribed sphere at that point. The maximum inscribed sphere 

applied in a 3D distance transform map has been used to generate a new shape descriptor for particles 

called the bluntness index [116]. The index was able to distinguish blunt particles (spheroid) and 

sharp particles (cuboid) at a resolution as low as 5000 voxels per particle. Other uses of spheres 

includes maximum equivalent sphere diameter in describing melt inclusion sizes in garnets [131] as 

well as evaluating platinum and precious metal grains in various types of Cu-sulphide texture [132]. 

5.4. Domain Transfer Function 

As mentioned earlier, besides structural textures, stationary textures and patterns of the grains 

in the ore are also of interest. Stationary textures can be evaluated directly as the spatial relationship 

of the grayscale values of the voxels in the image, meaning that it does not require segmentation or 

classification of the mineral phases beforehand. On the other hand, such textures can also be 

evaluated as the spatial distribution of the mineral grains, which then would require segmentation 

between the mineral grains and the rock matrix prior to obtaining such distribution. 

The spatial pattern of the phases can often be readily detectable by looking the image in another 

way, i.e., by transforming the image from spatial domain to frequency domain. Moreover, some 

mathematical operations are simpler in another domain, making the operation computationally less 

consumptive. This is the basic concept behind the Fourier series, in which it describes a function in a 

frequency domain through summation of simple sine waves. The Fourier series are especially well 

suited in analyzing the periodical nature of an image. 

The Fourier method measures an object through a profile function, describing its radius (R) in 

different angles from 0° to 360°, as shown in Equation (9), in which a�  and  b�  are the Fourier 

coefficients: 

R(θ) =  a� + � a�cos(nθ) + b�sin(θ) 

�

�� �

 (9) 

The value of n represents the number of harmonics, and different values describe different 

properties (signatures) of the object, namely form/shape (n ≤ 4), angularity (5 ≤ n ≤ 25), and texture 

(26 ≤ n ≤ 180) [133]. In other words, two objects with similar shape will have the similar Fourier series 

at lower frequency harmonics (n ≤ 4), but at higher frequency (26 ≤ n ≤ 180), their Fourier series are 

not necessarily similar; they depend on the surface textures of the objects [134]. In a three-dimensional 

plane, the spherical harmonic series is used instead, which is analogous to the Fourier series in 2D 

case [135]. Spherical harmonics has found its application in three-dimensional µCT analysis of shape 

and surface textures of aggregate particles [134–137]. 

Wavelet transform has a concept similar to Fourier, differing that the function still retains some 

of its spatial information while having also some new information about its frequency. There are 

several different wavelet families, with each of them having its own functional properties [138]. 

Wavelets, especially the discrete wavelet transform, has find its application in image processing, 

especially in image compression [139] and removing noise [140,141]. A discrete function of f(n) can 

be represented as a weighted summation of wavelet function ψ(n) (mother wavelet) as well as the 

φ(n) scaling function (father wavelet), displayed in Equation (10): 
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1
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Wavelets have been used extensively in describing rock textures in 2D images [110,142–144], yet 

their use in 3D textural analysis is almost non-existent. In 3D µCT analysis, wavelets have also been 

used as an alternative for edge detection operators in measuring crack growth in rock CT volumes 

[67]. Similarly, Katunin et al. [145] used 3D wavelet transform to identify and classify different types 

of defects in composite structures. 

The frequency information in an ore sample that is obtained by wavelet and Fourier analysis can 

offer a new type of information that could be useful in analyzing stationary textures, as it gives 

information on the spatial relationship of the phases in an ore, i.e., on how the phases are distributed 

over the space of the ore. Such information would be of utmost benefit when having 3D µCT data 

readily available. 

5.5. Spatial Statistics and Co-Occurrence Matrices 

Some textures have similar patterns that are observable across the whole volume. This makes 

the texture simpler to detect as it will have similar statistics across the volume. These kinds of textures 

can be addressed with spatial statistics as well as co-occurrence matrices. Local binary pattern, or 

LBP [146], is one of the algorithms that evaluates the variability of the image spatially by using kernel 

operators. In this algorithm, a 3 × 3 convolution kernel is operated on the image. The kernel performs 

comparison of each pixel with its 8-neighborhoods, and label them accordingly. If the center pixel is 

greater than its neighbors, it will be assigned label 1, otherwise 0. Afterwards, there will be a total of 

28 possible combinations of the output, and the histogram of this output is plotted to obtain a textural 

descriptor. Despite its well-known application in describing textural features, LBP has mostly been 

used for medical CT images [147,148], and only recently it has been applied by Rahimov et al. for 

classifying different textures of CT image of carbonate rocks [149]. Rahimov’s work considered 

textural classes based on the spatial correlation between the pores of different sizes and the solid 

phases. A similar method could potentially be applied in classifying textures based on spatial 

relationship between mineral phases in the sample, which is more relevant in terms of mineral 

characterization. 

Spatial statistical tools such as co-variance and variograms can also be used to quantify 

stationary textures. Such tools define variability of two points in a texture, which is very useful when 

inferring the probability of the two points to belong to the same phase. It has also been used in 3D 

dataset of a fibrous network [125]. An example of these variograms is shown in Figure 12. 

Co-occurrence and autocorrelation features are another approach to extract textures from an 

image. Gray level co-occurrence matrices (GLCM) [150] are a quite well known image processing 

technique that measures how the gray level varies between the neighboring pixels. A GLCM is 

composed of an n × n matrix, in which n is the number of possible grayscale values in an image, i.e., 

256 for an eight-bit grayscale image. The matrix shows how many times a pair of voxel values co-

exists in a neighborhood, as well as the directional adjacency of such pairs. In a 3D volume, a voxel 

would have 26 neighborhood voxels and 13 specific directions of voxel pairs. This is illustrated for a 

simple 3 × 3 × 3 volume in Figure 13. 
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Figure 12. Semi-variogram for different textures, computed using a total 10,000 points in the texture. 

The variogram explains the relation between the variance (γ(h)) against the distance of two points in 

the texture (h), grouped in a bin width of 20. Texture (a) is more varied than (b), which explains the 

higher variance in the variogram (c) in comparison to (d). The variogram of texture (a) exhibits a cyclic 

nature due to the somewhat periodical occurrence of sulphide phases. Texture (b) exhibits upward 

trend in variance due to occurrence of amphiboles (light grey) in the top part of the texture. 
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Figure 13. Neighborhood and directional voxel pairs in relation to GLCM analysis, adapted from 

Jardine et al. [24]. All three planes are in a 26-connected neighborhood of voxels, in which there exist 

13 unique directional pairs with the origin voxel (0, 0, 0). Keep in mind that mirrored direction does 
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not count as a unique direction, e.g., direction (0, 1, 0) has the same direction with (0, −1, 0), direction 

(0, 0, −1) has the same as (0, 0, 1), and so on. 

The GLCM of an ore sample can be analyzed as such, as it shows us the correlations between 

gray values in a given direction. It is able to show how often a gray value co-exist together with 

another gray values, thereby giving an idea of how the host rock phase (lower gray values) associate 

with its mineral grains (higher gray values). Such correlations are shown in Figure 14. 

 

Figure 14. Relation of GLCM matrix on direction 1 (0,1,0) to the texture of a drill core. (a) Drill core 

volume showing horizontal slices, (b) and (d). Horizontal slices of the drill core, (c) and (e), are the 

GLCM matrices as a heat map, alongside its legend showing red for high frequency and blue for low. 

The results clearly show difference in the GLCM as slice (d) has more sulphide mineralization as 

compared to slice (b). This can be seen as the higher correlation frequency between the brighter 

phases, which usually indicates the sulphide minerals. 

Furthermore, the GLCM can also be quantified using the available 14 GLCM statistical 

parameters. Four of these parameters are related to stationary textures, namely energy, correlation, 

contrast, and homogeneity. The GLCM technique has recently been applied to 3D µCT drill core 

images [24], where it was shown that there exists correlations between various textures and their 

respective GLCM statistics. However, such statistics captured only the bulk mineralogy (stationary 

textures); structural textures, such as coarse versus fine grained, were not observed to be correlated 

with the statistics. Such a technique is also very much dependent on the voxel pair direction chosen 

when calculating the GLCM, especially in cases where the ore texture is anisotropic. In such cases, 

several voxel pair directions might be needed to adequately quantify the textural characteristic of the 

sample, which consequently increase the computational expense of the GLCM technique [24]. 

6. Summary of Data Analysis Methods 

In this section, the methods that have been reviewed are summarized together with their related 

applications and case studies on mineral characterization. A flow diagram showing the applicability 

of these methods is shown in Figure 15. 

 Cases such as grain, pore, or particle size distribution analysis with µCT have been evaluated. 

These cases are most conveniently addressed using granulometry by opening. Improvements 

toward computational speed of such methods in 3D datasets have mostly been addressed by 

modification of the structuring element used. 
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 Shape analysis using µCT is more common for particulate samples; less emphasis has been put 

on grain shape analysis of intact ore. In these cases, computational geometry has been used, but 

there is always an error associated with it. Spherical harmonic series is another alternative, but 

it is yet more complex due to its analytical approach. Minkowski functionals allow 

straightforward calculations of shape descriptors, but they are limited to surface properties and 

topology of the shape. 

 Mineral phase segmentation can be addressed well using thresholding and unsupervised 

classification, provided that the target phases have enough attenuation contrasts. Additional 

measures must be taken when attempting to segment minerals with similar attenuations, in 

which such measures include dual energy µCT scanning, using lower voltage and smaller 

sample size, and using additional information acquired from another dataset (SEM-EDS, XRF). 

A more detailed summary on mineral phase segmentation with µCT is provided in Table 2. 

 Stationary texture analysis in 3D has been addressed using kernel operators (such as LBP), 

covariance and variograms, as well as co-occurrence matrices (such as GLCM). Such techniques 

are potentially capable to quantify stationary textures. As these techniques rely on spatial 

statistics, it is restricted to textures with similar statistics across the volume (isotropic and 

homogenous textures). Textures with high variability across the volume might be difficult to be 

accurately represented. Wavelet techniques could be an alternative in texture analysis, but its 

current development is lagging behind, especially for 3D µCT datasets. 

 Structural analysis, such as fractures, cracks, and pores, with µCT systems has also been 

evaluated by several researchers. The skeleton transform technique has been used in evaluating 

pore connectivity in a leaching column filled with ore particles. Cracks and fractures in a rock 

sample could be detected using wavelet analysis, or using local thresholding with a fracture 

mask. The latter technique has been shown to be capable of distinguishing fractures/cracks from 

pores. 
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Figure 15. Workflow showing different alternatives in characterization of ore sample using a µCT 

system and the resulting information. The colors indicate the applicability of the methods. Green 

indicates that the methods have been implemented for µCT analysis of ore samples. Blue is for 

methods that have not been implemented specifically for µCT mineral characterization but have been 

implemented for similar materials such as dirt particles, aggregates, metal powders, and rocks. 

Yellow is for methods that have only been implemented for µCT analysis of materials that have little 

similarity to ore samples, such as soil and fibrous networks. 

Table 2. Summary of phase segmentation techniques applied in mineral characterization using µCT 

system. 

Case Techniques Applicability 

Segmentation between 

air (background or 

pores) and solid 

materials 

1. Otsu global thresholding 

[6,21,77,119]  

2. Marker-controlled watershed 

segmentation [20,22,89,119] 

3. Adaptive watershed 

segmentation [91,92] 

4. ANN [107] 

5. Feature-based random forest 

classifier [22] 

1. Implemented in most cases due to its 

simplicity 

2. Used to address touching particles 

3. Used for sample with highly varied 

particle size and shape 

4. Used for soil samples where the 

contrast is low 

5. Similar to number 2, but better result 

for finer particle sizes as it defines the 

particle boundaries better  
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Segmentation between 

mineral phases with 

significant contrast 

1. Maximum entropy 

thresholding [18] 

2. Unsupervised classification 

(K-Means, FCM, SOM) [25,97] 

3. Supervised classification 

(ANN and SVM) [25,97] 

1. Segmentation between the sulphides 

with the gangues 

2. Segmentation between pore, rock 

matrix, and mineral phases of andesite rock 

samples. 

3. Similar to number 2 

Segmentation between 

mineral phases with 

less significant contrast 

1. Feature-based random forest 

classifier, trained with SEM dataset 

[19] 

2. Local thresholding using 

gradient information for enhanced 

detection of phase boundary [23] 

3. Low energy µCT scanning 

followed by maximum entropy 

thresholding, calibrated with SEM 

dataset [18] 

4. Using smaller sample size for 

the µCT scanning [37,38] 

5. Dual energy µCT scanning 

with calibration to pure minerals 

[17] 

6. Combination of µCT scanning 

with XRF analysis (mainly available 

in synchrotron-based µCT systems) 

[48,56] 

7. Correlating µCT data with 

XRF maps [41,42] 

1. Segmentation between chalcopyrite 

and pyrite in drill core samples from 

porphyry Cu-Au deposit 

2. Segmentation between bornite, PdCu, 

silicate inclusion, Fe-Ti oxide. Especially 

suited for fine inclusions.  

3. Segmentation between copper 

sulphides and pyrite in porphyry copper 

ore is achieved using 50 kV voltage, with 

additional help of SEM-EDS data.  

4. Bornite and chalcopyrite are able to be 

distinguished with small core size (≤22 mm) 

5. Sphalerite, pyrite, galena, and silicate 

gangues were able to be distinguished in 3D 

after calibration with high purity samples.  

6. Virtual slices of the 3D µCT volume is 

subjected to XRF to reveal chemical 

composition, inclusion mineralogy, and 

structure of perlite and zircon minerals.  

7. The chemical composition obtained 

from XRF maps is used as a complementary 

data for the 3D µCT data 

7. Conclusion and Outlook 

In general, the applications of µCT in mineral characterization are in still development. One key 

to improve the application of µCT systems is by developing the data processing workflow so that 

features of the samples can be extracted, described, and classified in an accurate and efficient manner. 

Several conclusions and outlooks can be drawn from this review: 

 In general, size, shape, and structural analysis of ore samples using µCT have been evaluated 

extensively by several researchers, as these parameters are best analyzed in 3D. Various data 

analysis methods devoting to evaluate these parameters are available with varying degree of 

accuracy and complexity. In relation to mineral characterization, an adequate estimation of size 

and shape of particulate samples could be useful in evaluating the processing behavior of such 

ore samples (more relevant to the field of process mineralogy and geometallurgy). Estimation 

on cracks and pores would be a good addition, as it could affect mineral liberation during 

comminution. 

 It can be suggested that the bottleneck of mineral characterization with µCT lies in the mineral 

segmentation and mapping. Most of the µCT applications in mineral characterization are highly 

limited to segmentation between the major phases, such as pores, gangues, and valuable 

minerals (high density phases). The establishment of µCT as a rapid, standalone, and automated 

mineralogical analysis is challenging, as the result of this study indicates that additional 

information (SEM-EDS, XRF, calibration with pure minerals, dual energy) are required to 

effectively segment between different mineral phases in the µCT dataset. Future works should 

also include how to effectively combine this additional information to the µCT data processing 

workflow. 

 Mineral texture analysis using µCT is a potential yet to be explored. Textural analysis with µCT 

systems is more prevalent with cases of soil, fibrous materials, as well as aggregates. In such 

materials the notion of texture is mostly limited to structural textures, such as morphology, 



Minerals 2019, 9, 183 25 of 32 

 

surface texture (topology), and orientation. While these types of textures can be of importance 

in mineral characterization, the stationary textures (spatial patterns of the mineral grains) are 

also of interest. Various techniques have been developed to extract and quantify 3D stationary 

textures of ore samples. However, such techniques are currently limited to the computational 

expense of processing the large 3D dataset; further development is needed to optimize the 

computational performances of such techniques. 
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A B S T R A C T

X-ray microcomputed tomography (µCT) offers a non-destructive three-dimensional analysis of ores but its
application in mineralogical analysis and mineral segmentation is relatively limited. In this study, the appli-
cation of machine learning techniques for segmenting mineral phases in a µCT dataset is presented. Various
techniques were implemented, including unsupervised classification as well as grayscale-based and feature-
based supervised classification. A feature matching method was used to register the back-scattered electron
(BSE) mineral map to its corresponding µCT slice, allowing automatic annotation of minerals in the µCT slice to
create training data for the classifiers. Unsupervised classification produced satisfactory results in terms of
segmenting between amphibole, plagioclase, and sulfide phases. However, the technique was not able to dif-
ferentiate between sulfide phases in the case of chalcopyrite and pyrite. Using supervised classification, around
50–60% of the chalcopyrite and 97–99% of pyrite were correctly identified. Feature based classification was
found to have a poorer sensitivity to chalcopyrite, but produced a better result in segmenting between the
mineral grains, as it operates based on voxel regions instead of individual voxels. The mineralogical results from
the 3D µCT data showed considerable difference compared to the BSE mineral map, indicating stereological error
exhibited in the latter analysis. The main limitation of this approach lies in the dataset itself, in which there was
a significant overlap in grayscale values between chalcopyrite and pyrite, therefore highly limiting the classifier
accuracy.

1. Introduction

There has been growing interest in X-ray microcomputed tomo-
graphy (µCT) application in geosciences, due to its non-destructive
nature that allows three-dimensional (3D) analysis of an object. µCT
could potentially eliminate stereological errors generated by conven-
tional two-dimensional microscopy analysis used for ore and rock
samples, allowing more accurate analysis of the samples. Rapid devel-
opment of µCT systems currently allows spatial resolution down to
nanometer scale (Ghorbani et al., 2011; Yang et al., 2017), as well as
enabling in-situ experiments to be performed during acquisition,
thereby acquiring time-based 3D data (Ghorbani et al., 2011; Lin et al.,
2016a, 2016b). These developments make µCT a more attractive ana-
lytical technique for rock samples.

Various applications of µCT systems in geoscience have been stu-
died, including mineral liberation and grain analysis, pore and fracture
analysis, and to some degree, texture analysis (Garcia et al., 2009;
Ghorbani et al., 2011; Jardine et al., 2018; Lin and Miller, 2005, 1996).

Reviews discussing current and potential applications of µCT system in
geosciences have also been published (Cnudde and Boone, 2013;
Guntoro et al., 2019; Kyle and Ketcham, 2015; Maire and Withers,
2014; Mees et al., 2003; Miller et al., 1990). Nevertheless, the current
use of µCT for ore samples is more focused towards structural analysis
of the samples, such as analysis of pores and fractures (Deng et al.,
2016; Ghorbani et al., 2011; Müter et al., 2012). Other uses include
particle size distribution analysis (Wightman et al., 2015) and particle
shape analysis (Lin and Miller, 2005). In a recent study, textural ana-
lysis of mineral phases in a drill core sample was conducted using a µCT
system through the correlation and association indices between volume
elements (voxels) in the 3D dataset (Jardine et al., 2018).

Being able to use µCT to generate a 3D structural analysis as well as
gaining mineralogical information of the ore sample at the same time
would add value to the technique as well as its potential uses. This is
where µCT is currently limited due to challenges including: similar
attenuations between mineral phases, limited resolution, and lack of
automated mineralogical analysis software. Both pre- and post-scanning
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techniques aiming to obtain a reliable 3D mineralogical analysis have
been evaluated by several researchers (Bam et al., 2019; Ghorbani
et al., 2011; Kyle et al., 2008; Reyes et al., 2017; Tiu, 2017; Wang et al.,
2015).

Pre-scanning techniques refer mostly to optimization of the scan-
ning conditions as well as calibration with pure minerals. Scanning
conditions can be adjusted to increase the attenuation contrasts be-
tween minerals, which often means using lower voltage and/or redu-
cing sample size. Reyes et al. (2017) have shown that segmentation
between chalcopyrite and pyrite was still found to be difficult when
using voltage as low as 50 kV. Kyle et al. (2008) have shown that
bornite, chalcopyrite, and magnetite minerals could be differentiated
with smaller-diameter (≤22mm) core samples at scanning energy of
180 KeV. Additionally, using smaller sample size could also suppress
the beam hardening effect (Bam et al., 2019), which can contribute to
segmentation inaccuracies (Reyes et al., 2017).

Calibration with high purity mineral samples in combination with
dual energy µCT scanning has been demonstrated by Ghorbani et al.
(2011). By calibrating the µCT system with minerals with known den-
sity, a correlation that relates density with the attenuation coefficient
can be obtained. The density of the material can also be determined
directly through the relation between attenuation coefficients obtained
from scanning at two different energy levels. Ghorbani et al. (2011)
combined both procedures so that the measured density from dual
energy scanning (130 and 200 kV) can be compared against the real
density of the calibration samples. Using such procedures, Ghorbani
et al. (2011) successfully differentiated pyrite, quartz, and sphalerite
minerals in the sample.

Post-scanning techniques refer to the image processing procedures
applied to the acquired µCT dataset. If the differences in attenuations
are significant enough, simple thresholding techniques such as the one
developed by Otsu (1979) can be used to set a threshold between the
grayscale values and subsequently differentiate the phases. This method
has been used in segmenting pores/air and the mineral matrix, as well
as heavy and light minerals (Andrä et al., 2013; Lin et al., 2016a, 2015;
Reyes et al., 2017; Yang et al., 2017). In cases where the attenuation
differences are insignificant, cross-correlation of the µCT dataset to
other dataset such as dataset obtained from Scanning Electron Micro-
scope with Energy Dispersive X-ray Spectroscopy (SEM-EDS) has been
shown to be capable of distinguishing minerals with similar attenua-
tions such as copper sulfides and pyrite (Reyes et al., 2017; Tiu, 2017).

Another promising approach in differentiating between mineral
phases is the use of machine learning techniques. In general, machine
learning is defined as the use of mathematical models to interpret the
underlying patterns in a dataset. By learning this pattern, a computer
system can make predictions or classifications on the dataset
(Suthaharan, 2016). Machine learning can be divided into unsupervised
and supervised learning. Supervised learning means that the user pre-
defines the underlying pattern of the data, and the computer builds a
prediction model based on the pre-defined pattern (training data).
Unsupervised learning lets the computer interpret the pattern by itself
without user’s supervision.

Several recent studies have evaluated the use of machine learning in
the segmentation of mineral phases in µCT dataset. Chauhan et al.
(2016a, 2016b) evaluated the performances of various machine
learning algorithm for µCT datasets, focusing mostly on the segmen-
tation of pores from the rock matrix. Both unsupervised and supervised
algorithms were evaluated, including K-means, Fuzzy C-means, Self-
Organized Maps (SOM), Artificial Neural Network (ANN), as well
Support Vector Machines (SVM). Tiu (2017), evaluated the use of su-
pervised classification (random forest) in segmentation between chal-
copyrite and pyrite in a drill core sample, using SEM-EDS mineral map
as training data. Wang et al. (2015), used feature-based random forest
classification to segment multiphase particulate samples from the
background, in which they concluded that the resulting segmentation
from simple thresholding technique was not satisfactory.

This study systematically evaluates the application of different
machine learning techniques in mineral segmentation to a µCT dataset.
Both unsupervised and supervised learning techniques are included in
this study. Additionally, an automated image registration technique is
introduced to align a Back Scattered Electron (BSE) mineral map with a
corresponding slice in a 3D µCT data, which is then used as the training
data to classify the other µCT slices. Furthermore, besides using
grayscale values as the dataset, the possibility of classification using

Fig. 1. Map of Sweden, showing mines in operation as of August 2018. The
sample originated from Aitik deposit shown as the red star in the northern
region of Sweden. Map taken from www.sgu.se. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version
of this article.)
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features such as edges, corners, and blobs (regions with similar grays-
cale values) is also evaluated. The accuracy and computational costs of
these methods are evaluated and compared to give insight on the most
suitable method for specific tasks related to mineral segmentation of a
µCT dataset.

2. Material and methods

2.1. Ore samples

The drill core sample used in this study was obtained from Boliden’s
Aitik copper mine in Northern Sweden, shown in Fig. 1.

The deposit is described as a metamorphosed porphyry Cu-Au de-
posit, with chalcopyrite, pyrite, and pyrrhotite as the main sulfide mi-
nerals; magnetite and ilmenites were found as the oxide minerals
(Wanhainen et al., 2003). Other minerals that can be found in this
deposit include quartz, amphibole, biotite, garnet, tourmaline, and
zeolites. The textural description of this sample is provided in Table 1,
while a µCT volume of the sample is shown in Fig. 2.

2.2. X ray microcomputed tomography (µCT) and image acquisition

A cylindrical sample with a diameter of 25mm was analyzed using a
Zeiss Xradia 510 Versa 3D microscope at Luleå University of
Technology (LTU), Sweden. The whole sample was placed in the
scanning chamber and measured under the scanning conditions sum-
marized in Table 2. Reconstruction of projections was done with beam
hardening correction. ORS Dragonfly® software was used for volume
rendering and visualization of the 3D image. The scanning conditions
used in this study were optimized so that a good image with reasonable
acquisition time could be achieved.

Despite the use of filters and beam hardening corrections during
reconstruction phase, the final 3D image acquired in this study still

possessed some artifacts, most notably that the grayscale value varies
significantly for the biotite-feldspar matrix throughout the slices (ver-
tically) as shown in Fig. 3. This does not necessarily mean that the
matrix grayscale values in the top and bottom slices are homogenously
darker than the middle slices; the grayscale value of the matrix also
varies horizontally in a single slice, as shown in Fig. 4.

This problem can be seen as an uneven illumination problem, which
can be addressed using top hat filtering (Wang et al., 2014). Top hat
filtering is achieved by morphologically opening (removing) the grains
from the slice, thereby obtaining an image estimation of biotite-feldspar
matrix without any amphibole, chalcopyrite and pyrite grains. This
image estimation represents the unevenly illuminated “background”, in
which the goal is to homogenize this “background”. This is achieved by
replacing the image by the “correct” and constant background, ob-
tained from one of the middle slices where variation in the biotite-
feldspar matrix does not exist, as illustrated in Fig. 5.

While the aforementioned procedure affects all the grayscale values
of all phases, it focuses on correcting the biotite-feldspar matrix, so
adjustment is needed for the other phases. This is done by increasing
the contrast between phases, so that the difference between phases is
clear enough to segment. A comparison of an uncorrected and corrected
image is shown in Fig. 6.

Table 1
Textural characteristics of the sample analyzed (Tiu, 2017).

Textural description Ore mineralogy Gangue mineralogy Vein intensity

Dark greenish colored rock, with coarse (1–5mm)
amphibole phenocrysts in a quartz-feldspar-
biotite matrix.

Chalcopyrite and pyrite occur in veins.
Magnetite occurs as fine-grained
dissemination

Amphiboles, feldspars, and biotite
occur as the major gangue
minerals

High amphibole-plagioclase vein
containing chalcopyrite, pyrite and some
magnetite minerals

Fig. 2. (A) µCT volume of the sample, showing clear amphibole phenocrysts (lighter gray) inside biotite-feldspar matrix (darker gray). A high intensity amphibole-
plagioclase vein with rich chalcopyrite and pyrite grains (bright gray) is also observed in the sample. (B) µCT volume showing chalcopyrite and pyrite grains as well
as their vein mineralization (cyan) inside drill core volume. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 2
Experimental conditions of the µCT scanning.

Voltage 160 kV
Power 10W
Exposure time 14 s
Objective 0.4x
Bin 1
Filters Zeiss HE3 filter (as provided by the manufacturer)
No. of projections 2201
Spatial resolution 13 µm
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2.3. SEM-EDS and mineral mapping

SEM-EDS analysis was performed on the top part of the cylindrical
sample after the µCT measurement, as a comparison and reference. The
cylindrical sample was mounted in epoxy resin and polished prior to
SEM-EDS analysis. A Zeiss Merlin FEG-SEM system was used for SEM
analysis, and Aztec Energy 2.2 software from Oxford Instruments was

used for EDS analysis.
The resulting Back Scattered Electron (BSE) image was subjected to

mineral mapping. The BSE image has a resolution of 3 µm per pixel,
allowing sharper contrast and better segmentation between phases.
Based on the EDS measurements, mineral mapping of the BSE image
was performed using the Trainable Weka Segmentation (Arganda-
Carreras et al., 2017) in the Fiji/ImageJ software (Schindelin et al.,

Fig. 3. Plot of biotite-feldspar matrix average
grayscale values of each slice, showing sig-
nificant variation in the top and bottom hundred
slices. Despite the fact that the matrix’s grayscale
values are different for each slice, the variation
should be small (as seen in the plateau in the
middle slices). Significant variation in the top
and bottom slices is most likely associated with
the beam hardening effect.

Fig. 4. Variation of grayscale values in one of the top slices, showing (A) top slice, (B) middle slice, (C) segmented image of top slice, (D) segmented image of middle
slice. The grayscale value of biotite-feldspar matrix in (A) varies, in which it is getting darker from top left to bottom right, as shown in the segmented image (C). In
contrast with the middle slice, the matrix is homogenous, as seen in (B), producing better segmentation result in (D).
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2012). The resulting mineral map is shown in Fig. 7.

2.4. Machine learning classification algorithms

In this study, both unsupervised and supervised classification al-
gorithms were evaluated for mineral segmentation of the µCT dataset.
Image processing and classifications were performed by compilation of
tools in MATLAB® as well as in ImageJ/Fiji (Schindelin et al., 2012).
The following system configuration is used for data processing: Intel®
Core™ i7-7500U CPU @2.7 GHz, 2904MHz, 2 Core(s) and 4 logical
processors, 24 GB RAM and 64-bit OS. The implemented machine
learning algorithms are listed as follows:

• K-means clustering (unsupervised). This technique aims to classify
the dataset into k number of clusters containing voxels with similar
grayscale values (Duran and Odell, 2013). The user initiates the
clustering by setting the number of clusters (k) as well as the initial
guess of the grayscale value of the cluster centroids (ck). The squared
Euclidean distance between each voxel in the dataset to the initial
centroids are calculated in Eq. (1).

• Fuzzy C-means clustering (FCM) (unsupervised). A fuzzy set is de-
fined as a set of data with no distinctive boundary (Zaitoun and
Aqel, 2015). In contrast to k-means clustering in which each pixel
can only be a member of one cluster, a pixel in a FCM scheme can be
a member of multiple clusters, depending on the fuzzifier constant

m( ). This constant affects the distance calculation d( )FCM , which in
turns affects how a voxel is classified to a cluster centroid (ck), as
shown in Eq. (3).

=d v c|| ||k means x y z k( , , )
2 (1)

In which v x y z( , , ) is the grayscale value of a voxel in a three-dimen-
sional xyz coordinate. Each voxel is then classified to the nearest
centroid, i.e. the centroid that has the least squared distance to the
voxel. Afterwards, new centroids can be calculated by averaging the
grayscale values of the voxels in each cluster. The process is re-
iterated until the cluster centroids stabilize around a certain value.
The determination of k is often arbitrary, or in some cases based on
prior knowledge about the dataset. In this study, based on the mi-
neral map in Fig. 7, six clusters could be expected to exist in the
dataset, i.e. =k 6, which corresponds to the five different mineral
groups and one background. However, the value of k could be lower
as well, as for example the mineral group of “Quartz+Magne-
tite+Biotite” could be unclassified due to the relatively low
amount of such minerals in the dataset. Proper determination of k
often requires running of several k-means classification with dif-
ferent k values, then evaluating the results accordingly (trial and
error). In this study, an evaluation is done by visual checking
combined with evaluating the sum squared of errors (SSE) between
each pixel and its cluster centroid, shown in Eq. (2). For each pixel

=i n1, , , the squared error is the squared difference between the
pixel and the centroid of its assigned cluster =c k x k K( | ), 2, ,i .

Fig. 5. An image estimation of the biotite-feldspar matrix showing (A) top slice, (B) middle slice, (C) image estimation of biotite-feldspar matrix of (A), (D) image
estimation of biotite-feldspar matrix of (B). The grayscale values of (C) is unevenly varied compared to (D). The image (D) is used as the “correct” grayscale value for
the matrix, in which grayscale variation practically does not exist.
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Fig. 6. Correction of grayscale values showing (A) original slice, (B) corrected slice, (C) segmented image of original slice (A), (D) segmented image of corrected slice
(B). Clear improvement is seen in the segmentation results (D) as compared to (C).

Fig. 7. Simplified mineral map of BSE image. Due to the high resolution the BSE image, fine-grained minerals of quartz, magnetite, and biotite are also detected.
These fine-grained mineral phases are grouped together.
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The maximum number of clusters was set to ten, i.e. =K 10, re-
presenting nine mineral phases in Fig. 7 with one background phase.

=
=

SSE x c k x( ( | ))
i

n
i i1

2
(2)

= =
=

d w d
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v c

· ; 1 || ||
|| ||FCM k

m
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k j

c x y z k

x y z j1
( , , )

( , , )

m
2

1

(3)

In which =j c1, , , with c as the number of clusters (determined in
similar fashion as in k-means clustering), m with m 1, and wk
is the weight or the membership function. As it can be seen that
large fuzzifier constant leads to smaller weight, i.e. it decreases the
weight assigned to clusters that are close to the voxel, which leads to
fuzzier classification. In the limit of =m 1, the weight increases for
clusters that are close to the voxel, indicating less fuzzy classifica-
tion (similar to k-means). Unless prior knowledge about the dataset
is known, the fuzzifier constant is commonly set to 2 (Siddique et al.,
2018). In this study, the fuzzifier constant is set to 2.

• Random forest (supervised). This is a classification technique in
which multiple classification trees are built by bootstrap ag-
gregating (bagging). Then, the voxel is classified by majority voting
of the trees (Breiman, 2001). Classification tree is a decision tree
aiming to classify the voxels by asking a yes or no question (binary
tests) in each branch of the tree. An example of decision tree is il-
lustrated in Fig. 8. Essentially, a decision tree is built by examining
all possible binary splits on the dataset, in which a split is considered
optimum when the resulting branches have the lowest impurity. In a
random forest technique, these trees are built by repeatedly sam-
pling the training data uniformly and with replacement (bagging).
This allows the building of decision trees based on different parts of
the training data, thereby reducing the overfitting of the training
dataset. Building more trees would lead to better performance and
lower error, but at the expense of computational cost. Finding the
optimum number of trees (ntree) requires trial and error; by eval-
uating random forest classification using different number of trees,
one can determine the point where no significant improvement in
performance is gained if the number of tree is increased (Oshiro

et al., 2012). Several studies have suggested various optimum
number of trees such as between 64 and 128 (Oshiro et al., 2012),
200 (Feng et al., 2015), and 500 (Thanh Noi and Kappas, 2018).
Nevertheless, these numbers are often case-specific, so parameter
tuning is required to find the optimum number of trees. Further-
more, while using more than optimum number of trees is un-
necessary and computationally expensive, it does not harm the
model (Breiman, 2001). The ntree parameter was tuned and varied
between 3, 5, 10, 50, 100, and 200.
• k-nearest neighbors (kNN) (supervised). This is a classification that
has no prior hypothesis about the training data, but rather generates
a hypothesis from the training data itself (Russell and Norvig, 2016).
In comparison to random forest where a classifier was build based
on training data, kNN directly classifies test voxels by comparing to
the similar voxels in the training data. This is done by calculating
the Euclidean distances between the test voxel to the voxels in
training data. Then by looking at the majority of mineral class in the
k number of closest voxels to the test voxel, the mineral class of that
test voxel can be determined. Similar to the previous machine
learning techniques, determination of the ideal k value is not
straightforward (Naidoo et al., 2012) and often requires trial and
error. Small number of k would increase the noise effect on the re-
sult, while larger number of k would suppress the noise effect at the
cost of computational power. Methods for optimum determination
of k has been evaluated thoroughly elsewhere (Hall et al., 2008;
Thanh Noi and Kappas, 2018), but essentially one could also try
similar approach as in determining the number of trees in random
forest classification. In this study, k is tuned and varied between 1
and 5, as well as 10, 50, and 100. An example of kNN classification
is illustrated in Fig. 9.

2.4.1. Supervised feature-based classification
The previous classification techniques classify the voxels based on

the grayscale value. In this study, an alternative is also evaluated, in
which the voxel is classified by its feature. The features can be edges,
corners, or blob / regions in the image. These features are extracted by
convoluting the image using kernel functions, thereby generating a
feature map of the image to be classified. A kernel is a square matrix
that holds some values that would modify the image when the matrix is
convoluted with the image (Guntoro et al., 2019). Depending on the
values, several tasks such as blurring and edge detection could be
performed on the image. Example of a Sobel kernel (Sobel, 2014) which
extract the vertical (y-direction) edges in the image is shown in Eq. (4).
Rotating the kernel 90° would produce a new kernel for extracting the
horizontal (x-direction) edges in the image. The modified image is re-
ferred as a feature map, in which different feature maps can be gen-
erated by convoluting the image with different kernels.

Voxel

Is value more 
than 150?

NOYES

Is value more 
than 200?

Is value more 
than 75?

NOYES
NOYES

Mineral 
A

Mineral 

B
Mineral 

C

Mineral 

D

Fig. 8. Example of a classification tree. Sequences of binary decision making
branch is built based on training data so that a voxel can be classified into
several different minerals.

Voxel
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190

150

220
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195

Voxel
203

Voxel
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150

220

200

190

Voxel
203

Fig. 9. kNN classification, showing k=3 (A) and k=5 (B). Different k will
affect how a voxel is classified, in (A) the majority of three closest neighbors are
green, therefore the voxel will be classified as green, while in (B) the majority of
five closest neighbors are red, therefore the voxel is classified as red. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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1 2 1
0 0 0

1 2 1 (4)

In feature-based classification, the image is represented in a
Gaussian scale-space representation, which means that beside xy space,
the image is also represented as a family of images blurred with
Gaussian filter of varying standard deviations ( ), or commonly referred
as varying scales =t( )2 (Lindeberg, 2007). The features are then ex-
tracted from the image at different scales, creating feature maps of
different scales. These different scales affect the features that may be
extracted from the image. At the larger scales, (higher standard de-
viation and more blurred) the image would lose details on smaller
gangue grains. Conversely, at the smaller scales, more features from the
smaller grains will be extracted. A mathematical illustration of feature
extraction at different scales is shown in Fig. 10.

After collecting the feature maps at different scales, these features
are matched with the training data. Then a classifier is built based on
the training information, and consequently has more criteria to classify
a voxel by looking at these different features. For example, a conven-
tional classifier classifies a voxel as pyrite if it has grayscale value over
200.

> =v v pyrite200x y z x y z( , , ) ( , , ) (5)

In feature-based classification, if Sobel filter G( ) is used as the fea-
ture extractor, then the classifier classifies the voxel as pyrite if the
Sobel edge extracted at scale 1 is 1 and the Sobel edge extracted at scale
4 is 0.

= = == =G v G v v pyrite* 1 * 0x y z t x y z t x y z( , , , 1) ( , , , 4) ( , , ) (6)

This of course comes with a cost; the classifier would be computa-
tionally more expensive to build. Feature-based classification is illu-
strated in Fig. 11.

Feature-based classification was performed to evaluate its applic-
ability compared to grayscale-based classification. Different types of
features are extracted from the µCT image, and classification is per-
formed based on these features instead of the grayscale values. Edge

features are extracted using 3×3 Sobel filter (both horizontal and
vertical), while blobs and corners are extracted with difference of 3×3
Gaussians (Lindeberg, 2015) and the determinant of Hessian matrix
(Lindeberg, 2013). Random forest classifier was trained using these
features and the training data. The feature extraction methods and
random forest classifiers are available in the Trainable Weka Segmen-
tation Plug-in (Arganda-Carreras et al., 2017) in Fiji/ImageJ.

Examples of these features extracted from a drill core µCT slice are
shown in Fig. 12.

2.4.2. Statistical methods in evaluating the classifiers
Several statistical measures were used to evaluate the classifiers, in

particular regarding the supervised classification. Essentially these
statistical measures evaluate the performance of classifiers by com-
paring to the ground truth. In the case of unsupervised classification,
due to the ground truth being unavailable, the classification results was
compared directly to the BSE mineral-map instead.

K-fold cross validation was used to evaluate and compare the per-
formance of the supervised classifiers. In principle, the method ran-
domly sub-sampled the training data into K sub-samples. The training
was done so that the classifier was trained using K – 1 of the sub-
samples, in which the remaining one sub-sample was held out for va-
lidation. The training is repeated K amount of times with all sub sam-
ples, in which after each training, validation was performed with the
hold-out subsample, producing K amount of validation results. These K
validation results were then averaged to evaluate the overall perfor-
mance of the classifier. In this study, 10 fold cross validation was per-
formed.

During validation, the accuracy of the classifier could be evaluated
by comparing the classified voxels with the ground truth. In this study,
the main task for the classifier is to segment between chalcopyrite and
pyrite. Thus, some statistical measures could be calculated as follows:

• The percentage of correctly classified chalcopyrite voxels out of all
chalcopyrite voxels, this is termed the True Positive Rate (TPR). The
percentage of remaining chalcopyrite voxels (which are falsely

Fig. 10. Feature extraction in Gaussian scale-space, showing (a) Sobel feature extraction from image at scale 1 and (b) Sobel feature extraction from image at scale 4.
The image is convoluted with Gaussian kernel of varying standard deviation, creating multiple images in different scales. The feature is extracted from the images in
different scales, creating feature maps of different scales. The feature map in (b) is different from (a), which indicates that different image scales generate different
feature maps.
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classified as pyrite) is then called the False Negative Rate (FNR).

= =TPR correctly classified chalcopyrite voxels
All chalcopyrite voxels

FNR1
(7)

• On the other side, the percentage of correctly classified pyrite out of
all pyrite voxels is termed True Negative Rate (TNR). Then the
percentage of remaining pyrite voxels (which are miss-classified to
chalcopyrite) is termed false positive rate (FPR).

= =TNR correctly classified pyrite voxels
All pyrite voxels

FPR1
(8)

• The percentage of all correctly classified voxels out of all voxels is
termed Overall Accuracy (OA).

=OA correctly classified voxels
All voxels (9)

Furthermore, the behavior of the classifier could be adjusted by
changing the probability threshold P( ). During validation and predic-
tion, a classifier returns the scores on how confident it is in classifying a
voxel to each respective category. The confidence score varies from 0 to
1, in which if the score for chalcopyrite is x , then for pyrite the score is

x1 . The classifier then identify a voxel as chalcopyrite only if its
score is higher than the probability threshold.

> =x P v chalcopyrite v chalcopyrite( | )x y z x y z( , , ) ( , , ) (10)

By varying this threshold, the sensitivity of classifier can be ad-
justed, therefore producing different TPR and TNR. An ideal classifier is
a classifier that is able to correctly identify all chalcopyrite (TPR=1),
while at the same time correctly identify the pyrite as well (TNR=1).
By plotting the different TPR data (x-axis) against FPR data (y-axis), a
receiver operating characteristic (ROC) curve can be drawn. The ROC
curve tells the discrimination ability of a binary classifier as its prob-
ability threshold is varied:

• If the threshold is increased, it will only classify a voxel as a chal-
copyrite only when it is very confident. In most cases, it will lead to
decrease of FPR (as less pyrite will be misclassified as chalcopyrite).
However, the proportion of the chalcopyrite correctly identified
from the actual chalcopyrite (TPR) would also decrease, i.e. the
classifier is now “strict” in identifying the chalcopyrite voxels
• Decreasing the threshold results in a less sensitive classifier, it now
classifies a voxel as chalcopyrite even if it is not confident. This will
lead to increase in TPR (as more chalcopyrite is correctly identified).
However, at the same time, more pyrite is also being incorrectly

Fig. 11. Feature-based classification. The image is blurred with Gaussian filter at varying standard deviations, representing various scales of the original image. The
edge features are then extracted at different scales using Sobel filter, producing two feature maps of the mineral grains in the drill core (here the edge images are
dilated for easier viewing). The two features are then matched with the training data, so that it can be used to train a classifier.

Fig. 12. Example of feature maps used in this study, showing (A) original µCT slice, (B) Sobel Edge features, (C) Difference of Gaussians blob features, and (D)
Hessian corner (and blob) features. These feature maps were fed to the classification scheme in Fig. 11 so that the applicability of each feature map in supervised
classification of pyrite and chalcopyrite phases could be evaluated.
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identified as chalcopyrite, leading to an increase in FPR. Simply, the
classifier is now “lenient” in identifying the chalcopyrite voxels.
• Additionally, the area under the ROC curve, often abbreviated as
AUC, also gives an idea on the classifiers’ performance. While the
aforementioned accuracy measures (TPR, TNR, OA) are valid for
one operating point of the classifier (fixed probability threshold),
the AUC can give an alternative measure on the classifiers’ perfor-
mance. This measure is invariant to the selected probability
threshold (Bradley, 1997).

Nevertheless, getting the confidence score from the classifiers can be
non-trivial. This is especially true when the classifier only predicts the
class of the data (discrete classifier), instead of predicting the prob-
ability of the data to belong to a certain class (probabilistic classifier)
(Majnik and Bosnić, 2013). The confidence score for both kNN and
random forest classifier can be obtained as follows:

• In random forest classification, the standard method of obtaining
confidence score is by simply calculating the fraction of total
number of trees that vote for a specific class, although some other
methods exist (Li, 2013). By default, random forest classifier assign
a class by majority voting of the trees, in which majority is defined
as more than 50%. This 50% is then the default probability
threshold, which can be varied to change the behavior of the clas-
sifier.
• kNN classifier (in its basic form) can be categorized as discrete
classifier, which means a method must be devised to obtain the
confidence scores. The score can be associated to the fraction of the
k nearest neighbors that belongs to a specific class (Majnik and
Bosnić, 2013). Similar to the random forest classifier, kNN assign a
class by majority (more than 50%) of classes found within the k
nearest neighbors. This 50% threshold is then varied to change the
classifier’s behavior.

2.5. Image registration and creation of ground truth

Image registration refers to the transformation of an image into a
specified coordinate system (Brown, 1992). The specified coordinate
system can be in the form of a target image, where the transformed
image is aligned with the target. The process involves matching both
target and transforming images, which can be based on either the
grayscale values or the features of the images.

As the reference data in Fig. 7 has different properties than the µCT
image, a method must be devised on how to use the mineral informa-
tion in Fig. 7 as the ground truth for the machine-learning classifica-
tions of the µCT images. Manually annotating the pixels in the µCT slice
according to the mineral map in Fig. 7 is laborious, so there is a need for
an automated annotation technique. In this study, the BSE image is
registered to the corresponding µCT slice, so that a transformation
matrix can be obtained. Using the transformation matrix, the BSE mi-
neral map in Fig. 7 can be aligned to the µCT slice. The alignment of
both images allows automated annotation of pixels in the µCT slice
based on the BSE mineral map, therefore creating the ground truth for
evaluating the performance of the classifiers.

Speeded up robust features (SURF) developed by Bay et al. (2008)
were used to extract and match features of the BSE mineral map and its
corresponding µCT image slice for the subsequent image registration.
The algorithm essentially detects blobs (voxel regions that differ from
the surrounding regions) in the image, in which in this case the algo-
rithm could detect mineral grains. This is done by searching for points
of interest with the maximum change of grayscale values in the sur-
rounding voxels. This is accomplished by taking the use Hessian Matrix,
which is used to describe the local curvatures in multivariable functions
(an image here is considered a discrete function with two space vari-
ables). Detection of SURF features is shown in Fig. 13. Using such
features allows alignment of two similar images with different

characteristics, and so is well suited to this study where the two images
were acquired from different instruments.

2.5.1. Creation of ground truth for training data
Using image registration, a training µCT slice can be created based

on the BSE mineral map. This is illustrated in Fig. 14.
The registration procedure did produce a good match within the

vein area (sulfide phases), despite some mismatches seen particularly in
the right part of the vein. These mismatches can be explained by the
fact that such procedure struggles when the thin section for SEM-EDS is
not cut perfectly parallel with the µCT slice plane. While this issue can
be addressed by 2D-to-3D registration scheme rather than 2D-to-2D,
such scheme is considerably more complex.

The SURF algorithm detected mainly the sulfide grains (Fig. 13),
and the alignment was done mainly by matching the features between
these grains in the two images. Around 84.4% of the sulfide (chalco-
pyrite and pyrite) pixels in the BSE image was accurately matched with
the corresponding sulfide pixels in the µCT slice. Additionally, 92.8% of
the chalcopyrite pixels in the BSE image was accurately matched to the
sulfide phases in the µCT slice. The registration and annotation proce-
dure was quite fast; it took around 7 s to create the fully annotated
training data shown in Fig. 14(C).

With relatively good correspondence obtained for the sulfide pixels,
the registration procedure was also good enough to identify the chal-
copyrite phases in the µCT slice. Additionally, the registration scheme
could also identify chalcopyrite phases within a pyrite grain (multi-
mineral grains), as the mineral information was transferred on a pixel
level rather than grain level. Therefore, the training data shown in
Fig. 14(C) as constructed using multiple information: the gangue mi-
nerals were defined from unsupervised classification while the chalco-
pyrite minerals was defined from the image registration procedure.

2.5.2. Creation of ground truth for test data
In order to evaluate the generality and robustness of the classifiers,

the trained classifiers were tested with an “unseen” data, i.e. data that
have never been used for training. Since cross-validation was used for
validation in the training session, this means that all parts of the
training data in Fig. 14 have already been used. While it is possible to
hold out part of the training data for independent testing, this means
reducing the amount of training data used in the training session. As the
chalcopyrite phase in our dataset is relatively low in proportion,
holding out a part of this phase could lead to the classifiers not properly
trained in classifying chalcopyrite. Therefore, an independent test data
was created from another µCT slice.

The ground truth of the test data should also be known so that the
classifiers can be evaluated properly. Since the µCT data in this study
has a relatively high spatial resolution (13 µm), the data variation be-
tween the slices is not very significant; adjacent µCT slices represent a
13 µm distance in the drill core sample. This means that using the same
transformation matrix obtained from the image registration in Fig. 14,
the BSE mineral map could be aligned to the µCT slice that is adjacent
to the training data, creating the ground truth of the µCT slice. The
adjacent µCT slice can then be used as an independent test data, as this
slice has never been used before to train the classifiers. The test data is
shown in Fig. 15.

3. Results and discussion

The histogram of the µCT dataset used in this study is shown in
Fig. 16.

While peaks of gangue and sulfide mineral groups are visible, dif-
ferentiating mineral phases within this group was not straightforward.
Several different machine learning algorithms were evaluated in order
to tackle the segmentation problem, beginning with the simplest un-
supervised based classification with no training data required.
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Fig. 13. Detected SURF features from (A) BSE image (resolution 3 µm) and (B) µCT slice (resolution 13 µm). These features corresponds well with the sulfide grains in
the core. The points of interest from both images are matched, so that a transformation matrix that could align both images can be calculated.

Fig. 14. Image alignment and training data creation, showing (A) Matched feature points between two images with arrows showing the transformation direction, (B)
both images aligned, magenta for BSE image, and green for the µCT slice, and (C) 2D µCT slice for training data, with chalcopyrite pixels annotated based on
alignment with BSE mineral map. While the registration procedure returned a good match with the vein area of the slice, it returned a poor match with the
phenocrysts and gangue area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.1. Unsupervised classification

The selection of k value is discussed first, followed by the results of
both k-means and FCM.

3.1.1. Determination of the number of clusters (k)
The relationship between SSE and number of clusters is shown in

Fig. 17.
Determining the optimum number of clusters can be ambiguous, as

the SSE always decreases up to the point of zero error where the
number of clusters is the same as the number of pixels (each pixel has
its own cluster). However, such condition would defeat the purpose of
clustering, which is to group large datasets into several clusters. The
optimum number of clusters can be defined as the point where no
significant decrease of error is obtained when the number of clusters is
increased. Obtaining such point can be illustrated in Fig. 17, where the

tangent of the point gradually decreases as the number of cluster in-
creases. The point where the tangent starts to level out (plateau) can be
taken as the optimum point, often referred as the “elbow” of the curve
(Bholowalia and Kumar, 2014). Using the elbow of the curve, the op-
timum number of clusters is determined as 4, representing 3 mineral
groups and 1 background. In order to evaluate this further, some results
of the k-means classification are shown in Fig. 18.

3.1.2. Results of k-means and FCM classification
Using k=4, the results of both k-means and FCM are shown in

Fig. 19 and Table 3.
Both classifications were performed until cluster means are stable

within less than 0.1% relative difference. The time required is calcu-
lated for one µCT slice corresponding to 2008× 2048 pixels, with k-
means and FCM requiring 4.5 and 11.9 s respectively. Both techniques
give similar results in mineral classification, but k-means requires less
time to classify the input data. The pixel differences between both
classification results do not show a clear tendency to a certain phase,
the differences occur mostly in phase boundaries, as shown in the lower
right hand corner of the “Difference” image in Fig. 19.

Fig. 15. Test data. The pixels were annotated using the same procedure shown
in Fig. 14. Approximately 84.6% of sulfide pixels and 92.8% of the chalcopyrite
pixels in the BSE image were accurately matched with the sulfide pixels in the
µCT slice. Mineral color legend is the same as in Fig. 14(C).

Fig. 16. Histogram of µCT dataset (after illumination correction). Major visible peaks represent air, gangue minerals (Biotite, Feldspars, Amphiboles), as well as the
sulfide minerals (chalcopyrite and pyrite).

Fig. 17. Relationship between SSE and k, with the optimum value of k in-
dicated by the red dot. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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In general, both classification results show good correspondence
with the BSE mineral map. However, both methods fail to differentiate
between chalcopyrite and pyrite, compared to the BSE mineral map in
Fig. 7. Other minerals such as quartz and magnetite are also not seg-
mented, but this is due to the lower resolution of µCT in comparison to
the BSE image (3 µm). Therefore, small minerals with a grain size less
than the µCT resolution (13 µm) cannot be accurately segmented.

3.2. Supervised classification

In order to address the segmentation between chalcopyrite and
pyrite, two approaches in supervised classification were evaluated in
this study, namely grayscale-based classification and feature-based
classification. Before moving on to classification results, the tuning of
classifiers’ parameters is discussed first.

3.2.1. Tuning of classifiers’ parameters
By evaluating the effect of varying classifiers’ parameters to their

performance, one could identify the set of parameters that gave the best
performance while maintaining reasonable computational complex-
ities. While OA is one of the most popular metrics in assessing classi-
fier’s performance, it is not capable of assessing the performance of
specific classes (Thanh Noi and Kappas, 2018). Furthermore, since the

training data was relatively imbalanced in class (chalcopyrite phase is
occurs much less frequently than other phases), the OA value might be
deceiving as the rare classes may be classified poorly (He and Garcia,
2008). Therefore, AUC value was also used to compensate for the
weaknesses of OA, as AUC also takes into account the performance of
the classes. The effect of classifiers’ parameters to their performance is
shown in Figs. 20 and 21 for kNN and random forest classifier respec-
tively.

The performance of both classifiers was increased up until a certain
level in which further increase in the complexity of the classifiers would
not necessarily give better performance. Additionally, increasing k or
ntree means more time required to build and train the classifiers, so a
balance between training time and classifiers’ performance is required.

One noticeable difference between kNN and random forest classi-
fiers is that while increasing ntree in random forest classifier would
always lead to better (or at least similar) performance, the same cannot
be said with kNN classifier. As shown in Fig. 20, the AUC of kNN
classifier decreases when k is increased. The decrease in OA is less clear
in Fig. 20, but around 0.2% decrease was observed. This is in contrast
with random forest, where kNN does have a so-called “optimum”
number of k, in which further increase of k would worsen the predictive
capability of the classifier.

Beside the performance, the training time is also an important factor

Fig. 18. Some results of the k-means classification with different k values. Adding a new clusters from three to four clusters produced a new information in the new
cluster (a phase was separated to the new cluster), but increasing to five clusters did not produce any new information (no phase was separated further).

Fig. 19. Mineral mapping using unsupervised classification (k-means and FCM). Three phases were identified. The “Difference” image shows a binary image with
pixels that are classified differently in the two classification schemes, which corresponds to 86,838 pixels, or 2.11% out of the total 2008×2048 pixels in the image.
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in determining the optimum parameters for the classifiers. The effect of
varying classifiers’ parameter to their training time is shown in Fig. 22.

In general, random forest classifiers is considerably more complex
than kNN classifiers, as shown by the training time. Additionally, in-
creasing the number of trees in random forest led to significant increase
of computational complexity. This increase was less prevalent for kNN
classifiers, especially for less than 50 neighbors.

Based on the performances and required training time, the optimum
number of tree (ntree) for random forest classifier was determined to be
10, while the optimum number of neighbors (k) was determined to be
20. These parameters were then used for the subsequent grayscale-
based classification.

3.2.2. Grayscale-based classification
Grayscale values for each phase based on the training data were

obtained and used as reference values for the classification process.

These reference values were then used to train a classification model.
The model was then applied to classify the rest of the slices in the 3D
image. As only chalcopyrite phases were defined from the BSE mineral
map through feature matching, the classification problem mostly con-
cerns binary classification of the sulfide grains as chalcopyrite or pyrite.
The pyrite phase referred here includes a small amount of magnetite as
well. Therefore, the total training data was reduced to only 88,980
pixels of the original 2048×2008 pixels, corresponding to both the
chalcopyrite and pyrite grains in the image. Out of these pixels, 13.5%
of them belong to chalcopyrite class, while the remaining belongs to
pyrite class. The information about relative frequencies of the classes
was used as the prior probability of the classes, meaning that the prior
probability of chalcopyrite and pyrite class is 0.135 and 0.865 respec-
tively. The training results are shown in Table 4 and Fig. 23.

The classifiers were then evaluated with test data. The total test data
was 88,664 pixels, corresponding to chalcopyrite and pyrite grains in
the image. Chalcopyrite accounts for 14% of these pixels. Similarly, the
relative frequency information was used as the prior probability of each
class. The testing results are given in Table 5 and Fig. 24.

Having an independent test data set is useful in evaluating the
generality and robustness of the classifiers. A classifier is robust if the
testing performance is similar as the training performance (Xu and
Mannor, 2012). By comparing Tables 4 and 5, it can be seen that the
accuracy of the classifiers decreases as they are evaluated on unseen
test data. This is especially true for the random forest classifier, while

Table 3
Phase percentage of mineral maps shown in Fig. 19, showing minimal difference between the classifiers. Minor
differences exist in comparison to BSE mineral map due to difference in spatial resolution between the 2D µCT
slice and BSE image, but overall both techniques shows good correspondence.

Fig. 20. Effect of k to the performance of the kNN classifier.

Fig. 21. Effect of ntree to the performance of random forest classifier.

Fig. 22. Effect of ntree and k to the training time of random forest and kNN
classifier respectively. Training time was obtained based on MATLAB® im-
plementation of supervised classification with 10-fold cross-validation.

Table 4
Training performance of different algorithms in grayscale-based classification.

Algorithm Training time (s) True positive True negative

kNN (k= 20) 4.9 60% 97%
Random Forest (ntree=10) 34.2 60% 97%
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kNN classifier showed better robustness and generalization capability.
While both classifiers have relatively high true negative values, the

TPRs for chalcopyrite are still relatively low. The classifiers only suc-
ceed 50–60% of the time when identifying a pixel that should belong to
chalcopyrite. This could be explained by the fact that there is an overlap
in grayscale values between chalcopyrite and pyrite, which means that
some pixels could be classified as both chalcopyrite and pyrite based on
their grayscale values, as illustrated in Fig. 25.

3.2.3. Feature-based classification
Feature-based classification was used as a comparison to the

grayscale value based classification. The classifiers were trained using
the training data and subsequently evaluated using the independent test
data in Fig. 15. The results are shown in Table 6 and Fig. 26.

Similar to the classification scheme using grayscale values, classi-
fication based on features was also found to be unsatisfactory. Features
such as edges, corners, and blobs of the chalcopyrite and pyrite pixels
were found not to be the discriminating factor for both phases.
Nevertheless, comparing Table 6 to the testing results of grayscale-
based classifications in Table 5 (especially the random forest classifi-
cation), the performance of feature-based classification was relatively

better. This indicates that by using features extracted in different scales,
one can build a classifier that generalizes better than using solely the
grayscale values. However, it should be noted that feature-based clas-
sifications require significantly longer training time than grayscale-
based classifications.

3.3. Evaluation of performances and results

When classifying between the gangue, background and the sulfides,
unsupervised classification was found to be satisfactory, with results
showing good match with the BSE mineral map while requiring short
computational time, as seen in Table 3. This is due to the relatively
clear difference in grayscale values between these phases. However,
supervised classification was needed to differentiate between chalco-
pyrite and pyrite due to unclear difference between the two phases.

By using BSE mineral map as a reference and training data, chal-
copyrite and pyrite can be differentiated to some extent using su-
pervised classification, as seen in Tables 4 and 5. Increasing the clas-
sifier’s sensitivity (TPR) would lead to the decrease of sensitivity for the
pyrite phase (TNR). This limitation is illustrated through the ROC curve
obtained from the models in Table 5. (Random Forest and k-nearest
neighbor) shown in Fig. 27.

As noted previously, the behavior of the classifiers can be adjusted
by changing the probability threshold, which is shown by moving the
red dot in Fig. 27 along the ROC curve. Therefore, there would be no
condition where the classifier could classify all pyrite and chalcopyrite
voxels correctly, i.e. by reaching 100% TPR while at the same time
having 0% FPR (top left corner of the graph). A compromise between
the two phases is inevitable, mainly due to overlapping grayscale va-
lues. Furthermore, as the amount of pixels belonging to pyrite is higher
than that of chalcopyrite, the classifier tends to decrease the false

Fig. 23. Comparison of grayscale-based classified training data with the ground truth.

Table 5
Testing performance of different algorithms in grayscale-based classification.
Testing time is taken as the time required for the classifiers to classify the test
data. Performance was assessed by comparing to the ground truth of the test
data.

Algorithm Testing time (s) True positive True negative

kNN (k= 20) 0.4 57% 96%
Random forest (ntree=10) 0.5 50% 95%

Fig. 24. Comparison of classified test data with the ground truth.
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positive, as 1% of pyrite being misclassified weighs higher in the final
accuracy than 1% of chalcopyrite being correctly classified.

Feature-based classification did not increase the classifier’s accuracy
and precision significantly, as seen in Table 6. This is because these
features were also built based on the grayscale values of the pixels, with
addition of their relationship to the other pixels in the neighborhood. If
the original pixel values were too similar and almost indistinguishable,
their features would also be difficult to distinguish. Nevertheless, fea-
ture-based classifications tend to generalize better than grayscale-based
classification, as shown in Tables 5 and 6.

Another notable difference in result between feature-based and
grayscale-based classification can be seen in Fig. 28. In grayscale-based
classification, the voxels’ grayscale value is the sole criteria in classi-
fying pyrite and chalcopyrite. This leads to many scattered chalcopyrite
voxels in the pyrite grain shown in Fig. 28(A). This phenomena was not
observed in feature-based classification, as shown in Fig. 28(B). Fea-
ture-based classification is especially well suited when dealing with

grain boundaries (Wang et al., 2015), as it uses features that could
represent grains (voxel regions) when segmenting between minerals.
This in turns produces better segmentation between the grains in the
ore.

Nevertheless, a significant difference is observed when evaluating
the mineralogical result of 3D µCT data and the conventional 2D BSE
mineral map. The mineralogical results given Table 7 shows the typical
stereological error exhibited by 2D based analysis in overestimating the
mineralogy. The difference in 2D µCT slice and 2D SEM-EDS can be
explained by the loss of details in the µCT due to lower spatial re-
solution.

4. Conclusions

The application of machine learning algorithms to mineral seg-
mentation of 3D µCT image has been presented. It was found that
simple unsupervised classification could provide a rapid segmentation

Fig. 25. Boxplot of grayscale values of chalco-
pyrite and pyrite obtained from the training
data. Due to the photoelectric effect, chalco-
pyrite is more attenuating than pyrite despite
having lower density, as shown by the first,
second (median), and third quartile of chalco-
pyrite grayscale values being higher than pyrite.
However still there is considerable overlap be-
tween the phases making it difficult to segment
these phases based on their grayscale value.

Table 6
Classification performance of different feature extractors. All 4,112,385 (2008× 2048) pixels in the training data were used to create the feature vectors. The
increase in training data subsequently increased the training time. The true positive and true negative values are based on the testing with the test data.

Feature extractor Classifier Training time True positive True negative

Sobel filter Random forest 3 h 53m 8 s 60% 96%
Determinant of Hessian Random forest 5 h 36m 39 s 57% 97%
Difference of Gaussian Random forest 4 h 59m 8 s 53% 97%

Fig. 26. Classified test data using feature-based classifications.
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between gangue and sulfide minerals that has less difference in grays-
cale values. Unsupervised classification also required significantly less
time, as no training and feature extraction was needed. A method in
determining the optimum number of clusters in unsupervised classifi-
cations has also been presented.

Supervised classification was found to be capable of distinguishing
chalcopyrite and pyrite to a certain extent. Using voxel values as the

dataset in grayscale-based supervised classification offers a simple and
rapid approach in distinguishing the mineral phases with reasonable
accuracy. Overall, the results of the grayscale-based classification sug-
gested that kNN classifier performed better than random forest classi-
fier in all aspects; it generalized better and required less training time.
The effect of classifiers’ parameters to the performance was also eval-
uated, and it was found that there is an optimum point where further
increasing the classifiers’ complexity leads to relatively insignificant
performance gain.

Feature-based classification added more information about voxel
neighborhoods in the classification process, producing better segmen-
tation between the mineral grains. Moreover, the results in this study
suggested that feature-based classifiers tend to generalize better than
grayscale-based classifiers. Feature-based classification could be a
better alternative especially when textural information such as grain
size and shape needs to be extracted after the mineral phase segmen-
tation.

Additionally, methodology to align SEM-EDS image to its corre-
sponding µCT slice for phase labelling and training data generation has
been presented. The whole process is relatively fast (around 7 s) and
largely automated; the user only needs to specify which µCT slice
corresponds to the BSE mineral map. The main advantage of the
method is that it works on pixel level, i.e. information of each pixel that
belongs to a phase can be transferred to a µCT slice, therefore allowing

Fig. 27. ROC curve for Random Forest and kNN classifiers. The curve describes the relationship between FPR and TPR, with the red dot indicates the current
classifier. The test data was used to generate the curve. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 28. Comparison of random forest classified mineral map showing chalcopyrite (red), pyrite (green), and gangue (gray), using (A) grayscale based classification,
and (B) feature (determinant of Hessian) based classification. While grayscale based classification operates on individual voxels, determinant of Hessian operates
based on blobs/region of voxels, which resulted in better segmentation between grains as shown in (B). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 7
Simplified mineralogy (by area or volume) obtained from SEM and µCT. Note:
kNN=k Nearest Neighbors, RF=Random Forest, SF= Sobel Filter followed
by RF, DoH=Determinant of Hessian followed by RF, and DoG=Difference of
Gaussians followed by RF.

Minerals 2D –
SEM EDS
(%)

2D –
µCT (%)

3D µCT (%)

kNN RF SF DoH DoG

Amphiboles
Tourmaline

39.92 39.29 37.26 37.26 40.33 40.33 40.33

Plagioclase Quartz
Biotite
Feldspar

55.67 57.28 59.47 59.47 56.77 56.77 56.77

Pyrite Magnetite 3.70 3.00 2.90 2.91 2.73 2.72 2.73
Chalcopyrite 0.71 0.43 0.37 0.36 0.17 0.18 0.17
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the definition of multi-mineral grains. Moreover, since it is based on
features, it is more robust to characteristic differences between the
images. Nevertheless, the methodology is limited on the parallel cutting
of the µCT sample for the thin section, as it must be cut exactly in
parallel to achieve perfect correspondence between the two images.

The main limitation of the application of machine learning in µCT
dataset lies in the dataset itself, particularly whether the grayscale
values of mineral phases in the sample are different enough to be seg-
mented. In this study, due to the significant overlaps in grayscale values
between chalcopyrite and pyrite, the classifier could not fully differ-
entiate between the two phases. Increasing the classifier’s sensitivity to
one phase will decrease the sensitivity to the other phase.

As the limitations come from the dataset, improvements must be
done during the image acquisition process. Scanning conditions could
be optimized so that contrast between phases of interests could be
maximized for easier segmentation. Dual energy scanning is one of the
alternatives, as it allows direct determination of density or effective
atomic number by correlating with attenuation coefficient at different
energy levels. Some calibration with pure chalcopyrite and pyrite mi-
nerals could also be done prior to image acquisition in order to de-
termine the optimum beam settings for distinguishing both phases. If
both phases have a clear difference in grayscale values, then even a
simple unsupervised classification should produce satisfactory results.
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