
Linköpings universitetSE–581 83 Linköping+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Computer science

2019 | LIU-IDA/LITH-EX-A--19/001--SE

Implementation and evaluationof the ACE DTLS framework
– Reducing the authentication workload of a constrained device
Implementering och utvärdering av ACE-ramverket

Jacob Johansson

Supervisor : Abhimanyu RawatExaminer : Andrei Gurtov

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publicer-ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko-pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis-ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annananvändning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker-heten och tillgängligheten finns lösningar av teknisk och administrativ art.Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning somgod sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentetändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-nens litterära eller konstnärliga anseende eller egenart.För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for aperiod of 25 years starting from the date of publication barring exceptional circumstances.The online availability of the document implies permanent permission for anyone to read, to down-load, or to print out single copies for his/hers own use and to use it unchanged for non-commercialresearch and educational purpose. Subsequent transfers of copyright cannot revoke this permission.All other uses of the document are conditional upon the consent of the copyright owner. The publisherhas taken technical and administrative measures to assure authenticity, security and accessibility.According to intellectual property law the author has the right to bementionedwhen his/her workis accessed as described above and to be protected against infringement.For additional information about the Linköping University Electronic Press and its proceduresfor publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Jacob Johansson

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

IoT-devices are becoming more advanced and powerful than ever, and the application
potential is increasing rapidly. It is starting to become normal to have IoT-devices taking
over mundane jobs such as controlling the climate at home, or monitoring e.g the water us-
age of a household. These devices are usually constrained to be as cheap and primitive as
the task allows. Most of the time, they are only used to send collected data which only re-
quires a one way secure channel. However, in order to apply updates or manage the device
remotely, the communication has to be secured both ways. There are multiple suggestions
on how a two way secure channel can be established while still operating on a constrained
device. Each security specializes in its own area e.g privacy, scalability, or simplicity. This
paper will describe how to implement the ACE-DTLS framework and analyze the perfor-
mance with respect to energy consumption and security. While ACE-DTLS is quite simple
to implement without having to understand the complex math of a key exchange, it comes
with the cost of a high overhead in order to establish a secure two way connection. It might
not be the best suited framework for small amount of data transfers available.

Acknowledgments

I want to acknowledge Abhimanyu Rawat for providing valuable feedback and helping struc-
turing the methodology in this thesis. Ivar Skoglund for a great support and providing an-
other point of view for the report. Razmus Lindgren for providing guidance with the imple-
mentation, and Attentec for providing materials and electronics for the project. I also want to
thank my opponent Sara Svensson for being a harsh but fair opponent! And a final thanks to
Erica.

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

List of Tables viii

Acronyms 2

1 Introduction 4
1.1 Background . 4
1.2 Motivation . 5
1.3 Aim . 6
1.4 Research questions . 6
1.5 Limitations . 6

2 Theory 7
2.1 Network security . 7
2.2 OAuth . 9
2.3 Authentication in a Constrained Environment (ACE) 12
2.4 The network stack used for ACE (6LoWPAN) . 14
2.5 IoT . 20
2.6 Related work . 22

3 Method 25
3.1 Literature study . 25
3.2 Design specification . 25
3.3 Implementation . 26
3.4 Verification of the network setup . 30
3.5 CoAPs implementation . 32
3.6 CBOR parsing . 33
3.7 Token verification and authorization . 33
3.8 Test setup and Evaluation . 33

4 Results 36
4.1 Latency . 36
4.2 Packet loss . 41
4.3 Energy consumption . 42
4.4 Implementation . 42

5 Discussion 44

v

5.1 Results . 44
5.2 Method . 45
5.3 The work in a wider context . 46

6 Conclusion 47
6.1 How can the ACE framework be implemented on a constrained device so that

a secure authentication is achieved? . 47
6.2 How does this implementation of ACE affect the performance of the network

and the resource server? . 47
6.3 Future work . 47

Bibliography 49

7 Appendix 52
7.1 code . 52

vi

List of Figures

2.1 Symmetric-key encryption . 8
2.2 Constrained levels in the ACE framework [ACE-actors] 12
2.3 OAuth Protocol Flow for the ACE implementation [ACE-oauth-authz] 13
2.4 4 layered Networkstack TCP/IP model according to IETF [IETF-NetworkLayers]

showing the different technologies used in each layer for the ACE framework
[IETF-ACE-DTLS]. 14

2.5 ACE DTLS handshake overview [IETF-DTLS1_2] 17
2.6 DTLS handshake with packet loss . 18
2.7 OSCORE overview derived from [IETF-OSCORE] 19
2.8 OSCORE Protocol Overview for the ACE framework [IETF-ACE-OSCORE] 19
2.9 Nucleo-144 . 20
2.10 microchips PmodRF2 802.15.4 transceiver . 21
2.11 Open labs 802.15.4 transceiver . 21
2.12 Current measuring circuit as proposed in [related_energy_measurements] 22

3.1 Final network setup overview . 27
3.2 Transceiver validation setup . 27
3.3 mrf24j40 transceiver validation . 28
3.4 Image of the setup, Blue device: L0-discovery, white device to the right: Nucleo-

144, Raspberry pi with ROUTER sticker: Router, Raspberry pi with AS sticker:
Authorization Server . 29

3.5 Gateway verification setup. The wlan prefix is set to fd00:a:b:1::/64, and the 6low-
pan prefix is fd00:a:b:2::/64 . 30

3.6 DTLS handler logic . 32
3.7 CoAP request response . 33
3.8 IDD jumper pin on the Nucleo-144 discovery board 35

4.1 Average transfer time CoAP for each distance . 37
4.2 Average transfer time CoAP + Token for each distance 38
4.3 Average transfer time CoAP with DTLS for each distance 38
4.4 Overhead for each request in the DTLS handshake 39
4.5 Average transfer time for 6 meters . 39
4.6 packet transfer time for 6 meters timeline . 40
4.7 packet transfer time for CoAP + DTLS over each distance 40
4.8 fraction of failed requests with respect to the distance 42
4.9 Power consumption in mj . 43

vii

List of Tables

2.1 AES block cipher strength described in number of years it takes to break them
[AES-origin]) . 9

2.2 Key-Block-Round Combinations (recreated from [AES-origin]) 9

3.1 CoAP-GET packages captured by wireshark . 34

4.1 Average packet loss per request . 41
4.2 Percentage of re-transmissions per request . 41
4.3 Memory footprint for the network stacks . 42

viii

List of Tables

1

Acronyms

6LoWPAN IPv6 over Low -Power Wireless Personal Area Networks.

ACE Authorization in a Constrained Environment.

ACK acknowledgement.

AES Advanced Encryption Standard.

ARP Address Resolution Protocol.

AS Authorization Server.

CBC-MAC Cipher Block Chaining Message Authentication Code.

CBOR Concise Binary Object Representation.

CNF Confirmation.

CoAP Constrained Application Protocol.

COSE CBOR Object Signing and Encryption.

DTLS Datagram Transport Layer Security.

GPIO General-Purpose Input and Outputs.

HFC Header Compression Field.

HTTP Hypertext Transfer Protocol.

ICMP Internet Control Message Protocol.

IEEE Institute of Electrical and Electronics.

IEEE 802.15.4 low-rate wireless personal area networks (LR-WPANs).

IETF Internet Engineering Task Force.

2

Acronyms

IoT Internet of Things.

IPsec Internet Protocol Security.

ISM Industrial, Scientific, and Medical.

JOSE JSON Object Signing and Encryption.

JSON JavaScript Object Notation.

LoRaWAN Long range wireless area network.

LR-WPANs Low-rate wireless personal area networks.

MAC Message Authentication Code or Medium Access Control, depending on context.

MQTT machine to machine communication protocol.

ND Neighbour Discovery.

OAuth Open Authentication Standard.

OSCORE Object Security for Constrained RESTful Environments.

OSI Open Systems Interconnection.

POP Proof of Possession.

PSK Pre-shared Key.

RADVD Router Advertisement Deamon.

RDC Radio Duty Cycles.

Rdisc6 ICMP6 Router Discovery software.

REST Representational state transfer.

RISE Research Institutes of Sweden.

RO Resrouce Owner.

RS Resource Server.

RTT ReTransmissoin Timer.

TCP Transmission Control Protocol.

TCP/IP model network stack model.

UDP User Datagram Protocol.

VPN Virtual Private Network.

3

1 Introduction

The development in microprocessors and radio communication in the last few years has
boosted the potential use cases of devices connected to the internet also known as Internet
of Things IoT. The processors are more efficient, faster, and smaller than ever and radio com-
munication can transmit data reliably over larger distances. In 2018 there was an estimate of
7 billion devices connected to the internet. The numbers are accelerating and by 2020 we are
expecting to see 20 billion devices online [31]. This unlocks a whole new usage area for IoT
devices to be integrated in our everyday life. IKEA has recently integrated a network con-
nection and a micro controller to a light bulb, providing the ability to control the light over a
distance, using the phone or computer [1].

IoT devices are not only finding their way in to people’s homes, but are being deployed in
critical infrastructure such as medical monitoring. G. Zhang et. al [49] implemented a medical
monitoring system that send sensitive data over the network. It is therefore important for the
integrity of the patients that the data cannot be intercepted and decrypted by a third party
since this personal information could be sold to insurance companies or scammers.

With the increased demand for IoT devices, and the catastrophic potential it can bring if
a device is hacked, a lot of research is being done on how to provide security. The 21st of
October 2016 a DDoS attack flooding a critical DNS server with 1.2 terabit of traffic resulted
in the server being down for hours. Webb applications such as Spotify, Twitter, Sound cloud
where all affected and unavailable for users in Europe and the United States. The attack
known as Mirai [32] was the result of over thousands insecure routers and IoT devices being
hacked and remote controlled for a synchronised attack. Other botnets such as Bashlite [27]
has been studied and shown to cost companies billions in defence measures and downtime.

1.1 Background

A constrained device is a device with limited access to one or multiple factors such as a net-
work connection, the power grid, storage space, or RAM. The specifications of the device is
dependent on the intended use case and the network architecture differs depending on the
framework and the requirements. With new network technologies such as 5G [40], Bluetooth
Low Energy (BLE) [35], and Low-rate Wireless Personal Area Networks (LR-WPANs) [33] it
is possible to accommodate many different network requirements. A remote located temper-
ature sensor node could rely on a Long Range Wireless Area network (LoRaWAN) [20] based

4

1.2. Motivation

network stack to send data. Another solution that A Rajakaruna et. al [39] experimented with
was to use a short range low energy network such as BLE and collect the data via a remote
controlled drone. A sensor node could be limited to send just a few kilobytes in throughput
which makes it important that the network protocols used produce as small of a footprint as
possible.

Other design factors could be to reduce the cost of the device, or to increase the life time
of the battery as much as possible. Usually, the constrained device is connected to a gate-
way with the purpose to relay messages from the constrained network to a remote server or
client. There are multiple different frameworks that specifies how the network architecture
should be deployed to achieve the required security. There is no one-size-fits all solution for
the security in IoT. Some frameworks could rely on a unsecured sensor networks and only
encrypts the data after it passes through the gateway. Others provide full peer to peer encryp-
tion between the sensor nodes and the client. Some frameworks can be difficult to implement
and require trust in entities that are outside the accessibility of the user. Other frameworks
consumes too much power to operate which limits the potential for remote located battery
operated sensors.

Every solution has its pros and cons, but every solution has to be evaluated to find them.
Some might only offer a one way communication, removing the possibility for deploying
updates to the device.

1.2 Motivation

Depending on the context, an IoT-device might require different security attributes. It is
therefore important that multiple different frameworks are designed and evaluated. One
such framework which is currently being developed by the Internet Engineering Task Force
(IETF) is the Authentication and Authorization for Constrained Environments (ACE) frame-
work. The ACE framework utilises the OAuth2 tokens [25], which provides scalability for
the network.

If every Client only authenticated directly towards the Resource Server (RS) via creden-
tials, every RS would have to store a database of valid users specifically for that device. Every
Client would have to create an account for each RS in the network. This would create a com-
plexity of (n ˚ (n ´ 1))/2 if every device would have to store and manage credentials for
every other device on the network. If a Client credential are leaked or the authorized scope
of the client is changed, every device would have to update their database somehow. This is
both a complex and energy consuming task that a constrained device cannot handle.

With the new OAuth2 protocol[25], IETF have proposed an OAuth based authentication
method for constrained IoT-devices. The ACE-DTLS framework is defined to provide scale-
ability, integrity and confidentiality for constrained devices. By removing the authentication
functionality from the constrained Resource Server (RS) and assigning it to a non-constrained
Authorization Server (AS) a lot of hardware requirements are removed from the RS device.
The client would only have to authenticate towards the AS and receive a token that provides
implicit authentication. An OAuth token contains information about which RS will accept
the token, and which scope the bearer is authorized for.

There are multiple proposals of the ACE framework, where each version proposes to im-
plement security on different layers in the network stack. S.Aragon [44] have proposed an
IPsec implementation of the framework, and this thesis will implement and evaluate the
framework using DTLS as the transport layer security.

5

1.3. Aim

1.3 Aim

The aim of this project is to implement the ACE-DTLS framework in a local network and
evaluate the security, network performance, the power consumption, and compare it to a
base line implementation.

1.4 Research questions

This report will answer the following questions

1. How can the ACE-DTLS framework be implemented on a constrained device so that a
secure authentication is achieved?

2. How does this implementation of ACE-DTLS affect the performance of the network and
the resource server?

1.5 Limitations

This report will only modify and extend an existing version of ACE except for the resource
server which will be implemented.

The usage of Radio Duty Cycles (RDC) to reduce the energy consumption by the CPU of
the constrained device is considered out

The evaluation of the contrained part of the ACE-DTLS framework will only be evaluated
on the Nucleo-144 microcontroller.

6

2 Theory

This chapter describes relevant theory and related work that is necessary to understand this
research.

First the security aspects of connected devices are described, followed by the different
parts of the network stack that has been implemented in this report. Lastly, the ACE frame-
work is explained alongside related work.

2.1 Network security

Security in terms of computers is a broad term that could have multiple definitions and im-
plications. For example, two clients communicating over a network might require that their
communication is secure from a third party that could be eavesdropping on them. A CPU
could be vulnerable from physical attacks such as probing, which is when the attacker phys-
ically listens to the buss to extract cryptography keys. Since physical attacks are not in the
scope of this report, the security will focus on the network security aspect.

Connecting a device to the internet exposes it to every other user online and therefore it
also becomes susceptible to malicious attacks. An attacker could act as a valid user to gain
access to sensitive data, or install malicious code directly on the device. Just a few years ago
the infamous botnet Miraji attacked critical internet infrastructures resulting in multiple sites
becoming unavailable for a while. The devices did not have sufficient authentication and au-
thorization methods to defend against attacker. With over 7 billion devices deployed world
wide, future botnets could have devastating consequences. It is therefore at most impor-
tant for the manufacturer to ensure Authentication, Authorization, Integrity and Confidentiality
regardless of the capability of the device.

2.1.1 Authentication

Anyone can claim to be somebody else online and it is therefore important to verify the ac-
cessing user via some sort of authentication. Authentication is the verification that a client
is whom she says she is. This could be done via something you know e.g a password, or
something you have e.g a key, or something you are e.g your fingerprint.

These methods can be combined into single, two-factor, and even multi-factor authentica-
tion. There is a trade-off between the accessibility for a user and the strength of the security

7

2.1. Network security

Alice Encryption Decryption Bob

Eve

Plain text
Encrypted text

Plain text

Eavesdropping

Key Key

Figure 2.1: Symmetric-key encryption

that has to be considered. If it takes too long for a user to authenticate, the application might
be useless.

2.1.2 Authorization

Authorization is the process of verifying if that user should have access to specific resources.
The most simple way of authorization is to store the credentials on the resource server for
every user and assign the authorized scope. This method does not scale well to many users.
In order to restrict or grant access, the credentials need to be updated, which raises a security
concern and is a costly thing to do for a network with thousands or millions of clients.

2.1.3 Encryption

Encryption is the reversible process of encoding a plain text message in such a way that only
authorized users can decode it. The encryption can provide both Integrity and Confidential-
ity to the message. If the encoding is cryptographically strong enough, the message cannot be
decoded within a reasonable amount of time by a third party Confidentiality is achieved.[19]

Symmetric-key encryption

Symmetric key encryption is defined by both clients having the same key while initiating the
communication. The Pre-shared Key (PSK) could either be pre-defined during the deploy-
ment of the software or be distributed via another secure channel.

By using the PSK, the clients can encrypt and decrypt using the Advanced Encryption
Standard with 128 bits (AES-128). The AES-128 algorithm is a light weight encryption method
that suitable for small IoT devices as well as normal communication. Some CPU’s have built
in hardware enhancement accelerators for multiple encryption algorithms including AES-
128. [43]

In figure 2.1 Alice is encrypting a plain text message using the pre-shared key. Eve, who is
eavesdropping on the conversation only extracts the encrypted message. Bob, who also has
the pre-shared key can then simply decrypt the message using the key and extract the plain
text.

AES

The encryption method used in this thesis is the Advanced Encryption Standard (AES) also
known as the Rijndael algorithm which was introduced in 2001. [43] AES is a block cipher
cryptography method that encrypts and decrypts data blocks of 128 bits using 128, 192, or

8

2.2. OAuth

256 bit keys and are abbreviated AES-128, AES-192, and AES-256 respectively. The strength
of the AES method assuming that the keys are correctly generated and chosen are correlated
to the size of the key length used. A larger key provides a stronger encryption as seen in table
2.1.

It is important to consider the trade-off between the security and convention. A higher
number of rounds provides a higher security as seen in table 2.2, but for a constrained device
14 rounds with a 256 bit key might result in a performance drop.

The Cipher Block Chaining Message Authentication Code (CBC-MAC) implementation is
used to provide a Message Authentication Code (MAC) to the encrypted message in order to
assure authenticity.

bits Strength in years
128 1018

192 1037

256 1056

Table 2.1: AES block cipher strength described in number of years it takes to break them [43])

bits (Nk) Key Length (Nb) Block size (Nr) rounds
128 4 4 10
192 6 4 12
256 8 4 14

Table 2.2: Key-Block-Round Combinations (recreated from [43])

2.2 OAuth

A common way of providing authorization online is by using the OAuth framework de-
scribed in 2.2. The OAuth framework can be compared to when a user checks in to a hotel
and receives a key card.

The Authentication of the user is done when she checks in at the reception. Here, the user
is verifying who she is by ID or a booking number. After the Authentication procedure is
complete, the reception hands over a key card which acts as a session token.

The Key card now acts as the authorization method and the bedroom can verify the per-
mission level of the user by checking the key card. If the user drops the key card, she can ask
the reception to invalidate the key card, and create a new session by authenticating herself
again.

The traditional way of granting a third-party access to a resource server was to share
credentials such as username and password. This method introduces many security issues
such as, the password has at some point to be stored at the third-party in plain text. There
was no easy way of restricting the privileges level of the third-party after access had been
granted. The only way was to change the credentials, resulting in removing all privileges at
once for the third-party.

OAuth provides a more dynamical way of granting access using tokens. Instead of pass-
ing the credentials, the third-party authenticates itself to the resource owner and receives a
token. The third-party then authorize itself using the token, and the resource server can verify
the request without storing any user credential data.[25]

9

2.2. OAuth

2.2.1 OAuth entities

The client is the requesting party that needs access to a resource server. This could be an
third-party application that need access to a google drive to store figures. The application
should be as restricted as possible and only be granted access to what is necessary.

In this report, the Client is a third-party user who is requesting access to a constrained
resource server.[25]

The Authorization Server (AS) is usually owned by the resource owner and is responsible
for the granting and generation of access tokens. It contains the functionality to authenticate
Clients requesting access via e.g credential sign in.[25]

The resource Server (RS) is the server where the requested resource is stored. It is respon-
sible for accepting, and verifying permissions from access tokens.[25]

2.2.2 OAuth grants

There are four kinds of grants that the AS can provide, Authorization grant, Implicit, RO cre-
dentials, and Client credentials. In this report, Client Credentials Grant will be used as the
Authorization grant method.

In Client Credentials Grant, Client authenticates itself to the AS via credentials such as
username and password. This requires the Client to already have an registered account avail-
able at the AS [25].

2.2.3 OAuth token and validation

There are many different token types for the OAuth framework, each with its own pros and
cons. [25] This report will use the Proof of Possesion Token (PoP), but first the most common
Access token will be described, since the PoP token is derived from it. Lastly, this section will
explain how a token is validated and used to authorize the clients requesting access.

Access token

An access token is used to provide implicit authentication and authorization to the client.
The AS is responsible for authenticating the Client e.g via credential sign in and generates
the token with regards to the requested and authorized scope of the client.

The token consists of multiple fields that provide meta-data and context. The access_token
field is a hash and acts as the token identifier for the session. When the Resource Server wants
to verify the Client it simply has to compare that the access_token id with the valid token.
The token_type describes which kind of token was used to authorize, e.g Proof of Possession.
Each must token have a expires_in field after a set amount of ms the token is not valid any
more. This is to avoid e.g tokens being decrypted and reused in a later stage by an attacker.
The expiration time for this token is 3.6 seconds which is enough time for a data request
transaction. When the token has expired, a refresh_token can be used in order to refresh the
session and increase the expiration time a bit more as seen in listing 2.1. The refresh_token
contains the credentials of the client and is therefore very important to keep secure.

Proof of Possession (PoP)

The default OAuth2 verification method used by ACE is the Proof of Possession (POP)
shown in 2.2 [10] and [28]. It is described by an access_token id that is used to identity the
specific token for later verification. the scope is used to describe in which scope the client is
allowed access. In this case, the scope is contained to access the thermometer functionality
and nothing else. The cfn (confirmation) contains the proof of possession key which is an

10

2.2. OAuth

HTTP/1.1 200 OK
Content´Type : a p p l i c a t i o n / json ; c h a r s e t =UTF́ 8
Cache´Control : no´s t o r e
Pragma : no´cache

{
" access_token " : " 2YotnFZFEjr1zCsicMWpAA " ,
" token_type " : " a c c e s s token " ,
" e x p i r e s _ i n " : 3 6 0 0 ,
" re f resh_token " : " tGzv3JOkF0XG5Qx2TlKWIA " ,
" example_parameter " : " example_value "

}

Listing 2.1: Access token as described in [25]

Content´Format : a p p l i c a t i o n /cbor
Location´Path : token/ j f 3 2 0 s 2
Max́ Age : 86400
{

access_token : h ’ rewkjn23 ’ ,
token_type : pop
e x p i r e s _ i n : 86400
p r o f i l e : coap_dt ls
scope : thermometer
cfn : {

COSE_Key : {
kty : Symmetric
kid : h ’ nk230daj2 ’
k : h ’ dm10dj28scj ’
}

}
}

Listing 2.2: Proof of possession (POP) token

encrypted PSK. Key type kty describes which key type is used. Key id kid is used to identify
the PSK if multiple PSK already has been shared. The key k is the key that is supposed to be
used in the secured DTLS connection between the Client and RS.

Token verification

When the resource server receives the token it verifies that the token is valid and store its
content. The Authentication Token for the ACE-framework can be verified locally on the
Resource Server or via introspection. In order to verify the token locally the Resource Server
derives the key and retrieves nonce from the cnf parameter in the token. The Resource Server
have a list of pre-defined keys assigned when the device is deployed. By using the key_id, the
Authorization Server and the Resource Server can agree on which key to use without having
to send it.

If the encrypted data can be decrypted by the key derived from the key_id provided from
the Client, and the nonce is valid, it implies that the Client have been authenticated by the
Authentication Server and is therefore authenticated by the Resource Sever as well.

11

2.3. Authentication in a Constrained Environment (ACE)

When the Client is authenticated, the Resource Server stores the access token in memory.
The client is then authorized to access the scope described in the token until the token has
expired.

2.3 Authentication in a Constrained Environment (ACE)

The Authentication in a Constrained Environment framework (ACE) which is currently being
developed, describes a way of providing authentication and authorization functionality to a
constrained device.

2.3.1 Constraining levels

There are three constrained levels defined in the ACE framework.

Requesting Party

Authentication and
Authorization ServerAuthN and AuthZClient

In charge of

Resource Owner

Resource Server

In charge of

Requests/provides
 resource

Authentication and
Authorization Support

Principal Level

Less-Constrained Level

Constrained Level

Figure 2.2: Constrained levels in the ACE framework [24]

The first level is the Principal level which is the meta information about the owner of the
endpoints. In this case, the RO is the owner of both the AS and the RS. The requesting party
is a human using the Client to access the other endpoints.

The second level is the Less-Constrained level. At this level, the devices have enough
memory and storage to manage a larger database and execute strong encryption methods.
The devices should have a persistent power supply, and always be accessible online. This
would usually be a normal server connected to the internet.

The third level is the most constrained. On this level, the devices could have a limited
power supply source such as batteries, or rely on solar power. It is important that the device
does not waste any processing power on jobs that could be outsourced to the Less-constrained
level. The devices could also lack memory and storage space enough to manage a database
of users, or the processing power to effectively encrypt data. This level is responsible for
handling the authentication and authorization of the interaction flow. In this report, the Au-
thentication Server and Authorization Server will be merged in to

The framework uses the OAuth2.0 protocol to authorize and authenticate the Client.
There are multiple ways to authenticate using OAuth, but ACE focuses mainly on the proof
of possession (PoP) method. This method is thought to burden the constrained device the
least, since it allows the device to verify the token locally, and reduces the total number of
required transmission.

12

2.3. Authentication in a Constrained Environment (ACE)

Client

Authorization
Server

Resource
Server

(A) Token Request

(C) Token + Request

(F) Protected Resource

(D)

(E)

Introspection Request
(Optional)

Response
(Optional)

(B) Access Token

Figure 2.3: OAuth Protocol Flow for the ACE implementation [10]

2.3.2 Protocol Flow

This section describes the proposed authentication procedure for ACE by IETF [10].
The protocol flow described in figure 2.3 shows the steps necessary to follow in order to

perform an authentication of a Client.
(A) Request Access Token
The fist step for the Client in order to authenticate, is to find the relevant AS. If the IP to

the AS is not known before the request, the RS should advertise the IP of the AS as a response
to an unauthenticated request. When the IP of the AS is known, the Client can then send a
request token to the AS. The request token specifies which RS it wants to access, and within
which scope of the RS it requires permission.

(B) Authenticate Client and return Access Token
AS requires the Client to authenticate itself which in this paper will be by credentials login.

If the permission level of the Client matches the required permission level of the request
token, an Access Token is generated and returned. This Access Token contains a description
of which RS it is allowed to access, and within which scope of permission it grants access.

A Bearer token is a token similar to a hotel key card. The door only derives the authoriza-
tion from the key card, and does not request any id. Any user that obtains such a token is
granted full authorization for the scope provided in the token. Since the Proof of Possession
token is a bearer token, it is at most important that the token is sent over a secure channel
such as DTLS or IPsec.

[42]
(C) Authorize using the token When the Client have received an Access token, it can

then pass it along with a request to the RS. The token could include additional authorization
information to provide integrity, but since DTLS already includes such a feature, this is not re-
quired in this case. The RS then has two options in order to verify the Access Token. If the RS
has to minimize on the network transmissions or is offline, it could use the PoP functionality,
and verify the token locally.

(D) (optional) Verify the token using introspection If the RS is not constrained to the
network, it has the possibility to validate the token using the AS. By passing the token back
to the AS and using introspection, the AS could verify the token remote.

(E) (optional) Return the introspection results If the token was valid, the AS returns the
token parameters.

13

2.4. The network stack used for ACE (6LoWPAN)

(F) Request response The RS then checks the permission level, expiration time, and scope
of the token to either accept, or deny the request from the Client. If the request is valid, the
RS returns the protected data to the Client using a secure channel, such as DTLS.

2.4 The network stack used for ACE (6LoWPAN)

The ACE framework is defined to use the 6LoWPAN stack regardless of version[23] and this
section will describe each layer according to the TCP/IP model 2.4 [12]. IPV6 over Low power
Wireless Personal Area Network (6LoWPAN) is an efficient network protocol developed for
constrained devices. [48] The protocol utilizes technologies and techniques such as header
compression and fragmentation to reduce the network footprint. The 6LoWPAN network
architecture are most easily described using the internet architecture for the TCP/IP model
which is split in to four distinct layers shown in figure 2.4

Application Layer

Transport Layer

Internet Layer

Link Layer IEEE 802.15.4

IPv6

UDP, DTLS

CoAP

Network

Figure 2.4: 4 layered Networkstack TCP/IP model according to IETF [12] showing the differ-
ent technologies used in each layer for the ACE framework [23].

2.4.1 Link Layer

The Link layer is the first and lowest layer in the network stack. This is the physical network
technologies such as Ethernet, Wifi, and IEEE 802.15.4 networks. [12]

This layer can be compared to both the physical layer and the data link (layer 1 and 2)
of the commonly used Open Systems Interconnection (OSI) model. The link layer is there-
fore responsible the Medium Access Control (MAC) protocols which is responsible for the
frame validation and handling the collision detection. Since this report requires multiple net-
works to interact over different link layers, a gateway with link layer routing capabilities was
implemented.

IEEE 802.15.4

The 802.15.4 standard also called Low-rate wireless personal area networks (LR-WPANs).
LR-WPAN offers an energy efficient network at the cost of a small bandwidth. This type of
network is suitable for small data packages such as temperature readings. [21].

The network frequency is restricted to three different ranges.

868.0 - 868.6 MHz Europe
902.0 - 928.0 MHz North America
2400 - 2483.5 MHz World Wide

The 868 and 902 frequencies is the unlicensed Industrial, Scientific, and Medical (ISM)
band [21].

14

2.4. The network stack used for ACE (6LoWPAN)

2.4.2 Internet Layer

The internet layer is the second layer of the IETF TCP/IP network stack [12]. This layer is
similar to the Network Layer (layer 3) in the OSI model and implements protocols such as
the Internet Protocol (IP). Internet protocol (IP) provides a connectionless end-to-end com-
munication with no guarantees on delivery. Instead it is up to the layers above to make sure
that the packages are received or not. [12]

IPv6

IPv6 is the 6th and latest version of the Internet Protocol designed as a successor to the 4th
version IPv4. Due to the lack of IPv4 addresses and the increasing number of connected
devices such as IoT, the main functionality that was introduced in IPv6 was expanded ad-
dressing capabilities. IPv6 increased its addressing capabilities from IPv4’s 32 bit to 128 bits,
increasing the address space for IPv6 to 2128 different addresses. [15] This removes the need
for DNS and allows the devices to use the same IP on the local network as well on the internet.

Since the 6LoWPAN protocols only allows specific protocols for each layer, much of the
information in the header is redundant and can be compressed to reduce the package size.[17]
The Header Compression Field (HFC) is used to describe which fields has been compressed
and can be assumed or derived the received data. The IP version of the protocol is always
the 6th (other version is not processed), the version number is not needed anymore. Same
goes for the Traffic Class and Flow Label variables which is always set to 0, and are therefore
also removed. The payload length is derived from the Link layer header. [48] By using the
compression, the IPv6 header only requires 2 octets for the HFC and Hop Limit encoding,
down from the previous used 40 octets.

A common security method for the Internet Layer is IPsec and is one of the proposed
versions of the ACE framework. IPsec can provide end-to-end security which results in a
secure communication regardless of the trust required on the gateways in between [16]. The
most common usage of IPsec is the Virutal Private Network (VPN).

2.4.3 IPv6 routing and neighbor discovery software

An IPv6 router utilizes Neighbor Discovery (ND) which is a combination of the IPv4 protocols
Address Resolution Protocol (ARP), ICMP Router Discovery, and ICMP Redirect to create a
local network [15]. The software radvd [38] provides the ND functionality to generate a local
IPv6 network, and route the communication between other connected network interfaces.
This allows any router to act as a border router between two different networks.

Rdisc6 is a software that allows client to discover and connect to open IPv6 networks [41].

2.4.4 Transport Layer

The transport layer is the third layer of the TCP/IP network stack and can be seen as a com-
bination of the Session and Transport Layer from the OSI model. [12] This layer manages
the data streams from the Internet Layer and is responsible for handling the connections and
reliability if requested.

TCP and UDP

There are two common transport layer protocols, namely Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP).

UDP is the most basic protocol of the two and can almost be seen as a null protocol because
it only provides checksums of the message, and allows for multiplexing through ports. The
protocol is a lightweight but connection-less protocol in such a way that it does not check
if the receiving peer is still listening or not. This has to be handled in a higher layer by

15

2.4. The network stack used for ACE (6LoWPAN)

providing re-transmission if the ACK has not been received for a message, or to sort the
messages in order after they have arrived if a reliable connection is required. UDP is best
suited for connections where packages can be dropped or arrive in the wrong order e.g a
video stream or a sensor-device that sends a sensor value multiple times.

If the application requires such a reliable connection, UDP starts to act as a inefficient
version of TCP. TCP is a reliable, in-sequence delivery protocol and is used for application
such as mail (SMTP), or web traffic (HTTP).

However, the network overhead for a TCP connection can be to costly for a constrained
device and UDP is therefore the chosen standard for the 6LoWPAN protocol.

TLS and DTLS

Transport Layer Security (TLS) is a common way of securing the connection between peers.
The essential role of TLS is to maintain privacy and integrity to avoid external peers to eaves-
drop or gather metadata. The protocol is easy to implement in the transport layer and is
often used to encrypt Web traffic such as HTTP and e-mail [42]. TLS can be defined using
two layers, the first being the TLS Record Protocol and the second being the TLS handshake
Protocol. TLS Record Protocol implements two properties, namely a private connection that
is encrypted using symmetric keys ac hived from the Handshake Protocol, and a reliable con-
nection which ensures integrity by applying MAC to the messages. The TLS Record Protocol
is responsible for authenticate the peer, negotiate a shared secret, and making sure that the
negotiation is reliable and that the integrity remains. [18]

One restriction of TLS is that it requires a reliable transport channel such as TCP [42] how-
ever, the ACE-framework is specified to use the Constrained Application Protocol (CoAP) at
the application layer which requires UDP in the transport layer. An alternative is the Data-
gram Transport Layer Security (DTLS) which is the UDP variant of the TLS. DTLS is based on
the TLS protocol and implements the TCP reliable channel by requiring and ACK message for
each transaction. A Re-transmission Timer (RTT) is set dynamically depending on how lossy
the network is. If an ACK-message is not received before the RTT as run out, the transaction
is considered lost, and another copy of the message is sent. This could result in unnecessary
messages being sent if the ACK message takes more time to produce than the RTT allows.

Because the whole message is encrypted, it is important that the messages arrives in the
correct order. If the message N is not received, then the integrity check of message N+1 will
be based on N-1 and fail. DTLS must therefore wait until the previous sent messages ACK
message returns until the next message can be sent. If the network is very unreliable, the RTT
could become large and create quite long delays for the handshake to complete. [42]

2.4.5 Application Layer

The application layer is the fourth and top most layer in the network stack and includes
protocols such as HTTP, MQTT, and CoAP. [12] This layer provides a more easily readable
data structure that can be used for application such as emails, websites, or games. This section
will describe the protocols used at the application layer in the 6LoWPAN stack an which
security measure that are of interest.

CoAP

The Constrained Application Protocol (CoAP) is a transferring protocol specifically designed
for constraint environments such as lossy network. CoAP is most commonly applied on
micro-controllers in a low-energy network that expects a low throughput of the data. Sim-
ilar to HTTP, CoAP is a RESTful protocol and relies on method such as GET, POST, PUT,
and DELETE. A CoAP request can be translated via a proxy to a HTTP request. Since the
transceivers used in micro-controller might be limited to a maximum of bits per message, the

16

2.4. The network stack used for ACE (6LoWPAN)

RS

Client Hello

Client Hello

Server Hello Done

Application Data

Applicaton Data

Server Hello

Client Key Exchange
Change Cipher Spec

Encrypted Handshake Message

Hello Verify Request

Change Cipher Spec

Encrypted Handshake Message

Client AS

POST / auth-token
 Access token +
RS information

Resource Request

 AS information

Figure 2.5: ACE DTLS handshake overview [42]

server can return a 4.13 (Request Entity Too Large) error code if the message was truncated.
The response should set the Size Option bytes to the max size of what the server can handle.

In order to avoid message spoofing, the Client generates and sends a token that must be
included in the response from the server. Otherwise, the Client must not process the message
at all. Since CoAP is built with UDP as the transport layer protocol, CoAP requests contains a
Confirmable Message flag that adds or remove the need for an ACK message from the server.
[9]

If the network requires a CoAP proxy to translate the request from CoAP to HTTP, the
message has to be decrypted and DTLS cannot provide end-to-end encryption any more.

Object Security for Constrained RESTful Environments (OSCORE)

There are currently multiple ACE version being explored and evaluated, one such version is
the OSCORE-ACE implementation [36]. Object Security for Constrained RESTful Environ-
ments (OSCORE) provides an Application layer security 2.7. [47] OSCORE only encrypts the
message code and the message payload and leaves the CoAP token and CoAP message un-
encrypted. In order to create a secure communication, a key exchange has to be made ahead

17

2.4. The network stack used for ACE (6LoWPAN)

Client Hello

Client

Timer Expires

Server

Hello Verify Request
(lost)

Client Hello
(Retransmit)

Figure 2.6: DTLS handshake with packet loss

of time. This could either be done via PSK during the deployment, a key exchange protocol,
-or as the ACE-framework purposes using PoP-tokens granted from a Authentication Server
(AS). If the AS for the RS is unknown, the Client can optionally send a request without a
valid token to receive the address to the AS responsible for that specific RS. 2.8 When the AS
is known, the Client can authenticate towards the AS and request a PoP-token. If the Client
was successfully authenticated, the AS returns a PoP-token containing the key-id for the OS-
CORE PSK, and the granted scope of authorization. The Client then posts the PoP-token
along with a nonce (N1) to the /authz-info endpoint at the RS which validates the PoP-token,
stores the data, and returns another nonce (N2). The security context is derived from the con-
catenated nonce N1 and N2 and is set at both end points. When the security context is set,
the Client can send a OSCORE request to the RS which in turn may response with another
OSCORE Response.

Since only the payload and status code is encrypted, OSCORE is vulnerable to attacks
such as monitoring attack. [22]

CBOR and COSE

To reduce the amount of data transferred between the peers Concise Binary Object Represen-
tation (CBOR) is used as the data representation for the ACE-framework. [23] CBOR is data
representation derived from the JSON model and works a lot in a similar manner. [11] Just
like JSON, CBOR maps a value to an abstract type, however, to reduce the data size CBOR
represents the type by a number instead of a string. The CBOR encoder uses a pre-defined
schema that maps all types to a specific number to convert JSON to CBOR. This schema has to
be shared or available for every peer in the transaction, otherwise it cannot decode the object.
[11]

Similar to how JSON has Javascript Object Signing and Encryption (JOSE), CBOR has
CBOR Object Signing and Encryption (COSE). [46] The COSE structure consists of 3 elements,
a set of protected header parameters in a binary string, a set of unprotected header parameters
in a map, and the payload of the message.

18

2.4. The network stack used for ACE (6LoWPAN)

Application Layer

Transport Layer

OSCORE

CoAP

Figure 2.7: OSCORE overview derived from [47]

Client

/Sec Context
Derivation/

Resource Request

 AS Information

 POST /token

 Access Token
+ RS Information

POST /authz-info
(access_token, N1)

2.01 Created (N2)

OSCORE Request
?(N1, N2)

OSCORE Response

OSCORE Request

OSCORE Response

RS

/Sec Context
Derivation/

AS

Figure 2.8: OSCORE Protocol Overview for the ACE framework [36]

19

2.5. IoT

Figure 2.9: Nucleo-144

2.5 IoT

There are many different manufacturers of microcontrollers, transceiver modules, and avail-
able software. It is important that every part is compatible with each other and that the
6LoWPAN stack can be fully implemented.

2.5.1 Microcontrollers

STM32 microcontollers is a family based on the 32-bit ARM processor
The Nucleo-144 [2] from the F4 series is known for its high performance. With 1028Kb

flash memory and 256Kb RAM it can support almost every common network stack and in-
terface such as Ethernet, WiFi, IEEE802.15.4.

STMicroelectroics provide a powerful flashing software called STLink, which allows for
easy flashing and debugging methods. The STLink is compatible with third party terminals
such as pyterm and openOCD. [3]

STlink is a programming interface that utilises the Singe Wire Debugger (SWD) interface
that commonly exists on most available IoT devices [3].

A Raspberry Pi is a small but powerful computer that runs a version of Ubuntu with
Linux kernels. [4] The latest Linux kernel supports the 6LoWPAN interface, making the Rasp-
berry pi a perfect match as an endpoint in the network.

2.5.2 802.15.4 Transceivers

The LR-WPAN is supported by transceivers such as Microchips mrf24j40 or Atmels at86rf233
modules.

20

2.5. IoT

Figure 2.10: microchips PmodRF2 802.15.4 transceiver

Figure 2.11: Open labs 802.15.4 transceiver

The PmodRF2 seen in figure 2.10 utilizes a mrf24j40 transceiver which is developed by
Microchip to communicate with the IEEE 802.15.4 standard.

The Open Labs IEEE802.15.4 module seen in figure 2.11 uses a at86rf233 transceiver and
is mountable directly to the raspberry pi’s SPI via the GPIO pins. Both the tranceivers are
limited to 128 bits messages per package.

2.5.3 IoT Operating Systems

There are multiple manufacturers such as Microchip, ARM, Zolertia, and Zigbee, which all
have their own definition of how GPIO-pins and clocks are accessed. Since the concept of IoT
still is quite new, there is currently no standardized way of how to program such a device. In
order to combat this problem, a few organizations have started to develop Operating System
(OS) that is compatible with many different devices. This allows for more general implemen-
tations of e.g the network stack to be developed, since the OS acts as the API between the
software and the device. One such OS is the RIOT OS, which is a free open source project
moderated by the RIOT-organisation [5]. RIOT OS is specialised in resource constrained de-
vices that requires low memory footprint, low overhead, and a constrained network stack
such as 6LoWPAN. Since RIOT is open source it has gathered a great community of contrib-
utors it now supports over 50 different devices from a multitude of manufactures.

Another OS is the Contiki OS which also is a free open source project moderated by the
Research Institutes of Sweden (RISE) [6]. While the OS is stable and supports most of the
necessary network implementations needed for this report, most of the supported platforms

21

2.6. Related work

Amplifier Oscilloscope
RShunt

RFilter

RFilter

CFilter

+-

Load

Figure 2.12: Current measuring circuit as proposed in [34]

has been removed from production and are no longer available. Its community is small, and
the activity of the Contiki project has stagnated over the last years.

Mbed-OS is also a free open-source OS for embedded devices. The OS currently only
supports ARMs own devices, which limits the availability of constrained devices. and the
number of transceiver drivers currently supported are only three.[7].

2.5.4 Power consumption measurements circuit

It is difficult to generate accurate power measurements, especially when the consumption is
low and irregular such as in a IoT-device. The circuit in figure 2.12 describes a circuit used in
[34] to convert the current to voltage, filter, and then amplify the signal.

The resistor Rshunt is a really small resistor and provides a small voltage drop between the
power supply and the load. This small voltage drop is then filtered via a LP-filter consisting
of two resistors RFilter and a capacitance CFilter. The cutoff frequency fc can be calculated
using the formula described in 2.1 to reduce the noise. If the signal is to weak to measure, it
can be passed through an amplifier to increase the signal strength.

fc =
1

2π ˚ 2RFilter ˚ CFilter
(2.1)

2.6 Related work

There has been multiple discussions and suggestions on which is the best practice to imple-
ment authentication on a constrained device. Other security frameworks and their archi-
tecture and methods will be presented, followed by other ACE implementations. Lastly, a
related work on how to evaluate the power consumption of an low power device.

2.6.1 Security Frameworks

Kumar et.al [29] proposes a lightweight anonymous secure framework (AFS) to avoid mali-
cious meta-data breaches. Even if the channel is secured and encrypted, attackers could still
monitor the network to gather meta-data about which peers are active in the communication.
This could be used to generate a schedule of the victims habits and when he/she is not at
home. Previous related work has either disregarded the anonymity of the communication
or consumed an unnecessary amount of energy. The authors wanted to implement a anony-
mous and unlikable framework that would provide authentication and integrity to the users
while still having a low energy consumption. They developed and simulated a smart home
network with devices that could connect to the internet via a gateway. After the framework

22

2.6. Related work

was verified to work in the simulation it was modeled in AVISPA to under go a security anal-
ysis. The ASF was able to provide both anonymity and unlinkability between the network
peers.

Kumar et. al [30] proposes another similar Lightweight anonymous framework for
a Smart Sensor Network (SMI). The new Lightweight authentication and key agreement
(LAKA) framework would provide authentication and anonymity for the nodes in the net-
work. It is important for smart devices to not only be able to send, but also receive data e.g
for updates. The communication must therefore provide two way security between the peers
in order to avoid malicious attacks. Instead of assigning the authentication mechanism to the
Certificate Authority as in [29], this framework assigns the authentication mechanism to the
Neighbourhood Area Network (NAN) gateway. The NAN gateway is responsible for man-
aging multiple Home Area Networks (HAN) by authenticating the sensor nodes in the HAN
and relay the sensor data to the end-user. The framework consists of three phases namely the
System Setup Phase where the NAN gateway receives security parameters, the registration
phase where the sensors and end-users registers to the NAN gatway and the authentication
and key establish A HAN was deployed using TelosB with an integrated CC2420 transceiver
as the sensors. The LAKA framework required only 832 uJ to send and receive messages. Ku-
mar et. al managed to create a anonymous secure framework that is lightweight and energy
efficient.

In [37] Porambage et. al proposes a two-phase Authentication protocol for centralized
wireless sensor networks. The protocol is meant to provide scalability and security to con-
strained devices by distributing implicit certificate-based authentication. By assigning the
authentication process the an external trusted Certificate Authority the constrained sensors
would only have to be able to verify the implicit certificate instead of e.g user credentials.
The sensor-nodes usually communicates via CoAP which uses UDP and the most straight
forward security implementation would be to use DTLS. However, due to the unreliability
of UDP, and the large amount of messages in a DTLS handshake DTLS was not deemed suit-
able for this constrained environment. The authors instead proposes a Elliptic Curve Cryp-
tography (ECC) based implicit certificate that would create less overhead compared to DTLS
and can be extended for authentication purpose. The framework is split in to two phases,
namely the registration phase and the authentication phase. In the registration phase, the
sensor or end-user registers to the Certificate Authority and receives a certificate that is used
in the authentication phase. The Authentication phase authenticates the sensor or end-user
by deriving a shared key from the previous certificate. The system was setup using Ellip-
tic Curve Qu-Vanstone (ECQV) for the certificate and Elliptic Curve Diffie-Hellman for the
key exchange. Each sensor-node was deployed on a TelosB with a 802.15.4 transceiver us-
ing TinyOS as the operating system. The results shows an energy-efficient framework that
consumes 44.47 mj for the registration phase and 45.6 mj for the authentication phase.

H. Islam et. al [26] proposes that in a Information Centric Network (ICN), such as a
sensor network the data flow might not always have to allow for a two way communication
between the client and the sensor. Instead the network stores the data in a cache and process
the request known as a POINT network [14]. This lets the client subscribe to the data instead
of directly accessing the sensor which reduces the workload for the constrained sensors. Each
sensor node is connected to the POINT network via a Network Access Point (NAP) that relays
the data and manages the requests for that specific sensor. The setup used 6 stm32 nucleo-f401
running RIOT-OS as the leaf nodes using an 802.3at (ethernet) connection. Each node was
connected to a virtual NAP simulated on a computer. The test was then executed by sending
test messages that was relayed through this network setup with success. By moving the
requests away from the constrained server and allowing the client to subscribe to the data
similar to the mqtt [8] the overhead was reduced.

23

2.6. Related work

2.6.2 Previous ACE implementations

In Cirani et.al[45], they discuss four different network setups that would enable authentica-
tion. Two of the setups relies on the gateway as the authenticator, but as Cirani et.al pointed
out, this is not a relevant to evaluate, since the gateway is not required to be constrained
in any way. The third and fourth setup enabled an end-to-end encryption between the client
and the device, where the fourth setup would enable the gateway to convert HTTP requests to
CoAP. The experiment was conducted using the Contiki network simulator Cooja. Each node
was represented by the Zolertia Z1 that was compiled with 92Kb ROM and 8Kb RAM. The
total energy consumption was calculated by multiplying the Z1 and the CC2420 transceivers
power consumption according to their data sheets with the total active time. While the eval-
uations from the report seems reasonable, it has only been evaluated in a simulated environ-
ment which might not provide a fair representation of a real world situation.

S.Aragon et.al [44] presents a real world implementation of the ACE framework by us-
ing IPsec as the security method. In this report, the hardware used in the experiment was
the Zolertia Z1 successor the Zolertia Firefly platform. The Firefly is a resource constrained
device with a built in IEEE 802.15.4 enable CC2538 radio, 32Kb or RAM, and 512 kB of flash
memory. Every node in the network was deployed using the firefly platform meaning that
the whole network is constrained, which removes the requirement for a gateway between the
constrained and the less constrained network.

The report compared three different ways of authentication using IPsec, namely Direct
Provisioning, IKEv2 with symmetric-key, and IKEv2 with an asymmetric-key with regards to
the memory footprint, energy consumption and the network latency.

The result showed that the IKE-CPK (Key exchange using asymmetric elliptic curve) re-
quired about twice as much energy and time to generate tokens compared to the IKE-PSK
(Key exchange using symmetric PSK). While the expended energy for the token generation
doubled, it is not that significant when compared to the whole OAuth flow. The Direct provi-
sioning measured in at the same time and energy as the IKE-PSK when generating the keys,
but not when transmitting, which makes sense, since the Direct Provisioning requires the
keys to be present at compile time.

IoT evaluations

In order to evaluate the power consumption in a low-energy device, it is important to gen-
erate precise measurements that can read small currents. Komosny [34] proposes a way of
measuring small currents in low-powered IoT-devices. Since the consumption of a device
fluctuate depending on how resource demanding the current task is, it is difficult to get a
accurate reading using a multimeter. The multimeter only outputs the average consumption,
but the real consumption could consist of a short burst of usage, and then a long idle time. For
battery powered critical infrastructure, this information is really important in order to reduce
the consumption. Most IoT-development board has a shorted IDD-output pin which exposes
the circuit from the power supply. This allows for current measurements before the supply
reaches the load. A oscilloscope can only read voltage differences, which requires a shunt
resistor for the conversion from current to voltage. Due to the noise to signal ratio, the signal
has to be filtered. The author created a low pass filter to remove high frequency noise using
a 220 nF capacitor, and a 47K ohm resistor with the cutoff frequency at 7.7kHz as described
in fig 2.12. After the signal was filtered, it then had to be amplified with a INA210-amplifier,
sampled, and analyzed in matlab. The results shows clear spikes of the consumption of the
deice which made it possible to read more exact measurements.

24

3 Method

This chapter describes how the thesis was produced and is divided in to three parts. First,
the Literature study was conducted and analysed, followed by the Implementation of the network
that describes how the hardware was chosen and implemented in to the network. Lastly the
chapter describes the process of testing and evaluating the network.

3.1 Literature study

To get a good understanding of how IoT devices are secured today and what security flaws
and attack vector exist, a literature study was made. The literature was found using Google
scholar, Liu search, Research gate, and Mendeley.

3.1.1 Search terms and validation

The search terms used was IoT, Security, framework, OAuth, M2M, constrained, lightweight, Key
exchange, which resulted in many different kinds of papers. In order to determine if the papers
was relevant, the abstract and conclusion was read and analysed multiple times. If the paper
answered one of the following questions, it was deemed relevant enough to be read entirely.

• What frameworks exists today, and how do they perform?

• How are these kinds of studies conducted? (simulated or implemented)

• Which kind of hardware is used, and how is the performance evaluated?

3.2 Design specification

In order to implement the network, a specification of each device was required. 6LoWPAN
is defined for a specific set of protocols, and it is important that the device, OS, transceivers,
and drivers all are compatible with each other.

25

3.3. Implementation

3.2.1 Hardware specification

The network in figure 3.1 requires at least four devices and five network interfaces to setup.
Two of the devices namely the Client and the AS have no constraining requirement, mean-

ing that they could be deployed on any computer powerful enough to support a linux kernel.
To simulate a network, but still not over complicate the implementation the AS was deployed
using a raspberry pi zero w. The raspberry pi is powerful enough to manage a database of
users and have a built in wifi module allowing a wlan interface.

Since the Client is supposed to be a user without any constrains, the Client was deployed
on a laptop running Ubuntu 18.04.

As for the gateway, there is a requirement to have a lowpan and a wlan interface. The
Linux kernel have built in support for the at86rf233 transceiver which allows the usage of the
lowpan interface. The at86rf233 was ordered, however it had a 3 week lead time and a few
weeks delivery time. In order to get started with the implementation, a mrf24j40 transceiver
with a few days delivery time was ordered as well. It was later discovered that the linux
kernel did not fully support the mrf24j40 transceiver due to a bug and the implementation
was delayed until the at86rf233 transceivers arrived.

The Resource Server is the most constrained of all the devices and is limited in both band-
width and power supply. At first, a bluepill with a STM32f103 cpu was tested, but proved
not to be compatible with the terminal interfaces. A L0-discovery board from the low-power-
consumption STM32 series was used. The build in STlink/v2-1 worked perfectly with the
terminal interface, and the transceivers could be tested and verified.

However, the DTLS and CoAP libraries required too much RAM for the L0 series to
handle, so a STM32F303 discovery board with a STlink/v2-B was ordered. Although the
board was equipped with a STlink/v2-B, it was not compatible with the terminal interface.
It proved to hard to debug a network implementation without custom debug messages or
inputs. The final device was a Nucleo-144 2.9 with 1-Mb flash and 256-Kb RAM and a
STlink/V2-1 programmer/debugger.

3.3 Implementation

There were many devices and modules that had to be implemented in order to setup the net-
work. Since no module or device are from the same manufacturer or developed specifically
for each other it is therefore important to implement in small steps and verify that everything
works as expected. The interfaces used where dependent on the industry standards such as
GPIO pins, PMod, and 802.15.4 network standard.

3.3.1 Transceiver implementation

When building a network from scratch, it is required to have at least two clients that can
communicate with each other in order to verify that the transceiver works. Since there are so
many steps that could fail along the implementation, and both transceivers had to work at
the same time, the implementation was done in small and verifiable steps.

The first step was to verify that the transceivers worked, and was not damaged during
the delivery. A guide [13] was followed to install the mrf24j40 transceivers on the raspberry
pi. The guide warned for a bug in the Linux kernel 4.14 but the guide is old and referred to a
working branch that had already been merged to the official kernel. Even after multiple tries
and custom built kernels, the mrf24j40 was not supported on the raspberry pi.

Since the at86rf233-transceiver drivers are pre-installed in the Linux kernel, this was the
next transceiver to test. The at86rf233 is developed by open-labs especially to match its pins
the GPIO of the raspberry pi.

The transceivers were tested as described in figure 3.2 by sending pinging each other
from both devices. After verifying that two at86rf233 transceivers worked, one of them was

26

3.3. Implementation

Client Authorization Server User
Database

Border Router

Wifi / Ethernet

PC Raspberry Pi ZeroW

Raspberry Pi ZeroW

Resource Server

Nucleo-144

6LoWPAN

Figure 3.1: Final network setup overview

RPi RPI

at86rf233 at86rf2336LoWPAN

Figure 3.2: Transceiver validation setup

27

3.3. Implementation

define MRF24J40_PARAMS {
. sp i = SPI_DEV (0) ,
. s p i _ c l k = SPI_CLK_5MHZ ,
. cs_pin = GPIO_PIN (PORT_B , 6) ,
. i n t _ p i n = GPIO_PIN (PORT_B , 8) ,
. r e s e t _ p i n = GPIO_PIN (PORT_B , 9)
}

Listing 3.1: NUCLEO-144 mrf24j40 configuration

installed on the l0-discovery board connecting it via the SPI. The raspberry pi and the RS was
quickly able to find and ping each other over the 6LoWPAN interface.

Since the RIOT OS have up to date mrf24j40 drivers, a mrf24j40 transceiver was mounted
on the l0-discovery board to test if they actually worked.

RPi Nucleo-144

at86rf233 mrf24j406LoWPAN

Resource ServerGateway

Figure 3.3: mrf24j40 transceiver validation

A test concluded as in figure 3.3 that the mrf24j40 transceiver worked perfectly with the
RIOT OS drives, and that the reason the Raspberry pi’s was not able to support them must
be because of a issue in the implementation.

3.3.2 Network implementation

With all the transceivers working properly, the network nodes were implemented in the fol-
lowing way. The Gateway created the Non-constrained sub-network and advertised us-
ing radvd [38]. Radvd were configured as described in 3.3 where the network IP prefix
fd18:a:b:1::/64 is the advertised network over the wlan interface. Devices such as the Client
use rdisc6 [41] to discover and connect to the sub-network. The prefix provides a global IPv6
address to every device that connects via the router. This allows the devices to access and be
accessed outside the constrained network.

Two constrained devices was deployed in the constrained network to simulate a noisy
network. Each device required a struct containing the parameters of which port each module
was connected to as shown in listing 3.1 and 3.2. The default SPI ports for the MOSI and
MISO where already declared.

28

3.3. Implementation

Figure 3.4: Image of the setup, Blue device: L0-discovery, white device to the right: Nucleo-
144, Raspberry pi with ROUTER sticker: Router, Raspberry pi with AS sticker: Authorization
Server

29

3.4. Verification of the network setup

define AT86RF2XX_PARAMS_BOARD {
. sp i = SPI_DEV (0) ,
. s p i _ c l k = SPI_CLK_5MHZ ,
. cs_pin = GPIO_PIN (PORT_B , 8) ,
. i n t _ p i n = GPIO_PIN (PORT_B , 9) ,
. s leep_pin = GPIO_PIN (PORT_A, 3) ,
. r e s e t _ p i n = GPIO_PIN (PORT_A, 5)
}

Listing 3.2: l0-discovery at86rf233 configuration

Nucleo RPi

Gateway

PC

Resource Server Client

6LoWPAN WiFi

Figure 3.5: Gateway verification setup. The wlan prefix is set to fd00:a:b:1::/64, and the
6lowpan prefix is fd00:a:b:2::/64

3.3.3 6LoWPAN border router

Since he constrained device should be reachable from another less constrained network such
as wifi, a border router had to be installed. The border router requires an interface for each
network, and since the Raspberry pi Zero W already have a wifi module installed, it only
required the installation of a 6LoWPAN transceiver. The at86rf233 transceiver was chosen
since the mrf24j40 was not fully supported on the raspberry pi.
After the interfaces was implemented, the Radvd router software was installed with the con-
figuration file shown in listing 3.3.

RIOT OS performs Router Solicitation at start and connects to the router automatically.
The Raspberry pi and the PC required the ndisc6 and radvd software to connect to the router.

3.4 Verification of the network setup

After each device had their required network interfaces installed, a verification of each con-
nection was necessary before proceeding with the measurements. The next step is to verify
that the constrained network from the border router works as intended and can relay the
messages between the Client and the RS.

3.4.1 Constrained network

The constrained network consisting of the l0-discovery, the Nucleo-144, and the Gateway was
verified by pinging and sending CoAP requests. Both the l0-discovery and the Nucleo-144
was able to receive a global IPv6 address prefix assigned by the gateway router. Each device
was tested by pinging and sending and receiving CoAP request on both the link local IPv6
address and the global IPv6 address with success.

3.4.2 Cross network interface access

After each device had their respective network interface installed the connection was tested
by having each device pinging each other. This is where some problems occurred, because

30

3.4. Verification of the network setup

i n t e r f a c e wlan0
{

AdvSendAdvert on ;
UnicastOnly on ;
AdvCurHopLimit 2 5 5 ;
AdvSourceLLAddress on ;

p r e f i x fd18 : a : b : 1 : : / 6 4
{

AdvOnLink o f f ;
AdvAutonomous on ;
AdvRouterAddr on ;

} ;

abro fd18 : a : b : 1 : : 1
{

AdvVersionLow 1 0 ;
AdvVersionHigh 2 ;
AdvValidLifeTime 2 ;

} ;
} ;

i n t e r f a c e lowpan0
{

AdvSendAdvert on ;
UnicastOnly on ;
AdvCurHopLimit 2 5 5 ;
AdvSourceLLAddress on ;

p r e f i x fd18 : a : b : 2 : : / 6 4
{

AdvOnLink o f f ;
AdvAutonomous on ;
AdvRouterAddr on ;

} ;

abro fd18 : a : b : 2 : : 1
{

AdvVersionLow 1 0 ;
AdvVersionHigh 2 ;
AdvValidLifeTime 2 ;

} ;
} ;

Listing 3.3: Radvd-conf file

31

3.5. CoAPs implementation

the RS would only ping using its link local address which would get stuck in the router due
to the scope being beyond reach. The Client was able to ping the RS global IPv6 address and
the RS would answer with the global address. However, when making a CoAP request, the
RS was using its link local address and ACK respond got stuck at the router.

There seems to be a bug with the RIOT OS when creating the route through the gate-
way. The network configuration defaults to using the link local address but when editing the
values, they do not persist and gets overwritten.

Since the correct route between the 6LoWPAN and WIFI networks cannot be defined au-
tomatically or manually, RIOT OS never finds the perfect route and overvalues the link local
scoped address over the global address. The solution to this was to modify the scoring sys-
tem in such way that the global address gets a higher score when there is any ambiguity to
which source address to choose. This is in no way a good solution to use in production, but
is good enough to implement to continue this report.

3.5 CoAPs implementation

To allow a secure communication between the RS and the Client a DTLS library was used. Af-
ter the IP handler resolved the IP address, it passes the data along to the transport layer. The
Transport handler reads the Transport Header as described in figure 3.6, which states how the
Application data have been encrypted. In this thesis, the application data is encrypted with
a PSK and the current session id. The DTLS handler decrypts the data and passes it along to
the Application, which in this case is a CoAP handler.

Transport Header Application Data

DTLS handler

CoAP handler

Encrypted

Application Data

Plain text

Application
Header

plain text

IP handler

PSK + Session ID

Figure 3.6: DTLS handler logic

32

3.6. CBOR parsing

Figure 3.7: CoAP request response

3.6 CBOR parsing

When the application layer receives the token it has to be parsed from a CBOR 2.4.5 in to
something more manageable. In JavaScript and less strict languages this is easily done by
converting it to a JSON, but since C is a strict language, and the token would always look the
same in this setup, a token struct was defined for each element in the CBOR object.

The CBOR is parsed and contains a key_id, a nonce, and the COSE which is the encrypted
authentication token. In this setup, in order to reduce the package size, the keys for the COSE
is already shared and the key id describes which key the AS used to encrypt the COSE with.

3.7 Token verification and authorization

When the key had been derived from the key_id and the nonce was extracted, the COSE could
be decrypted using the key and the nonce. If the token is decrypted, the token is valid and
stored in memory. Due to a limitation in the DTLS and CoAP library in RIOT OS, the DTLS
keys had to be set at compilation time, and could not be changed in runtime. Therefore, the
DTLS key was not updated from the token. However, the scope was still used to determine
if the Client was authorized to access a resource or not.

3.8 Test setup and Evaluation

After the network was setup and the authentication process was completed it was time to
evaluate the framework. This section describes the different metrics that was evaluated and
how they where acquired.

3.8.1 Test environment

There are many factors that affects the performance of a constrained device. One such factor is
ability to physically being able to move an object within the network and still have a network
access. If the device requires a perfect connection with full network connection strength to
function it might not be a robust enough solution. E.g a medical sensor node should be able
to move between rooms without becoming unusable because of a bad connection.

The test environment was a office building with tables, computers and peoples, but no
walls to obstruct the path between the router and the RS. The router was deployed at three
different distances to generate weaker and weaker signals. These distances was chosen to be
1m, 6m, and 12m, where the 12m was deployed in the corridors to allow a unobstructed path.

33

3.8. Test setup and Evaluation

The tests consisted of the client requesting a small data package or sending a OAuth to-
ken to the RS. For the baseline, a normal CoAP GET request was made to the /my_resource
endpoint. This endpoint returns a string of four bytes which is "data". The CoAP + Token
sends a token via a PUT request to the /authzinfo endpoint, which decrypts, decodes, stores
the token data and returns "token-approved" if the token was valid. Lastly, the CoAP + DTLS
test is similar to the plain CoAP and makes a GET request to /my_resource endpoint using a
DTLS secured channel.

3.8.2 Network evaluation

The network was evaluated by listening to the network traffic passing through the gateway.
An instance of the network analyzing tool wireshark captured every package sent between
the Resource Server and the Client. The packages was then parsed, labeled, and sorted in
order to group each package to its CoAP-requests and stored in a database as shown in table
in 3.1.

id message id TimeStamp Sender CoAP code Path
1 30576 08:13:05.358133 Client 90 /my/resource
2 30576 08:13:05.369183 RS 82 /my/resource (text/plain)
3 30577 08:13:06.332235 Client 90 /my/resource
4 30577 08:13:06.345944 RS 82 /my/resource (text/plain)

Table 3.1: CoAP-GET packages captured by wireshark

The package loss was calculated by analyzing each group of messages and counting the
number of duplicate packages. Due to the way the transceivers where implemented, they had
trouble to receive the initial Hello_Request. This might be a result of the constrained device
putting the transceiver in idle mode, which saves power, but has problems with detecting
messages. If the group of messages only consisted of multiple Hello_Request, they where
simply discarded, and was not added to the calculation of the package loss. When the first
Hello_Request was received by the RS, it had a much better success rate, but there where still
a lot of lost packages.

3.8.3 Power consumption

RIOT OS has two states, idle and active. The idle state is used when the device is still lis-
tening for inputs, but no active computation is requested at the moment. It still powers the
transceiver and all the RAM is still available. The active state is when the device uses its full
capacity and is using the CPU. In order to evaluate the consumption of the framework both
the idle and active consumption had to be measured.

The idle consumption was measured by simply connecting the multimeter over the ex-
posed IDD pin on the Nucleo-144 discovery board as seen in figure 3.8. In order to mea-
sure the active state the Client send token requests to the Nucleo board to activate both the
transceiver and the CPU to max. Because the multimeter only averages the values over a
larger time period than the time for a request, a continuous stream of requests was made to
generate a more steady measurement. Due to inaccuracies in multimeters, another multime-
ter was used to verify the results from the first measurement. The defined operating current
on the transceiver mrf24j40 is 19 mA for receiving and 23mA for transmission. Due to difficul-
ties in measuring accurate when the transceiver was sending or receiving, the consumption
was averaged out to a constant 21mA.

34

3.8. Test setup and Evaluation

Figure 3.8: IDD jumper pin on the Nucleo-144 discovery board

The energy consumption was calculated by using the equation 3.1. Where the Current I
was measured using a multimeter, the voltage U is known to be 3.3 and the time is measured
during the network evaluation.

total_energy = Current ˚ Voltage ˚ time (3.1)

3.8.4 Security Analysis

The first phase of the ACE-framework namely, the token phase is when the Client sends the
proof of possession token to the RS for authentication. Since the channel is not secured, it can
not provide anonymity. The PoP token is still encrypted with a PSK and provides therefore
confidentiality. The nonce prevents any attacker from producing a replay attack since the RS
should never accept a message with a used nonce. By signing the token with a MAC, it also
assures the integrity of the token.

DTLS only provides message integrity and confidentiality between two peers. It does
not provide any anonymity and any third party that could access or analyze the network
can monitor the requests and gather metadata. However, DTLS does provide end-to-end
encryption, removing the need to trust any gateway between the peers.

35

4 Results

This chapter presents and describes the results acquired from the method. First, the latency
for the different methods is shown first as the average, and then as a timeline for each re-
quest. This is followed by the average packet loss for each method and how they compare
to each other. Lastly the results from the energy consumption and the required hardware
specification is presented.

4.1 Latency

As described in the method, the latency evaluation was made by positioning the router on
three different increasing distances to act as a bad connection. The test cases consisted of a
normal CoAP request, a token verification request, and a DTLS setup + CoAP request.

The basic CoAP request was a GET request to /my_resource and acted as a base line to
compare the other test cases against. This request requested a small data packet with the
string "data" in it and the results are described in figure 4.1. The basic CoAP requests is small
and latency only increased a few milliseconds with the increased distance.

After a base line was made for each distance, the next test case was to send the OAuth
token via a PUT request to /authz-info for the RS to validate it. Due to some limitations with
the RIOT OS and the re-fragmentation capability of the CoAP implementation and that the
transceivers only accepted messages of 128 bytes each a smaller dummy token had to be
send to act as the real token. The real token was already stored on the RS and was accessed
and decrypted when the dummy token arrived to simulate a real OAuth transaction. This is
further addressed in the discussion. Similar to the base line, the CoAP + token request does
not increase very much with the reduced network quality as seen in figure 4.2. Most of the
increased time is from the decryption of the token which averaged on about 1.8ms and the
overhead for the PUT method.

Lastly, the CoAP + DTLS request was made. This request requested the same data as
the CoAP but required the DTLS handshake to be initiated before establishing a secure con-
nection. As seen in figure 4.3, the reduced network quality really takes a toll on the DTSL
handshake. This increased latency is better compared in figure 4.5 where all the tests are next
to each other. Even though the whole CoAP + DTLS interaction is 10 requests which is 5
times more than the normal CoAP requests, the total latency is about 15 times higher. Figure
4.4 shows the overhead for each transaction for the CoAP + DTLS request.

36

4.1. Latency

This is further visualized in graph 4.6, where the latency for each completed request is
shown in a timeline. The CoAP + DTLS handshake is super volatile and peaks at 900 ms at
worst for 6m.

A comparison between the CoAP + DTLS requests with regards to the distances is de-
picted in graph 4.7. CoAP + DTLS over 1 m quite stable with just a few small latency spikes.
The 6m test shows a few high spikes, but averages out to similar latency as the 1m tests. Usu-
ally when a packet loss has occurred, it is usually followed by more, which results in long
re-transmission times. The 12m test have many high latency peaks which represents almost
half of every request.

11857 11824

13555

Distance

[C
oA

P]
 a

vg
 ti

m
e

[u
s]

0

5000

10000

15000

1m 6m 12m

[CoAP] avg time vs. Distance

Figure 4.1: Average transfer time CoAP for each distance

37

4.1. Latency

18902 19379
20403

Distance

[C
oA

P
+

to
ke

n]
 a

vg
 ti

m
e

[u
s]

0

5000

10000

15000

20000

25000

1m 6m 12m

[CoAP + token] avg time vs. Distance

Figure 4.2: Average transfer time CoAP + Token for each distance

183915
194724

252978

Distance

[C
oA

P
+

DT
LS

] a
vg

 ti
m

e
[u

s]

0

100000

200000

300000

1m 6m 12m

[CoAP + DTLS] avg time vs. Distance

Figure 4.3: Average transfer time CoAP with DTLS for each distance

38

4.1. Latency

Distance

Ti
m

e
[u

s]

0

100000

200000

300000

1m 6m 12m

Application data

Application data

Change Cipher

Client key exchange

Server Hello Done

Server Hello

Client Hello

Hello Verify Request

Client Hello

CoAP+DTLS

Figure 4.4: Overhead for each request in the DTLS handshake

11857 11824 1355518902 19379 20403

183915 194724

252978

AvgTime per request

Ti
m

e
[u

s]

0

100000

200000

300000

1m 6m 12m

CoAP CoAP + token CoAP + DTLS

Average Request time over all distances

Figure 4.5: Average transfer time for 6 meters

39

4.1. Latency

Request

Ti
m

e
[u

s]

0

250000

500000

750000

1000000

CoAP CoAP+Token CoAP+DTLS

Request time over 6m

Figure 4.6: packet transfer time for 6 meters timeline

Request

tim
e

[u
s]

0

250000

500000

750000

1000000

1m 6m 12m

CoAP + DTLS request time for each distance

Figure 4.7: packet transfer time for CoAP + DTLS over each distance

40

4.2. Packet loss

4.2 Packet loss

Another way of representing the performance of the network is to calculate the packet loss
and failed requests that timed out. Tabular 4.1 the number of lost packets per request, and
CoAP+DTLS really stands out with its high number. A DTLS handshake is 10 requests, and
the implementation loses on average 6.44 packets per session which is an increase of 64%
packets needed to send. The packet loss in table 4.1 only counts the losses when the first
packet had arrived successfully. Table 4.2 shows the total amount of timed out requests, even
when the first packet failed.

At 1m, CoAP drops about 2% of the packets which is mainly when the RS is not respond-
ing to the initial request. 2% will be used as the base line re transmission for this setup. CoAP
+ Token has a slightly higher re transmission rate, but still similar to the base line. CoAP
+ DTLS have a high re transmission rate even at 1m, and at 12m, as much as 84% of the
communication is only re transmissions.

Method 1m 6m 12m
CoAP 0.01 0.0202 0.0272

CoAP + token 0.0141 0.0176 0.026
CoAPs 0.2308 1.293 6.44

Table 4.1: Average packet loss per request

Method 1m 6m 12m
CoAP 1.96% 9.17% 38.24%

CoAP + token 2.92% 17.92% 44.34%
CoAP + DTLS 11.36% 60.12% 83.61%

Table 4.2: Percentage of re-transmissions per request

41

4.3. Energy consumption

Failed Request

0

0.25

0.5

0.75

1

1m 6m 12m

CoAP CoAP + Token CoAP + DTLS

Fraction of Failed Requests

Figure 4.8: fraction of failed requests with respect to the distance

4.3 Energy consumption

The current measured between the supply and the load on the Nucleo-144 while active was
14 mA, and the transceiver averaged out to 21 mA while active. Equation 3.1 gives the con-
sumption of 0.1122 nJ/s and the total consumption for each test is shown in figure 4.9. Since
the consumption is a linear function to the latency, the values of the consumption mirrors the
latancys.

4.4 Implementation

Table 4.4 describes the required RAM and flash storage to implement the different network
stacks. The 6LoWPAN requires an additional 100 kB to implement and 1 more kB to run.

Network stack RAM Storage
plain CoAP 7.5 kB 215.7 kB
6LoWPAN 8.5 kB 313.6 kB

Table 4.3: Memory footprint for the network stacks

42

4.4. Implementation

1.3304 1.3267 1.52092.1208 2.1743 2.2892

20.6353
21.848

28.3841

Po
w

er
 c

on
su

m
pt

io
n

[m
j]

0

10

20

30

1m 6m 12m

CoAP CoAP + token CoAP + DTLS

Power consumption in mJ

Figure 4.9: Power consumption in mj

43

5 Discussion

In this chapter the Results, Method, and the over all project will be discussed. The reason is
to criticise and reflect on the report to provide insight and legitimize the thesis. It is also to
provide insight from the author about how decisions where made and what the thesis means
in a wider context.

5.1 Results

This section will discuss the Results from the implementation and the tests that was per-
formed. First, the final implementation will be discussed to reflect on the hardware and soft-
ware that was chosen and why. This is followed by the results of the performance which will
discuss how the framework performed, and why it performed as it did. Lastly the security
analysis is discussed and what it means for the security of the framework.

5.1.1 Implementation

The implementation overall was successful and every device worked as intended for the basic
usage of the ACE-framework. Even though many features such as Introspection could not be
implemented due to lack of support in the RIOT OS. The OS is open source and is still very
much under construction. Even after the project, RIOT OS would still be the preferred choice
simply due the the active and welcoming community, but there might better implementations
of e.g DTLS in mbed-os or Contiki.

5.1.2 Performance

The results of the test was expected after reading the related work. While DTLS provides
a secure channel for peers to communicate over, it creates too much overhead in the setup
phase. The intended usage for these devices was to read just a few bytes of data such as a
thermometer or current wind speed. By looking at table ??, it is quite easy to see how costly
this overhead can be for such a small amount of requested data. CoAP + DTLS requires on
average 6 more messages per completed request compared to the 10 used for the handshake
which is a significant increase for a constrained device. figure 4.4 shows that more than half
of the request is spent on creating a secure channel. In table 4.2 it is evident that over 83%

44

5.2. Method

percent of the transmissions is lost. As seen in figure 4.9, the DTLS communication consumes
between 15 and 20 times more energy compared to the base line.

This high overhead might be hard to motivate for a constrained device that only sends
a few bytes of information at a time. While the network stack for 6LoWPAN has good in-
tentions of providing a small network footprint, the implementation of DTLS ruins it with
inefficient handshakes.

Since DTLS is build upon UDP, DTLS can be used for streaming data over a secure chan-
nel. Sadly, due to some features missing in the RIOT OS such as package re-fragmentation in
the application layer, it was not possible to send more than one package over DTLS without
having to restart the device and the connection afterwards. Due to the limit of the transceiver,
each message was limited to 128 bits. It would have been interesting to measure the relative
connection times if the RS would stream data over a longer period. Maybe then the ACE-
DTLS implementation could be motivated.

5.1.3 Security

There are a few key attributes that is sought after when communicating with sensors in a
network. The most important attributes is the integrity and confidentiality to avoid having
any third party reading or tampering with the sensor values. The ACE-DTLS framework
does provide this level of security. Due to the nature of DTLS, the framework cannot provide
any anonymity between the peers, and any third party can monitor the requests to extract
valuable metadata such as habits or processing timings.

The most prominent feature of the framework is the scalability of the network. Compared
to other related work which relies on the trust of the gateways, the ACE framework only
requires the RS to trust the AS which can be deployed anywhere.

5.2 Method

This section will discuss and the method of how the setup was implemented and evaluated.
The implementation section will reflect in problems and decisions that was made that either
did not work properly or why the things that worked was chosen. Lastly, the method for
measuring the network performance and the power consumption will be discussed.

5.2.1 Implementation

Over all the implementation was successful but with a few problems. The implementation of
the framework required a lot of research to make sure that every module and software would
be compatible with the device. It was difficult to know where to start to limit the search space,
so the decision to use the RIOT OS was made quite early. RIOT had the required libraries
and the other existing operating system such as the popular Contiki and mbedOS did not
show enough signs of having an active community to ask for help or expect updates from.
While most other research papers used Contiki, the researchers software was not shared or
contributed to Contiki afterwards. In hindsight, Contiki might have been better to allow for
better comparisons between papers, but the RIOT community’s help and feedback has been
invaluable for this thesis.

This made it possible to choose the modules using the process of elimination. RIOT sup-
ports a great number of popular boards and transceiver modules. It was only a question of
how constrained the device should be. In order to avoid stack overflows RIOT uses a blacklist
system to avoid devices with not enough space or RAM to use different kinds of modules.
The first intended device was the B-L07Z-LRWAN1 board which is a low energy device in-
tended for LORA but was compatible with RIOT and the mrf24j40 transceivers module.

One time consuming part of the implementation was the lack of documentation for ST-
link v2-1 interface and why just that version was important. RIOT OS is heavily reliant on

45

5.3. The work in a wider context

connecting a terminal to the device to send inputs and receive outputs in order to retrieve
the IP, configure, and debug the device. ST-Link is a serial interface between the computer
and the device and a new version 2 was recently released and added support for terminals.
However, previous versions of the ST-Link that lacked hardware and support for the 2-1
features was hotfixed to a 2-A, B, or C version. There was no documentation on the difference
between the versions, save for one comment in a forum that explained how 2-1 is the only
interface that supports terminals. Most of the STM32 microcontrollers are equipped with a
2-A interface. This took a lot of time and effort to realise that the software e.g openOCD was
correctly configured and that is was the device that lacked support.

5.2.2 Measurements

Reading the true power consumption of the device was difficult due to the large number of
factors and unreliable measuring tools that was available. Common multimeters are usually
best suited to measure currents of a constant flow in a higher range rather than the short
burst of low consumption that a constrained device produce. In order to try and measure
the peaks more precisely, an oscilloscope was used. As discussed in [34], the oscilloscope
can only measure the voltage difference, and the current has to be converted to voltage. A
resistor with 0.02 Ohm was used as the shunt-resistor described in figure 2.12. Two 63 kOhm
resistors was used as the filter resistors, and a 10 nF capacitor was used as the filter capacitor.

The signal was now filtered, but the output was too weak to read reliably. An amplifier
was used to amplify the signal received from the filter. Even after the circuit was imple-
mented, the signal was still to noisy to read any useful data. Due to time constraints and a
lack of resources this method of measuring the consumption had to be discarded in favour of
the simpler method of just using a multimeter.

The multimeter was good enough, but the output values could differ a little bit between
measurements. However, in the end, it does not really matter exactly how much this setup
consumed since the research question is what the performance of the ACE-framework which
is relative to the setup used.

The communication between the Client and the AS was not evaluated due to both being
non-constrained entities with access to high speed internet.

5.3 The work in a wider context

Even though the DTLS implementation of the ACE framework might not be the most effi-
cient version, it is still important to implement and test it to verify it. As mentioned in the
introduction, the number of IoT-devices in every day life is increasing rapidly, and it is im-
portant that we find not just one-size-fits-all security framework, but multiple different with
their own strengths and flaws. The ACE-DTLS-framework might be too energy consuming
just to send a few bytes of data per request, but the secured UDP channel could be used to
stream larger amount of data making better use of the high overhead.

46

6 Conclusion

6.1 How can the ACE framework be implemented on a constrained
device so that a secure authentication is achieved?

The framework was setup in a real world environment with a constrained device as the Re-
source Server (RS). A Nucleo-144 from STM32 with an mrf24j40 802.15.4 transceiver, running
RIOT OS was used as the constrained RS. The mrf24j40 transceiver with 802.15.4 support was
installed via the GIPO pins on the Nucleo-144 board and the mrf24j40 drivers available in
RIOT OS. This transceiver works well for short ranges, but drops a lot of packages when the
distances increases and obstacles obscures the path to the router. The tokens was decrypted
using libraries such as tinycrypt and the CBOR data was decoded with a CBOR-decoder li-
brary.

RIOT OS is a good fit for the ACE framework since it supports the network stack and
implements libraries such as DTLS and CoAP, but requires a more robust implementation.
Most of the current features such as DTLS still lacks support to change keys in runtime and
the CoAP library can only support either a secure or un-secure connection at the time.

6.2 How does this implementation of ACE affect the performance of the
network and the resource server?

ACE-DTLS is secure, but produces a lot of overhead for the small amount of data that was
sent during the evaluation. This overhead could become a problem if the package loss results
in a handshake that is longer than the expiration time for the token. The Client and RS would
never be able to set up a secure channel using DTLS and the whole authentication process
would have to start over. The AS could increase the expiration time of the token dynamically
to accommodate for a lossy network, however, this is not a good solution since it increases
the time frame an attacker is able to use a captured token.

6.3 Future work

This thesis was constrained due to some software implementations which made it difficult to
evaluate every part of the framework. Due to the 128 bit message restriction in the transceiver,

47

6.3. Future work

and the RS was not able to stream any data over a secure channel. Since DTLS uses UDP, this
would probably be the strongest feature of the ACE-DTLS framework.

An observation from looking at the results is that the token which is encrypted in the
application layer produced hardly any more overhead that a regular CoAP request. the ACE-
OSCORE framework proposes such a solution where the encryption is applied in the appli-
cation layer. There are currently no library or support available for this implementation, but
would be interesting to evaluate.

48

Bibliography

[1] 2019. URL: https : / / www . ikea . com / us / en / catalog / categories /
departments/home_electronics/36812/.

[2] 2019. URL: https://www.st.com/en/evaluation-tools/nucleo-f412zg.
html.

[3] 2019. URL: https://www.st.com/en/development-tools/st-link-v2.html.

[4] 2019. URL: https : / / www . raspberrypi . org / help / what - %5C % 20is - a -
raspberry-pi/.

[5] 2019. URL: https://riot-os.org/.

[6] 2019. URL: https://www.ri.se/en.

[7] 2019. URL: https://www.mbed.com/en/platform/mbed-os/.

[8] 2019. URL: http://mqtt.org/documentation.

[9] Z. Shelby ARM, K. Hartke, and C. Bormann University of Bremen TZI. “The Con-
strained Application Protocol (CoAP)”. In: IETF (2014). URL: https://tools.ietf.
org/html/rfc7252.

[10] Authentication and Authorization for Constrained Environments (ACE) using the OAuth 2.0
Framework (ACE-OAuth). Tech. rep. URL: https://tools.ietf.org/html/draft-
ietf-ace-oauth-authz-24.

[11] C. Bormann and P. Hoffman. Concise Binary Object Representation CBOR. 2013. URL:
https://tools.ietf.org/html/rfc7049.

[12] R. Braden. Requirements for Internet Hosts – Communication Layers. 1989. URL: https:
//tools.ietf.org/html/rfc1122.

[13] Create a generic Raspbian image with 6LoWPAN support. URL: https://github.com/
RIOT - Makers / wpan - raspbian / wiki / Create - a - generic - Raspbian -
image-with-6LoWPAN-support.

[14] Trossen D., Reed, M.J., J. Riihijärvi, M. Georgiades, Fotiou N., and Xylomenos G. “Ip
over icn-the better ip?” In: Proceedings of the 2015 European Conference on Networks and
Communications (EuCNC), Paris, France, 29 June–2 July 2015; IEEE: Piscataway, NJ, USA,
2015; pp. 413–417 (2015).

[15] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. 1998. URL:
https://www.ietf.org/rfc/rfc2460.txt.

49

https://www.ikea.com/us/en/catalog/categories/departments/home_electronics/36812/
https://www.ikea.com/us/en/catalog/categories/departments/home_electronics/36812/
https://www.st.com/en/evaluation-tools/nucleo-f412zg.html
https://www.st.com/en/evaluation-tools/nucleo-f412zg.html
https://www.st.com/en/development-tools/st-link-v2.html
https://www.raspberrypi.org/help/what-%5C%20is-a-raspberry-pi/
https://www.raspberrypi.org/help/what-%5C%20is-a-raspberry-pi/
https://riot-os.org/
https://www.ri.se/en
https://www.mbed.com/en/platform/mbed-os/
http://mqtt.org/documentation
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/draft-ietf-ace-oauth-authz-24
https://tools.ietf.org/html/draft-ietf-ace-oauth-authz-24
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc1122
https://github.com/RIOT-Makers/wpan-raspbian/wiki/Create-a-generic-Raspbian-image-with-6LoWPAN-support
https://github.com/RIOT-Makers/wpan-raspbian/wiki/Create-a-generic-Raspbian-image-with-6LoWPAN-support
https://github.com/RIOT-Makers/wpan-raspbian/wiki/Create-a-generic-Raspbian-image-with-6LoWPAN-support
https://www.ietf.org/rfc/rfc2460.txt

Bibliography

[16] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. 2011. URL:
https://tools.ietf.org/html/rfc6071.

[17] M. Degermark, B. Norgren, and S. Pink. IP Header Compression. 1999. URL: https:
//tools.ietf.org/html/rfc2507.

[18] T. Dierks and E. Rescorla. The Transport Layer Security TLS Protocol Version 1.2. 2008.
URL: https://tools.ietf.org/html/rfc5246.

[19] WHITFIELD DIFFIE and IEEE MARTIN E. HELLMAN MEMBER. “New Directions in
Cryptography ”. In: (1976). URL: https://ieeexplore-ieee-org.e.bibl.liu.
se/stamp/stamp.jsp?tp=&arnumber=1055638.

[20] S. Farrell. “Low-Power Wide Area Network (LPWAN) Overview”. In: (2018). URL:
https://tools.ietf.org/html/rfc8376.

[21] s. Farrell. Low-Power Wide Area Network (LPWAN) Overview. 2018. URL: https : / /
tools.ietf.org/html/rfc8376.

[22] S. Farrell and H. Tschofenig. Pervasive Monitoring Is an attack. 2014. URL: https://
tools.ietf.org/html/rfc7258.

[23] S. Gerdes, O. Bergmann, C. Bormann, G. Selander, and L. Seitz. Datagram Transport Layer
Security (DTLS) Profile for Authentication and Authorization for Constrained Environments
(ACE). 2018. URL: https://datatracker.ietf.org/doc/html/draft-ietf-
ace-dtls-authorize-08.

[24] S. Gerdes, L. Seitz, G. Selander, and G. Selander. draft-ietf-ace-actors-07 - An architecture
for authorization in constrained environments. Tech. rep. 2018. URL: https://tools.
ietf.org/html/draft-ietf-ace-actors-07.

[25] D. Hardt. The OAuth 2.0 Authorization Framework. 2012. URL: https://tools.ietf.
org/html/rfc6749.

[26] H. Islam, D. Lagutin, A. Yla-Jaaski, N. Fotiou, and A. Gurtov. “Transparent CoAP Ser-
vices to IoT Endpoints through ICN Operator Network”. In: MDPI Sensors (2019).

[27] James A. Jerkins. “Motivating a Market or Regulatory Solution to IoT Insecurity with
the Mirai Botnet Code”. In: (2017). URL: https://ieeexplore- ieee- org.e.
bibl.liu.se/document/7868464.

[28] M. Jones, L. Seitz, G. Selander, S. Erdtman, and H. Tschofenig. Proof-of-Possession
Key Semantics for CBOR Web Tokens (CWTs) draft-ietf-ace-cwt-proof-of-possession-06. 2019.
URL: https : / / www . ietf . org / id / draft - ietf - ace - cwt - proof - of -
possession-06.txt.

[29] Pardeep Kumar, An Braeken, Andrei Gurtov, Jari Iinatti, and Phuong Hoai Ha. “Anony-
mous Secure Framework in Connected Smart Home Environments”. In: IEEE Transac-
tions on Information Forensics and Security PP (Jan. 2017), pp. 1–1. DOI: 10.1109/TIFS.
2016.2647225.

[30] Pardeep Kumar, Andrei Gurtov, Mangal Sain, Andrew Martin, and Phuong H. Ha.
“Lightweight Authentication and Key Agreement for Smart Metering in Smart Energy
Networks”. In: IEEE Transactions on Smart Grid PP (July 2018), pp. 1–1. DOI: 10.1109/
TSG.2018.2857558.

[31] Knud Lasse Lueth. “State of the IoT 2018: Number of IoT devices now at 7B – Market
accelerating”. In: (2018). URL: https://iot-analytics.com/state-of-the-
iot-update-q1-q2-2018-number-of-iot-devices-now-7b/.

[32] Artur Marzano, David Alexander, Osvaldo Fonseca, Elverton Fazzion, Cristine
Hoepers, Klaus Steding-Jessen, Marcelo H. P. C. Chaves, Italo Cunha, Dorgival Guedes,
and Wagner Meira Jr. “The Evolution of Bashlite and Mirai IoT Botnets”. In: (2018). URL:
https://ieeexplore-ieee-org.e.bibl.liu.se/stamp/stamp.jsp?tp=
&arnumber=8538636.

50

https://tools.ietf.org/html/rfc6071
https://tools.ietf.org/html/rfc2507
https://tools.ietf.org/html/rfc2507
https://tools.ietf.org/html/rfc5246
https://ieeexplore-ieee-org.e.bibl.liu.se/stamp/stamp.jsp?tp=&arnumber=1055638
https://ieeexplore-ieee-org.e.bibl.liu.se/stamp/stamp.jsp?tp=&arnumber=1055638
https://tools.ietf.org/html/rfc8376
https://tools.ietf.org/html/rfc8376
https://tools.ietf.org/html/rfc8376
https://tools.ietf.org/html/rfc7258
https://tools.ietf.org/html/rfc7258
https://datatracker.ietf.org/doc/html/draft-ietf-ace-dtls-authorize-08
https://datatracker.ietf.org/doc/html/draft-ietf-ace-dtls-authorize-08
https://tools.ietf.org/html/draft-ietf-ace-actors-07
https://tools.ietf.org/html/draft-ietf-ace-actors-07
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://ieeexplore-ieee-org.e.bibl.liu.se/document/7868464
https://ieeexplore-ieee-org.e.bibl.liu.se/document/7868464
https://www.ietf.org/id/draft-ietf-ace-cwt-proof-of-possession-06.txt
https://www.ietf.org/id/draft-ietf-ace-cwt-proof-of-possession-06.txt
https://doi.org/10.1109/TIFS.2016.2647225
https://doi.org/10.1109/TIFS.2016.2647225
https://doi.org/10.1109/TSG.2018.2857558
https://doi.org/10.1109/TSG.2018.2857558
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://ieeexplore-ieee-org.e.bibl.liu.se/stamp/stamp.jsp?tp=&arnumber=8538636
https://ieeexplore-ieee-org.e.bibl.liu.se/stamp/stamp.jsp?tp=&arnumber=8538636

Bibliography

[33] G. Montenegro, N. Kushalangar, J. Hui, and D. Culler. Transmission of IPv6 Packets over
IEEE 802.15.4 Networks. 2007. URL: https://tools.ietf.org/html/rfc4944.

[34] Patrik Moravek, Dan Komosny, Milan Simek, and Lubomir Mraz. “Energy Demands
of 802.15.4/ZigBee Communication with IRIS Sensor Motes”. In: Aug. 2011, pp. 69–73.
DOI: 10.1109/TSP.2011.6043770.

[35] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, and C. Gomes. “IPv6 over
BLUETOOTH(R) Low Energy”. In: (2015). URL: https://tools.ietf.org/html/
rfc7668.

[36] F. Palombini, L. Seitz, G. Selander, and M. Gunnarsson. OSCORE profile of the Au-
thentication and Authorization for Constrained Environments Framework draft-ietf-ace-oscore-
profile-07. 2019. URL: https://tools.ietf.org/html/draft- ietf- ace-
oscore-profile-07.

[37] Pawani Porambage, Corinna Schmitt, Pardeep Kumar, Andrei Gurtov, and Mika Yliant-
tila. “Two-phase Authentication Protocol for Wireless Sensor Networks in Distributed
IoT Applications”. In: Apr. 2014. DOI: 10.1109/WCNC.2014.6952860.

[38] radvd. URL: http://www.litech.org/radvd/.

[39] A. Rajakaruna, A. Manzoor, P. Porambage, M. Liyanage, and M. Ylianttila. “Enabling
End-to-End Secure Connectivity for Low-Power IoT Devices with UAVs”. In: Proc. of
2nd Workshop on Intelligent Computing and Caching at the Network Edge (2019).

[40] T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz,
M. Samimi, and F. Gutierrez. “Millimeter wave mobile communications for 5g cellu-
lar: It will work”. In: (2013). URL: https://ieeexplore.ieee.org/abstract/
document/6515173.

[41] rdsic6. URL: https://linux.die.net/man/8/rdisc6.

[42] E. Rescorla and N. Modadugu. Datagram Transport Layer Security verson 1.2. 2006. URL:
https://tools.ietf.org/html/rfc6347.

[43] Rijndael. Announcing the ADVANCED ENCRYPTION STANDARD (AES). 2001. URL:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.

[44] S.Aragon. “ACE of Spades in the IoT Security Game: A Flexible IPsec Security Profile
for Access Control”. In: 2018 IEEE Conference on Communications and Network Security
(CNS), Beijing, China, 2018, pp. 1-9 (2018). URL: https://arxiv.org/abs/1808.
04581.

[45] S.Cirani. “IoT-OAS: An OAuth-Based Authorization Service Architecture for Secure
Services in IoT Scenarios”. In: IEEE Sensors Journal (Volume: 15 , Issue: 2 , Feb. 2015) pp
1224 - 1234 (2014). URL: https://ieeexplore.ieee.org/abstract/document/
6915840.

[46] J. Schaad. “CBOR Object signing and Ecnryption (COSE)”. In: IETF (2017). URL:
https://tools.ietf.org/html/rfc8152.

[47] G. Selander, J. Mattsson, F. Palombini, and L. Seitz. Object Security for Constrained
RESTful Environments OSCORE draft-ietf-core-object-security-16. 2018. URL: https://
tools.ietf.org/html/draft-ietf-core-object-security-16.

[48] P. Thubert, E. Nordmark, S. Chakrabarti, and C. Perkins. Registration Extensions for IPv6
over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery. 2018. URL:
https://tools.ietf.org/html/rfc8505.

[49] G. Zhang, C. Li, Y. Zhang, C. Xing, and J. Yang. “SemanMedical: A kind of semantic
medical monitoring system model based on the IoT sensors”. In: 2012 IEEE 14th Inter-
national Conference on e-Health Networking, Applications and Services (Healthcom) (2012).
URL: https://ieeexplore.ieee.org/abstract/document/6379414.

51

https://tools.ietf.org/html/rfc4944
https://doi.org/10.1109/TSP.2011.6043770
https://tools.ietf.org/html/rfc7668
https://tools.ietf.org/html/rfc7668
https://tools.ietf.org/html/draft-ietf-ace-oscore-profile-07
https://tools.ietf.org/html/draft-ietf-ace-oscore-profile-07
https://doi.org/10.1109/WCNC.2014.6952860
http://www.litech.org/radvd/
https://ieeexplore.ieee.org/abstract/document/6515173
https://ieeexplore.ieee.org/abstract/document/6515173
https://linux.die.net/man/8/rdisc6
https://tools.ietf.org/html/rfc6347
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://arxiv.org/abs/1808.04581
https://arxiv.org/abs/1808.04581
https://ieeexplore.ieee.org/abstract/document/6915840
https://ieeexplore.ieee.org/abstract/document/6915840
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/draft-ietf-core-object-security-16
https://tools.ietf.org/html/draft-ietf-core-object-security-16
https://tools.ietf.org/html/rfc8505
https://ieeexplore.ieee.org/abstract/document/6379414

7 Appendix

This chapter contains the code and data that was used in the report but did not fit in the
previous chapters.

7.1 code

7.1.1 Resource Server

gcoap_cli.c

include < s t d i n t . h>
include < s t d i o . h>
include < s t d l i b . h>
include < s t r i n g . h>
include " net/gcoap . h"
include " od . h"
include " fmt . h"
include " led . h"

include " cborHelper . h"

define ENABLE_DEBUG (0)
include " debug . h"

s t a t i c void _resp_handler (unsigned r e q _ s t a t e , coap_pkt_t * pdu ,
sock_udp_ep_t * remote) ;

s t a t i c s s i z e _ t _ s t a t s _ h a n d l e r (coap_pkt_t * pdu , u i n t 8 _ t * buf , s i z e _ t
len , void * c t x) ;

s t a t i c s s i z e _ t _r iot_board_handler (coap_pkt_t * pdu , u i n t 8 _ t * buf ,
s i z e _ t len , void * c t x) ;

s t a t i c s s i z e _ t _authz_info (coap_pkt_t * pdu , u i n t 8 _ t * buf , s i z e _ t
len , void * c t x) ;

52

7.1. code

s t a t i c s s i z e _ t _my_resource (coap_pkt_t * pdu , u i n t 8 _ t * buf , s i z e _ t
len , void * c t x) ;

/ / s t a t i c s s i z e _ t _ c r e d (c o a p _ p k t _ t * pdu , u i n t 8 _ t * buf , s i z e _ t l en ,
v o i d * c t x) ;

/ * CoAP r e s o u r c e s . Must be s o r t e d by pa th (ASCII o r d e r) . * /
s t a t i c const coap_resource_t _resources [] = {

{ "/authz´i n f o " , COAP_PUT, _authz_info , NULL } ,
{ "/ c l i / s t a t s " , COAP_GET | COAP_PUT, _s ta t s_handler , NULL } ,
{ "/my/resource " , COAP_GET, _my_resource , NULL } ,
{ "/ r i o t /board " , COAP_GET, _r iot_board_handler , NULL } ,

} ;

s t a t i c g c o a p _ l i s t e n e r _ t _ l i s t e n e r = {
&_resources [0] ,
s i ze of (_resources) / s i ze of (_resources [0]) ,
NULL

} ;

/ * Counts r e q u e s t s s e n t by CLI . * /
s t a t i c u i n t 1 6 _ t req_count = 0 ;

/ *
* Response c a l l b a c k .
* /

s t a t i c void _resp_handler (unsigned r e q _ s t a t e , coap_pkt_t * pdu ,
sock_udp_ep_t * remote)

{
(void) remote ; / * no t i n t e r e s t e d in t h e s o u r c e c u r r e n t l y

* /

LED4_ON;

i f (r e q _ s t a t e == GCOAP_MEMO_TIMEOUT) {
p r i n t f (" gcoap : timeout f o r msg ID %02u\n" , coap_get_id (pdu)

) ;
return ;

}
e lse i f (r e q _ s t a t e == GCOAP_MEMO_ERR) {

p r i n t f (" gcoap : e r r o r in response\n") ;
return ;

}

char * c l a s s _ s t r = (coap_get_code_class (pdu) ==
COAP_CLASS_SUCCESS)

? " Success " : " Error " ;
p r i n t f (" gcoap : response %s , code %1u.%02u" , c l a s s _ s t r ,

coap_get_code_class
(pdu) ,

coap_get_code_deta i l
(pdu)) ;

i f (pdu >́payload_len) {

53

7.1. code

unsigned content_type = coap_get_content_type (pdu) ;
i f (content_type == COAP_FORMAT_TEXT

|| content_type == COAP_FORMAT_LINK
|| coap_get_code_class (pdu) ==

COAP_CLASS_CLIENT_FAILURE
|| coap_get_code_class (pdu) ==

COAP_CLASS_SERVER_FAILURE) {
/ * E x p e c t i n g d i a g n o s t i c p a y l o a d in f a i l u r e c a s e s * /
p r i n t f (" , %u bytes\n%.* s\n" , pdu >́payload_len , pdu >́

payload_len ,
(char *)

pdu >́
payload
) ;

}
e lse {

p r i n t f (" , %u bytes\n" , pdu >́payload_len) ;
od_hex_dump (pdu >́payload , pdu >́payload_len ,

OD_WIDTH_DEFAULT) ;
}

}
e lse {

p r i n t f (" , empty payload\n") ;
}

}

s t a t i c s s i z e _ t _authz_info (coap_pkt_t * pdu , u i n t 8 _ t * buf , s i z e _ t
len , void * c t x)

{
(void) c t x ;

u i n t 3 2 _ t s t a r t = xtimer_now_usec () ;

Token * token = (Token *) malloc (s i ze of (Token)) ;
decryptCoseToken (pdu >́payload , pdu >́payload_len , token) ;

s s i z e _ t sizeOfScope = 1 1 ;
char * scope = malloc (s i ze of (char) * sizeOfScope) ;
scope = " HelloWorld " ;
scope [sizeOfScope] = 0 ;

char * retPayload = malloc (s i ze of (char) * 2 0) ;

i f (!memcmp(token >́scope , scope , sizeOfScope)) {
retPayload = " token approved " ;

} e lse {
retPayload = " i n v a l i d token " ;

}
gcoap_resp_ in i t (pdu , buf , len , COAP_CODE_CONTENT) ;
coap_opt_add_format (pdu , COAP_FORMAT_TEXT) ;
s i z e _ t resp_len = coap_opt_f in i sh (pdu , COAP_OPT_FINISH_PAYLOAD)

;

54

7.1. code

memcpy(pdu >́payload , retPayload , s t r l e n (retPayload)) ;
s s i z e _ t response = resp_len + s t r l e n (retPayload) ;

f r e e (retPayload) ;
f r e e (scope) ;
f r e e (token) ;
return response ;

}

s t a t i c s s i z e _ t _my_resource (coap_pkt_t * pdu , u i n t 8 _ t * buf , s i z e _ t
len , void * c t x)

{
(void) c t x ;

/ * r e a d coap method t y p e in p a c k e t * /
unsigned method_flag = coap_method2flag (coap_get_code_deta i l (

pdu)) ;
u i n t 8 _ t * payload = malloc (s i ze of (u i n t 8 _ t) *pdu >́payload_len + 1)

;
char * retPayload = malloc (s i ze of (char) * 1 6) ;

s s i z e _ t response = 0 ;

switch (method_flag) {
case COAP_GET:

retPayload = " data " ;
gcoap_resp_ in i t (pdu , buf , len , COAP_CODE_CONTENT) ;
coap_opt_add_format (pdu , COAP_FORMAT_TEXT) ;
s i z e _ t resp_len = coap_opt_f in i sh (pdu ,

COAP_OPT_FINISH_PAYLOAD) ;
memcpy(pdu >́payload , retPayload , s t r l e n (retPayload)) ;
response = resp_len + s t r l e n (retPayload) ;
break ;

case COAP_PUT:
memcpy(payload , (u i n t 8 _ t *) pdu >́payload , pdu >́

payload_len) ;
payload [pdu >́payload_len] = 0 ;

CborParser parser ;
CborValue i t ;
CborError e r r = c b o r _ p a r s e r _ i n i t (pdu >́payload , pdu >́

payload_len , 0 , &parser , &i t) ;

i f (e r r) {
f p r i n t f (s tderr , "CBOR parsing f a i l u r e a t o f f s e t %d :

%s\n" ,
i t . p t r ´ buf , c b o r _ e r r o r _ s t r i n g (e r r)) ;

return 1 ;
}

u i n t 1 6 _ t len = pdu >́payload_len ;

55

7.1. code

response = gcoap_response (pdu , buf , len ,
COAP_CODE_CHANGED) ;

break ;
}

f r e e (retPayload) ;
f r e e (payload) ;
return response ;

}

/ *
* S e r v e r c a l l b a c k f o r / c l i / s t a t s . A c c e p t s e i t h e r a GET or a PUT.
*
* GET : Returns t h e count o f p a c k e t s s e n t by t h e CLI .
* PUT: Updates t h e count o f p a c k e t s . R e j e c t s an o b v i o u s l y bad

r e q u e s t , but
* a l l o w s any two b y t e v a l u e f o r example p u r p o s e s .

S e m a n t i c a l l y , t h e on ly
* v a l i d a c t i o n i s t o s e t t h e v a l u e t o 0 .
* /

s t a t i c s s i z e _ t _ s t a t s _ h a n d l e r (coap_pkt_t * pdu , u i n t 8 _ t * buf , s i z e _ t
len , void * c t x)

{
(void) c t x ;

LED1_TOGGLE ;

/ * r e a d coap method t y p e in p a c k e t * /
unsigned method_flag = coap_method2flag (coap_get_code_deta i l (

pdu)) ;

switch (method_flag) {
case COAP_GET:

gcoap_resp_ in i t (pdu , buf , len , COAP_CODE_CONTENT) ;
coap_opt_add_format (pdu , COAP_FORMAT_TEXT) ;
s i z e _ t resp_len = coap_opt_f in i sh (pdu ,

COAP_OPT_FINISH_PAYLOAD) ;

/ * w r i t e t h e r e s p o n s e b u f f e r wi th t h e r e q u e s t count
v a l u e * /

resp_len += fmt_u16_dec ((char *) pdu >́payload , req_count
) ;

return resp_len ;

case COAP_PUT:
/ * c o n v e r t t h e p a y l o a d t o an i n t e g e r and up da t e t h e

i n t e r n a l
v a l u e * /

i f (pdu >́payload_len <= 5) {
char payload [6] = { 0 } ;
memcpy(payload , (char *) pdu >́payload , pdu >́

payload_len) ;
req_count = (u i n t 1 6 _ t) s t r t o u l (payload , NULL, 10) ;

56

7.1. code

return gcoap_response (pdu , buf , len ,
COAP_CODE_CHANGED) ;

}
e lse {

return gcoap_response (pdu , buf , len ,
COAP_CODE_BAD_REQUEST) ;

}
}

return 0 ;
}

cbor_helper.c

include < s t d i o . h>
include < s t d l i b . h>
include < s t r i n g . h>
include <time . h>

include " cborHelper . h"
include " t i n y c r y p t /aes . h"
include " t i n y c r y p t /ccm_mode . h"
include " cbor . h"

define ENABLE_DEBUG (0)
include " debug . h"

s t a t i c u i n t 8 _ t tes tPayload [] = {
0xD0 , 0x83 , 0x43 ,
0xA1 , 0x01 , 0x0A ,
0xA2 , 0x04 ,
0x45 , 0x81 , 0x63 , 0x52 , 0x53 , 0x31 , 0x05 , 0x4D ,

0x4B , 0x7E , 0x29 , 0x3B , 0x3A , 0x1E , 0x59 , 0x54 ,
0xB5 , 0x6D , 0x46 , 0x74 , 0xC1 ,

0x58 , 0x5A , 0x80 , 0x5A , 0x8E , 0x93 , 0x63 , 0xA5 ,
0x80 , 0x80 , 0xDE , 0x59 , 0xC7 , 0x80 , 0x98 , 0x71 ,
0x41 , 0x08 , 0x8A , 0xFE , 0x18 , 0x0C , 0x16 , 0x85 ,
0x92 , 0x33 , 0x80 , 0xC4 , 0x8B , 0x30 , 0xC2 , 0xC5 ,
0x84 , 0x28 , 0x93 , 0xFD , 0x94 , 0x3E , 0x09 , 0xDF ,
0xDF , 0xB2 , 0xE8 , 0x79 , 0x3A , 0x4B , 0x6B , 0x5A ,
0x85 , 0x79 , 0xE7 , 0x6C , 0xFF , 0x31 , 0xC6 , 0xA6 ,
0x6E , 0x06 , 0x04 , 0x88 , 0x1C , 0xDE , 0x44 , 0xF8 ,
0xA8 , 0x10 , 0x22 , 0xC8 , 0x38 , 0xC2 , 0x6A , 0x49 ,
0x2C , 0x3D , 0x1D , 0x62 , 0x1E , 0x77 , 0x2D , 0xD0 ,
0xCD, 0xE6 , 0xE7 , 0x80 , 0xB1 , 0x3B , 0x61 , 0x18 ,
0x8E , 0x43 , 0xCD, 0x69

} ;
s t a t i c s s i z e _ t testPayloadLen = 1 2 1 ;

57

7.1. code

s t a t i c u i n t 8 _ t testKey [] = {
0xa1 , 0xa2 , 0xa3 , 0x04 , 0x05 , 0x06 , 0x07 , 0x08 ,
0x09 , 0x0a , 0x0b , 0x0c , 0x0d , 0x0e , 0 x0f , 0x10

} ;

void printHex (u i n t 8 _ t * payload , s s i z e _ t len , bool nl) {
for (u i n t 8 _ t i = 0 ; i < s i ze of (u i n t 8 _ t) * len ; i ++) {

p r i n t f ("%02x " , payload [i]) ;
}
i f (nl) p r i n t f ("\n") ;

}

void parseCBOR (u i n t 8 _ t * payload , u i n t 1 6 _ t payload_len , Token * token
) {

CborParser parser ;
CborValue * i t = (CborValue *) malloc (s i ze of (CborValue)) ;
CborValue * recursed = (CborValue *) malloc (s i ze of (CborValue)) ;
CNFstruct cnf ;

CborError e r r = c b o r _ p a r s e r _ i n i t (payload , payload_len , 0 , &
parser , i t) ;

i f (e r r) {
DEBUG(" e r r : %d\n" , e r r) ;
return ;

}

cbor_va lue_enter_conta iner (i t , i t) ;
s i z e _ t len ;
CborValue next ;
i n t type ;
i n t e r r o r ;

while (1) {
e r r o r = getType (i t , &type) ;
i f (e r r o r < 0) {

return ;
}

switch (type)
{
case ISS :

c b o r _ v a l u e _ g e t _ s t r i n g _ l e n g t h (i t , &len) ;
token >́ i s s = c a l l o c (len , s i ze of (char)) ;
cbor_va lue_copy_tex t_s t r ing (i t , token >́i s s , &len , &next

) ;
token >́ i s s [len] = 0 ;
cbor_value_advance (i t) ;
break ;

58

7.1. code

case AUD:
c b o r _ v a l u e _ g e t _ s t r i n g _ l e n g t h (i t , &len) ;
token >́aud = c a l l o c (len , s i ze of (char)) ;
cbor_va lue_copy_tex t_s t r ing (i t , token >́aud , &len , &next

) ;
token >́aud [len] = 0 ;
cbor_value_advance (i t) ;
break ;

case CTI :
cbor_value_dup_byte_str ing (i t , &token >́c t i , &len , i t) ;
DEBUG(" c t i : ") ;
i f (ENABLE_DEBUG) printHex (token >́c t i , len , t rue) ;
break ;

case SCOPE :
c b o r _ v a l u e _ g e t _ s t r i n g _ l e n g t h (i t , &len) ;
token >́scope = c a l l o c (len , s i ze of (char)) ;
cbor_va lue_copy_tex t_s t r ing (i t , token >́scope , &len , &

next) ;
token >́scope [len] = 0 ;
DEBUG(" scope : %s\n" , token >́scope) ;
cbor_value_advance (i t) ;
break ;

case CNF:
DEBUG(" cnf :\n") ;
cbor_va lue_enter_conta iner (i t , recursed) ;
cbor_value_advance (recursed) ;
token >́cnf = (CNFstruct *) malloc (s i ze of (CNFstruct)) ;
parseCNF (recursed , token >́cnf) ;
cbor_va lue_ leave_conta iner (i t , recursed) ;
break ;

case EXP :
cbor_va lue_ge t_ in t (i t , &token >́exp) ;
DEBUG(" exp : %d\n" , token >́exp) ;
cbor_value_advance (i t) ;
break ;
/ / t o k e n . exp = g e t

default :
break ;

}
}

cbor_va lue_ leave_conta iner (i t , recursed) ;

(void) cnf ;
(void) parser ;
(void) i t ;
(void) token ;
f r e e (recursed) ;
f r e e (i t) ;

}

void decryptCoseToken (u i n t 8 _ t * payload , u i n t 1 6 _ t payload_len , Token
* token) {

59

7.1. code

payload_len = testPayloadLen ;
payload = (u i n t 8 _ t *) malloc (s i ze of (u i n t 8 _ t) * testPayloadLen) ;
memcpy(payload , testPayload , testPayloadLen) ;

u i n t 1 6 _ t o f f s e t ;
u i n t 1 6 _ t k i d S i z e O f f s e t = 1 0 ;
s s i z e _ t k idSize = payload [k i d S i z e O f f s e t] & 0x1F ;
u i n t 1 6 _ t k i d O f f s e t = k i d S i z e O f f s e t + 1 ;

char * kid = (char *) malloc (k idSize + 1) ;
memcpy(kid , &payload [k i d O f f s e t] , k idSize) ;
kid [k idSize] = 0 ;
o f f s e t = k i d O f f s e t + kidSize + 1 ;

COSEkey* key = getKey (kid , k idSize) ;

u i n t 1 6 _ t noncePos = o f f s e t + 1 ;

unsigned char * nonce = (unsigned char *) malloc (NONCE_SIZE) ;
memcpy(nonce , &payload [noncePos] , NONCE_SIZE) ;

o f f s e t = noncePos + NONCE_SIZE ;

o f f s e t +=1; / / s k i p [5 8] b y t e s t r i n g t y p e i d e n t i f i e r

u i n t 8 _ t encryptedCborLen = (u i n t 8 _ t) payload [o f f s e t] ;
DEBUG(" encrypted len : %d\n" , encryptedCborLen) ;
u i n t 1 6 _ t encryptedCborPos = o f f s e t + 1 ;
unsigned char * encryptedCbor = (unsigned char *) c a l l o c (s i ze of (

char) , encryptedCborLen) ;
memcpy(encryptedCbor , &payload [encryptedCborPos] ,

encryptedCborLen) ;

unsigned char * decryptedCbor = (unsigned char *) c a l l o c (s i ze of (
char) , encryptedCborLen) ;

decryptedCbor [3] = 1 2 ;

s t r u c t t c_aes_key_sched_s t ruc t s ;

TCCcmMode_t ccmState = (TCCcmMode_t) malloc (s i ze of (TCCcmMode_t)
) ;

t c_aes128_set_decrypt_key (&s , (const u i n t 8 _ t *) key >́key) ;

tc_ccm_config (ccmState , &s , nonce , NONCE_SIZE, 10) ;

i n t e r r = t c _ c c m _ d e c r y p t i o n _ v e r i f i c a t i o n (decryptedCbor ,
encryptedCborLen ,

60

7.1. code

NULL, 0 ,
encryptedCbor , encryptedCborLen ,
ccmState) ;

parseCBOR (decryptedCbor , encryptedCborLen , token) ;

(void) e r r ;
(void) encryptedCborLen ;
(void) encryptedCborPos ;
(void) testPayloadLen ;
(void) key ;
(void) payload ;
(void) payload_len ;

}

COSEkey* getKey (char * kid , s s i z e _ t k idSize) {
COSEkey* key ;
key = malloc (s i ze of (COSEkey)) ;
key >́kid = malloc (s i ze of (char) * k idSize) ;
key >́kid = kid ;
key >́s i z e = 1 6 ;
key >́key = testKey ;

return key ;
}

void parseCNF (CborValue * i t , CNFstruct * cnf) {

cbor_va lue_enter_conta iner (i t , i t) ;
s i z e _ t len ;
CborValue next ;
i n t type ;
i n t e r r o r ;

while (1) {
e r r o r = getType (i t , &type) ;
i f (e r r o r < 0) {

return ;
}
switch (type) {
case PSK_OCTET_K :

DEBUG(" o c t e t _ k : ") ;
cbor_value_dup_byte_str ing (i t , &cnf >́octe t_k , &len , i t)

;
i f (ENABLE_DEBUG) printHex (cnf >́octe t_k , len , t rue) ;
break ;

case PSK_KEY_TYPE :
cbor_va lue_ge t_ in t (i t , &cnf >́keyType) ;
DEBUG(" keyType : %d\n" , cnf >́keyType) ;
cbor_value_advance (i t) ;
break ;

61

7.1. code

case PSK_KEY_ID :
DEBUG(" kid : ") ;
cbor_value_dup_byte_str ing (i t , &cnf >́kid , &len , i t) ;
i f (ENABLE_DEBUG) printHex (cnf >́kid , len , t rue) ;
break ;

default :
break ;

}
}

cbor_va lue_ leave_conta iner (i t , i t) ;
(void) len ;
(void) next ;
(void) type ;
(void) cnf ;
(void) i t ;

}

i n t getType (CborValue * i t , i n t * type) {

i n t e r r o r = 0 ;

i f (c b o r _ v a l u e _ i s _ i n t e g e r (i t)) {
e r r o r = cbor_va lue_get_ in t (i t , type) ;

} e lse {
return ´1;

}
i f (e r r o r) {

return ´1;
}

(void) type ;
(void) e r r o r ;
cbor_value_advance (i t) ;
return 0 ;

}

62

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background
	Motivation
	Aim
	Research questions
	Limitations

	Theory
	Network security
	OAuth
	Authentication in a Constrained Environment (ACE)
	The network stack used for ACE (6LoWPAN)
	IoT
	Related work

	Method
	Literature study
	Design specification
	Implementation
	Verification of the network setup
	CoAPs implementation
	CBOR parsing
	Token verification and authorization
	Test setup and Evaluation

	Results
	Latency
	Packet loss
	Energy consumption
	Implementation

	Discussion
	Results
	Method
	The work in a wider context

	Conclusion
	How can the ACE framework be implemented on a constrained device so that a secure authentication is achieved?
	How does this implementation of ACE affect the performance of the network and the resource server?
	Future work

	Bibliography
	Appendix
	code

