
Master of Science in Software Engineering

September 2019

Model-based Testing for Performance
Requirements

A Systematic Mapping Study and A Sample Study

Xingru Chen
Waleed Abdeen

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in
partial fulfilment of the requirements for the degree of Master of Science in Software Engineering.
The thesis is equivalent to 20 weeks of full time studies.

The authors declare that they are the sole authors of this thesis and that they have not used
any sources other than those listed in the bibliography and identified as references. They further
declare that they have not submitted this thesis at any other institution to obtain a degree.

Contact Information:
Author(s):
Xingru Chen
E-mail: xica17@student.bth.se

Waleed Abdeen
E-mail: waab16@student.bth.se

University advisor:
Dr. Michael Unterkalmsteiner
Department of Software Engineering

Faculty of Computing Internet : www.bth.se

Blekinge Institute of Technology Phone : +46 455 38 50 00

SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract

Model-Based Testing is a method that supports automated test design by using a
model. Although it is adopted in industrial, it is still an open area within performance
requirements. We aim to look into MBT for performance requirements and find out a
framework that can model the performance requirements. We conducted a systematic
mapping study, after that we conducted a sample study on software requirements
specifications, then we introduced the Performance Requirements Verification and
Validation (PRVV) model and finally, we completed another sample study to see
how the model works in practice. We found that there are many models can be
used for performance requirement while the maturity is not enough. MBT can be
implemented in the context of performance, and it has been gaining momentum in
recent years compared to earlier. The PRVV model we developed can verify the
performance requirements and help to generate the test case.

Keywords: MBT, Performance modeling, Performance Aspects.

i

Acknowledgments

We would like to send our gratitude to our supervisor Dr. Michael Unterkalmsteiner,
this work wouldn’t be possible without his continuous support and valuable feedback
for our master thesis. Also, we would like to thank Qualicen GmbH who gave us the
opportunity to work with Specmate.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Aim and Objectives . 2

1.1.1 Aim . 2
1.1.2 Objectives . 2

1.2 Research Questions . 3
1.3 Method and Contribution . 4
1.4 Thesis organization . 5

2 Background and Related Work 7
2.1 Background . 7

2.1.1 Software Quality . 7
2.1.2 Software Performance . 8
2.1.3 Software Testing . 9
2.1.4 Model Based Testing . 10

2.2 Related Work . 11

3 Research Methodology 13
3.1 Systematic Mapping Study . 14

3.1.1 Research Questions . 14
3.1.2 Study Identification . 15
3.1.3 Selection Criteria . 16
3.1.4 Quality Assessment . 16
3.1.5 Data Extraction . 16
3.1.6 Data Analysis . 18

3.2 Software Requirements Mining . 18
3.2.1 Motivation of chosen method 18
3.2.2 Purpose and Related Research Questions 19
3.2.3 Design . 19
3.2.4 Selection Criteria . 19
3.2.5 Coding . 20
3.2.6 Requirement Testability . 20

3.3 Implementing Performance Requirements Verification and Validation
Model . 21
3.3.1 Motivation . 21

v

3.3.2 Research Questions . 21
3.3.3 Design . 22
3.3.4 Data collection . 22

3.4 Validity Threats . 22
3.4.1 SMS . 22
3.4.2 Software Requirements Mining 23
3.4.3 PRVV Model Implementation 23

4 Performance Requirements 25
4.1 State of the Art of Model-Based Performance Testing 25

4.1.1 Application Type . 28
4.2 State of Practice of Performance Requirements 29

4.2.1 Application Type . 30
4.3 Discussion . 31

5 Performance Requirements Verification and Validation Model 33
5.1 PRVV Model . 33

5.1.1 Model Description . 33
5.1.2 Creating The Model . 36
5.1.3 Example of PRVV . 37

5.2 Sample Study - Model Implementation 39
5.2.1 Example of Video Search Engine 39
5.2.2 Example of Inventory Management System 42
5.2.3 Example of Web Store . 43

5.3 Discussion . 45

6 Answering the Research Questions 49

7 Conclusions and Future Work 53
7.1 Future Work . 54

References 57

A SMS References 61

References 63

A Final Codes for Software Requirements Mining 67

B Results Tables 69
B.1 Systematic Mapping Study Results 69
B.2 Software Requirements Mining Results 82

vi

Chapter 1

Introduction

Performance (such as time behavior, capacity, or throughput) in software engineering
is an essential non-functional requirement of software products. Performance testing
is the process of measuring the speed, capacity, responsiveness and other properties
of a software program [32]. Even though the system functional requirements might
be fully completed, the system can still fail or get canceled if it did not meet the
system performance objective [34].

Besides, the research shows that performance-related issues would cost more
than expected and could increase the development cost significantly if not treated
early [9, 10, 33]. Take as an example, a software that did not consider performance
testing from the beginning, what if at the deployment the system was too slow? what
if to fix it the software architecture needs to be changed to meet the performance
requirements. Not just the deployment will be delayed but there will be a need for a
large effort to rearrange everything. This illustrates the importance of performance
testing and its ability to detect the issues early. A concrete example of bad perfor-
mance consequences on software is the famous game Pokemon Go. The roll-out of
the game stopped in 2016 because the servers crashed from the overloaded number
of users [29].

Woodside et al. [42] mentioned that developers have difficulties to transfer per-
formance requirements into written code, unlike functional requirements, due to the
concern that software functions and performance are of two different areas. Per-
formance testing is necessary since it can detect the causes of performance-related
issues and verify whether the software product meets the requirements or not [32].

Model-based testing (MBT) is a well-known software testing approach that uses
a model to generate test cases. It is not just known within the software engineering
community, but also is industry according to software testing survey [4], where 14%
of the respondents are using MBT approach. It forces testability into the product
design when creating the models. Since the model describes how the system behaves,
and when we model the system and generate the test cases then that means the
system is testable. Also, the models help representing the system functions and
generate the test cases automatically. Using MBT in performance testing may help
developers understand the requirements better, make the test cases more intuitive,
and fix the unnecessary mistakes ahead as mentioned by Woodside et al. [42]. This is
what made use choose MBT to get use of those benefits. MBT is used in functional
requirements testing. However, when it comes to non-functional requirements the
research is limited and does not cover all the aspects. Utting et al. [38] point out
that MBT for performance requirements is still an open matter. Additionally, Hooda

1

2 Chapter 1. Introduction

et al. [23] said that MBT is used more to model and test functional requirements
rather than non-functional requirements. “The majority of MBT approaches use
only functional requirements during test case generation process. Non-functional
requirement descriptions have not been frequently used for test case generation".
Motivated by this research gap in MBT and performance requirements, we focus our
research on studying different models that express performance requirements and
which can then be also used for testing.

1.1 Aim and Objectives

1.1.1 Aim

This research aims to find a model-based testing method/framework that can be
used to test performance requirements early in the development life cycle and enable
their verification. In particular, the aim is to find a model that can be used to
model performance requirements in a way that allows generating test cases based on
that model. The model should be in alignment with Specmate [20] which focuses on
software testing using MBT. Specmate helps software engineers i.e. testers to plan
the software testing by modeling the requirements and design test cases for them,
That has a great benefit for software engineers since it saves time spent on planning
and preparing the tests. Specmate also acts as a verification tool for the requirements
when they are modeled. The research also aims to expand the knowledge in applying
MBT on performance requirements and opens the door to more research in this area.

1.1.2 Objectives

In this section, we present the objectives we identified for addressing our research
aim.

O1- Identity which aspects of performance are important and can be modeled.

O2- Identify modeling techniques and modeling methods that suits perfor-
mance requirements.

O3- Identify a model that can be used for performance requirements modeling
in Specmate.

O4- Apply the created model in a case study to find the effectiveness of the
proposed method.

O5- Discuss the benefits of applying model-based testing in performance test-
ing.

1.2. Research Questions 3

1.2 Research Questions

We wrote the following research questions that answering them would help us get to
a conclusion regarding our aim i.e. MBT for performance requirements.

RQ1Which aspects of performance requirements are used in MBT?

Purpose: There are many performance aspects or areas e.g. time,
speed and capacity, shown in the quality model that is explained in
section 2.1.1. Those aspects may have different ways of modeling
and testing, so to avoid any conflict and to keep our research more
focused we wrote this question.

RQ1.1 Which aspects of performance requirements have been stud-
ied?

Purpose: One factor for choosing the performance aspect is to see
whether there exists literature that studies this aspect.

RQ1.2Which aspects of performance requirements can be modeled?

Purpose: Another important factor is to see if the aspect can be
modeled at all.

RQ1.3Which aspects of performance requirements are used in real-
life projects?

Purpose: To make our research beneficial and the results more
useful in software projects, one factor is to choose performance
aspects that are used in practice.

RQ2 How to implement MBT on performance requirements as-
pects?

Purpose: After we have found what performance aspects are stud-
ied, we need to find out how MBT can be used to test those aspects.

RQ2.1 What type of models can be used to model performance re-
quirements aspects?

Purpose: There are many models used in MBT, that does not mean
all of them could be used to model performance requirements with
its different aspects.

4 Chapter 1. Introduction

RQ2.2 Which type of model is suitable to be used in Specmate?

Purpose: Since we need to implement the MBT in Specmate, so it
would be effective if we chose a model that fits within Specmate
environment.

RQ3 Can MBT for performance requirements be used on real-life
projects?

Purpose: Finding a model and identifying the steps is pretty im-
portant in our research, but we need to evaluate whether what we
found applies to real-life settings.

RQ4 What are the benefits of using model-based testing to test per-
formance requirements?

Purpose: It is important to point out those benefits of using MBT
on performance requirements, and align it with the benefits of using
MBT on functional requirements, to see whether it brings a value
by implementing it.

Table 1.1: Mapping research questions to objectives

Research Questions Mapped Objectives

RQ1 RQ1.1 RQ1.2 RQ1.3 O1

RQ2 RQ2.1 O2

RQ2.2 O3

RQ3 O4

RQ4 O5

1.3 Method and Contribution

This research is mixed in terms of methods and consists of multiple steps which can be
seen in Figure 1.1. Step 1, a systematic mapping study (SMS) in the context of MBT
for performance requirements to find a model to use. Step 2, software requirements
mining done in parallel with the SMS, which is an analysis for a collection of software
requirements specifications that has been assembled for research purposes by Ferrari
et al. [19](SRS collection), to find the relevant performance aspect in practice. Step
3, the development of our model "PRVV", to model performance requirements for
MBT using the experiment illustration by Wohlin [40], and the cause-effect graph
(CEG) [17] as our inspiration. Step 4, a sample study done by taking a sample of

1.4. Thesis organization 5

the requirements from the SRS collection as an input to our model for the purpose
of evaluating the model.

Figure 1.1: Research Methodology Framework

The main thesis contributions are:

• A categorization of studies on MBT according to seven different criteria, which
are performance aspects, testing level, model type, application type, study
type, and study method.

• A categorization of the SRS collection [19] according to whether the SRS has
performance requirements.

• A categorization of the SRS collection [19] with performance requirements ac-
cording to performance aspects and application type as well as a categorization
of the SRS collection [19] with application type.

• Performance requirements verification and validation model, inspired by the
experiment illustration by Wohlin et al. [40], and the CEG diagram.

• An evaluation of the model on selected requirements from the SRS collection,
illustrating how it (1) helps to better understand performance requirements,
and (2) helps to generate more efficient and performance-related test cases.

1.4 Thesis organization
Chapter 2, background and related work, illustrates state-of-the-art in model-based
testing and non-functional requirements, the related quality models which help us

6 Chapter 1. Introduction

define the performance quality model and the studies we reviewed which related to
our topic. Chapter 3 describes the research methodology that comprises four research
methods. Chapter 4 displays the results that we extracted from the systematic
mapping study and software requirements mining and followed with the discussion
on the extracted results. Chapter 5 presents the concept of performance requirements
validation model that we developed and applied this model to 3 randomly picked SRS
from SRS collection. Besides, the discussion about this model is also written in this
chapter. Chapter 6 shows all the answers to all the research questions that we raised
in chapter 1. Chapter 7 concludes the whole research and introduces possible future
work to do after our research is completed.

Chapter 2

Background and Related Work

In this chapter, we discuss two main sections background and related work. In the
background, we present information related to our topic e.g. software quality, soft-
ware testing, and MBT. One might wonder about the reason for discussing software
quality here since performance is one aspect of software quality as presented in the
ISO25010 quality model [3], so we wanted a standard model to specify the perfor-
mance aspects. That information is important for the reader to know to be able to
understand more the topic and related terminology. On the other hand, in the re-
lated work section, we discuss some papers that are in align with our research related
to MBT in general and MBT for performance requirements in particular. We moti-
vated in the related work section why we chose the research area and why MBT for
non-functional requirements in general and performance requirements in particular
still an open area for research.

2.1 Background

2.1.1 Software Quality

The research in this thesis requires to have a predefined list of performance aspects
to use it in SMS paper categorization, SRS collection analysis and to be able to
answer RQ1. There are many aspects of software performance that are mentioned
in the literature, however not all are of high relevance to the industry and not all
are studied to the same extent, hence comes the research question RQ1. To answer
RQ1 we needed a standardized way of identifying what categories does software
performance includes.

Searching the literature we have found many quality models to choose from as
the basis for performance categorization, as mentioned by Al-Qutaish et al. and
Khosravi et al. [5, 25] we have found five main quality models which are McCall’s [28],
Boehm’s [8], Dromey’s [15, 16], FURPS [22, 21, 24, 26] and ISO 9126 [11] quality
model. Those models define what software quality should include, e.g. Performance,
Security, Reliability, Usability. Having the software satisfying those factors would
result in a more secure, responsive easy to use software. Table 2.1 shows the software
quality factors as defined by those models.

We are interested in the performance aspects as defined by the quality models.
We can see from Table 2.2, that McCall’s and Bohem’s quality models focus only on
efficiency and resources, while Dromey’s describes efficiency from two points of view
(i.e. internal and external). On the other hand, FURPS and ISO9126 contain many

7

8 Chapter 2. Background and Related Work

Table 2.1: Quality models and their related quality aspects

Quality Model
Name

Quality Aspect

McCall’s Maintainability, Flexibility, Testability, Correctness, Ef-
ficiency, Reliability, Integrity, Usability

Bohem’s Portability, Reliability, Efficiency, Usability, Testability,
Understandability, Flexibility

Dromey’s Functionality, Reliability, Maintainability, Efficiency,
Reusability, Portability, Usability

FURPS Functionality, Usability, Reliability, Performance, Sup-
portability

ISO9126 Functionality, Reliability, Usability, Efficiency, Main-
tainability, Portability

ISO25010 Functional Suitability, Performance efficiency, Compat-
ibility, Usability, Reliability, Security, Maintainability,
Portability

aspects of performance and in particular time-behavior which is what we usually
think about when we talk about performance. We find those two models are the
most complete of all the five models, besides, they contain the aspects that are
mentioned in the other three models.

We can see that many quality models show the performance aspects. FURPS and
ISP09126 both have many aspects of performance. However, none of those models
are detailed enough and includes all the aspects. So we extracted a performance
aspects model that includes all the quality factors that are considered performance.
We chose those two models FURPS [22, 21, 24, 26] and ISO 9126 [11] from the five
models mentioned in [5, 25], and we included ISO 25010 [3] which is a newer version
of ISO09126. By understanding and mapping those three models we extracted a
model for performance aspects which is going to be used as the basis to identify
which performance aspect to being selected to perform MBT testing.

Not to be confused with the subcategory of performance efficiency. McCall,
Boehm, Dromey, and ISO9126 they all refer to performance as efficiency, while
ISO25010 [3] and FURPS used the word performance, as shown in Table 2.1

2.1.2 Software Performance

Performance Quality Model Description There are five main aspects of per-
formance requirements extracted from the quality models FURPS [22, 21, 24, 26],
ISO9126 [11] and ISO25010 [3] that we have revised and synthesised. Those aspects
are time behavior, resource utilization, capacity, speed/throughput1, efficiency. We

1The meaning of the symbol "/" is "or". We kept both words because they are both used
frequently in perfromance.

2.1. Background 9

Table 2.2: Quality models and their related performance aspects

Quality Model
Name

Performance Aspect

McCall’s Execution Efficiency, Storage Efficiency

Bohem’s Accountability, Device Efficiency, Accessibility

Dromey’s Internal Efficiency, Descriptive Efficiency

FURPS Speed, Efficiency, Availability, Accuracy, Throughput,
Response Time, Recovery Time, Resource Usage

ISO9126 Time Behavior, Resource Utilization, Efficiency Com-
pliance

ISO25010 Time Behaviour, Resource Utilization, Capacity

describe each of them below.
1- Time Behaviour: the time required to perform specific tasks or requests. It

usually has multiple instances or values depending on different anticipated capacities
(i.e. the number of users). This aspect included in all three models (ISO9126,
ISO25010, and FURPS) as time behavior or response time. It is an explicit aspect
preserved by the users of the software and would affect the usability of the software.

2- Resource Utilization: the amount or percentage of the resources used to
run the software. The software should not always utilize all resources when running,
instead, it should be limited to a specific amount so that it has a margin for peak
times and new updates that would require more resources.

3- Capacity: the maximum capacity in terms of requests, sessions, users, data...
etc that the system can handle without crashing. This aspect is crucial for risk man-
agement, in case not specified would result in unusable software and could introduce
unnecessary extra charges. This gives an insight into the anticipated data size of
the software which would affect the decision regarding the storage required for the
system to operate.

4- Speed/Throughput: The number of request/process per time unit that the
system can handle while still maintaining the time behavior requirements.

5- Efficiency: the relation between the output (time behavior, capacity, speed)
and the input (resource utilization). This is a relatively complex aspect since it is
affected by all other mentioned aspects of the performance. This is where the software
code could increase or decrease performance while using the same hardware.

2.1.3 Software Testing

Software testing is the process of validating and verifying the software program.
The main purpose of testing is to detect problems with the software product before
the software or a new module is put into production and used. Amman et al. [6]
defines three kinds of problems that testing can solve, "fault, error, and failure".
The fault is a wrong code written that always leads to software that can not be

10 Chapter 2. Background and Related Work

executed. The error is when those faults lead to the wrong state in the software.
While failure is when the software does not meet the customer needs. So we usually
test the software to avoid those three problems that could arise in software. This is
particularly important because if those problems were not handled it could lead to
a disaster and substantial loose of money.

An example of a software problem that caused a disaster is the famous Ariane 5.
In 1996 a space rocket called Ariane 5 were exploded in less than a minute after its
launch. The reason was a floating-point error in the software. Although there was a
test procedure in place, it was not run, because it was too complex to run [27]. The
cost of that error was not cheap and it was estimated at around $370 million [36].

We have mentioned some of the testing benefits, however, those benefits would not
be achieved unless we make sure that the test is run not just written. Furthermore,
testing will increase the development costs since it needs more resources to be adapted
in the software development process. One way to mitigate those side effects is to
automate the testing process. Some test automation practices already being used
in industries is Test-Driven Development (TDD) where the tests are written before
the code, and Continues Integration (CI) there are many tools that help with CI
where the code is built and the tests are run every-time a new code is committed.
However, as Wiklund et al. [39] mentioned the current practices and tool focuses on
automating the process of executing the tests, and there is less has been done in
finding those test cases. As Wiklund et al. [39] see it that the future of automation
is "what to test?" rather than "how to test?". Model based testing is one approach
that supports the test automation and finding "what to test?".

2.1.4 Model Based Testing

Model-based testing is a software testing technique that automates the process of
test case generation from the system model. Dalal et al [12] show that MBT consists
of three main parts, system modeling, test case generation, and tools. The process of
MBT starts with a system model, that could be an end-to-end model e.g. business
process or per function or process e.g. cause-effect graphs (CEG) [17]. Then the test
cases are generated from that model by an algorithm. Finally, a tool builds the test
skeleton that can be used later to test the software.

To show how MBT works we take the example demonstrated by [30] the following
example. if we have a function that calculates the results of the arithmetic operations
as follow:

k = ab+ c

Using MBT we need to first model this system function. Since this is one function,
we will use CEG [17]. The reason we chose CEG because it is good to model a func-
tion or feature and we are familiar with it. Figure 2.1 shows the model corresponding
to the formula.

The graph is simple and no prior knowledge needed in CEG to make sense of
it. The relation between a and b (causes) is multiplication and the results of this
relation (effect) are e, while k is the result of the addition of c and e.

2.2. Related Work 11

Figure 2.1: A CEG diagram for the formula: k = ab + c

If we need to create test cases for this formula we need to see what are the possible
combinations between inputs and output. We will consider the test cases of boolean
expressions, the symbols "t" truth and "f" false.

Using MBT tool Paradkar et al. [30] generated test cases from the CEG model
in Figure 2.1. The generated test cases can be shown in Table 2.3.

Input "e" outcome Output

(t,t,f) t t

(f,f,t) f t

(f,f,f) f f

Table 2.3: Test Cases for the function k = ab + c

The test cases should be a good representation of the possible input-output com-
binations, by ensuring coverage and efficiency. The next step would be to create a test
suit and run it. The steps of MBT could be manual, automatic, or semi-automatic.
Depending on the tool that is being used.

There are many benefits associated with MBT. First, it is effective in testing
the requirements and shows possible improvements. Abdelgawad et al. [S3] shows
that MBT is "effective" in testing a real-time adaptive motion planning system, by
verifying that the system acts as it should be, and showing possible enhancement
to the performance of the SUT. Second, it automates the testing process. Not just
the execution of the test but the possibility to automatically generate test cases
and test skeleton, which is an essential component of MBT [12]. Third, it helps in
finding problems with the requirements. As Freudenstein et al. [20] showed in their
study that the respondent found the MBT tool Specmate found issues related to the
requirements.

2.2 Related Work

Model Based-Testing is a testing technique that is being used to support the au-
tomation of testing. There are many studies related to the topic MBT for functional

12 Chapter 2. Background and Related Work

requirements, however it seems not as many for non-functional requirements. Utting
et al. in 2006 [37] and in 2012 [38] created a taxonomy for model-based testing to
categorize the existing approaches and tools as well as classify its usefulness. Their
study focused on functional requirements testing, over non-functional requirements.

Model-based testing for non-functional requirements is still an open issue but
luckily researchers start to research in this area. Dias-Neto et al. [13] did a systematic
review of MBT approaches. They didn’t limit their study on functional requirements
but focused on multiple MBT approaches which help including the MBT techniques
for non-functional requirements. And because of this study, they got a chance to
pointed out the limitation of using MBT in the non-functional requirements field.
This systematic review was renewed later on and published in 2010 by Dias-Neto et
al. [14] which they concluded their study based on techniques types and their coverage
as well as indicated the challenge of MBT for future. Since the difference between
our study and Dias-Neto et al. [13, 14] is that they focused on all the approaches for
MBT but we are only interested in model-based performance testing.

Later on in 2016, Felderer et al. [18] did a taxonomy and systematic classification
on model-based security testing which refreshes the page of MBT for non-functional
requirements. Woodside et al.[42] described the domain of software performance
engineering (SPE), did a survey of current work on a sample of papers in SPE and
pictured the future of SPE from their perspective. They collected some models
and method which are used for performance and listed many benefits on modeling
performance. Although they didn’t focus much on finding performance modeling
but on the future tendency of the study area, their study inspires people to do more
research in SPE and enlighten us in doing MBT on performance requirements.

There are tools built for MBT. For example, Specmate is an open-source tool
developed in Qualicen based on the research by Freudenstein et al. [20], Specmate
can generate test cases from requirements or model. Another tool is DIVERSITY [1],
an open-source tool based on Eclipse that generates test cases from a model. These
tools in addition to other MBT tool, while they implement the concept of MBT, their
focus is more on functional requirements, and no clear identification or treatment for
non-functional requirements in those tools.

Chapter 3

Research Methodology

In this chapter, we explain in details the research methodology used in our research.
It is a mixed research where we completed it on more than one stage. First, we
start with an overview of our research. Second, we describe our SMS study including
motivation, design and related research questions. After that, we present the de-
sign of the SRS Collection analysis. Finally, we describe the implementation of the
performance requirements verification and validation model (PRVV).

As Stol et al. mentioned in their paper [35], research can be categorized based
on the study type. Our research has two main study types: literature review and
sample study. As a research method for the literature review, we chose a systematic
mapping study where the research is focused on existing literature that is classified
into different categories. For the sample study, the research method is closer to
Software Repository Mining where we used available data from real software projects.
However, instead of software code as artifacts, we study software requirements.

Figure 1.1 in Section 1.3 is an illustration of our research methods and how they
are connected. At the beginning of the research, we do not have enough knowledge
about performance testing and existing models, and the most recent literature review
that can be used was done by Dias Neto et. al. [14] in 2010, so we started our
research with a systematic mapping study. By conducting the literature review we
were able to answer the research questions RQ1, RQ1.1, RQ1.2, RQ2, and RQ2.1.
By answering these questions we get the foundation to choosing a model to apply
MBT on performance requirements. The SMS leads us to a state of the art of the
most relevant performance aspects and models.

To look at a state of practice for performance aspects we performed software
requirements mining, which is a sample study run on the SRS collection from Ferrari
et al. [19]. This software requirements mining helped us to find the most relevant
performance aspects when it comes to practice, and we were able to answer RQ1,
RQ1.3. Since the SMS did not provide us with a suitable model for our use that
helps to verify the requirements, modeling them and generating efficient test suites,
we developed our model. The development of the model was based on the input
from both research SMS and software requirements mining, with the inspiration
from the experiment illustration diagram presented in Wohlin et al. [40]and the CEG
diagram. The development of the model helped us answering research questions RQ2,
RQ2.1. After developing the model we applied it to see how it works in practice.
We took a sample from the SRS collection [19] and used it with the model. By this
implementation, we answer RQ3. As for RQ4, it is answered from the knowledge
gained from the whole research in general and the implementation of the model in

13

14 Chapter 3. Research Methodology

particular.

3.1 Systematic Mapping Study

To set up our mapping study we used Dias Neto et al. [14] systematic literature
review (SLR) as the basis for the search protocol. Although a newer taxonomy was
done by Utting et. al. [38] is available, still, it is about seven years old, hence we still
need to do a review. We did not use Utting et al. study [38] as the basis for our study
for the following reasons. First, an SLR provides more information than a taxonomy,
since the information is extracted from the papers and analyzed or categorized rather
than just illustrated with a taxonomy for the area of study. Second, Dias Neto et al.
had two SLR [13, 14] on MBT using the same protocol. Since enough information is
available, this ensures the repeatability of their study and the protocol they used.

As mentioned by Peterson et al. [31], systematic mapping studies and systematic
literature reviews have differences, specifically in the aim or purpose of the study,
where the SMS usually aims to find the existing literature in a specific research area,
and see what has been done. This would fit our aim to answer the research questions
as explained in Section 3.1.1. An SLR would not be a good fit for our research since
it goes to synthesis results and verify evidence quality from each paper, which is not
needed. Following the guidelines to plan and conduct mapping studies by Peterson
et al. [31], we built a protocol to conduct the SMS.

3.1.1 Research Questions

Our aim for the SMS is to identify the current research in the area of MBT that
applies to different aspects of performance requirements. We wrote the following
research questions to be answered by the SMS.

RQ1Which aspects of performance requirements are used in MBT?

RQ1.1 Which aspects of performance requirements are studied?

RQ1.2Which aspects of performance requirements can be modeled?

RQ2 How to implement MBT on performance requirements as-
pects?

RQ2.1 What type of models can be used to model performance re-
quirements aspects?

3.1. Systematic Mapping Study 15

3.1.2 Study Identification

Choosing the search strategy: We used keyword search in digital databases sim-
ilar to the protocol used by Dias Neto et al. 2010 [14], where they used six databases
for their search. Two of the databases (i.e. Compendex IE and INSPEC) we do not
have access to. So our search ran on the other four SCOPUS, ACM, IEEE Xplore,
and Web of Science.

Developing the search: We took the search string used by Dias Neto et al. [14]
and extended it to fit the purpose of our research. The keywords we add are related
to performance. They were extracted during the compilation of the quality model
for software performance. This is similar to what Felderer et al.[18] did in their
study about model-based testing for security requirements, which is based on Dias
Neto et al.[14] as well and extended the search string to focus more on security
requirements. Below is the search string from Dias Neto et al. [14] study, following
that the extension we added to the search string.

Original Search String: (approach OR method OR methodology OR technique)
AND (("model based test") OR ("model based testing") OR ("model driven test")
OR ("model driven testing") OR ("specification based test") OR ("specification
based testing") OR ("specification driven test") OR ("specification driven testing")
OR ("use case based test") OR ("use case based testing") OR ("use case driven
test") OR ("use case driven testing") OR ("uml based test") OR ("uml based test-
ing") OR ("uml driven test") OR ("uml driven testing") OR ("requirement based
test") OR ("requirement based testing") OR ("requirement driven test") OR ("re-
quirement driven testing") OR ("finite state machine based test") OR ("finite state
machine based testing") OR ("finite state machine driven test") OR ("finite state
machine driven testing")) AND (software)

Extension: AND (performance OR efficiency OR capacity OR load OR speed OR
responsiveness OR stability OR ("time behaviour") OR ("time behavior") OR ("re-
sponse time") OR ("response-time") OR ("resource utilization") OR ("resources uti-
lization") OR ("resource consumption") OR ("resources consumption") OR thruput
OR throughput OR spike OR stress OR volume OR size OR scalability OR peak
OR ("wait time") OR latency OR delay OR workload OR ("concurrent users") OR
("concurrent requests"))

Evaluating the search string: We evaluated whether the search string results
included the key papers in the field. This was accomplished in two steps:

• By running Dias Neto et al. [14] search string on the selected databases and
randomly check some of the results returned (i.e. research papers) whether
they were mentioned in Dias Neto et al. [14] study or not. This validate the
first part of the search string and make sure of Dias Neto et al. resutls.

• On the other hand to validate the whole search string including the extension we
added to it. We took one conference "Proceedings 2018 IEEE 11th International
Conference On Software Testing Verification And Validation Workshops Icstw
2018" and skimmed through its papers, by reading the title first then the
abstract if the topic is related to model based performance testing. We collected

16 Chapter 3. Research Methodology

the papers related to our topic and looked for them in the results returned by
running our search string on the database. We have found papers returned by
our search string.

3.1.3 Selection Criteria

Not all papers returned by the database search could be used for our research, so
we identified selection criteria based on inclusion and exclusion. We followed that
criteria when deciding whether a paper should be included and mapped.

Inclusion: The papers that we chose from the returned results and used for the
mapping satisfy all of the following factors.

1. The paper should be available for online access so that we can access it and
map it.

2. The publication language is English.

3. The year of publication starting from the date when Dias Neto et al. study [14]
finished, which is August 2009 and ends in February 2019. We include the
month when they stopped since we do not know if they included all the papers
that are published in August 2009.

4. The paper should be about model-based testing for performance requirements.

Exclusion: Any paper that is returned by the search and did satisfy at least one
of the following factors was excluded.

1. The paper presents secondary studies i.e. SMS, SLR, Literature Review.

2. The paper is not related to using MBT for testing software performance re-
quirements.

3. Duplicated papers that refer to the same study.

3.1.4 Quality Assessment

No detailed quality assessment was conducted. Since the goal of our SMS is to find
a method that we can use, there is no need to evaluate the quality of each paper
selected for our research.

3.1.5 Data Extraction

After applying the selection criteria on the papers returned by running the search
string on the mentioned databases, we took the remaining papers and put them in
the appropriate category based on the following classifications.

3.1. Systematic Mapping Study 17

Classification per performance aspect: There are many aspects of software
performance. We synthesized a quality model from the literature, presented in Sec-
tion 2.1.2, to identify the main performance aspects, i.e. time behavior, resource
utilization, capacity, throughput, and efficiency). We added a "not specified" cate-
gory for those papers that do not mention or focus on a specific aspect of performance.
This classification supports answering RQ1, RQ1.1, and RQ1.2.

Classification per testing level: Testing could be conducted on different levels,
as Ammann et al. [6] mentioned, those levels are acceptance, system, integration,
module, and unit, so we used those five levels as the testing levels. This classification
would help answering RQ2 and determine on which level performance testing is
conducted, so we would be able to apply it properly.

Classification per study type: As mentioned by Stol et al. [35] study in software
engineering research there are 7 types of studies, and any study would fall in one
of those types which are: field study, field experiment, experimental simulation,
laboratory experiment, judgment study, sample studies, formal theory, and computer
simulation. These classifications help us understand how mature the models are,
whether they are empirically studied and adopted by industry or just a theory that
needs more empirical evidence. So the classification would provide additional criteria
in choosing the model and answering RQ2, RQ2.1, and RQ2.2.

Classification per study method: This classification will help distinguish be-
tween papers that present a new approach or theory to others that empirically prove
or evaluate the results. There are many study methods that Stol et al. [35] mentioned
with the study types e.g. case study, experiment, survey and concept development,
however they are not presented clearly as the research results. So that we do not miss
any method in our classification we keep this classification dynamic and would be
extracted directly from the research papers. The difference between research method
and study type is that, the first is a set of rules and practices to follow when one
doing a research each with a specific goal, while the second is an grouping of different
research methods based on their "metaphor, purpose and goals" as presented by Stol
et al. [35].

Classification per model type: Based on the model used to model the perfor-
mance requirements. This would help determine the frequency of the model used
for performance requirements and answering RQ2.1. We did not have predetermined
options for this classification, since there are many models used in software, and one
of our research objective is to figure out which models are used, so we decided to
keep the options open and make it dynamic.

Classification per application type: Another classification is based on the type
of application (e.g. web application, mobile, desktop), this helps to understand
where MBT for performance requirements is used or studied. This is also a dynamic
classification with no predetermined options, however, we present in Section 4.1.1
the definition of each application type we found.

18 Chapter 3. Research Methodology

Classification per contribution: This classification put the papers into cate-
gories based on the contribution to the field (e.g. tool, method, evaluation). It is
another factor to choose a model that is evaluated and verified, and it gives a clearer
view of the advancement of the research in the area of MBT for performance.

3.1.6 Data Analysis

Quantitative Data: In our research we used quantitative data to find the fre-
quency of a topic. We used a nominal scale to present the data which is useful to
show the frequency of a specific performance aspect, testing level, model type or
application type, in which MBT is applied.

Qualitative Data: The quantitative data is not enough to decide on which aspect
of performance or model to choose, some models might not fit in Specmate because
of the modeling technique or the way it derives the test cases from model. That said
a qualitative data analysis for the performance aspects and models was carried out.
1- By examining the performance aspects found in the papers and mapping them
to the performance aspects specified by the quality model in Section 2.1.2. 2- By
analyzing the modeling techniques, and look into what benefits it brings.

3.2 Software Requirements Mining

Here we present the software repository mining method as an assist study for the
SMS, to help us find the trend of performance aspects in state-of-practice. The reason
why we chose this method is explained in Section 3.2.1. The objective of performing
software requirements mining is described in Section 3.2.2 and followed by the related
research question. The design is presented in Section 3.2.3. An important concept
that we need for the analysis of the requirements specifications, software testability,
is explained in Section 3.2.6.

3.2.1 Motivation of chosen method

The study type associated with this part of the research is the Sample Study. A
sample study is described by Stol et al. [35] as a form of research done on a sample
of the population for generalization. The data could be collected using interviews,
questionnaires, metric reports, or available for access online e.g. software repository.

As mentioned in [35] one of the research methods associated with sample studies
is Software repository mining. Software repository mining research usually runs on
open-source software repository and no human to collect data from i.e. no interviews
or questionnaires [35]. However also Stol et al. mentioned that their taxonomy might
not include all available methods, and it is possible to have other methods than those
mentioned. So although we did not collect data from an online software repository,
we use a software requirements data set collected by another study.

This part of the research could not be presented as a Field Study for the lack
of an entity to collect the data from. Although it could be argued that it is an
exploratory case study, it does not fit the definition of a case study since we are not

3.2. Software Requirements Mining 19

researching a natural setting e.g. a company or ongoing project. It is also not an
experiment since there are a lot of independent variables that can not be controlled
e.g. (a) System: whether the application type or the domain, the data we have
is from another study [19] and we do not have control over its content, (b) human
factor: the SRS are written by different professional with different background, years
of experience, as a team or single. All those factors affect the data collected and so
affects the study quality, hence an experiment is not possible in this situation.

3.2.2 Purpose and Related Research Questions

The SMS by itself is not enough to make an informed decision to answer the first
research questions RQ1 based on research. We needed another source of data to
validate our results. To be able to choose performance aspects to use in MBT, we
should consider the aspects that are most relevant in practice rather than just in
literature, since all of the research areas does lead to practice sooner or later, hence
the need for software requirements mining. The research question that we could
answer is presented as follows.

RQ1Which aspects of performance requirements are used in MBT?

RQ1.3 Which aspects of performance requirements are used in real
life projects?

3.2.3 Design

Ferrari at el.[19] have a data set [2] from their study, which is a collection of software
requirements specification (SRS collection) gathered from various industries and ap-
plications. As there are 77 SRS available in the SRS collection, we have applied the
selection criteria explained in Section 3.2.4 on those SRS. The extracted data can
be found in Appendix B from the included SRS. We applied the classifications as
explained in Section 3.2.5 per SRS document and per extracted requirement.
3.2.4 Selection Criteria

Inclusion: the SRS and the individual requirements that are classified and shown in
our results have the following properties.

• SRS: should have at least one performance requirement.

• Requirement: should fit in one of the descriptions of performance aspects in
the extended quality model mentioned in Section 2.1.2.

Exclusion: the SRS and the individual requirements that we excluded from our
classification and results have the following properties.

• SRS: without any performance requirements or not written for a software prod-
uct.

• Requirement: the requirements do not fit in any of the performance aspects
descriptions.

20 Chapter 3. Research Methodology

3.2.5 Coding

Since the SRS is a long and well-described document as qualitative data, the coding
approach is strongly needed to help us group the same data and reduce the effort
spent analyzing the results. First, we simply scanned a few samples from the SRS
collection [19] and then created the code that fits. The codes are based on the
classification. As for the SRS as a document the classification is per application
type. While for the individual requirements in those SRS, the classification is per
performance aspect and testability. The final list of codes is found in Table A.1.

The classification we conducted in software requirements mining has three di-
mensions: performance aspects, application type, and testability. Since we aim to
deduce which performance aspect is the most used from the industrial perspective
and helping us answering the RQ1.3, the performance aspect classification is our
essential need. Followed by is requirement testability. We aim to find or develop a
model that could be used to implement MBT in the performance testing area. If the
requirements that we analyzed are not testable, there is no point in further studying
the testing. The application type might affect the coverage of performance require-
ments in each SRS. For example, the real-time system might require more on-time
behavior but less on other performance aspects. The classification is presented as
following, application type is used to tag on the SRS itself while performance aspects
and testability are used to tag on each performance requirement.

Performance Aspect: As per the extended quality model, five aspects were used
i.e. time-behavior, resource utilization, capacity, speed/throughput, and efficiency, in
addition to general option when the requirements did not fit in any of the five aspects
descriptions but still considered as a performance requirement. This classification
applied to each extracted performance requirement, and it help us answering RQ1.3.

Application Type: This presents the type of application specified in the SRS,
e.g. web application, mobile application, embedded system, etc. This is beneficial in
knowing whether the SRS data set is a good presentation of the population (i.e. soft-
ware products). The explanation of each application type is placed on Section 4.1.1.

Requirements Testability: Not all requirements specified could be accepted by
the software engineer, one reason is that the requirement is not testable. We eval-
uated each requirement ourselves to see whether it is testable or not based on the
guidelines mentioned in Section 3.2.6.

3.2.6 Requirement Testability

One classification that we applied to the software requirements is testability. It is an
essential part of accepting the requirements by the requirements engineers. Boehm
et al. [7] mentioned testability as one of the major criteria in requirements verifi-
cation and validation. From their perspective [7] a requirement "must be specific,
unambiguous, and quantitative wherever possible" such that a developer can write
software code that satisfies the requirements. We evaluated the software performance
requirements testability whether it is testable or not. Testable means a test can be

3.3. Implementing Performance Requirements Verification and Validation Model21

written to verify if the software satisfies the requirements. Untestable, when the
requirements can not be tested because it is too broad or no test can be written.

3.3 Implementing Performance Requirements Veri-
fication and Validation Model

After having the Performance Requirements Verification and Validation (PRVV)
Model in hand, we would like to implement it in a real scenario. The motivation is
presented in Section 3.3.1. The reason why we doing this is described in Section 3.3.2
and also matched with the related research questions. The method design is described
in Section 3.3.3 and followed by the description of data collection in Section 3.3.4.

3.3.1 Motivation

The purpose of implementing the model that we developed is to validate that the
model works in practice to model the performance requirements and hence use it
in MBT. Similar to the previous part of the research, software requirements mining
described in Section 3.2, this part of the research is also a sample study as defined
by Stol et al. [35] since it is a study performed on a sample available without the
need to collect it.

Based on Stol et al. [35], there are multiple study types in the field of software
engineering. It could be argued that our study type could fall between field study
and field experiment. However, none of those fit our research. First, as for the field
study, it is not a natural settings and no data to be collected from machines or human.
Second, it can not be an experiment either since similar to what we mentioned in
Section 3.2, there are many independent variables that can not be controlled in our
settings e.g. the system and the human factor, which would violate an important
aspect of the experiment as Wohlin et al. [41] mentioned. However, in our case, we
are applying MBT treatment on software performance requirements to evaluate our
approach and get a sense of how it works.

3.3.2 Research Questions

Based on the result we got from SMS and software requirement mining, we developed
our model for performance requirement testing. After we had the PRVV model
developed, it is necessary to validate our model on a real SRS, to see if it is applicable
in practice. The model validation will first show us the results of whether the MBT
for performance requirements can be used on real-life projects or not. Also, it helps
us understand the model more and figure out the limitations or benefits of using this
model. The related research questions that we can answer from the implementation
are RQ3 and RQ4.

22 Chapter 3. Research Methodology

RQ3 Can MBT for performance requirements be used on real life
projects?

RQ4 What are the benefits of using model-based testing to test per-
formance requirements?

3.3.3 Design

Since we are using MBT to test the performance requirements we need a list of
requirements. The requirements should be written for real-life projects rather than
we write it ourselves because we are trying to see how the model works in practice.
There is no need for a software code to be available since our purpose is not to
run the test and find bugs but rather to evaluate the requirements consistency and
know-how to test it most efficiently. Since we already did a software requirements
mining study, we can use the SRS with the performance requirements from the
SRS Collection [19]. We randomly selected 3 SRSs out of 40 SRSs which contains
performance requirements. Then we applied our model on the selected SRSs to
evaluate the flexibility and applicability of the model.
3.3.4 Data collection

1. SRS data set: we took a sample from the SRS Collection[19] to implement
our PRVV model. We excluded the SRS with no performance requirements
and then we randomly picked 3 SRSs from the remaining. We extract the
performance requirements from the chosen SRSs and tagged them with the
performance aspects codes mentioned in Section 3.2.3.

2. Modelling results: we collected the PRVV models created for each sample.
The models present performance requirements and show the possible missing
requirements.

3.4 Validity Threats
In this section, we explain the possible threats to validity for our research. We present
the threats per research part.

3.4.1 SMS

In the SMS there are threats related to the data extraction methods, 1- we may have
missed some papers because run the search on four databases out of the six that
Dias Neto et al. run their search string on, to keep this to minimum we made sure
that we search SCOPUS database which includes many technical publishers articles.
2- we may have excluded papers by our search string since we extended the search
string from Dias Neto et al. study with words related to performance to narrow down
the search results to the papers related to MBT for performance requirements. We
tried to include as many keywords as possible and referenced performance checklists

3.4. Validity Threats 23

to make sure this is kept to a minimum. Another type of threats are related to
the human factor, we could have interpreted the data in the wrong way or placed
a paper in the wrong classification. In addition to threats related to Dias Neto et
al.[14] study and protocol which we based our research on.

3.4.2 Software Requirements Mining

While in software requirements mining, the human factor also introduces threats to
validity. First, we could have coded some requirements in the wrong way or missed
out on some performance requirements from the SRS documents. Second, the sample
size may not be enough for generalization, the SRS collection had 77 documents that
might not be cover all application types or represent the population i.e. software
products.

3.4.3 PRVV Model Implementation

Finally, in the implementation of the PRVV model, the sample size is small and not
enough to generalize the competence of the PRVV model. We chose a sample from
the SRS collection which might lead to, 1- the sample we chose might be small to
represent the population i.e. software products, 2- the SRS collection from Ferrari
et al. study [19] might not be a good representation for the population as well.

Chapter 4

Performance Requirements

The purpose of this chapter is to display the results, discussion and answers of
the research questions RQ1, RQ1.1, RQ1.2, RQ1.3, RQ2, RQ2.1, RQ2,2 which are
related to performance requirements aspects and the modeling of those requirements.
In this chapter, we show the results and discussion from the literature review-SMS
and the sample study-software requirements mining. First, we start with a state
of the art of model-based performance testing where we show the most relevant
performance aspect based on the literature, and other results from the SMS study
with the different mappings that we have done. Second, we illustrate the state of
practice for performance requirements by displaying the most relevant performance
aspects. Finally, we discuss the results of both studies.

4.1 State of the Art of Model-Based Performance
Testing

This section shows the results of the SMS in the form of tables and graphs. The tables
are presented in Appendix B and show the mapping of all papers for each classifi-
cation we mentioned in data extraction in Section 3.1.5. The graphs are presented
here in the form of bubble charts.

As we said in Section 3.1, we searched SCOPUS, ACM, IEEE Xplore and Web
of Science. We got 258 search results when we applied the search string in SCOPUS,
136 search results in IEEE Xplore, 111 search results in ACM and 236 search results
in Web of Science. Since we excluded some paper based on the selection criteria
in Section 3.1.3, the search result was narrowed down to 35 papers. But later on,
we found four papers were duplicated but published by different publishers. We
excluded the duplicated papers and kept one instance of each. So at last, we got 31
topic related papers from the systematic mapping study.

We visualize the tables from the SMS results listed in Appendix B in the form
of charts. Here in the SMS, we have four charts that represent the results. We start
with Figure 4.1, which shows the result of mapping performance aspects with the
testing level.

25

26 Chapter 4. Performance Requirements

Figure 4.1: A graph showing the mapping of the papers a) in terms of performance
aspect and testing level b) in terms of performance aspect and model type

Figure 4.2: A graph showing the mapping of the papers a) in terms of performance
aspect and application type

A few of the papers did not specify which aspect of performance they are mod-
eling and which testing level that they focused on, we put those papers under "Not
Specified". Except for the "not specified", we presented all the performance aspect
that we listed in Data Extraction in Section 3.1.5 vertically and the testing level
horizontally on the left side of the y-axis while model type on the right side. From
Figure 4.1, the readers can easily distinguish the papers’ performance aspect and
the related testing level. It also shows the results of mapping the model type with
the performance aspect. We used the predefined classification in Section 3.1.5 for
performance aspects and testing level, while we grouped the models we found into
groups based on the origin of the model and novelty. We present the grouping of the
models is in Appendix B Table B.6.

Another chart that visualizes the results is Figure 4.3, it demonstrates the map-
ping of study method with study type from one side and study method with contri-
bution from the other side.

4.1. State of the Art of Model-Based Performance Testing 27

Figure 4.3: A graph showing the mapping of the papers a) in terms of study method
and study type b) in terms of study method with contribution

For the study type, we used the classification mentioned in Section 3.1.5. While
for the study method and contribution we extracted from the papers. Since each
paper has different contributions which are considered as qualitative data, we coded
the contributions into groups based on the type of the main contribution (e.g. tool,
framework, evaluation). This made it possible to present the contributions detailed
and grouped. The grouping result can be traced in Appendix B Table 4.2.

Figure 4.2 shows the mapping between the performance aspect and the applica-
tion type. There are many kinds of applications found in the results, so we tried to
logically group based on the application category, purpose, and the device runs it
e.g. web application, mobile, and embedded system. This grouping is presented in
Table B.3.

Figure 4.4: Publications frequency per five years in the topic MBT for performance

We can see from the Figure 4.4 that the number of publications of MBT in the
context of performance requirements is gaining momentum over the years. Starting
from just below four publications over the years 1990-1994 to reach its peak in the

28 Chapter 4. Performance Requirements

years 2010-2014 of over 16 publications within the whole period.

4.1.1 Application Type

During our SMS one of the mapping, we did for the paper, is based on the application
type. Here we listed those application types with a brief description of what each
application type means and where it is used. This provides an understanding of what
each application type includes and makes our research repeatable.

1. Web Application: an application that runs on a server or a cloud and used: 1)
directly by users using a machine connected to the internet with a web browser
e.g. web site 2) by an application run on a remote device (mobile, pc, server)
i.e. Web API.

2. Self Adaptive System: a system that changes its behavior while running after
some actions that trigger the change e.g. system fault.

3. Real-Time System: an embedded system which usually has requirements spec-
ified in availability, reliability, and performance, e.g. ABS in cars,

4. Multimedia Platform: an application that has media (audio, video, pictures)
in the core of its focus, usually used to create and share. e.g. podcast.

5. Mobile Application: an application that runs on hand-held mobile devices e.g.
smartphones or tablets.

6. Java Application: a type of applications built using the programming language
JAVA, run on a platform with OS that supports this language e.g. desktop
with macOS or server with windows.

7. Embedded System: a combination of both hardware and software bundled
together as one system and has a specific purpose, e.g. smartphones and au-
tonomous drones.

8. Distributed Systems: a set of computers connected with a network to share
resources and act as one, the failure of one machine would not affect the system
as a whole.

9. Cloud-Based System: a service that is that the user can access from anywhere,
usually the service provided software, resources or subscription.

10. Not Specified: this category is for the studies that does not mention which type
of application they conduct their study on, or whether the MBT approach is
directed towards specific application type.

4.2. State of Practice of Performance Requirements 29

4.2 State of Practice of Performance Requirements
Since we wanted to study the most relevant performance aspect, the result from the
state-of-the-art is not enough and we needed to combine the current status from the
industry. We analyzed the SRS collection from Ferrari et al. study [19]. The SRS
collection contains 77 SRS documents, 40 SRS documents had no performance re-
quirements and 37 had at least one performance requirement as shown in Table 4.1.
After identifying the SRS documents that include performance requirements, we
extracted the performance requirements from them by coding them based on the
criteria explained in Section 3.2.5 i.e. performance aspect. We coded the require-
ments based on testability using the definition in Section 3.2.6. The total number of
extracted performance requirements is 183 requirements, 140 of those requirements
were considered testable as shown in Appendix B Table B.11.

Table 4.1: SRSs based on the inclusion of performance requirements

Description SRS

The SRS with no performance requirements 40

The SRS with performance requirements 37

Total 77

After that we classified the SRS collections based on the application type each
document is written to, the definition of each application type is mentioned in Sec-
tion 4.1.1. We classified both group of papers (with and without performance as-
pects), per application type so that, first, we see if the sample has a good represen-
tation of the population (i.e.software products) and second, to see if the existence or
lack of performance aspect has a relation with the application type. The results of
SRS grouping per application type and performance aspects are in the Appendix B.
We can see the visualization of the results in Figure 4.5.

Figure 4.5: A graph showing the mapping of the extracted performance requirements
to the application type

30 Chapter 4. Performance Requirements

We can see from the Figure 4.5 that most of the SRS documents with perfor-
mance requirements are written for web application after that comes real-time and
embedded systems. There is a diversity in terms of performance aspects for the
requirements of the web application, while real-time and embedded system require-
ments are mostly in time-behavior. That could be because response time is an
essential part of the real-time and embedded systems. On the other hand, there are
a few requirements scatter for all other application types.

As for testability, first, it helps us filter the number of testable performance
requirement which technically can be modeled so we wouldn’t waste time on modeling
the uncompleted performance requirement. Secondly, the testability indicates the
maturity of the performance requirement. If the requirement cannot be tested, we
can deduce that it misses some variables or metrics and need to be improved. The
performance requirements per aspect is shown in regards to testability in Figure 4.6.

Figure 4.6: A graph showing a) the frequency of performance requirements per perfor-
mance aspect b) the frequency of testable performance requirements per performance
aspect

4.2.1 Application Type

From our analysis of the SRS documents, we have classified the SRS documents
based on the application type that it is written for. We can see in Figure 4.5 the
application types the SRS documents present. Some of those types overlap with the
ones we found during our SMS i.e. distributed system, embedded system, game, real-
time system, and web application, which we have explained in detail in Section 4.1.1.
Additionally, we have found during the SRS analysis the following application types.

1. Desktop Application: an application that runs on PC, workstation or laptop
with an operating system (OS).

2. TV Application: an application that runs on Televisions with some OS.

3. Framework: a set of classes bundled together and delivered as a package that
provides some functionalities to be used by other applications.

4.3. Discussion 31

4. Control System: a system that controls other systems or devices and regulates
its work, usually used in industry and automation e.g. Supervisory Control
And Data Acquisition (SCADA).

5. Network Application: in a sense an application installed on a machine that has
the goal to monitor network activities to provide security or use the network to
provide communication between different machines, e.g. network firewall and
teleconferencing.

6. Dos Application: application written to run specifically on the machines run
DOS-System which stands for disk operating system.

7. System Service: a service that is offered by an operating system to facilitate
some procedures e.g. file compression in Windows.

4.3 Discussion

From the systematic mapping study, we extracted a total of 31 topic related research
papers. Combined with the result for efficiency of Dias-Neto at el.[14], we collect the
number of papers published every five years since 1990 and presented in Figure B.10.
We found that researchers are being more interested in performance test modeling
although the number of studies is still small. Looking at Figure 4.1 we can see that in
the area of MBT for performance requirements, by far the most studied performance
aspect is time-behavior with 18 papers. Following that resource utilization, capacity
and speed/throughput with an average of six papers per performance aspect which
is about a third of the studies done in time-behavior. While there is little to no
research done in the area of efficiency. Which indicates that efficiency is not common
in performance requirements.

On the other hand, looking at the results of the software requirements mining
in Figure 4.5 we can see that out of the total 183 requirements extracted, time-
behavior has 86 requirements, the highest number compared to other performance
aspects. Following that capacity with about half that number. Then efficiency and
speed/throughput come after that with about 20 requirements for each. So time-
behavior is the most relevant performance aspect in practice followed by capacity.
In both literature and industry time-behavior comes first, so we should focus our
effort on this aspect. However, the other aspects also have a significant amount of
presentation and should be taken into consideration e.g. capacity.

Looking at the Figure 4.1 in particular the testing level, we can see that re-
searchers focus their work on system-level testing for model-based performance test-
ing, which is conducted on a higher level instead of a lower level e.g. unit. This
phenomenon indicates that software performance is not much associated with a re-
lated function itself but rather associated with the overall system and influenced by
its structure. We can see that in Al-Tekreeti et al. [S4] study, in addition to a perfor-
mance model, they had a network model and behavior model of SUT as a main part
of their method, this shows the abstraction of performance testing. Furthermore,
the model used by Abdelgawad et al. [S3] for MBT is a behavioral model and they
referred to the generated test cases as "Abstract Behavioral Test Cases". It is not

32 Chapter 4. Performance Requirements

just the targeted test level of those SMS papers is abstract but also the models used
are mostly to show the system behavior e.g. timed-automata [S20, S22, S26] and
behavior model [S4, S3]. . Although a lot of case studies to validate performance
testing models (e.g. timed-automata) exist, researchers still propose or develop a
new performance testing framework or models. This could be interpreted as that
there is no well established, studied mature model that is proven empirically to be
effective in MBT for performance requirements. It could also be because most of
the existing performance models used to model time-behavior or simply adds the
performance requirements as an annotation to the UML diagrams. From Figure 4.3
we can see from the study type and method, that most studies are formal theory
where a new concept or framework is developed after that comes empirical studies
like field study and field experiment. Those empirical studies are usually to validate
the new model presented by the paper. This is another indication that the models
are not well established and verified. A similar observation can be made by looking
at the contribution of theses papers in Figure 4.3. Where most papers introduced
new ideas and methods rather than evaluating pre-existing models

If we look at both figures 4.1 and 4.2, we can find that most of the models are
made for the time-focused application to measure the time behavior aspect mostly.
They compare the measured metrics values with the corresponding performance re-
quirements to see if the system meets the customers’ satisfaction. The most studied
models are timed-automata and UML related diagrams. Timed-automata are used
to model and analyze the time behavior by counting time among different states. It
may benefit us with modeling and validating the time behavior aspect of the func-
tions. But we still don’t know the performance-related influencing factors, which
are needed to generate better test cases for performance. Also, timed-automata is
only used for time behavior which is a narrow scope compared to what we want to
model (i.e. all the performance aspects). On the other hand, the models related to
UML are using an annotation approach to make the performance requirements more
intuitive. This approach solely document the requirement, it does not define the
influencing factors as input when generating the test cases. Looking at those models
we found by the SMS, none of them fit for use in Specmate or contribute to some of
the main features of the software: to verify the correctness and completeness of the
requirements, and generate a more efficient test suites to test the SUT.

From Figure 4.6, we can see that time behavior, resource utilization, capacity, and
throughput/speed have a high percentage of testable requirements while efficiency
has a low percentage. What we can deduce is that efficiency might not a performance
aspect that can comprehensively documented.

After looking at all the models presented in the reviewed studies on performance
modeling and with the inspiration from Wohlin et al. [40] illustration for the exper-
iment components and the cause-effect graph [17], we developed the performance
requirements verification and validation (PRVV) model. PRVV aims to model per-
formance requirements and generate more efficient test cases for performance testing.
In the next chapter, we explain the model in detail and we show how it can be used,
then we display the results from the implementation of the PRVV model on a sample
of performance requirements.

Chapter 5

Performance Requirements Verification and
Validation Model

As we discussed in Chapter 4, the models that the reviewed papers present or pro-
pose have one significant problem: they don’t take into account the performance
influencing factors as input for generating the test cases. Therefore we decided to
develop our model-based performance-testing approach, Performance Requirements
Verification and Validation (PRVV) Model, and illustrate it’s mechanics on data
from real projects provided by the SRS Collection from Ferrari et al.[19]. In this
chapter, we explain how we came up with the PRVV model, explain the concept be-
hind it in detail and the steps to model the performance requirements. After that, we
demonstrate our model on three randomly chosen SRSs from the SRS Collection [19],
finally we discuss the results we had from the model implementation.

5.1 PRVV Model

5.1.1 Model Description

Instead of focusing on one performance element e.g timed-automata which focuses
on time behavior [S20, S22, S26, S23, S21, S1, S17, S19, S18, S5], or simply annotate
the performance element to UML models (as done, for example, in [S11, S25, S24,
S8, S3, S2, S7]), we created a model that has the performance requirements as a
main part of the model.

Figure 5.1: Illustration of independent and dependent variables from Wohlin et
al. [40]

33

34 Chapter 5. Performance Requirements Verification and Validation Model

When developing the model we were inspired by the experiment principle and vari-
ables illustration model from Wohlin et al.[41] and CEG diagram from Specmate[20].
Figure 5.1 is the illustration of independent and dependent variables as explained in
the study of Wolhin et al.[40]. Experiment principle that raised by Wohlin et al. [40]
shows that when conducting an experiment, theoretically the set up of the experi-
ment acts as cause construct and the result turns out effect construct. Those two
constructs could be aligned with independent and dependent variables. Also, we
found that Figure 5.1 conveys the same idea as we do. Because what test case needs
are test data and expected test result. The independent variables can be aligned
with test data while the dependent variables with expected test result. The SUT or
the instance under test could align with the process.

Figure 5.2: Cause-Effect Graph [17]

On the other hand, the cause-effect graph (CEG) as shown in Figure 5.2 is used
by Specmate to help verify the functional requirements and generate the test cases.
It has the same cause-effect concept with the experiment principle from Wohlin et
al. [40]. A state of the system or the result of the function could be established by a
specific input combination. To develop a model that aims to generate test cases we
need to find what are the possible inputs to the test cases. We used the cause-effect
concept to find the relation between different performance requirements.

By analyzing the different performance aspects, while having the cause-effect con-
cept in mind, we found out the influencing factors of the performance testing for the
SUT. We proposed a taxonomy in Figure 5.3 to classify the performance parameters
(i.e. performance aspects), so the software engineer knows where each performance
requirements goes with the model. The taxonomy divides the parameters into two
main sets, one is the independent parameters and the other is the dependent param-
eters. The independent parameter consists of capacity, e.g. the number of users, and
resource utilization, e.g. storage size. On the other hand, the dependent parameter
consists of time behavior (e.g. response time), throughput/speed (e.g. requests per
time unit), and efficiency (e.g. response time in regards to memory size).

After the taxonomy tree became ready, we created the performance requirements
verification and validation model (PRVV model) from the illustration of independent
and dependent variables from Wohlin et al. [40]. As shown in Figure 5.4, those
independent parameters act as inputs in the performance model, they affect the test
environment where the test runs and the test data. While the dependent parameters
act as outputs in the model, they are the metrics or measurements of running the

5.1. PRVV Model 35

Figure 5.3: Performance Parameter Taxonomy Tree

test cases and are used to compare the testing results with the written performance
requirements. The object element in the figure refers to the SUT or part of it i.e. a
function that has the performance requirements associated with.

Figure 5.4: Performance Requirements Verification and Validation Model

The test case generation is not achieved and is not the main topic in our thesis,
but we did put this in our mind when we designed the PRVV model. From what
we have in the model, the independent parameters can be acted as test data while

36 Chapter 5. Performance Requirements Verification and Validation Model

dependent parameters as expected result in test cases. With these two essential
components, the test case can be able to generate in the future.

By using the taxonomy tree and PRVV model, the tester can verify the complete-
ness of performance requirements and help them generate the test cases. The model
that doesn’t have three elements defined, we can say this performance requirement
is not complete because of the missing elements. In this case, the taxonomy tree will
help testers to find out the missing parts and then enhance the performance require-
ments. If the model has multiple independent parameters, the testers can generate
different test cases by separating the independent parameters. It might help filter
out which independent parameter that fail the test. Also, the model that has the
same independent parameters can be grouped as a suite which turns to a test suite.
By grouping the modules, we can generate the test cases that have the same pre-
condition settings which in our case are independent parameters into one test suite
and run them at one time to save the resources, time and effort. On the other hand,
models like timed-autoamta [S20], Markov [S6] and UML [S13], they show the per-
formance model on the end-to-end system model, this could give a better overview
of the performance requirements with different system components compared to the
PRVV.

5.1.2 Creating The Model

In this section, we show the steps that software engineers would follow to model the
performance requirements for a project they have.

• Step 1: Define the objects
Check the objects first that the performance requirements on hand applies to.
The objects could be the system, specific functions or a collection of functions.

• Step 2: Define the independent parameters and dependent parameters
Extract the performance parameters from the requirements, and code them
with the right performance aspect using the taxonomy tree Figure 5.3. Then
add those extracted coded parameters to the model as independent and depen-
dent variables as per the taxonomy tree Figure 5.3.

• Step 3: Check the taxonomy tree
Take the initial performance model and compare it with the taxonomy tree 5.3,
see if there is any elements or parameters are missing. If there are missing
parameters, check with other performance models with the same objects to see
if it is possible to combine. If there are still some parameters missing then
there is a problem with the requirements. Check with requirements engineers
or customers to negotiate the requirements. Otherwise, the model is finished
and the requirements are OK, you can move on to other requirements or design
the test cases.

When one is using the PRVV model with performance requirements, one should
take into account the following tips which help modeling the requirements.

5.1. PRVV Model 37

• Tip 1: verify the completeness of the requirements. By checking the connection
(relation between different requirements). There should be a correspondent
independent input for each dependent output. Having one without the other
would result in ambiguous requirements, which would reflect as an uncompleted
performance model

• Tip 2: verify feasibility. The requirement should fit with one of the performance
aspects’ definition in Section 2.1.2.

• Tip 3: verify testability. Each requirement should have a quantity that de-
scribes the target level of performance and should define where it applies (sys-
tem, a specific function or a collection of functions).

• Tip 4: specific condition.. Check if the requirements apply in specific cir-
cumstances or scenarios. The performance requirements might have the same
objects but under different conditions, i.e. peak time. If so then you should
make a different model for each of those conditions, because each condition has
different parameters applies to the test environment and different measurement
levels.

Each module in PRVV model can be generated into one test case or more. The
independent parameters can be acted as test data while dependent parameters as
expected result in test case. If the module has multiple independent parameters,
you can generate different test cases by separating the independent parameters. It
might filter out which independent parameter that fail the test. Also, the module
that has same independent parameters can be grouped as a suite which turns to a
test suite, e.g. module 1 and 2 from 5.10 of Video Search Engine in Section 5.2.1
can be grouped into one test suite. By grouping the modules, we can generate the
test cases that have the same precondition setting which in our case is independent
parameters into one test suite and run them at one time to save the resources, time
and effort.

5.1.3 Example of PRVV

Here is an example that demonstrates how to implement the PRVV model. We
followed the three steps for creating the model which we described earlier in Sec-
tion 5.1.2. Let us take the performance requirements in Table 5.1, which we wrote
for a web application.

38 Chapter 5. Performance Requirements Verification and Validation Model

Table 5.1: Example Performance Requirements for PRVV Model Demonstration

No. Performance Requirements Performance
Aspect

PR1 The system should process any request by a
maximum time of 2 seconds.

Time Behavior

PR2 The system should handle 1000 users simulta-
neously.

Capacity

PR3 The song should start streaming within 1 sec-
onds from the time when the user request it
from a 3G mobile network.

Time-behavior/
Resource Uti-
lization

We start from step 1 by defining the objects. We defined two objects from those
requirements system and song. We created two models one for each object as shown
in Figure 5.5

Figure 5.5: Step 1 of Demonstration

Step 2, we extracted the performance parameters (2 seconds, 1000 users, 1 second
and 3G mobile network) from the requirements, and coded them with the related
performance aspects as per the taxonomy tree in Figure 5.3. We present the as-
sociated performance aspect in the last column of Table 5.1. Then we put those
parameters as independent and dependent parameters on the model as shown in
Figure 5.6 following the taxonomy tree in Figure 5.3. It might be argued here that
3G mobile network is not quantifiable, which is against the tips of creating the model
in Section 5.1.2. However, 3G mobile network has a specific range for data transfer
rate which is quantifiable.

Figure 5.6: Step 2 of Demonstration

5.2. Sample Study - Model Implementation 39

Step 3, we looked at the taxonomy tree to see if there is a possible missing
parameters. We saw that there is no resource utilization parameter defined for the
system, although there is a 3G mobile network defined for the song object. Which
indicates a possible issue with the requirements. It could be that there is a missing
requirement that specifies the resource utilization for the system. Another possibility,
PR3 requirement should be divided into two requirements, one specifies the time-
behavior for the song object, and the other specifies the resource utilization i.e. 3G
mobile network for the whole system. At this point, we should discuss this with the
requirements engineers or customers to negotiate the requirements and fix the issue.

Figure 5.7: Step 3 of Demonstration

5.2 Sample Study - Model Implementation
We chose 3 SRSs from the SRS collection we got from Ferrari et al.[19], to implement
our proposed performance model. The SRSs we chose were Software Requirements
Specification For Video Search Engine which was released in 2009, Inventory Manage-
ment Software Requirements Specification which was released in 2009 and GAMMA-J
Web Store Software Requirements Specification which was released in 2000. Next,
we explain in detail the implementation of the PRVV model on the Video Search
Engine SRS and show the results of the analysis using PRVV for the other two SRS
examples.

5.2.1 Example of Video Search Engine

First, we extracted all the performance-related requirements from the Software Re-
quirements Specification For Video Search Engine SRS1:

• REQ-1: Query times will take no longer than 5 seconds to any website.

• REQ-2: Sending the hyperlink to the default browser will take less than 1 sec-
ond.

• REQ-3: Loading the program will take less than 10 seconds.

• REQ-4: Sorting results should take less than 0.1 seconds.

• REQ-5: A results page will display 100 results.
1These are exact copies of the requirements as they are specified in the SRS

40 Chapter 5. Performance Requirements Verification and Validation Model

Now after we have the performance requirements we follow the steps mentioned
in Section 5.1.2 to model those requirements.

Step 1 from the requirements, we extracted all the possible objects which are
query, sending the hyperlink, loading the program and sorting the results page. We
put each object into different object frames.

Figure 5.8: Performance Model for Video Search Engine - Step 1

Step 2 we extracted the performance parameters from the requirements and coded
them with the right performance aspect using the taxonomy tree. We come up with
the following: (1) 100 results as capacity, (2) <= 5 seconds, <= 1 second, < 10
seconds, < 0.1 second as time-behavior. Then we added those extracted parameters
to related objects in the model, capacity as independent and time-behavior as depen-
dent parameter, as shown in Figure 5.9 following the taxonomy tree in Figure 5.3.

5.2. Sample Study - Model Implementation 41

Figure 5.9: Performance Model for Video Search Engine - Step 2

Step 3 from step 2, we can see two parameters are missing (independent variables
for the objects "Loading Program" and "Sorting results page"). With the help of
the taxonomy tree in Figure 5.3, we can make a calculated guess about the possible
missing parameters. The testing engineers can then discuss the missing parameters
with the requirements engineers or the customer to negotiate the requirements and
enhance them.

Figure 5.10: Performance Model for Video Search Engine - Step 3

The first implementation on Video Search Engine we extracted five performance
requirements, four of those requirements are coded as time-behavior and one as

42 Chapter 5. Performance Requirements Verification and Validation Model

capacity. When we applied those on the model we can immediately recognize that
two out of the four modules (modules 3 and 4) are missing a component each, as
we can see in Figure 5.9. The missing component was identified by looking at the
taxonomy tree in Figure 5.3, since it is an independent parameter then it should be
one of two aspects capacity or resource utilization, as we can see in Figure 5.10.

Modules 1 and 2 in Figure 5.10 represents verified performance requirements that
should be testable. In module 1 REQ-5: A results page will display 100 results is
the independent parameter, while REQ-1: Query times will take no longer than 5
seconds to any website. is the dependent parameter. If we want to prepare and run
performance test for REQ-1, it might not be enough to run a couple of tests for the
query and measure the maximum time it takes, because there are many variables
that could affect the query time other than the way the function is implemented,
e.g. the number of results returned by each query (capacity). REQ-5 specifies the
number of results per page, which makes testing REQ-1 easier. We could have a query
that returns 1000 results (the maximum per page) which we run on the website and
measure the time, hence we were able to test REQ-1.

On the other hand modules 3 and 4 in Figure 5.10 are an example of unverified
requirements. Those modules did not meet all the model requirements, because
they had a missing component. REQ-3: Loading the program will take less than 10
seconds by itself is not enough to verify that the software meets these requirements.
It is not possible to run a test that would ensure these requirements are met by the
software always by all users, because of the other influencing variables that affect the
outcome of running the software. Those variables could be 1- related to the user’s
environment e.g. the network connection, and device specifications, 2- related to
the server environment e.g. server specifications and the number of concurrent users
accessing the server. If we had another requirement that specifies the resources the
system should utilize and the minimum resource by the users to support, then it
would be easier to test REQ-3 and ensure that the software is more likely to meet
the requirement. We can see here that we could find problems with the requirement
by using the PRVV.

5.2.2 Example of Inventory Management System

This second example is an implementation of the model on Inventory Management
Software Requirements Specification. We show the final model in Figure 5.11. We
extracted the following requirements from the SRS.

• REQ: The functionality provided by the Inventory Management System will
be critical to the normal operation of the Construction Junction business. As
such, the system should perform with consistently and predictably low response
times in order not to impact the performance or the timely execution of the
various tasks that need to be conducted by the Construction Junction staff.

5.2. Sample Study - Model Implementation 43

Figure 5.11: Performance Model for Inventory Management System

In the second example in Section 5.2.2 there is only one performance requirement
that we extracted from the SRS. If we read this requirement we can see there is a
lot of ambiguity, e.g. it is said that "the system should perform with consistently
and predictably low response times", what does consistent and predictable mean?
what is the acceptable response time? and how much resources do we have for the
software?. The answer to all of those questions we do not have it. This makes it hard
to test this requirement as it does not have the numeric value which is necessary to
compare the measurements returned by running the test to see if the requirement is
met, also there are no capacity or resource utilization requirements which are factors
that affects the test environment which in turn affects the time-behavior.

This shows some of the benefits associated with the PRVV. 1- We have detected
un-testable requirements because we could not model them. 2- We have educated
guess about some other missing performance requirements. At this stage could nego-
tiate the requirements with the customer, before we agree to something we possibly
can not be verified or even delivered.

5.2.3 Example of Web Store

The third example is implemented on GAMMA-J Web Store Software Requirements
Specification. We followed the same steps we did in Section 5.2.1. We show the
extracted requirements and the results i.e. model in Figure 5.12. Following are the
extracted requirements.

• REQ-1: Upon the USB being plugged in the system shall be able to be deployed
and operational in less than 1 minute.

• REQ-2: The system shall be able to handle 1000 customers logged in concur-
rently at the same time.

• REQ-3: The system shall be able to retrieve 200 products per second.

• REQ-4: The system shall be able to add product to shopping cart in less than
2ms.

• REQ-5: The system shall be able to search for a specified product in less than
1 second.

• REQ-6: The system shall be able to email customer and vendor in less than 1
second.

• REQ-7: The system shall be able to validate credit card in less than 2 seconds.

44 Chapter 5. Performance Requirements Verification and Validation Model

• REQ-8: The system shall be able to acquire shipping charges in less than 2
seconds.

• REQ-9: The system shall be able to restore 1000 records per second.

Figure 5.12: Performance Model for Web Store

In the last example, eight modules were concluded from the nine performance
requirements the SRS had. Six of those modules did not show issues with the re-
quirements since they had at least one independent and dependent parameter. We
can see from example 1 & 3 some modules showed issues with the requirements and
other modules did not, while for example 2 there was only one module that was in-
complete and indicated an issue with the requirements. This demonstrates that the
PRVV model could find some problems with the performance requirements. Model-
ing performance requirements using the PRVV model affects the generated test cases,
because the performance parameters affect the test environment and test data, which
could be considered as input to the test, and helps determine when the test is passed
which is the output of the test. That said we are not claiming that if all modules did
not show any issue with the requirements, it means the performance requirements
are 100% complete or correct since those are the customer requirements and each

5.3. Discussion 45

customer could have different requirements. However, when the requirements are
modeled with no issue, and the model does not detect any missing requirements, it
is more likely that test engineers would accept those requirements since those re-
quirements should be testable and there is enough information available to know
what to test. Later, there should not be any surprises when the customer carries out
acceptance testing.

After all three samples is implemented, we collected the basic information of each
SRS. The result is presented in Table 5.2 which consists of the number of each per-
formance aspects that the performance requirement mentioned and the application
type of each SRS.

Table 5.2: Number of requirements in each performance aspect and application type
of chosen samples

SRS T
im

e
b
eh

av
io
r

C
ap

ac
it
y

T
h
ro
u
gh

p
u
t
/
S
p
ee
d

R
es
ou

rc
e
u
ti
li
za
ti
on

E
ffi
ci
en

cy

A
p
p
li
ca
ti
on

ty
p
e

Video Search Engine 4 1 web application

Inventory Management System 1 web application

Web Store 6 1 2 web application

5.3 Discussion

We have implemented the model on three samples from the SRS collection. From
the models we created, we find that the performance requirements are all set in the
place that it belongs and the missing parts are also detected. That indicates all
the performance requirements can fit in the PRVV model and the taxonomy tree
do help testers verify the performance requirement and even help them to complete
the missing part in the performance requirement. Each module in the PRVV model
can be generated into one test case or more. As we said in Section 5.1.1, we have
the probable design for generating the test cases. The independent parameters can
be acted as test data while dependent parameters as expected outcome form the
test case. If the module has multiple independent parameters, you can generate
different test cases by separating the independent parameters. It might filter out
which independent parameter that fail the test. Also, the module that has same
independent parameters can be grouped as a suite which turns to a test suite, e.g.
module 1 and 2 from 5.10 of Video Search Engine in Section 5.2.1 can be grouped
into one test suite. By grouping the modules, we can generate the test cases that

46 Chapter 5. Performance Requirements Verification and Validation Model

have the same precondition setting which in our case is independent parameters
into one test suite and run them at one time to save the resources, time and effort.
Regarding on the missing parts in models, we find that we can have a probable scope
of what is missing but we cannot go further to detect what is exactly missing since
the taxonomy tree isn’t traced deeper to specific factors, e.g. we know capacity is
missing, but we don’t know which capacity is missing, maybe the amount of users,
or maybe the size of the database.

Besides, we tagged the performance requirements to its related performance as-
pects. Since we coded the performance aspects manually with the requirements, we
can not deny the human error factor. Table 5.2 shows the number of performance
aspects with its belonged SRS. It also presents the application type of each chosen
SRS. From the table, we deduced that requirements engineers focus more on on-time
behavior while less in others. And we found the dependent parameters are easier to
be found in performance requirements. The reason for this phenomenon is because
of the characteristic of SRS. The SRS is written as an expected outcome for the
software, so the software requirement engineers usually focus more on the output or
outcomes from the software. Also, the SRS samples that we randomly picked are all
web application which limited our coverage of implementing the PRVV model.

The main difference among our PRVV model and other existing models is PRVV
model considers influencing factors. We have a taxonomy tree to follow up which
helps verify the completeness of performance requirements. Also, PRVV models can
be used on all kinds of performance aspects which is the same as the UML annotation
approach, e.g. annotate performance metrics to UML diagram [S8] but not the model
that only models one performance aspect,e.g. time automata [S26]. From the models
we studied, almost all of them are state-based or function-based which reflect the
overall logic of the SUT while the PRVV model doesn’t have this characteristic. The
modules in the PRVV model are not connected with the functional requirements,
because we only take the performance requirements as the source for modeling. Plus
since the objects are detected from the performance requirements, we could not make
sure that the PRVV model can cover all the objects, e.g. features.

In the end, it should be possible to adapt the PRVV model by Specmate. Cur-
rently, Specmate connects the requirements tools with the test tools. As Freudenstein
et al.[20] explained, it achieves that through one of two ways. First, taking require-
ments in the form of text, creating a CEG diagram then design test procedures to test
the specific function. Second, is by taking a business process diagram then designing
a test suite to test the whole process. It is verified by the users that Specmate acts
as a verification tool and finds issues by the requirements. We find it possible to
accommodate PRVV with Specmate, since PRVV also verifies performance require-
ments and generate test cases for them, hence connects the requirements with the
tests. CEG already captures functional requirements and verify them, and PRVV
requires an object (e.g system or specific function) to model performance require-
ments around, so we could think of the whole CEG as an object and annotate it with
performance requirements. But to differ from other models e.g. UML model found
during our SMS, that solely documents performance requirements, we implement the
rules associated with our model and the taxonomy tree. This would advice the user
of the tool whether there is a problem with the performance requirements.

Overall, The model could act as a verification tool for the performance require-

5.3. Discussion 47

ment and ensure better test case generation in regards to performance requirements.
It brings more options for generating test cases and has significant value on saving
the resource, time or effort since we can group the test case with the same test envi-
ronment as a test suite. But, the SRSs that we chose covered only web applications,
which might affect the scope of applications for implementing the PRVV model.

As we mentioned we can see many benefits achieved by our approach for model-
ing performance requirements, however, this approach has some limitations as well.
First, the logic of how the system works can not be seen from the PRVV models.
Currently, the PRVV model shows the object and what performance requirements
apply to it but does not show the end-to-end behavior of the system like the busi-
ness process diagram. Second, the taxonomy tree should have a systematic way to
be used. Although the taxonomy tree does give testers an idea about the missing
performance parameters, it doesn’t give them enough guidelines to immediately find
out what exactly are the missing parts. Third, the taxonomy tree is not detailed
enough. Currently, the taxonomy tree show the division of performance parameters
on two levels, the dependency, and the aspect. However, a third level is required to
show what kind of sub-categories each performance aspect has, to find more missing
requirements. Fourth, prone to human error. Since the extraction and coding of the
parameters is done manually, the process depends on the interpretation of the engi-
neers to the requirements and their experience in the field, which could be avoided
by automating this process.

Chapter 6

Answering the Research Questions

In this chapter, we answer all research questions. For research questions that have
sub-questions, we answer the sub-question first, and then present the answer for the
main research question.

RQ1 Which aspects of performance requirements are used in MBT?

RQ1.1 Which aspects of performance requirements have been studied?

RQ1.1 Answer: We can see that all the performance aspects are studied from
Figure 4.1. But the amount of studies on each performance aspect is different. The
most studied one is time behavior while resource utilization, capacity, and through-
put/speed are next. There is only one paper that studied the efficiency aspect.

RQ1.2 Which aspects of performance requirements can be modeled?

RQ1.2 Answer: From Figure 4.1, we can see that all the performance aspects
can be modeled (at least there were attempts described in the scientific literature).
Many models can be used to model performance requirements e.g. timed-automata
and UML based models as shown in Table 6.1. The mapping result shows that time
behavior has been studied the most and has various ways to be modeled while only
one model found to model efficiency. Some of those models focus on one aspect e.g.
timed-automata which focuses on time-behavior others can be used to model more
than one aspect e.g Markov chain and UML.

49

50 Chapter 6. Answering the Research Questions

Table 6.1: Performance aspects and their related modeling approaches
Performance Aspect Related Models

Time behavior Markov chain, time automata, UML, finite state machine, scenario
and workload, AADL design, push-down automata, message se-
quence chart, cost model, VCC model,Tritest

Capacity UML, time automata, behavioral model

Throughput / Speed UML, time automata, Tritest, Labelled transition system

Resource utilization Markov chain, UML, time automata, behavioral model, scenario
and workload, VCC model, Tritest

Efficiency AADL design

Not specified Markov chain, UML, behavioral model, Accuracy Information An-
notation Model

RQ1.3 Which aspects of performance requirements are used in real life projects?

RQ1.3 Answer: As we learned from the SRS Collection, all performance aspects
appear in real-life projects. But the most frequently used performance aspects are
time behavior and capacity.

RQ1 Answer: All the performance aspects mentioned in the performance qual-
ity model are used in MBT, however, there is a considerable difference between the
performance aspect in terms of study depth in the area of MBT. From the mapping
result of the systematic mapping study, we found four out of five performance as-
pects are studied in a good amount of papers and all of those four aspects can be
modeled. Although efficiency was studied only in one paper, the modeling technique
isn’t missing. All of this indicates that all the performance aspects can be modeled.
If we look at those models, from Figure 4.1 we can find that many of the models
are used to model more than one performance aspect. While from the result of the
analysis of performance requirements, the most used performance aspects are time
behavior and capacity.

RQ2 How to implement MBT on performance requirements aspects?

RQ2.1 What type of models can be used to model performance requirements as-
pects?

RQ2.1 Answer: There are some models found in the literature to model perfor-
mance, the most studied models are timed-automata based which is more directed
towards time-behavior and UML based which are annotation based. Those models
visuals the performance requirements with the corresponding function. They merely
document the performance requirements and do not have much effect on designing
the test suite. There are other models which are novel or a combination of more than
one model.

RQ2.2 Which type of model is suitable to be used in Specmate?
RQ2.2 Answer: The models found by the SMS from time-automata, UML or

51

Markov based on other novel models, there is nothing suitable to be used with Spec-
mate. Because Specmate does not just model or document the requirements and
generate test cases, but it verifies the correctness of the requirements by modeling
them. More, when we have the model ready Specmate builds an efficient test suite
that ensures the minimum number of test cases to test the requirements. We de-
veloped a model that accommodates those features. PRVV is a model that helps
verify performance requirements with the help of its components and the taxonomy
tree and gives an idea for tester about what should be tested. It also provides an
overview of performance requirements.

RQ2 Answer: as we can see from the answer to RQ2.1 and RQ2.2 it is possi-
ble to model performance requirements with the help of the PRVV model and the
taxonomy tree. Although other models exist but none of them would have the bene-
fits associated with PRVV, from verifying the requirements to an efficient design and
generation of the test cases. The PRVV model and the taxonomy tree is not just a
method for modeling performance requirements, but also a concept that shows the
relationship between different performance aspects. We have realized that those as-
pects can be divided into two main categories. First, independent parameters which
are input to the test environment includes capacity and resource utilization. Second,
the dependent parameters which is an output of the test and verified by taking mea-
surements. Similar to the relation between the independent and dependent variables
in the experiment as Wohlin et. al. [40] explained, and the causes (conditions) and
effects (outcome) in the CEG diagram.

RQ3 Can MBT for performance requirements be used on real-life projects?
RQ3 Answer: Yes, it can. The systematic mapping study result and our PRVV
model demonstration on samples from SRS Collection proves that MBT for perfor-
mances can be used on real-life projects. The evaluation of the models extracted
from SMS is conducted practically by using a case study or an experiment and the
results appear to be positive. On the other hand, we applied the PRVV model that
we developed on three real-life SRSs, the results look promising and the model could
detect some of the possible issues with the requirements e.g. completeness. This is an
indication that MBT for performance requirements can be used on real-life projects.
However, this is not with some limitations. The PRVV model can not detect if there
are objects with zero performance requirements. The taxonomy tree is not detailed
enough, e.g. we do not know which type of capacity is missing (users, data size).
Besides, when the model creation is done manually and not automated it is prone
to human errors. Those limitations could and should be addressed to achieve the
maximum benefits of MBT.

RQ4 What are the benefits of using model-based testing to test performance require-
ments?
RQ4 Answer: It has the same benefits as using MBT on functional requirements.

1. It helps the software engineers to better understand the requirements. When
the performance requirements are visualized and by using the taxonomy tree
in Figure 5.3, it becomes easier to find the relation between them and how they

52 Chapter 6. Answering the Research Questions

relate to functional requirements

2. It acts as a verification tool for the requirements. By modeling the performance
requirements, we can see if the requirements are missing or can not be accepted
if they were not modeled properly.

3. It let the testers know what should be tested since it is possible to design a test
suite based on the model. This saves time and resources and let testers focus
on how to test the requirements rather than what.

Chapter 7

Conclusions and Future Work

Performance is an important quality factor of the software product, and we need
to ensure that it is of a good level. We need to mitigate the issues that appear in
software performance by automating the testing process. MBT is good at doing so
but it is not explored extensively in the context of software performance. Our aim of
the research is to investigate the current state of MBT for performance requirements
and find a suitable approach to implement it.

We did a systematic mapping study and presented its results. We followed the
study of Dias-Neto et al.[13], quoted their search string, narrowed the scope by adding
the related performance word behind and applied to 4 different databases to find out
the most suitable models for performance testing. The discussion of the current
performance testing modeling is stated. The relationship between the models and
the performance aspect is also discussed.

Moreover, we did a requirements analysis for real-life projects with help from the
study of Ferrari et al. [19]. Unfortunately, the results we got from the mapping study
wasn’t much satisfying and we decided to propose our performance testing model.
Also, we developed a performance aspects taxonomy tree that can help us model
the performance requirements. We explained the steps of creating the performance
testing model and discussed its benefits. When we got the performance requirements
on hand, we could follow the steps to fulfill the default performance testing model.
If the model cannot be completed, you can go to the taxonomy tree to find out
the possible missing parameters which help the requirements writers enhance the
performance requirements as well as the testers and developers to understand the
requirements more. From each completed performance model, we can generate at
least one test case. If we group the models with the same inputs, we can generate a
test suit which can be run under the same testing environment.

We aimed to extend the capability of model-based testing on non-functional
requirements. We reduced the gap between model-based testing and the perfor-
mance requirements by doing a systematic mapping study and a sampling study.
We learned that the performance aspect time-behavior is the most used in prac-
tice and studied aspect, however, the other performance aspect capacity, resource
utilization, speed/throughput, and efficiency are also of high importance and has a
significant share of the performance requirements.

There are many models proposed for modeling performance requirements, some
works with a specific aspect of performance, others just annotate functional models
with performance requirements. Most of the models are not mature enough and not
enough empirical studies were created to verify them.

53

54 Chapter 7. Conclusions and Future Work

We developed the PRVV model which can be used to model performance require-
ments. It gives an overview of the performance requirements and helps verify them
and detects some of the missing requirements. It helps the software testers to know
what should be tested and what possible requirements for the test environment. Be-
sides, we can group the test models with the same inputs together to generate a test
suite that might save time and resources.

We created a performance aspects taxonomy. We found that the resource uti-
lization and capacity is not a variable that can be measured after the test is run,
but more like one of the setup environment factors that set form the beginning
i.e. independent parameters. While time behavior, throughput/speed, and efficiency
cannot be set from the beginning of the test, but rather measured after running it i.e.
dependent parameters. This taxonomy is crucial to detecting missing performance
requirements.

We verified a model by implementing it with a sample study on three SRSs. The
model turns out to work with performance requirements from real-life projects.

Our study has multiple contributions.

1. SMS for model-based performance testing which provides an overview of what
has been done in the field, and makes it easier to find the related papers.

2. Found the most relevant aspects of performance requirements in industry and
academia.

3. Developed a new model for performance requirements and a taxonomy for
performance aspect that can be used for MBT

4. A better understanding of performance requirements aspects and its relevance
for testing.

7.1 Future Work
Future work concerns deeper validation of the proposed performance model, find-
ing solution or mitigation techniques for the PRVV model limitations, extension to
other existing diagrams or models, and the model concept to other non-functional
requirements.

We have some thoughts about what could be done later that would be of benefit
to researchers who are interested in this area.

1. Apply the proposed modeling technique on a larger set of well-built SRS with
relatively completed performance requirements and later on enhance the PRVV
model.

2. Complete with the next steps of MBT, by generating test cases and build a test
suite from the proposed performance model (PRVV) to test the performance
requirements.

3. Extend this modeling concept to other non-functional requirements e.g. secu-
rity.

7.1. Future Work 55

4. Integrate the proposed performance model (PRVV) with Specmate, by merging
it with other diagrams, like cause-effect graphs.

5. Enhance the taxonomy tree by finding the possible sub-categories for the per-
formance aspects.

6. Automate the process of creating the model from natural text requirements to
avoid human errors.

References

[1] Eclipse formal modeling project. https://projects.eclipse.org/proposals/
eclipse-formal-modeling-project. Accessed: 2019-10-10.

[2] Natural language requirements dataset. http://fmt.isti.cnr.it/
nlreqdataset/. Accessed: 2019-02-08.

[3] Software product quality model - iso25010. https://iso25000.com/index.php/
en/iso-25000-standards/iso-25010. Accessed: 2019-09-12.

[4] the state of the software testing profession 2016-2017, techwell commu-
nity. https://stickyminds.com/sites/default/files/webform/file/2017/
16-17_SotTP_report.pdf. Accessed: 2019-10-13.

[5] Rafa E Al-Qutaish. Quality models in software engineering literature: an analyt-
ical and comparative study. Journal of American Science, 6(3):166–175, 2010.

[6] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, 2016.

[7] Barry W. Boehm. Verifying and validating software requirements and design
specifications. IEEE software, 1(1):75, 1984.

[8] Barry W Boehm, John R Brown, and Mlity Lipow. Quantitative evaluation of
software quality. In Proceedings of the 2nd international conference on Software
engineering, pages 592–605. IEEE Computer Society Press, 1976.

[9] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-functional
requirements in software engineering, volume 5. Springer Science & Business
Media, 2012.

[10] Paul C Clements. Coming attractions in software architecture. In Proceedings of
5th International Workshop on Parallel and Distributed Real-Time Systems and
3rd Workshop on Object-Oriented Real-Time Systems, pages 2–9. IEEE, 1997.

[11] Francois Coallier. Software engineering–product quality–part 1: Quality model.
International Organization for Standardization: Geneva, Switzerland, 2001.

[12] Siddhartha R Dalal, Ashish Jain, Nachimuthu Karunanithi, JM Leaton, Christo-
pher M Lott, Gardner C Patton, and Bruce M Horowitz. Model-based testing
in practice. In Proceedings of the 1999 International Conference on Software
Engineering (IEEE Cat. No. 99CB37002), pages 285–294. IEEE, 1999.

57

58 References

[13] Arilo C Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H
Travassos. A survey on model-based testing approaches: a systematic review.
In Proceedings of the 1st ACM international workshop on Empirical assessment
of software engineering languages and technologies: held in conjunction with the
22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE) 2007, pages 31–36. ACM, 2007.

[14] Arilo C Dias-Neto and Guilherme H Travassos. A picture from the model-based
testing area: Concepts, techniques, and challenges. In Advances in Computers,
volume 80, pages 45–120. Elsevier, 2010.

[15] R. Geoff Dromey. A model for software product quality. IEEE Transactions on
software engineering, 21(2):146–162, 1995.

[16] RG Dromey. Concerning the chimera- software quality. IEEE Software,
13(1):33–43, 1996.

[17] William R Elmendorf. Cause-effect graphs in functional testing. IBM Pough-
keepsie Laboratory, 1973.

[18] Michael Felderer, Philipp Zech, Ruth Breu, Matthias Büchler, and Alexander
Pretschner. Model-based security testing: a taxonomy and systematic classifica-
tion. Software Testing, Verification and Reliability, 26(2):119–148, 2016.

[19] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. Towards a dataset
for natural language requirements processing. In REFSQ Workshops, 2017.

[20] Dietmar Freudenstein, Maximilian Junker, Jeannette Radduenz, Sebastian
Eder, and Benedikt Hauptmann. Automated test-design from requirements-the
specmate tool. In 2018 IEEE/ACM 5th International Workshop on Requirements
Engineering and Testing (RET), pages 5–8. IEEE, 2018.

[21] Robert B Grady. Practical software metrics for project management and process
improvement. Prentice-Hall, Inc., 1992.

[22] Robert B Grady and Deborah L Caswell. Software metrics: establishing a
company-wide program. Prentice-Hall, Inc., 1987.

[23] Ravinder Veer Hooda. A future approach for model-based testing: Issues and
guidelines. International Journal of Latest Research in Science and Technology,
2(1):541–543, 2013.

[24] Ivar Jacobson. The unified software development process. Pearson Education
India, 1999.

[25] Khashayar Khosravi and Yann-Gaël Guéhéneuc. A quality model for design
patterns. German Industry Standard, 2004.

[26] Philippe Kruchten. The rational unified process: an introduction. Addison-
Wesley Professional, 2004.

References 59

[27] Prof. J. L. LIONS. Ariane 5: Flight 501 failure, report by the inquiry
board. http://sunnyday.mit.edu/nasa-class/Ariane5-report.html. Ac-
cessed: 2019-10-10.

[28] Jim A McCall, Paul K Richards, and Gene F Walters. Factors in software
quality, volumes i, ii, and iii. US Rome Air Development Center Reports, US
Department of Commerce, USA, 1977.

[29] Edward Moyer. For pokemon go, it’s stop – at least temporarily. https://www.
cnet.com/news/for-pokemon-go-its-stop-at-least-temporarily/. Ac-
cessed: 2019-10-10.

[30] Amit Paradkar, Kuo-Chung Tai, and Mladen A. Vouk. Specification-based test-
ing using cause-effect graphs. Annals of Software Engineering, 4(1):133–157,
1997.

[31] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for con-
ducting systematic mapping studies in software engineering: An update. Infor-
mation and Software Technology, 64:1–18, 2015.

[32] Margaret Rouse. Performance testing. https://searchsoftwarequality.
techtarget.com/definition/performance-testing. Accessed: 2019-02-08.

[33] Connie U Smith and Lloyd GWilliams. Performance solutions: a practical guide
to creating responsive, scalable software, volume 1. Addison-Wesley Reading,
2002.

[34] Ian Sommerville. Software Engineering (7th Edition). Pearson Addison Wesley,
2004.

[35] Klaas-Jan Stol and Brian Fitzgerald. The abc of software engineering re-
search. ACM Transactions on Software Engineering and Methodology (TOSEM),
27(3):11, 2018.

[36] Bishr Tabbaa. A modern icarus — the crash and burn
of ariane 5 flight 501. https://medium.com/@bishr_tabbaa/
crash-and-burn-a-short-story-of-ariane-5-flight-501-3a3c50e0e284.
Accessed: 2019-10-10.

[37] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-
based testing. 2006. Department of Computer Science, The University of Waikato,
Hamilton, New Zealand, 2006.

[38] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing approaches. Software Testing, Verification and Reliability,
22(5):297–312, 2012.

[39] Kristian Wiklund and Monika Wiklund. The next level of test automation:
What about the users? In 2018 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pages 159–162. IEEE,
2018.

60 References

[40] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,
and Anders Wesslén. Experimentation in software engineering. Springer Science
& Business Media, 2012.

[41] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell,
and Anders Wesslén. Experimentation in software engineering. Springer Science
& Business Media, 2012.

[42] Murray Woodside, Greg Franks, and Dorina C Petriu. The future of software
performance engineering. In 2007 Future of Software Engineering, pages 171–187.
IEEE Computer Society, 2007.

Appendix A
SMS References

61

References

[S1] Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan Porres. Model-
based performance testing in the cloud using the mbpet tool. In ICPE, pages
423–424, 2013.

[S2] Fredrik Abbors and Dragos Truscan. Approaching performance testing from a
model-based testing perspective. In 2010 Second International Conference on
Advances in System Testing and Validation Lifecycle, pages 125–128. IEEE,
2010.

[S3] Mahmoud Abdelgawad, Sterling McLeod, Anneliese Andrews, and Jing Xiao.
Model-based testing of a real-time adaptive motion planning system. Advanced
Robotics, 31(22):1159–1176, 2017.

[S4] Mustafa Al-tekreeti, Kshirasagar Naik, Atef Abdrabou, Marzia Zaman, and
Pradeep Srivastava. Test generation for performance evaluation of mobile mul-
timedia streaming applications. In MODELSWARD, pages 225–236, 2018.

[S5] Aivo Anier, Jüri Vain, and Leonidas Tsiopoulos. Dtron: a tool for distributed
model-based testing of time critical applications. Proceedings of the Estonian
Academy of Sciences, 66(1), 2017.

[S6] Matteo Camilli, Carlo Bellettini, Angelo Gargantini, and Patrizia Scandurra.
Online model-based testing under uncertainty. In 2018 IEEE 29th Interna-
tional Symposium on Software Reliability Engineering (ISSRE), pages 36–46.
IEEE, 2018.

[S7] Vaishali Chourey and Meena Sharma. Functional flow diagram (ffd): semantics
for evolving software. In 2016 International Conference on Advances in Com-
puting, Communications and Informatics (ICACCI), pages 2193–2199. IEEE,
2016.

[S8] Maicon Bernardino da Silveira, Elder de M Rodrigues, Avelino F Zorzo, Lean-
dro T Costa, Hugo V Vieira, and Flávio Moreira de Oliveira. Generation of
scripts for performance testing based on uml models. In SEKE, pages 258–263,
2011.

[S9] Alessio Gambi, Antonio Filieri, and Schahram Dustdar. Iterative test suites
refinement for elastic computing systems. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pages 635–638. ACM, 2013.

63

64 References

[S10] Deepak Gangadharan, Samarjit Chakraborty, and Roger Zimmermann. Fast
model-based test case classification for performance analysis of multimedia mp-
soc platforms. In Proceedings of the 7th IEEE/ACM international conference
on Hardware/software codesign and system synthesis, pages 413–422. ACM,
2009.

[S11] Vahid Garousi. Fault-driven stress testing of distributed real-time software
based on uml models. Software Testing, Verification and Reliability, 21(2):101–
124, 2011.

[S12] Henning Groenda. Usage profile and platform independent automated valida-
tion of service behavior specifications. In Proceedings of the 2nd International
Workshop on the Quality of Service-Oriented Software Systems, page 6. ACM,
2010.

[S13] Chunfeng Hu, Jin Guo, Nan Li, Yao Li, Chang Rao, and Siqi Liu. Towards
effective and scalable testing for complex high-speed railway signal software.
In 2017 IEEE International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pages 571–572. IEEE, 2017.

[S14] Padma Iyenghar, Michael Spieker, Pablo Tecker, Juergen Wuebbelmann,
Clemens Westerkamp, Walter van der Heiden, and Andreas Willert. Ap-
plicability of an integrated model-based testing approach for rtes. In 2011
9th IEEE International Conference on Industrial Informatics, pages 871–876.
IEEE, 2011.

[S15] Andreas Johnsen, Kristina Lundqvist, Kaj Hänninen, Paul Pettersson, and
Martin Torelm. Experience report: Evaluating fault detection effectiveness and
resource efficiency of the architecture quality assurance framework and tool. In
2017 IEEE 28th International Symposium on Software Reliability Engineering
(ISSRE), pages 271–281. IEEE, 2017.

[S16] Ingolf H Krüger, Michael Meisinger, and Massimiliano Menarini. Interaction-
based runtime verification for systems of systems integration. Journal of Logic
and Computation, 20(3):725–742, 2010.

[S17] Helge Löding and Jan Peleska. Timed moore automata: test data genera-
tion and model checking. In 2010 Third International Conference on Software
Testing, Verification and Validation, pages 449–458. IEEE, 2010.

[S18] Lars Luthmann, Timo Gerecht, Andreas Stephan, Johannes Bürdek, and Malte
Lochau. Minimum/maximum delay testing of product lines with unbounded
parametric real-time constraints. Journal of Systems and Software, 149:535–
553, 2019.

[S19] Lars Luthmann, Andreas Stephan, Johannes Bürdek, and Malte Lochau. Mod-
eling and testing product lines with unbounded parametric real-time con-
straints. In Proceedings of the 21st International Systems and Software Product
Line Conference-Volume A, pages 104–113. ACM, 2017.

References 65

[S20] Afef Jmal Maâlej, Manel Hamza, Moez Krichen, and Mohamed Jmaïel. Auto-
mated significant load testing for ws-bpel compositions. In 2013 IEEE Sixth In-
ternational Conference on Software Testing, Verification and Validation Work-
shops, pages 144–153. IEEE, 2013.

[S21] Afef Jmal Maâlej, Moez Krichen, and Mohamed Jmaïel. Conformance testing
of ws-bpel compositions under various load conditions. In 2012 IEEE 36th An-
nual Computer Software and Applications Conference, pages 371–371. IEEE,
2012.

[S22] Afef Jmal Maâlej, Moez Krichen, and Mohamed Jmaïel. Model-based confor-
mance testing of ws-bpel compositions. In 2012 IEEE 36th Annual Computer
Software and Applications Conference Workshops, pages 452–457. IEEE, 2012.

[S23] Afef Jmal Maâlej, Zeineb Ben Makhlouf, Moez Krichen, and Mohamed Jmaiel.
Conformance testing for quality assurance of clustering architectures. In Pro-
ceedings of the 2013 International Workshop on Quality Assurance for Service-
based Applications, pages 9–16. ACM, 2013.

[S24] Z.H. Muhamad and R. Ibrahim. Comparative analysis for software testing:
Mobile applications versus web applications. 11(18):10727–10734.

[S25] Elder M Rodrigues, Rodrigo S Saad, Flavio M Oliveira, Leandro T Costa,
Maicon Bernardino, and Avelino F Zorzo. Evaluating capture and replay and
model-based performance testing tools: an empirical comparison. In Proceed-
ings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, page 9. ACM, 2014.

[S26] Richard Schumi, Priska Lang, Bernhard K Aichernig, Willibald Krenn, and
Rupert Schlick. Checking response-time properties of web-service applications
under stochastic user profiles. In IFIP International Conference on Testing
Software and Systems, pages 293–310. Springer, 2017.

[S27] Najam us Saqib and Sara Shahzad. Functionality, performance, and compati-
bility testing: A model based approach. In 2018 International Conference on
Frontiers of Information Technology (FIT), pages 170–175. IEEE, 2018.

[S28] Junyi Wang, Xiaoying Bai, Linyi Li, Zhicheng Ji, and Haoran Ma. A model-
based framework for cloud api testing. In 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), volume 2, pages 60–65.
IEEE, 2017.

[S29] Danny Weyns. Towards an integrated approach for validating qualities of self-
adaptive systems. In Proceedings of the Ninth International Workshop on Dy-
namic Analysis, pages 24–29. ACM, 2012.

[S30] Claas Wilke, Sebastian Götz, Jan Reimann, and Uwe Aßmann. Vision paper:
Towards model-based energy testing. In International Conference on Model
Driven Engineering Languages and Systems, pages 480–489. Springer, 2011.

66 References

[S31] Yufeng Zhu, Yunwei Dong, Chunyan Ma, and Fan Zhang. A methodology
of model-based testing for aadl flow latency in cps. In 2011 Fifth Interna-
tional Conference on Secure Software Integration and Reliability Improvement-
Companion, pages 99–105. IEEE, 2011.

Appendix A
Final Codes for Software Requirements

Mining

Table A.1: Final Codes based on the classifications for the SRS and the requirements

Performance Aspect Application Type Testability

Time Behavior Web application Testable

Capacity Distributed system Not testable

Throughput or Speed Embedded system

Resource Utilization Game

Efficiency Real time system

General Desktop application

Control system

Dos application

System Service

Network Application

Framework

67

Appendix B

Results Tables

B.1 Systematic Mapping Study Results

Table B.1: Mapping SMS papers performance aspect to testing level

A
cc
ep

ta
n
ce

S
ys
te
m

In
te
gr
at
io
n

M
od

u
le

U
n
it

N
ot

m
en
ti
on

ed

Time-Behavior [S31] [S6]
[S20]
[S1] [S3]
[S18]
[S28]
[S5] [S8]
[S16]
[S13]

[S3] [S26] [S17] [S10]
[S27]
[S22]
[S19]

Capacity [S25]
[S20]
[S8]
[S11]

[S14] [S21]

Throughput / Speed [S23]
[S1] [S9]

[S27]
[S24]

Resource Utilization [S6] [S1]
[S28]

[S30] [S10]
[S27]
[S24]

Efficiency [S15]

Not Specified [S29]
[S12]
[S2] [S7]

[S4]

69

70 Appendix B. Results Tables

Table B.2: Mapping SMS papers study type to study method

C
as
e
S
tu
d
y

E
xp

er
im

en
t

S
u
rv
ey

Fr
am

ew
or
k
D
ev
el
op

m
en
t

C
on

ce
p
tu
al

D
ev
el
op

m
en
t

Field Study [S20] [S23]
[S1] [S12]
[S3] [S19]
[S22] [S31]
[S16] [S8]
[S26] [S10]

Field Experiment [S18] [S15]
[S11] [S24]

[S25] [S14]

Experimental Sim-
ulation

Laboratory Experi-
ment

[S5] [S6]

Judgment Study

Sample Studies

Formal Theory [S6] [S20]
[S30] [S17]
[S10] [S4]
[S3] [S19]
[S28] [S5]
[S27] [S22]
[S8] [S14]
[S13] [S26]
[S29]

[S10]
[S9]
[S21]
[S7] [S2]

Computer Simula-
tion

B.1. Systematic Mapping Study Results 71

Table B.3: Mapping SMS papers based on application type
Application Type Papers Grouped Application

Type

Web Service Composition -
BPEL

[S20] [S22]

Web basedWeb Services [S1] [S21] [S26]

Web Application [S25] [S8] [S7] [S24]

Web API [S28]

Self Adaptive System [S29] Self Adaptive System

Real time system [S17] [S3] [S19] [S18] [S5] Real time system

Multimedia platform [S10] Multimedia platform

Mobile Multimedia Streaming
apps

[S4]
Mobile based

Mobile Application [S27] [S24]

Java Application [S30] Java Application

Embedded System [S6] [S14] [S31] [S16] [S15]
[S13]

Embedded System

Distributed server/platform [S23]
Distributed system

Distributed Real-Time Systems
(DRTS)

[S11]

Cloud-based elastic computing
system

[S9] Cloud based

Not specified [S12] [S2] Not specified

72 Appendix B. Results Tables

Table B.4: Mapping application type to performance aspect

T
im

e
B
eh

av
io
r

C
ap

ac
it
y

T
h
ro
u
gh

p
u
t/
S
p
ee
d

R
es
ou

rc
e
U
ti
li
za
ti
on

E
ffi
ci
en

cy

N
ot

sp
ec
ifi
ed

Web Service
Composition -
BPEL

[S20]
[S22] [S20]

Web Services [S1] [S21] [S1] [S1]

Web Application [S8] [S26] [S25] [S8] [S24] [S24] [S7]

Web API [S28] [S28]

Self Adaptive
System [S29]

Real time system

[S17]
[S3] [S19]
[S18] [S5]

Multimedia plat-
form [S10] [S10]

Mobile Multime-
dia Streaming
apps 1[S4]

Mobile Applica-
tion [S27] [S27] [S24] [S27] [S24]

Java Application [S30]

Embedded Sys-
tem

[S6] [S31]
[S16]
[S13] [S14] [S6] [S15]

Distributed
server/platform [S23]

Distributed
Real-Time Sys-
tems (DRTS) [S11]

Cloud-based
elastic comput-
ing system [S9]

Not specified [S2] [S12]

B.1. Systematic Mapping Study Results 73

Table B.5: Mapping model type to performance aspects

T
im

e-
B
eh

av
io
r

C
ap

ac
it
y

T
h
ro
u
gh

p
u
t/
S
p
ee
d

R
es
ou

rc
e
U
ti
li
za
ti
on

E
ffi
ci
en

cy

N
ot

S
p
ec
ifi
ed

Markov Decision
Processes

[S6] [S6]

Markov Chain [S4]

UML - Sequence
Diagram

[S11]

UML - Use Case [S25]

UML - Activity
Diagram

[S25] [S24] [S24]

UML with
Stereotypes

[S8] [S8]

UML - Class Di-
agram

[S3]

UML based [S2]

Functional Flow
Diagram

[S7]

Reliability Block
Diagram

[S7]

Extended Finite
State Machine

[S3]

Finite State Ma-
chine

[S13]

Time Automata [S20] [S22] [S26] [S20] [S21] [S23]

Probabilistic
Timed Au-
tomata

[S1] [S1] [S1]

Continued on next page

74 Appendix B. Results Tables

Table B.5 – continued from previous page

T
im

e-
B
eh

av
io
r

C
ap

ac
it
y

T
h
ro
u
gh

p
u
t/
S
p
ee
d

R
es
ou

rc
e
U
ti
li
za
ti
on

E
ffi
ci
en

cy

N
ot

S
p
ec
ifi
ed

Timed Moore
Automata

[S17]

Configurable
Parametric
Timed Au-
tomata

[S19] [S18]

Uppal Timed
Automata

[S5]

Behavioral
Model

[S14] [S30] [S29]

Scenario and
Workload

[S28] [S28]

AADL design [S31] [S15]

Push-Down Au-
tomata

[S31]

Message Se-
quence Chart

[S16]

Cost Model [S26]

Accuracy Infor-
mation Annota-
tion Model

[S12]

VCC Model [S10] [S10]

TriTest [S27] [S27] [S27]

Labelled Transi-
tion System

[S9]

B.1. Systematic Mapping Study Results 75

Table B.6: Grouping of Models found during the SMS
based on origin and novelty

Original Model Type Grouped Model Type

Markov Decision Processes
Markov

Markov Chain

UML - Sequence Diagram

UML

UML - Use Case

UML - Activity Diagram

UML based

UML with Stereotypes

UML - Class Diagram

Functional Flow Diagram

Reliability Block Diagram

Extended Finite State Machine
Finite State Machine

Finite State Machine

Time Automata

Time Automata

Probabilistic Timed Automata

Timed Moore Automata

Configurable Parametric Timed Automata

Uppal Timed Automata

Behavioral Model Behavioral Model

Scenario and Workload Scenario and Workload

AADL design AADL

Push-Down Automata Push-Down Automata

Message Sequence Chart SDL

Cost Model Cost Model

Accuracy Information Annotation Model

Novel method
VCC Model

TriTest

continued on next page

76 Appendix B. Results Tables

Table B.6 – continued from previous page

Original Model Type Grouped Model Type

Labelled Transition System

Table B.7: List of SMS papers contributions

Paper Contribution Extracted Contri-
butions

Online Model-Based
Testing under Uncer-
tainty [S6]

develop new framework/-
tool

new tool

Evaluating capture
and replay and model-
based performance
testing tools: An
empirical comparison
[S25]

evaluation for using MBT
against CR

evaluation, compari-
son

Automated significant
load testing for WS-
BPEL compositions
[S20]

Evlauation for current MBT
in Losd testing. apply new
framework / tool

evaluation, new the-
ory

Conformance testing
for quality assurance
of clustering architec-
tures [S23]

developed a prototype tool
(LBACT)

new tool

Model-based per-
formance testing in
the cloud using the
MBPeT tool [S1]

verify that using models is
more efficient in generating
worload

evaluation

Towards an integrated
approach for validat-
ing qualities of self-
adaptive systems [S29]

Presented challenges in
MBT for self adaptive
system

evaluation

Vision paper: To-
wards model-based
energy testing [S30]

develop new MBT ap-
proach/tool for energy
consumption of software
application

new theory

continued on next page

B.1. Systematic Mapping Study Results 77

Table B.7 – continued from previous page

Paper Contribution Extracted Contri-
butions

Usage profile and plat-
form independent au-
tomated validation of
service behavior spec-
ifications [S12]

annotation model for ser-
vice behavior specs; an au-
tomated validation process
for performance specs

new model

Timed Moore au-
tomata: Test data
generation and model
checking [S17]

extension of classical Moore
automata, elaboration on
test automation, and model
checking methods for TMA
specs

new concept, model
extension

Fast model-based test
case classification for
performance analysis
of multimedia MPSoC
platforms [S10]

Model based test case gen-
eration method for perfor-
mance analysis of multime-
dia platform

new concept

Test generation for
performance eval-
uation of mobile
multimedia streaming
applications [S4]

propose a test generation
methodology;propose two
testing coverage criteria

new theory

Model-based testing
of a real-time adap-
tive motion planning
system [S3]

extended MBT approach,
and effictiveness of using
MBT in real time systems

extension

Modeling and testing
product lines with un-
bounded parametric
real-time constraints
[S19]

novel modeling and MBT
for product lines with real
time constraints; evaluation
of the efficiency of family
base test suite generation;
tractable model complexity

new model

Minimum / maxi-
mum delay testing of
product lines with un-
bounded parametric
real-time constraints
[S18]

presented a novel modeling
and model-based testing ap-
proach; combine concepts
from FTA and PTA into
a unified conceptual frame-
work3.propose an entirely
novel coverage criterion

extension

continued on next page

78 Appendix B. Results Tables

Table B.7 – continued from previous page

Paper Contribution Extracted Contri-
butions

A Model-Based
Framework for Cloud
API Testing [S28]

develop new prototype sys-
tem

new tool

DTRON: A tool for
distributed Model-
Based testing of time
critical applications
[S5]

develpe a new tool extension

Functionality, Per-
formance, and Com-
patibility Testing:
A Model Based
Approach [S27]

evaluate for existing test-
ing techniques for mobile
applications.; propose new
tool that test mobile appli-
cations (functionality, per-
formance and compatibil-
ity) using MBT

new tool

Model-Based Con-
formance Testing of
WS-BPEL Composi-
tions [S22]

new MBT tool for func-
tional and non functional
testing of WS-BPEL

new tool

Iterative test suites
refinement for elas-
tic computing systems
[S9]

develop a systematic model
based test generation frame-
work

new framework

Conformance testing
of WS-BPEL compo-
sitions under various
load conditions [S21]

implemented a part of our
solution in the form of
a prototype tool named
WSCCT for WS-BPEL
compositions conformance
testing

new tool

Generation of scripts
for performance test-
ing based on UML
models [S8]

apply MBT to an applica-
tion; develop a tool to allow
the use of MBT in commer-
cial tools; The LoadRunner
plug-in developed for the
PLeTs tool shows that the
use of MBT is viable in in-
dustry

new tool

continued on next page

B.1. Systematic Mapping Study Results 79

Table B.7 – continued from previous page

Paper Contribution Extracted Contri-
butions

Applicability of an in-
tegrated model-based
testing approach for
RTES [S14]

propose an integrated
model-based framework
and applied to a real-
world scenario of real time
embedded system

new framework

A methodology of
model-based test-
ing for AADL flow
latency in CPS [S31]

introduced the CPS flow
latency dynamic testing
methodology and push-
down automata testing
model

evaluation

Interaction-based run-
time verification for
systems of systems in-
tegration [S16]

systematic combination
of our interaction spec-
ification approach and
aspect-oriented technolo-
gies for the purpose of
instrumenting existing
implementations with
run-time monitors

new framework

Experience Report:
Evaluating Fault
Detection Effective-
ness and Resource
Efficiency of the Ar-
chitecture Quality
Assurance Framework
and Tool [S15]

an evaluation of the fault
detection effectiveness and
the resource efficiency of
AQAT and the underlying
AQAF theory by means of
an industrial case study

evaluation

Towards Effective and
Scalable Testing for
Complex High-Speed
Railway Signal Soft-
ware [S13]

proposed a hybrid approach
that uses combinatorial
testing (CT) and model-
based testing (MBT).;
applied this systematic
approach to testing track
circuit receivers (TCRs)
and compared it with an
ad-hoc approach. The
systematic approach was
more effective than the
ad-hoc approach.

new framework

continued on next page

80 Appendix B. Results Tables

Table B.7 – continued from previous page

Paper Contribution Extracted Contri-
butions

Checking response-
time properties of
web-service applica-
tions under stochastic
user profiles [S26]

present a cost-model learn-
ing approach and evaluate
the method by applying it
to an industrial web-service
application.

extension

Functional Flow Di-
agram(FFD): Seman-
tics for evolving soft-
ware [S7]

illustrates a new set of dia-
grams to represent the sys-
tem as Functional Flow Di-
agram, which is suitable for
architectural representation
and quantification of non-
functional behaviors

new model

Approaching Perfor-
mance Testing from a
Model-Based Testing
Perspective [S2]

introduces the concept of
model-based performance
testing

new concept

Fault-driven stress
testing of distributed
real-time software
based on UML models
[S11]

apply (Real time FAult
driven stress testing)RT-
FAS methodology,compare
the RTFAST and (Test
LOcation driven stress
tesing)TLOST methodol-
ogy

comparison

Comparative analysis
for software testing:
Mobile applications
versus web applica-
tions [S24]

comparison between web
and mobile application
MBT testing

comparison

B.1. Systematic Mapping Study Results 81

Table B.8: Mapping SMS papers contribution to study method

C
as
e
S
tu
d
y

E
xp

er
im

en
t

S
u
rv
ey

Fr
am

ew
or
k
D
ev
el
op

m
en
t

C
on

ce
p
tu
al

D
ev
el
op

m
en
t

New Model [S12] [S19] [S19] [S7]

New Tool [S22] [S23]
[S8]

[S6] [S28]
[S27] [S22]
[S8]

[S21]

New Concept [S10] [S17] [S10] [S2]

New Framework [S16] [S20] [S14] [S20] [S30]
[S4] [S14]
[S13]

[S9]

Comparison [S11] [S24] [S25]

Evaluation [S20] [S1]
[S31] [S15]

[S25] [S20] [S29]

Extension [S17] [S18]
[S26]

[S5] [S17] [S3] [S5]
[S26]

Table B.9: Mapping SMS papers based on extracted contribution

Contribution Papers

New Model [S12] [S19] [S7]

New Tool [S6] [S23] [S28] [S27] [S22] [S21] [S8]

New Concept [S17] [S10] [S2]

New Framework [S20] [S30] [S4] [S9] [S14] [S16]

Comparison [S25] [S11] [S24]

Evaluation [S25] [S20] [S1] [S29] [S31] [S15]

Extension [S17] [S3] [S18] [S5] [S26]

82 Appendix B. Results Tables

Table B.10: Number of MBT of performance requirements papers every 5 years from
1990

Years No. of studies

1990-1994 3

1995-1999 4

2000-2004 9

2005-2009 12

2010-2014 17

2014-2019 13

B.2 Software Requirements Mining Results

Table B.11: Number of performance requirements per performance aspect in SRS

Performance Aspect Total Requirements Testable Requirements

Time-behaviour 86 68

Resource utilization 10 6

Capacity 45 41

Throughput 19 16

Efficiency 22 8

Others 1 1

Total Extracted Requirements 183 140

B.2. Software Requirements Mining Results 83

Table B.12: Number of SRSs with performance requirements per application type

Application type Frequency

Web application 17

Distributed system 2

Embedded system 3

Game 3

Real time system 3

Desktop application 3

Control system 2

Dos application 1

System Service 1

Network Application 1

Framework 1

Total 37

Table B.13: Number of SRSs without performance requirements per application type

Application Type No.

Web Application 12

TV Application 1

Real time system 1

Network 3

Library 1

Framework 1

Embedded system 5

Electricity generator 1

Distributed system 5

Digital repository 1

Desktop application 1

Control system 2

Compiler 1

Not defined 5

Total 40

84 Appendix B. Results Tables

Table B.14: Number of performance requirements mapped from application type to
performance aspect

Application Type T
im

e
B
eh

av
io
r

C
ap

ac
it
y

T
h
ro
u
gh

p
u
t/
S
p
ee
d

R
es
ou

rc
e
U
ti
li
za
ti
on

E
ffi
ci
en

cy

O
th
er
s

Distributed system 4

Desktop application 3 1

Control system 5 4

Dos application 1 1 1

Embedded application 15 8 6 3

Framework 1 1

Game 4 3

Network application 1 1

Real time system 15 10 1 5 1

System service 2 4

Web application 38 19 10 2 13

Total Number 86 45 19 10 22 1

Faculty of Computing, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

