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Abstract. The paper considers the problem of performing a task defined on a model parameter that is only
observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize
the steps of reconstruction and task as appropriate estimators (non-randomized decision rules) in
statistical estimation problems. The implementation makes use of (deep) neural networks to pro-
vide a differentiable parametrization of the family of estimators for both steps. These networks are
combined and jointly trained against suitable supervised training data in order to minimize a joint
differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The
suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the
inverse problem and the task at hand. More precisely, the data model (forward operator and statis-
tical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural
network architecture given by a learned iterative method. Furthermore, any task that is encodable
as a trainable neural network can be used. The approach is demonstrated on joint tomographic
image reconstruction, classification and joint tomographic image reconstruction segmentation.
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1. Introduction. The overall goal in inverse problems is to determine model parameters
such that model predictions match measured data to sufficient accuracy. Such problems arises
in various scientific disciplines. One example is biomedical imaging where the image is the
“model parameter” that needs to be determined from data acquired using an imaging device
like a tomographic scanner or a microscope. The prime example of this is tomographic imaging
in medicine which has revolutionized health care over the past 30 years, allowing doctors to
find disease earlier and improve patient outcomes [19, 82]. Likewise, scientific computing
is nowadays considered to be the “third pillar of science” standing right next to theoretical
analysis and experiments for scientific discovery, much thanks to possibilities for simulating
and optimizing complex physical and engineering systems. A key element in realizing this role
is the ability to solve the inverse problem of calibrating parameters in a mathematical model
of the system so that simulations match benchmark data [8].

The inverse problem of reconstructing the model parameter from data is often only one
out of many steps in a procedure where the recovered model parameter is used in decision
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Figure 1: Typical workflow involving an inverse problem. The second row represents the data
acquisition where raw data is acquired and pre-processed, resulting in cleaned data. In the
third row, the cleaned data is used as input to a reconstruction step that recovers the model
parameter, which is then post-processed to extract features that are used as input for model
building. The final outcome is a task adapted model that can be used for decision making.
The dotted rectangular part outlines the steps that are unified by task adapted reconstruction.

making. The reconstructed model parameter is typically summarized, either by an expert or
automatically, and resulting task dependent descriptors are then used as basis for decision
making, see Figure 1.

Clearly, there are several disadvantages with performing the various parts of the above
pipeline independently from each other. Each single step is prone to introduce approximations
that are not accounted for by subsequent steps, the reconstruction may not consider the end
task, and the feature extraction may not consider measured data. In fact, the task is almost
always only accounted for at the very final step. It is therefore natural to ask whether one may
adapt the reconstruction method for the specific task at hand. Task adapted reconstruction
refers to methods that integrate the reconstruction procedure with (parts of) the decision
making procedure associated with the task. This is sometimes also referred to as “end-to-
end” reconstruction.

2. Overview. We start with a brief survey of existing approaches to task adapted recon-
struction in the context of tomographic image reconstruction (Section 4), which also points
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out the drawbacks that come with these approaches. The section that follows (section 5)
introduces the statistical view on inverse problems. More specifically, we consider Bayesian
inversion (section 5.1) in which a reconstruction method is a statistical estimator (section 5.2).
After pointing out some key challenges associated with Bayesian inversion (section 5.3), we
introduce the learned iterative methods (section 5.4) that are later used in our applications
of task adapted reconstruction (section 7.3). We then switch gears and consider tasks on the
model parameter space that can be formulated as a statistical estimation problem (section 6).
The first step is to provide an abstract framework (section 6.1) with a plug-and-play structure
for adapting to a specifik task. To further illustrate the wide applicability of this framework,
section 6.2 describes a number of tasks that are worked out in detail followed by further
examples in section 6.3.

Section 7 introduces task adapted reconstruction in an abstract setting (section 7.1). It
assumes that both the reconstruction (section 5.2) and task (section 6.1) are given by appro-
priate decision rules. An important part is the computational implementation (section 7.2)
that is based on neural networks. This is followed by two applications that are worked out
in detail in section 7.3. In section 8 we provide some theoretical considerations regarding
regularizing properties and the potential advantage that comes with using a joint approach.
The final section (section 9) contains a discussion and outlook on future research in this area.

3. Specific contributions. The paper offers a generic, yet highly adaptable, framework
for task adapted reconstruction that is based on considering both the reconstruction and the
task as statistical estimation problems. The implementation uses neural networks for both
these steps, which is essential for both performance in terms of quality and computational
feasibility as shown in the example for joint tomographic reconstruction and segmentation.
Both networks are trained jointly using a joint loss function (20) that “interpolates” between
sequential and end-to-end approaches. Here, sequential refers to a setting where the neural
network for reconstruction is trained separately and its output is used in the training of the
neural network for the task. End-to-end is when a neural network for the task is trained
directly against data without explicitly introducing a reconstruction step.

To the best of our knowledge, this is the first paper that offers an approach to task adapted
reconstruction that unifies reconstruction with such a diverse set of tasks in a computationally
feasible manner under the guiding principles of statistical decision theory, learning, and effi-
cient inference algorithms. This allows for re-using algorithmic components thereby opening
up new ways of thinking about machine learning and inverse problems that may ultimately
lead to deeper understanding of the possibilities for integrating elements of decision making
into the reconstruction. Furthermore, introducing the joint loss in (20) and investigating its
properties (section 8) are novel contributions. Our work also leaves many open questions
and future research directions for the inverse problems and machine learning communities as
outlined in section 9.

4. Survey of task adapted tomographic reconstruction. There is an ongoing effort
within the inverse problems community to include signal processing steps associated with
performing a task jointly with the reconstruction step. In tomographic imaging, most of the
tasks considered this far correspond to feature extraction, e.g., segmentation or extraction of
features expressed through sparse representations as in compressed sensing. In such case, task
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adapted reconstruction reduces to joint reconstruction and feature extraction.
Current approaches to task adapted reconstruction are primarily based one the classical

approach to inverse problems. In this setting, the problem is to recover the true unknown
feature d∗ ∈ D from data y ∈ Y by solving an operator equation:

(1) y = A(x∗) + e and d∗ = T(x∗).

The forward operator A : X → Y models how a model parameter (image in tomographic
imaging) gives rise to data and the task operator T : X → D represents the feature extraction.
In the above, both these are assumed to be known. Likewise, e is generated by a Y -valued
random variable e ∼ Pnoise with known distribution, so task adapted reconstruction reduces
to finding the dotted operator in (2).

(2)

X Y

D

A

T

Note that the task operator T : X → D is often highly non-injective, so it makes no sense to
consider A◦T −1 : D → Y as “new forward operator”.

Approaches based on “solving” (1) heavily depend on the nature of the T and below is a
brief list of prior work in the context of tomographic imaging.
Edge recovery: Lambda-tomography [53] is a non-iterative method that recovers edges di-

rectly from noisy tomographic data using the canonical relation from microlocal anal-
ysis. Another non-iterative approach combines the method of approximate inverse
with an explicit task operator, e.g., a Canny edge detector [62]. Finally, it is also
possible to use a variational approach with suitable regularizer. Examples relevant for
edge recovery are variants of total variation (TV) [11, 7] or sparsity promoting `1-type
of regularizers with an underlying dictionary that is specifically designed to sparsely
represent edges, like curvelets, shearlets, beamlets, and bandlets [27, 83, 55].

Segmentation: Methods for joint reconstruction and segmentation is an active area of re-
search. Most approaches are based on a variational scheme with suitably chosen
regularizers and control variables. One example is usage of Mumford-Shah penalty
[78, 44], another is based on level set approaches [99]. A further refinement is to con-
sider semantic segmentation. Here, a variational scheme that amounts to computing
a maximum a posteriori (MAP) estimator with a Gauss-Markov-Potts type of prior
shows promising results on small-scale examples [70, 80].

Image registration: To register a template against an indirectly observed target (indirect
image registration) is a key step for reconstruction in spatiotemporal imaging. The
(temporal) deformation can be modeled using optical flow [10] or diffeomorphic defor-
mations [14, 32]. Yet another approach is to consider optimal transport [50].

Approaches to task adapted reconstruction that are based on solving (1) suffer from two
issues that seriously limit their usefulness in practical imaging applications. The first is the
requirement for an explicit handcrafted task operator T : X → D. More advanced tasks, like
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many mentioned in sections 6.2 and 6.3, are difficult to encode in this way and available
examples mostly consider task operators that extract “simple” features that must be further
processed before they can be used for decision making. This is also the reason for why the term
“feature reconstruction” [62] is used as a proxy for task adapted reconstruction. The second
issue relates to computational feasibility. Evaluating the task operator, like in segmentation
and image registration, is computationally demanding and requires setting values for extra
(nuisance) parameters. Furthermore, most state-of-the-art approaches for solving (1) are
based on variational methods, which quickly become computationally unfeasible for large
scale imaging problems.

Many complex tasks have been successfully addressed using techniques from machine
learning, so it makes sense to investigate whether such techniques can be integrated with
reconstruction for task adapted reconstruction. One example is given in [96] for abnormality
(tumor) detection in low-dose computed tomography (CT) imaging. The idea here is to jointly
train a learned iterative scheme for reconstruction [2] with a 3D convolutional neural network
for detecting the abnormality in the reconstructed images. Another examples introduces a
unified deep neural network architecture (SegNetMRI) for combined Fourier inversion (MRI
image reconstruction) and segmentation [89]. Here, one has two neural networks with the
same encoder-decoder structure, one for MRI reconstruction consisting of multiple cascaded
blocks, each containing an encoder-decoder unit and a data fidelity unit, and the other for seg-
mentation. These are pre-trained and coupled by ensuring they share reconstruction encoders.
These two examples are special cases of the generic approach develop in section 7.

5. Statistical inverse problems. Let X and Y denote separable Banach spaces where
(X,SX) and (Y,SY ) are measurable spaces. Next, let PX and PY denote spaces of prob-
ability measures on X and Y , respectively. Following [25], a (statistical) inverse problem
amounts to reconstructing (estimating) x∗ ∈ X from measured data y ∈ Y that is generated
by a Y -valued random variable y where

(3) y ∼M(x∗) with known M : X →PY (data model).

Elements in X (model parameter space) represent possible model parameters and elements
in Y (data space) represent possible data. In tomographic imaging, elements in X are often
functions defined on a fixed domain in Rn representing images and elements in Y are real-
valued functions defined on a fixed manifold M, which is given by the acquisition geometry
associated with the measurements. Furthermore, just as in the classical setting, most statis-
tical inverse problems do not have a unique solution in the sense that the model parameter is
not identifiable [25, section 2.3].

A common data model is when data is contaminated with additive noise:

(4) y = A(x∗) + e with e ∼ Pnoise for some known Pnoise ∈PY .

Here, A : X → Y (forward operator) models how data is generated in absence of noise and
e ∼ Pnoise models noise. If e is independent from x∗, then (4) amounts to the data model

M(x) = δA(x) ~ Pnoise = Pnoise

(
· − A(x)

)
for any x ∈ X.
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Another data model is when M(x) is a Poisson random measure on Y with mean A(x).
This is a suitable data model for imaging modalities that rely on counting statistics in a low-
dose setting, such as line of response PET [47] [72, section 3.2] and variants of fluorescence
microscopy [41, 21], see also [43, 87] for a more abstract treatment.

5.1. Bayesian inversion. Only seeking an estimate of x∗ ∈ X is limiting since it does
not account for the uncertainty. A more comprehensive analysis is based on introducing a
X-valued random variable x ∼ π∗ whose true (unknown) probability distribution π∗ ∈ PX

generates x∗. One can then rephrase the inverse problem stated earlier as the task of recovering
the probability measure π∗ ∈ PX given data y ∈ Y generated by y, which is related to x∗

through the data model as in (3). An important special case is when π∗ is parametrized by
x∗ ∈ X in a known way, so the inverse problem reduces to the task of recovering x∗ ∈ X.

In a Bayesian setting, one considers the posterior distribution of x given y = y up to a
constant of proportionality. More precisely, consider a setting where the joint law (x, y) ∼ µ
can be written in terms of conditional probabilities:

(5) µ = π0(x∗)⊗ π(y | x = x∗) = π0(x∗)⊗M(x∗).

Here, π0 serves as a (possibly improper) prior and the last equality in (5) follows from the
definition of the data model as the conditional distribution of y given x = x∗. In particular,
the joint law µ in (5) is proportional to the posterior, so the decomposition above exists as
soon as Bayes’ theorem holds. This is the case in a rather general setting [18, Theorem 14],
but a decomposition is also possible is some cases where the prior is not proper1.

A key point in the Bayesian setting is to explore the posterior distribution of x given y = y
assuming that both x 7→ π0 ∈PX (prior) and x 7→ M(x) (data model) are known, but x∗ ∈ X
is unknown. The data model often has an associate density L (data likelihood) that is known
to sufficient degree of accuracy, in which case dM(x)(y) = L(y | x) dy.

5.2. Reconstruction as an optimal decision rule. A reconstruction method is formally
a measurable X-valued mapping on Y , which in the statistical setting corresponds to an
estimator. More precisely,

(
(Y,SY ), {M(x)}x∈X

)
defines a statistical model parametrized by

the model parameter space X and a reconstruction method corresponds to a point estimator.
The latter is a non-randomized decision rule for a statistical estimation problem where the
model parameter space X parametrizes the underlying statistical model and at the same
time constitutes the decision space. The reader may here consult [60, section 3.1] for formal
definitions of decision theoretic notions used here.

There are many possible reconstruction methods (estimators) so one needs a framework
where these can be compared against each other. Statistical decision theory offers such a
framework by associating a notion of risk to a decision rule. This quantifies the downside
that comes with using a particular reconstruction method. The first step is to define the loss
function on the decision space, which in our specific setting becomes a measurable mapping

1Under certain circumstances it is possible to work with improper priors on the model parameter space, e.g.,
by computing posterior distributions that approximate the posteriors one would have obtained using proper
conjugate priors whose extreme values coincide with the improper prior.
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(see [60, Definition 3.2] for the definition in a general setting):

(6) `X : X ×X → R.

A common choice in imaging inverse problems is the L2-loss, which is the squared L2-distance.
There are however alternatives that are not based on point-wise differences but on differences
between high-level image features, e.g., the Wasserstein distance [3] and perceptual losses [46].

Having selected a loss function as in (6) and a prior π0 in (5) on the model parameter
space, the π0-average risk (Bayes risk or expected loss) for reconstruction is given as

(7) Rπ0(A†) = Eπ0⊗M(x)

[
`X
(
x,A†(y)

)]
.

A natural criteria to select a reconstruction method (estimator) is to minimize Bayes risk, i.e.,
to select an estimator (non-randomized decision rule) that minimizes A† 7→ Rπ0(A†) in (7).

Note here that in the finite dimensional setting, minimizing Bayes risk is the same as
computing the conditional mean (posterior mean) if and only if the loss function in (6) is the
Bregman distance of a strictly convex non-negative differentiable functional [6]. This holds in
particular when the loss function is given by the squared L2-norm. Next, another common
choice is the MAP estimator that maximizes the posterior, so it corresponds to the most likely
reconstruction given the data. On the other hand, a maximum likelihood estimator maximizes
the negative log-likelihood of data, i.e., it corresponds to the model parameter that generates
the most likely data. This is an unsuitable estimator in ill-posed inverse problems since it
frequently leads to overfitting.

To summarize, we will henceforth consider a reconstruction method that minimizes Bayes
risk and, as already mentioned, this equals the conditional mean when using a L2-loss.

5.3. Challenges with Bayesian inversion. In the Bayesian setting (section 5.1), both the
true model parameter and data are assumed to be generated by random variables, and the
goal is to recover the conditional probability of the model parameter given data (posterior)
[48, 25, 88, 18, 13]. In contrast, classical (deterministic) approaches view an inverse problem
as an operator equation of the type (1) [23, 49, 85, 52] where data may be generated by a
random variable, but there are no statistical assumptions on model parameters.

The Bayesian viewpoint offers a more complete analysis than the classical approach that
is based on solving (1) in the sense that the posterior describes all possible solutions. In
particular, different reconstructions can be obtained by using different estimators and there is
a natural framework for uncertainty quantification, e.g., by computing Bayesian credible sets.
Furthermore, small changes in the data lead to small changes in the posterior distribution in a
fairly general setting [18, Theorem 16] (continuity of the posterior distribution in the Hellinger
metric), so working with probability measures on the model parameter space (posterior) and
adopting a suitable prior stabilizes an ill-posed inverse problem.

The posterior is, on the other hand, often quite complicated with no closed form expression.
Much of the contemporary research therefore focuses on realizing the above advantages with
Bayesian inversion without having access to the full posterior. Key topics are designing a
“good” prior π0 ∈PX and to have computationally feasible means for exploring the posterior.
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5.3.1. Designing good priors. The difficulty in selecting an appropriate prior lies in cap-
turing the relevant a priori information. Many of the results from the statistical community
focus on characterizing priors that lead to Bayesian inference methods with desirable asymp-
totic properties, like consistency and good contraction rates.

Bayesian non-parametric theory provides a large class of handcrafted priors, see, e.g., [30,
chapter 2], [18, section 2], and [48, 13]. These however only capture a fraction of the a priori
information that is available. To illustrate this claim, a natural a priori information in medical
imaging is that the object being imaged is a human being. It is very difficult, if not impossible,
to explicitly construct a prior that encodes this information.

An alternative approach is to consider a prior that is learned from examples in X through
some predictive generative model. A simplistic way is to select a Gaussian density that matches
the first two sample moments [12]. More elaborate approaches can be based on generative
adversarial networks that are trained on unsupervised data, e.g., a generative adversarial
network can be used to learn a Gibbs type of prior in a MAP estimator [63].

5.3.2. Computational feasibility. Exploring the posterior requires sampling from a high
dimensional probability distribution. It is not possible to directly simulate from the posterior
distribution in the infinite dimensional setting unless the model parameter is decomposed into
more elementary finite-dimensional components. This quickly becomes computationally chal-
lenging in large scale problems, like in imaging where the posterior is a probability distribution
over the set of images.

Computational methods used for Bayesian inversion often combine analytic approxima-
tions of the posterior with various Markov chain Monte Carlo (MCMC) techniques, see [18,
section 5] for a nice survey. There is an extensive theory that guarantees that these tech-
niques are statistically consistent, but it comes with two critical drawbacks that has prevented
widespread usage of MCMC techniques in imaging. First, many approaches require access to
the prior in closed form, and as already argued for (section 5.3.1), such handcrafted priors
are woefully inadequate in representing natural images. Second, these methods are still not
sufficiently scalable for exploring the posterior in an efficient manner in large scale inverse
problems, such as those that arise in 2D/3D tomographic imaging [8, chapter 1]. Alter-
natively, one can approximate the posterior with more tractable distributions (deterministic
inference), which includes variational Bayes [28] and expectation propagation [69]. Variational
Bayes methods have in particular emerged as a popular alternative to the classical MCMC
methods, see [9] for some guidance (on p. 860) on when to use MCMC or variational Bayes.

To summarise, one can sometimes with reasonable efficiency compute point estimators
that do not involve any integration over the model parameter space, like a MAP estimator.
Estimators requiring such integration, like the estimator that minimize Bayes risk, are however
computationally unfeasible. This also includes computational steps relevant for uncertainty
quantification.

5.4. Learned iterative methods. As outlined in section 5.3, there are two challenges
associated with using Bayesian inversion: selecting a “good” prior (section 5.3.1) and provid-
ing a computationally feasible approach for computing suitable estimators, like the one that
minimizes Bayes risk (section 5.3.2).

As we outline here, learned iterative methods address both these challenges. It makes use
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of techniques from machine learning, and deep neural networks in particular, which have
demonstrated a remarkable capacity in capturing intricate relations from example data [57].
A key element is usage of highly parametrized generic models that can be adapted to specific
decision rules, such as reconstruction by (7), by training against example data. Learned
iterative methods use a deep neural network to define an estimator (reconstruction method)
that minimizes Bayes risk while accounting for the knowledge about how data is generated.

To give a more precise description, consider the joint law µ = π0 ⊗M(x) in (7) used
for defining Bayes risk. In most practical applications, this joint law is unknown. Often
one may however have access to the corresponding empirical measure given by supervised
training data (x1, y1), . . . , (xm, ym) ∈ X × Y generated by (x, y) ∼ µ. This avoids introducing
a handcrafted prior π0 ∈ PX . Furthermore, searching over all non-randomized decision
rules is computationally unfeasible. Instead, we restrict our attention to those given by a
(deep) neural network architecture, which are known to have large capacity (can approximate
any Borel measurable mapping arbitrarily well [75]) and there are computationally feasible

implementations. To summarize, we have a family of reconstruction methods A†θ : Y → X
parametrized by a finite dimensional parameter set Θ and the optimal one is given by solving
the training problem

(8) θ∗ ∈ arg min
θ∈Θ

{ 1

m

m∑
i=1

`X
(
xi,A†θ(yi)

)}
.

The above approach for defining a reconstruction operator A†θ∗ : Y → X is fully data
driven in the sense that neither a prior on model parameter space nor a data model are
handcrafted beforehand. Instead, all information is derived from the training data, which in
particular does not utilize knowledge about how data is generated. This becomes a serious
issue when the number of independent samples in training data are low compared to number
of unknowns, which is commonly the case in imaging. Next, in many inverse problem the data
model x 7→ M(x) that describes how data is generated is known. Thus, it is unnecessarily
pessimistic to disregard this information as in a fully data driven approach to reconstruction.

Learned iterative schemes [1, 2] define a non-linear reconstruction operator parametrized
by a deep convolutional neural network architecture that accounts for the data model, or more
precisely the data likelihood. The idea is to unroll a fixed point iterative scheme relevant for
solving the inverse problem and replace the explicit iterative updating rule with a learned
one given by a deep convolutional residual network. The approach can be formulated as a
general scheme for solving (possibly non-linear) inverse problems [1, 2, 35], see also [65, 66, 20]
for a formulation that learns proximal updates in linear inverse problems. This results in a
computationally feasible approach with surprisingly low requirements on training data and
good generalization properties that outperforms state-of-the-art image reconstruction in CT
[1, 2, 35], MRI [64, 65, 37, 66], photoacoustic tomography [38], and superresolution [64, 65, 20].

6. Tasks on model parameters. We consider tasks formulated as an operator that acts
on model parameter space X and that takes values in a set D (decision space). We will
start with the abstract formalization of such tasks using the language of statistical decision
theory. Similar to how reconstruction was treated (section 5.2), the task is represented by a
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non-randomized decision rule and we will select the one that minimizes Bayes risk. Next, we
also indicate how such decision rules can be computed efficiently using (deep) neural networks
and supervised learning that minimizes the empirical risk. The remainder of the section is
devoted to providing examples that concretizes the abstract framework and illustrates its
general applicability.

6.1. Abstract setting. Let
(
(X,SX), {Pz}z∈4

)
be a statistical model where the model

parameter space (X,SX) is a measurable space and {Pz}z∈4 ⊂ PX is some family of prob-
ability measures on X parametrized by elements in 4. Next, there is a measurable space
(D,SD) (decision space) and a fixed (task adapted) loss function ([60, Definition 3.2])

(9) LD : 4×D → R where LD(z, d) := `D
(
τ(z), d

)
with given τ : 4 → D and `D : D ×D → R (decision distance). The statistical model along
with the decision space and loss function defines a statistical estimation problem. Many tasks
can now be seen as an appropriate non-randomized decision rule T : X → D (task operator).

Before proceeding, it is worth reflecting over the roles of the above sets. In our set-up,
the decision making associated with the task is based on elements in the decision space D
whereas actual observables are elements in X, so the task is represented by a measurable
mapping T : X → D (task operator). Often it is more natural to formalize the task as a
mapping τ : 4 → D where elements in the set 4 are related to those in X. A difficulty is
that elements in 4 are not observable and the mapping relating its elements to those in X
is unknown. Hence, the challenge is to infer an appropriate mapping T given τ by resorting
to some suitable “optimality” principle. The examples in section 6.2 will further clarify the
various roles of these sets in decision making.

Just as in section 5.2, we consider a decision rule that minimizes Bayes risk. More precisely,
assume 4 is itself a measurable space and consider a fixed probability measure η0 ∈P4 (task
prior). The task operator is the non-randomized decision rule T : X → D that minimizes the
associated Bayes risk:

(10) Rη0(T) := Eη0⊗Pz

[
`D
(
τ(z), T(x)

)]
where (z, x) ∼ η0 ⊗ Pz.

A difficulty is to provide a ‘reasonable’ task prior η0 ∈P4. Another is that Pz ∈PX is not
known. Hence, one needs to consider the joint law η := η0 ⊗ Pz in (10) as an unknown. Note
that this differs from reconstruction, where the joint law is either known (as in section 5.1),
or the prior is unknown but the data likelihood is known (as in section 5.4). Since the
joint law is unknown, we replace it by the empirical measure given by (supervised) training
data (z1, x1), . . . , (zm, xm) ∈ 4 × X, i.e., one has i.i.d. samples generated by a (4 × X)-
valued random variable (z, x) ∼ η. Furthermore, due to issues associated with computational
feasibility (section 5.3.2), we consider a parametrized family of decision rules Tϑ : X → D
given by a (deep) neural network architecture. Then, the task operator is the decision rule
Tϑ∗ : X → D parametrized by a finite dimensional parameter in Ξ and the optimal one ϑ∗ ∈ Ξ
is given by empirical risk minimization:

(11) ϑ∗ ∈ arg min
ϑ∈Ξ

{ 1

m

m∑
i=1

`D
(
τ(zi), Tϑ(xi)

)}
.
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We conclude with examples showing how a wide range of image processing tasks can be
phrased as decision rules in a statistical decision problem.

6.2. Examples. The abstract framework in section 6.1 for formalizing a task on model
parameter space is very generic and covers a wide range of possible tasks. In the following,
we list concrete examples from imaging in order to show how this framework can be adapted
to specific cases. To ensure a computational feasible implementation, our focus is on tasks
that have been successfully addressed using techniques from deep learning. Deep learning has
proven to be an efficient computational framework for many tasks, much thanks to its ability
to progressively learn discriminative hierarchal features of the input data by means of training
a suitable deep neural network. Hence, this limitation is not as restrictive as it may seem at
a first glance, which will also become evident by the examples listed here and in section 6.3.

Unless otherwise stated, tasks are formulated for grey-scale images defined on a fixed
domain Ω ⊂ Rn, i.e., X := L2(Ω,R). We will also assume that X is a measurable space for
some σ-algebra SX . Finally, M denotes the space of measurable mappings, e.g., M (X,D) is
D-valued measurable mappings defined on X.

6.2.1. Classification. The task is to classify an image into one of k distinct labels, or
more precisely, associate an image to a probability distribution over all k labels. This task
is represented by a non-randomized decision rule in a statistical estimation problem where
4 := Zk and the decision space D := P4 is probability distributions over the k labels. The
task adapted loss function is given by (9) with

`D(d, d′) := −
∑
z∈4

d(z) log d′(z) for d, d′ ∈ D and τ(z) := δz for z ∈ 4.

Bayes risk in (10) associated with a decision rule T : X → D for given task prior η0 ∈ P4
becomes

Rη0(T) := Eη0⊗Pz

[
`D
(
τ(z), T(x)

)]
=

∫
X

∫
4

[
− log

[
T(x)(z)

]]
dη0(z) dPz(x).

The corresponding empirical risk minimization in (11) is

(12) ϑ∗ ∈ arg min
ϑ∈Ξ

{
1

m

m∑
i=1

[
− log

[
T(xi)(zi)

]}
for training data (zi, xi) ∈ 4×X.

There are several papers dealing with how to construct a suitable (deep) neural network
architecture for the set of decision rules D = {Tϑ}ϑ∈RN and solving (12) will then correspond
to training a classifier, see [58] for an early approach based on a convolutional neural network,
AlexNet [54] and ResNet [39] represent examples of further development along this line.

6.2.2. Semantic segmentation. The task here is to classify each point in an image into
one of k possible labels, so the special case k = 2 corresponds to (binary) segmentation.
Stated more formally, semantic segmentation applies a mapping that associates each point in
an image in X to a probability distribution over all k labels.

This task becomes a non-randomized decision rule in a statistical estimation problem
where 4 := M (Ω,Zk) and the decision space D := M (Ω,PZk

) is the set of measurable
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mappings from Ω to the class of probability measures on Zk. The task adapted loss function
is given by (9) with

`D(d, d′) :=

∫
Ω

[
−
∑
i∈Zk

d(t)(i) log
[
d′(t)(i)

]]
dt for d, d′ : Ω→PZk

,

τ(z)(t) := δz(t) for z : Ω→ Zk and t ∈ Ω.

The decision distance `D : D ×D → R simply integrates the point-wise cross entropy of the
(point-wise) independent probability measures d(t) and d′(t). The cross entropy is a well-
known notion from information theory for quantifying the dissimilarity between probability
distributions [16] and it is often used as a learning objective in generative models involving
probability distributions.

Bayes risk in (10) associated with a decision rule T : X → D for a given task prior η0 ∈P4
can then be written as

Rη0(T) := Eη0⊗Pz

[
`D
(
τ(z), T(x)

)]
=

∫
X

[∫
4

[∫
Ω
− log

[
T(x)(t)

(
z(t)

)]
dt

]
dη0(z)

]
dPz(x).

The corresponding empirical risk minimization in (11) is

(13) ϑ∗ ∈ arg min
ϑ∈Ξ

{
1

m

m∑
i=1

∫
Ω
− log

[
Tϑ(xi)(t)

(
zi(t)

)]
dt

}
.

Note that T(x)(t) is a probability distribution over Zk and z(t) ∈ Zk when z ∈ 4, so in
particular T(x)(t)

(
z(t)

)
∈ [0, 1] for any t ∈ Ω.

The set of decision rules D = {Tϑ}ϑ∈RN can be parametrized by (deep) neural networks,
in which case solving (13) corresponds to training a segmentation operator. Deep neural net
architectures suitable for semantic segmentation are presented in [61, 74, 84], see also the
surveys in [91, 34]. In particular, the SegNet architecture has been successful for semantic
segmentation of 2D images [5]. For (binary) segmentation one may use the U-net [81, 15].

6.2.3. Anomaly detection. The task here is to detect the difference (anomaly) between
two grey-scale images, so X = L2(Ω,R)×L2(Ω,R) for a fixed domain Ω ⊂ Rn. This becomes
a non-randomized decision rule in a statistical estimation problem where 4 := X and the
anomaly is represented by grey-scale images, so the decision space is D := L2(Ω,R). The task
adapted loss function is given by (9) with

`D(d, d′) :=
∥∥d− d′∥∥2

4 for d, d′ ∈ D and τ(z) := z1 − z2 for z = (z1, z2) ∈ 4.

Bayes risk in (10) associated with a decision rule T : X → D for given task prior η0 ∈ P4
becomes

Rη0(T) := Eη0⊗Pz

[
`D
(
τ(z), T(x)

)]
=

∫
X

[∫
4

∥∥∥(z1 − z2)− T(x1, x2)
∥∥∥2

D
dη0(z)

]
dPz(x1, x2)
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and note that z = (z1, z2) ∈ 4 and x = (x1, x2) ∈ X. The corresponding empirical risk
minimization in (11) is

(14) ϑ∗ ∈ arg min
ϑ∈RN

{
1

m

m∑
i=1

∥∥∥(xi1 − xi2)− Tϑ(xi1, x
i
2)
∥∥∥2

D

}
where (xi1, x

i
2) ∈ X is the supervised training data. One may here use a (deep) convolutional

neural net to parametrize the decision rules in D = {Tϑ}ϑ∈RN .

6.2.4. Caption generation. Caption generation refers to the task of associating an image
to an appropriate sentence, or paragraph, that describes its content. More precisely, defineW
to be the set of words in a chosen language, enlarged by a “stop word” wstop that marks the
end of the caption. Next, let C denote the set of captions, which are finite sequences made
up of elements from W where each sequence contains wstop exactly once as its last element.
Then, caption generation is the task of mapping an image to a sequence in C.

This task becomes a non-randomized decision rule in a statistical estimation problem
where 4 := C is the set of captions, so Pz is the probability of a caption z. The decision space
is D := PC , i.e., probability distributions over set of captions C, and the task adapted loss
function is given by (9) with

`D(d, d′) := −
∑
c∈C

d(c) log d′(c) for d, d′ ∈ D,

τ(z) := δz ∈PC for a caption z ∈ 4.

To express Bayes risk that is to be minimized when computing the optimal decision rule,
consider an element z ∈ 4 = C (caption) and let zi ∈ W denote its i:th word. Next, let
Wn ⊂ W denote the set of sequences of n words that do not contain the stop word wstop

(unfinished sentences), i.e.,

Wn :=
{

(wi)
n
i=1 ⊂ W | wi 6= wstop for i = 1, . . . , n

}
.

Since an element in the decision space d ∈ D := P4 is a probability measure on sequences of
words (captions), it will in particular yield the following probability measure on Wn:

dn
(
(wi)

n
i=1

)
:= d

(
{z ∈ 4 | zi = wi for i = 1, . . . , n}

)
for (wi)

n
i=1 ∈ Wn.

We now consider the measure for n + 1 sequences that are conditioned on its first n terms,
i.e., let (wi)

n
i=1 ∈ Wn be fixed with dn

(
(wi)

n
i=1

)
> 0. Then, d induces to a probability measure

πd ∈PW on the set of words W via

πd
(
w | (wi)ni=1

)
:=

dn+1(w1, . . . , wn, w)

dn(w1, . . . , wn)
for w ∈ W and (wi)

n
i=1 ∈ Wn.

With this notation, one can identify an element d ∈P4 with its corresponding representation
in×n PW( · | Wn) by the identity

d(z) =
∏
i

πd
(
z | (z1, . . . , zn−1)

)
.
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Here PW( · | Wn) is the set of probability measures on W conditioned on Wn.
Bayes risk in (10) associated with a decision rule T : X → D (potential caption generation

operator) for given task prior η0 ∈ P4 can now be expressed through conditional densities
on W:

Rη0(T) :=

∫
4

∫
X
`D
(
τ(z), T(x)

)
dPz(x) dη0(z)

=

∫
4

∫
X
− log T(x)(z) dPz(x) dη0(z)

=

∫
4

∫
X
− log

∏
i

πT(x)(z | z1, . . . , zi−1) dPz(x) dη0(z)

=

∫
4

∫
X
−
∑
i

log πT(x)(z | z1, . . . , zi−1) dPz(x) dη0(z).

To derive the corresponding empirical risk minimization problem, we consider a fixed class of
decision rules that are given via a parametrization of their representation in term of marginal
densities. More precisely, given a parameter set ϑ ∈ Rm, the decision rule Tϑ is given by

Tϑ(x)(z) =
∏
i

Ψϑ(x; z | z1 . . . , zi−1) where x ∈ X and z ∈ 4,

and Ψϑ is parametrized by a recurrent neural network, for example using the long short-term
memory (LSTM) architecture [42]. The corresponding empirical risk minimization in (11) is
now given by

(15) ϑ∗ ∈ arg min
ϑ∈RN

{∫
4

∫
X
−
∑
i

log Ψϑ(x; z | z1 . . . , zi−1) dPz(x) dη0(z)

}
.

Solving (15) corresponds to training a image caption generator [92], see also [51].

6.3. Further imaging tasks. A common trait with the examples worked out in section 6.2
is that each of them can be recast as finding an optimal decision rule in a statistical estimation
problem . Furthermore, deep neural networks offer a computationally feasible implementation
of estimating this decision rule from supervised training data.

There is a wide range of other tasks beyond those mentioned in section 6.2 that can be
represented as a non-randomised decision rule, which in turn is efficiently parametrized by a
suitable deep neural network architecture. The (incomplete) list below is based on [4, 77] and
aims to show the diversity of tasks from computer vision that can be approached successfully
using a suitable deep neural network architecture.
Inpainting: This is essentially interpolation/extrapolation to recover lost or deteriorated

parts of images and videos and approaches based on trainable neural networks [97].
Depixelization/super-resolution: The task is here to upsample, i.e., to synthesize realistic

details into images while enhancing their resolution [17] or to fill out information
“between” pixels by increasing the resolution of the final picture, also known as the
single image super-resolution problem [79].
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Demosaicing: The task here is to reconstructing a full color image from the incomplete color
samples output from an image sensor [90]. Almost all digital cameras, ranging from
smartphone cameras to the top-of-the-line digital SLR cameras, use a demosaicing
algorithm to convert the captured sensor information into a color image.

Colourising: The task is to apply color to grey scale photos and videos [45].
Image translation: The task is to translate between two classes of images of the same

object, e.g., CT and MRI images [95].
Object recognition: This visual classification task involves localization, detection and clas-

sification and this can be seen as an example of constellation models, which are a
general class of model that describe objects in terms of a set of parts and their spa-
tial relations [77, section 20.5]. An integrated framework based on deep convolutional
networks for detection and localizatio was already introduced in [86], see also [40]
for recognition and [26] for scene understanding. The most well-known use case is
recognition of multiple faces in an image where statistical shape models play a central
role [100, 22, 94] An analogous task relevant for clinical image guided diagnostics is
detecting melanoma from images of skin lesions [24, 36].

Non-rigid image registration: The task here is to deform a template image in a “natural”
way so that it matches a target image. This is a key step in spatiotemporal imaging
and deep neural networks have been utilized for this purpose [29, 98].

Parametric regression: The task here is to statistically determine relationships among vari-
ables (parameters) in a statistical model. This is important in clinical diagnostics
where one seeks to determine risk factors and biomarkers of diagnostic and prognostic
value associated with clinical progression and severity of specific diseases. An example
of image guided regression is estimating cardiovascular risk factors, such as age, from
retinal fundus photographs [76]. Another is predicting patient overall survival as in
the 2018 Multimodal Brain Tumor Segmentation Challenge based on BRATS imaging
data [68], and predicting scores for Alzheimer’s disease from imaging data [67, 59].

The abstract framework in section 7.1 allows one to perform any of the above tasks (and
those in section 6.2) jointly with a reconstruction step for solving an inverse problem. Ex-
amples of the latter are deconvolution, Fourier inversion (MRI imaging), or more elaborate
schemes for various types of tomographic imaging. A key success factor is access to suit-
able training data, another is usage of a differentiable loss function along with a trainable
differentiable parametrization (deep neural network architecture) of the task operator.

7. Task adapted reconstruction. As stated in the introduction (section 1), solving an
inverse problem (reconstruction) is one step in a pipeline (Figure 1) that often involves further
coupled tasks necessary for decision making. Task adapted reconstruction refers to methods
that integrate the reconstruction with (parts of) the decision making procedure, thereby
adapting the reconstruction method for the specific task at hand.

7.1. Abstract setting. We will present a generic framework for task adapted reconstruc-
tion that is computationally feasible and adaptable to specific inverse problems and tasks. A
key element is to formalize both the reconstruction and task as non-randomized decision rules
within a statistical estimation problem.

More precisely, our starting point is the inverse problem in section 5 where the data model
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in (3) is known. Following section 5.2, the reconstruction step can be seen as a decision rule
in a statistical estimation problem defined by the statistical model

(
(Y,SY ), {M(x)}x∈X

)
,

decision space (X,SX), and loss `X : X ×X → R. Given a prior π0 ∈PX allows us to define
a reconstruction method as a non-randomized decision rule that minimizes the π0-average risk
(Bayes risk), i.e., as a mapping that solves

(16) Â
†
∈ arg min
A†∈M (Y,X)

{
Eπ0⊗M(x)

[
`X
(
x,A†(y)

)]}
where (x, y) ∼ π0 ⊗M(x).

Likewise, following section 6.1 a task becomes a decision rule in a statistical estimation problem
defined by the statistical model

(
(X,SX), {Pz}z∈4

)
, decision space (D,SD), and loss given by

(9) with known τ : 4→ D (feature extraction map) and `D : D×D → R (decision distance).
Given a task prior η0 ∈ P4, the non-randomized decision rule representing the task (task
operator) can be seen as a minimizer to the η0-average risk (Bayes risk):

(17) T̂ ∈ arg min
T∈M (X,D)

{
Eη0⊗Pz

[
`D
(
τ(z), T(x)

)]}
where

(
z, x
)
∼ η0 ⊗ Pz.

We now have the following three approaches to task adapted reconstruction.
Sequential approach: A sequential approach starts with determining the reconstruction

operator, and then uses it to define the the task operator. It is based on assuming
that statistical assumptions for (z, x) ∼ η0⊗Pz and (x, y) ∼ π0⊗M(x) are consistent,
e.g., by assuming that Pz is the push forward of M(x) through the reconstruction
operator2. The task adapted reconstruction is then given as

(18) T̂ ◦ Â
†
: Y → D

where Â
†
∈M (Y,X) solves (16) and T̂ ∈M (X,D) solves (17).

End-to-end approach: The fully end-to-end approach ignores the distinction between re-
construction and the task. Assuming (z, y) ∼ ν for some measure ν ∈P4×Y , the task

adapted reconstruction is here given as B̂ : Y → D that solves

(19) B̂ ∈ arg min
B∈M (Y,D)

{
Eη0⊗Pz

[
`D
(
τ(z),B(y)

)]}
where (z, x) ∼ ν.

Joint approach: The joint approach is a middle-way between the sequential and end-to-end
approaches. It is based on assuming that there is a joint law (z, x, y) ∼ σ, which by
the chain rule in probability can be written in terms of conditional probabilities:

dσ(z, x, y) = dπ(y | z, x) dπ(x | z) dπ(z).

Assume that x is a sufficient statistic for y, i.e., dπ(y | z, x) = dπ(y | x). Combined
with (z, x) ∼ η0 ⊗ Pz and (x, y) ∼ π0 ⊗M(x), we obtain

dσ(z, x, y) = dM(x)(y) dPz(x) dη0(z).

2One may here consider alternate assumptions, like assuming that π0 ∈PX can be obtained by marginal-
izing the measure η0 ⊗ Pz over 4 using η0 ∈P4.
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Next, we introduce a joint loss that interpolates between the sequential case and the
end-to-end case. Specifically, we let `joint : (X ×D)× (X ×D)→ R be given as

(20) `joint

(
(x, d), (x′, d′)

)
:= (1− C)`X(x, x′) + C`D(d, d′) for fixed C ∈ [0, 1].

Task adapted reconstruction is now given by (18) where the operators jointly solve

(21) (Â
†
, T̂ ) ∈ arg min

T∈M (X,D)

A†∈M (Y,X)

Eσ
[
`joint

((
x, τ(z)

)
,
(
A†(y), T ◦ A†(y)

))]
.

Note first that in the limit C → 0, the joint approach becomes the sequential one. Next,
it may seem sufficient to only consider the loss `D in (21), i.e., to set C = 1 in (20), which
recovers the end-to-end approach. There is however a problem with non-uniqueness in this
case since

(22) (Â
†
, T̂ ) solves (21) =⇒ (B−1 ◦Â

†
, T̂ ◦ B) solves (21) for any invertible B : X → X.

This non-uniqueness does not arise when C < 1, so incorporating a loss term associated with
the reconstruction may act as a regularizer. This also indicates that the limit C → 1 does not
necessarily coincide with the case C = 1.

7.2. Computational implementation. In section 5.3.1 we mentioned the difficulty to se-
lect an appropriate prior π0 ∈ PX for Bayesian inversion whereas the measure M(x) ∈ PY

is often known by the data model. Furthermore, both measures η0 ∈P4 and Pz ∈PX must
be considered as unknown for most tasks. Hence any realistic scenario would contain σ as an
unknown. An option is to replace these measures by their empirical counterparts given by
suitable supervised training data.

Another concern is computational feasibility. The optimizations in (16), (17), (19), and
(21) are taken over all measurable mappings between relevant spaces, which is computationally
unfeasible. This can be addressed by considering parametrized sets of measurable mappings
as done in sections 5.4 and 6.1. More precisely, we employ a learned iterative scheme to
parametrize a family of reconstruction methods A†θ : Y → X since this parametrization in-
cludes knowledge about the data model (section 5.4). Likewise, decision rules associated with
the task are given by an appropriate parametrized family of mappings Tϑ : X → D. Finally,
the approach for the end-to-end setting is to directly parametrize Bϑ : Y → D.

Using such parametrizations allows one to reformulate (16) and (17) as (25), (19) as
(25), and (21) as (27). A key aspect for the implementation is to use stochastic gradient
descent (SGD) based methods for finding appropriate parameters by approximately solving
the empirical versions of (19), (25), and (27). This requires that the above parametrizations
are differentiable, which in particular requires using differentiable loss-functions.

Depending on the type of supervised training data, we can now pursue either of the three
approaches listed in section 7.1.
Sequential approach: Here we have access to two sets of supervised training data that are

coupled:

(xi, yi) ∈ X × Y generated by (x, y) ∼ π0 ⊗M(x) for i = 1, . . . ,m

(zi, xi) ∈ 4×X generated by (z, x) ∼ η0 ⊗ Pz for i = 1, . . . ,m.
(23)
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The coupling is that xi’s in the second data set (bottom one) are reconstructions ob-
tained from yi’s in the first data set (top one). This ensures consistency with the
statistical assumptions mentioned before for the sequential approach. The reconstruc-
tion is then given by the mapping

(24) Tϑ∗ ◦ A†θ∗ : Y → D

where θ∗ ∈ Θ solves (8) and ϑ∗ ∈ Ξ solves (11), i.e.,

θ∗ ∈ arg min
θ∈Θ

{ 1

m

m∑
i=1

`X
(
xi,A†θ(yi)

)}
ϑ∗ ∈ arg min

ϑ∈Ξ

{ 1

m

m∑
i=1

`D
(
τ(zi), Tϑ(xi)

)}
.

(25)

Note here that the only requirement for the sequential approach is that the assumptions
(z, x) ∼ η0 ⊗ Pz and (x, y) ∼ π0 ⊗ M(x) are jointly consistent. The learned task
operator given by solving for ϑ∗ in (25) is only well defined for input taken from
the support of it’s training data, so it may fail when applied to data it has never
seen. This is especially the case if new data has a different statistical assumption.
Hence, it is important to ensure the range of the reconstruction operator is contained
in the support of the elements x ∈ X used to train the task. In most practical
implementations, this is ensured by simply letting xi’s in (zi, xi) in (23) be the output

of the learned reconstruction operator A†θ∗ : X → Y .
End-to-end approach: Supervised training data is here of the form

(26) (zi, yi) ∈ 4×X generated by (z, x) ∼ η0 ⊗ Pz for i = 1, . . . ,m.

The reconstruction is given by Bϑ : Y → D where ϑ∗ ∈ Ξ solves

(27) ϑ∗ ∈ arg min
ϑ∈Ξ

{ 1

m

m∑
i=1

`D
(
τ(zi),Bϑ(yi)

)}
.

Joint approach: In this approach we assume access to supervised training data that jointly
involves the reconstruction and task:

(28) (xi, yi, zi) ∈ X × Y ×4 generated by (x, y, z) ∼ σ for i = 1, . . . ,m.

Given such data, the corresponding reconstruction method can be defined as in (24)
where (θ∗, ϑ∗) ∈ Θ× Ξ solves the following joint empirical loss minimization:

(θ∗, ϑ∗) ∈arg min
(θ,ϑ)∈Θ×Ξ

{
1

m

m∑
i=1

`joint

((
xi, τ(zi)

)
,
(
A†θ(yi), Tϑ ◦ A

†
θ(yi)

))}
(29)

where `joint : (X ×D)× (X ×D)→ R is the joint loss in (20). Note that one may in
addition have access to separate sets of training data of the form (23) and (28). In
such case, it is possible to first pre-train by solving for (8) and (11) separately, and
use the resulting outcomes to initialize an algorithm for solving (29).
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7.3. Applications. In the following we demonstrate performance of the task adapted re-
construction scheme for (24) that is based on solving (29). All cases involve tomographic
reconstruction from 2D parallel beam data and as tasks, we consider MNIST classification
and segmentation.

7.3.1. Joint tomographic reconstruction and classification.
Task: Recover probabilities that a 2D grey scale MNIST image is a 0,1, . . . ,9 from noisy

parallel beam tomographic data (see section 6.2.1).
Data: Elements in Y are real-valued functions representing samples of a Poisson random

variable with mean equal to the exponential of the parallel beam ray transform and an
intensity corresponding to 60 photons/line. The ray transform is digitized by sampling
the angular variable at 5 uniformly sampled points in [0, π] with 25 lines/angle.

Model parameter space: Elements in X are functions representing images supported on a
fixed rectangular region Ω ⊂ R2, so X := L2(Ω,R). These are discretized by sampling
on a uniform 28× 28 grid. The loss `X : X ×X → R is the squared L2-distance on X.

Decision space: 4 := {0, 1, . . . , 9} is the set of labels and D is probability distributions over
4 with a loss function `D : D ×D → R given by the cross entropy:

`D(d, d′) := −
∑
i∈4

d(i) log
[
d′(i)

]
for d, d′ ∈P4.

In addition to cross entropy, we employ classification accuracy to measure perfor-
mance. Given a probability distribution d ∈ D over 4, the single label predic-
tion is defined to be the element in 4 that is assigned the highest probability, i.e.
arg maxz∈4 d(z). The percentage of images in the evaluation data set for which the
predicted label coincides with the real one is reported as classification accuracy.

Reconstruction and task operators: Reconstruction A†θ : Y → X is given by the learned
gradient descent in [1] and task Tϑ : X → D is a MNIST classifier given by a standard
convolutional neural net classifier with three convolutional layers, each followed by
2×2 max pooling for segmentation. The activation functions used were ReLUs, layers
had 32, 64 and 128 channels, respectively. The final layer is dense and transforms the
output of the last convolutional layer to a logit layer of size 10, with the last activation
function being a softmax.

Joint training: Joint supervised data is given as 512 000 triplets (xi, yi, zi) where zi ∈ 4
is the label corresponding to the MNIST labels. We also performed pre-training for
both the reconstruction and task operator (classifier). The reconstruction operator
was pre-trained using 256 000 pairs (xi, yi) with 8 000 steps with a batch size of 64 and
the task operator (classifier) was pre-trained until 97.7% accuracy. Note here that we
use about 60 000 entries from the MNIST database, so the above supervised data is
not statistically independent.

Example outcomes, which are summarized in Table 1 and Figure 2, show that a joint ap-
proach outperforms a sequential one when considering the classification accuracy. Besides an
improved classification accuracy we also see a significant improvement regarding interpretabil-
ity. The reconstructed image part can in the joint setting actually be used as a benchmark
to assess the reconstructed classification probabilities. On the other hand, the sequential ap-
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proach results in classification probabilities that deviates from this intuitive observation. We
also see that in both cases, the classification probabilities are unnaturally concentrated on a
single label, but this is a know phenomena also for regular for MNIST classification [33].

Approach Accuracy L2-loss Cross entropy

Pre-training 93.61% 9.0 0.643
Sequential 96.01% 9.0 0.124
End-to-end 96.70% 19.7 0.118
Joint with C = 0.01 96.74% 12.8 0.108
Joint with C = 0.5 97.00% 9.2 0.100
Joint with C = 0.999 96.61% 9.0 0.108
Classification on true images 97.76% 0.088

Table 1: In both the pre-training and sequential approaches, the reconstruction and task
operators are trained separately. In the sequential approach, the task operator is then further
trained on the output of the trained reconstruction operator. In the end-to-end approach,
which corresponds to C = 0 in (20), the reconstruction operator is pre-trained with L2-loss.
Finally, the joint approach uses the full loss (20). We see that the classification accuracy
(explained in “Decision space” in section 7.3.1) improves when using a joint approach. In
fact, using a “suitable” C (Figure 2(a)) yields an accuracy of 97.00% that is quite close to the
upper limit of 97.76%, which is the accuracy of the classifier when trained on true images.
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(a) Plot of loss functions after joint training for different C in (20). Clearly, there is no joint minimizer
but 0.5 . C . 0.9 is a good compromise.

(b) True image & class: 8.

Class Prob Class Prob

0 0.00% 5 0.00%
1 0.00% 6 0.00%
2 0.00% 7 0.00%
3 0.00% 8 0.01%
4 99.99% 9 0.00%

(c) Sequential approach (FBP): Most likely class is 4.

(d) Data: Sinogram with 5 di-
rections, 25 lines/direction.

Class Prob Class Prob

0 0.00% 5 14.93%
1 0.02% 6 1.59%
2 0.00% 7 0.00%
3 4.31% 8 78.96%
4 0.13% 9 0.06%

(e) Sequential approach (learned iterative): Most likely class is 8.

Class Prob Class Prob

0 0.00% 5 0.28%
1 0.00% 6 0.03%
2 0.00% 7 0.00%
3 0.28% 8 99.41%
4 0.00% 9 0.00%

(f) Joint approach with C = 0.5. Most likely class is 8.

Figure 2: Joint tomographic reconstruction and classification of MNIST images. Training
data is to the left and reconstructed image with classification probabilities are on the right.
Data on overall performance on all of the MNIST dataset (accuracy) is given in Table 1.
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7.3.2. Joint tomographic reconstruction and segmentation.
Task: Recover the probability map for segmentation of a grey scale image (see section 6.2.2

with k = 2) from noisy parallel beam tomographic data. In this specific example, we
consider segmenting the grey matter of CT images of the brain, which is relevant in
imaging of neurodegerantive diseases like Alzheimers’ disease.

Data: Elements in Y are real-valued functions on lines representing parallel beam tomo-
graphic data, which are digitized by sampling the the angular variable at 30 uniformly
sampled points in [0, π] with 183 lines/angle. We furthermore add 0.1% additive Gaus-
sian noise to data.

Model parameter space: Elements in X are functions representing images supported on a
fixed rectangular region Ω ⊂ R2, so X := L2(Ω,R). These are discretized by uniform
sampling on a 128× 128 grid. The loss `X : X ×X → R is the squared L2-distance.

Decision space: Elements in D are point-wise probability distributions over binary images
on Ω, which can be represented by grey-scale images with values in [0, 1] that gives
the probability that a point is part of the segmented object. Hence, D = M

(
Ω, [0, 1]

)
with the loss function `D : D ×D → R as the cross entropy:

`D(d, d′) :=

∫
Ω

[
−

2∑
i=1

d(t)(i) log
[
d′(t)(i)

]]
dt for d, d′ ∈M

(
Ω, [0, 1]

)
.

Reconstruction and task operators: Reconstruction A†θ : Y → X is given by the Learned
Primal-Dual scheme in [2] and task Tϑ : X → D is given by an “off the shelf” U-net
convolutional neural net for segmentation [81].

Joint training: Joint supervised data is given as 100 triplets (xi, yi, di) where di is the seg-
mentation (binary image). We extend joint training data by data argumentation (±5
pixel translation and ±10◦ rotation). There was no pre-training.

Example outcomes are summarized in Figures 3 and 4. Note that C → 0 corresponds to the
sequential approach, so the image for C = 0.01 can be seen as the outcome from a sequential
approach. Clearly, a joint approach with C ≈ 0.5 or 0.9 outperforms a sequential one.

Next, as C decreases the reconstruction becomes more adapted to the task of segmentation.
In the limit C → 0 the task part is viable but the reconstruction image is useless, which is
to be expected. In the other direction, as C increases the reconstructed image becomes less
adapted to the task and the latter becomes increasingly challenging due to the low contrast
between white and grey matter.

Finally, using C > 0 not only reduces the non-uniqueness as explained in (22), it fur-
ther regularizes in the sense that information from the reconstruction guides the segmenta-
tion, which otherwise would amount to learning the segmented image directly from the noisy
sinogams. Intuitively there seems to be an “information exchange” between the task of re-
construction and that of segmentation, which when properly balanced by choosing C acts as
a regularizer for the segmentation, e.g., the white/grey matter contrast in the reconstruction
is overemphasized for small C. This improves the interpretability since it shows how the
reconstructed image “helps” in interpreting why a certain segmentation is taken.
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Figure 3: Log-log plot of loss functions for joint reconstruction and segmentation after joint
training for different C in (20). Clearly, there is no joint minimizer but 0.5 . C . 0.9 is a
good compromise.
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True image & segmentation. Data: Sinogram, 30 angles & 177 lines/angle.

Joint reco. & segmentation: C = 0.01. Joint reco. & segmentation: C = 0.1.

Joint reco. & segmentation: C = 0.5. Joint reco. & segmentation: C = 0.9.

Joint reco. & segmentation: C = 0.99. Joint reco. & segmentation: C = 0.999.

Figure 4: Joint tomographic reconstruction and segmentation for different values of C in (20).
The segmentation is a normalized grey-scale image denoting the probability that a point
belongs to the segmented structure. The choice C = 0.9 seems to be a good compromise
for a good reconstruction and segmentation (see Figure 3). Note also that C → 1 gives the
sequential approach, so C = 0.999 may serve as a proxy for it. Reconstructions take a few
milliseconds to perform on a desktop gaming PC.
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8. Theoretical considerations. The joint task adapted reconstruction defined in (21) is
given by combining two optimal decision rules into a single decision rule, one for reconstruction
that acts on data and the other encoding a task that acts on model parameters. It is therefore
natural to investigate whether the theoretical machinery developed for Bayesian inversion can
be used to analyze regularizing properties of this joint approach. An example would be to
investigate the conditions under which the joint approach is a regularization in the formal
sense, which means proving existence, stability, and posterior consistency that is preferably
complemented by providing contraction rates, see [30, chapters 6-9] for the precise definitions.

Much of the theory on Bayesian inversion that deals with such matters is well under-
stood for linear problems in the finite dimensional setting [48], but things quickly become
complicated for infinite dimensional non-parametric problems. There has been nice progress
recently on consistency, posterior contraction rates, and characterization of the microscopic
fluctuations of the posterior that is relevant for Bayesian inversion, see [88, 18, 73] for nice
surveys and [71] for a in-depth treatment of reconstruction relevant for tomographic imaging.
On the other hand, the theory and associated results require too many restrictive assumptions
that renders them inapplicable for analyzing the task adapted approach in (21). To conclude,
theory of Bayesian inversion is in its current state not useful for characterizing conditions for
when the joint task adapted reconstruction in (21) is a regularization.

Another line of investigation considers the potential advantage that comes with using
a joint approach over a sequential one. Since the reconstruction and task operators are
trained separately in a sequential approach, some information is inevitably lost when applying
a regularized reconstruction operator. In contrast, both reconstruction and task operators
are trained simultaneously in a joint approach so there is a better chance of preserving the
information. Hence, we expect a joint approach to perform better, which is also supported by
the observation in (22) and the empirical evidence in section 7.3.

Now, albeit convincing, the above heuristic argument is flawed! In fact, as stated by
Proposition 1, it is surprisingly difficult to theoretically prove that a joint approach outper-
forms a sequential one in a non-parametric setting where one has access to all of data. The
reason is that many standard operators that map data space to model parameter space are
formally information conserving in such a setting. The adjoint of the forward operator, its
Moore-Penrose pseudo-inverse, and even some regularized reconstruction operators such as
the usual Tikhonov regularization are information conserving under standard Gaussian noise.
For 2D parallel beam tomography, yet another example is the filtered backprojection (FBP)
reconstruction operator (with a filter that is strictly non-zero in frequency space).

Proposition 1. Let x be a X-valued random variable, and y be a Y -valued random variable,
both defined on the same probability space. Let Π: Y → Y be a measurable operator with closed
range. Let B be an arbitrary measurable map defined on Y that is injective when restricted to
ran(Π). Then, the following holds:

(30) E
[
f(x)|y

]
= E

[
f(x) | B(Πy)

]
for all f ⇐⇒ x ⊥⊥ (y −Πy) | Πy

where f spans all random variables over X.

Before getting to the proof, let us comment on the implication of the statement above. The
operator Π typically represents an orthogonal projection onto the closure of the range of A.
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The result above states that the probability of x conditioned on y is the same as the one
conditioned on B(Πy) if and only if, given the knowledge of Πy, the “noise” in the null space
of Π, namely y −Πy, is independent of x.

Proof. The proof is essentially a rewriting of the definitions. Introduce the notations
y1 := Πy and y2 := y − Πy, so that y = y1 + y2. Then E[f(x)|y] = E[f(x)|y1, y2], as y and
(y1, y2) generate the same σ-algebras. The injectivity of B on ran(Π) implies that the σ-
algebra generated by B ◦Π ◦ y and Π ◦ y are the same, so E[f(x)|y1] = E[f(x)| B(y1)]. Now,
requiring that E[f(x)|y1, y2] = E[f(x)|y1] holds for all f is exactly the statement of conditional
independence in the claim.

Corollary 2. Consider the setting in section 7.1 for task adapted reconstruction and assume
in particular that y and z are conditionally independent given x. Finally, let B satisfy the
assumptions in Proposition 1; we also assume that the equality in Proposition 1 holds, that is
π(x | y) = π(x | B(y)). Then,

(31) π(z | y) = π
(
z | B(y)

)
.

Proof. The conditional independence assumption can be written as π(z | x, y) = π(z | x).
Using this, we compute π(x, y, z) = π(z | x, y)π(x, y) = π(z | x)π(x, y), which yields

(32) π(x, z | y) = π(z | x)π(x | y).

Notice now that B(y) and z are also conditionally independent given x, so we similarly
obtain

(33) π(x, z | B(y)) = π(z | x)π(x | B(y)).

Now, (32) and (33) imply in particular that

π(z | y) =

∫
π(z, x | y) dx =

∫
π(z | x)π(x | y) dx

π
(
z | B(y)

)
=

∫
π
(
z, x | B(y)

)
dx =

∫
π(z | x)π

(
x | B(y)

)
dx.

(34)

Our assumption is that π(x | y) = π
(
x | B(y)

)
, which combined with (34) yields (31). This

concludes the proof.

By Corollary 2 we see directly that the conditional distribution of z given data y ∈ Y is,
as 4-valued random variables, equal to the conditional distribution of z given an initial re-
construction B(y) ∈ X. In particular, a task adapted reconstruction method (either sequen-
tial or joint) is equivalent to first performing reconstruction by applying the fixed operator
B : Y → X, which is not trained, followed by C : X → D that is given as

C := T ◦ A† ◦B−1 .

Note here that C, which is trained, is a measurable map defining a non-randomized decision
rule that in principle serves as a “task” operator.
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To summarize, we cannot resort to “information bottleneck” type of arguments as an
explanation for why the joint approach should outperform only training a task operator in
this general setting. On the other hand, the above argument hints that an explanation must
involve either the choice of architecture or the training protocol. Both of these are examples of
classical and widely studied problems in deep learning concerning why deep learning “works”
and these remain largely unsolved. Another argument in favor of a joint approach is that it
is highly non-trivial to select an appropriate architecture for parametrizing C, whereas T and
A† are easier to parametrize by means of neural networks. Another possible reason is that the
operations, like evaluating B or its inverse B−1, may not be stable. Finally, as we have seen
from the examples, using knowledge about the reconstruction may in fact act as a regularizer,
either by improving the trainability or the generalization properties.

9. Discussion and outlook. A key aspect for the implementation of the joint task adapted
reconstruction method in (21) is that both decision rules are given by trainable neural net-
works, which after joint training forms a single intertwined neural network. In such case, the
problem reduces to solving (29).

The neural network for the reconstruction should here preferably incorporate knowledge
about how data is generated. Learned iterative methods, like the Learned Primal-Dual
method, are therefore well suited for this task since they are given by a (deep) neural network
that embeds the forward operator and a statistical model for the nose in measured data [1, 2].

Next, as shown in sections 6.2 and 6.3, a wide range of tasks can be interpreted as applying
an optimal decision rule on the model parameters. The abstract framework for task adapted
reconstruction (section 7.1) works with any task that can be represented by a neural network
as long as the parametrization and the loss functions are differentiable, like those listed in
sections 6.2 and 6.3. Hence, our approach opens up for truly task adapted reconstruction
that goes well beyond performing reconstruction jointly with simple feature extraction. In
particular, more advanced tasks, such as image caption generation or image-processing steps
in radiomics [31, 56], can be performed jointly with reconstruction. This potential is also
mentioned in the editorial for the special issue on machine learning for image reconstruction
in IEEE Transactions on Medical Imaging [93] where the editors for the special issue introduce
the term rawdiomics (on p. 1294) for task adapted reconstruction applied to radiomics.

An important advantage that comes with a joint approach is increased robustness. Ad-
vanced tasks, like radiomics, commonly rely on deep neural networks that are trained on
images in a supervised setting. Images are however inferred in a pre-processing step from
measured data, so contrast and texture may depend on the instrumentation used for ac-
quiring the data and the reconstruction method used for computing the images. Hence, a
neural network that has been trained against images acquired from a particular equipment,
or obtained using a particular reconstruction method, may generalize poorly when either of
these factors change. This is especially the case for tasks involving elements of visual clas-
sification, such as semantic segmentation, that can be sensitive to variations in texture and
contrast. In contrast, task adapted reconstruction acts on measured data instead of images
(model parameters). Using a reconstruction step that incorporates a physics guided model
for how measured data is generated results in a joint approach that is much more robust
against variations in how data is acquired and processed. As an example, jointly training a
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learned iterative method with neural network(s) involved in radiomics will result in a joint
scheme that is expected to be much more robust against variations in scanner and acquisition
protocol. This is essential if radiomics is to be part of clinical-decision support systems for
improving diagnostic, prognostic, and predictive accuracy.

Another important advantage with the proposed task adapted reconstruction method re-
lates to computationally feasibility. The trained neural network for task adapted reconstruc-
tion scales to large scale problems. Such scalability remains a serious issue with the variational
approaches mentioned in section 4. As an example, state-of-the-art methods for joint recon-
struction and segmentation are based on a variational approach using a the Mumford-Shah
functional, which quickly become computationally unfeasible. In contrast, the 2D examples
in Figure 4 for joint reconstruction and segmentation are obtained using the approach in
section 7.3.2 and these take a few milliseconds on a desktop gaming PC.

Finally, examples involving tomographic image reconstruction (section 7.3) support the
claim that a joint approach outperforms a sequential one. Understand this theoretically
(section 8) is however an open problem. In particular, there is currently no theory motivating
using a joint loss of the type in (20), even though empirical evidence suggests such a choice
outperforms the en-to-end and sequential approaches.
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[14] C. Chen and O. Öktem, Indirect image registration with large diffeomorphic deformations, SIAM
Journal on Imaging, 11 (2018), pp. 575–617.
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