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ABSTRACT

Anonymization of medical images is necessary for protect-
ing the identity of the test subjects, and is therefore an es-
sential step in data sharing. However, recent developments in
deep learning may raise the bar on the amount of distortion
that needs to be applied to guarantee anonymity. To test such
possibilities, we have applied the novel CycleGAN unsuper-
vised image-to-image translation framework on sagittal slices
of T1 MR images, in order to reconstruct facial features from
anonymized data. We applied the CycleGAN framework on
both face-blurred and face-removed images. Our results show
that face blurring may not provide adequate protection against
malicious attempts at identifying the subjects, while face re-
moval provides more robust anonymization, but is still par-
tially reversible.

Index Terms— MRI, anonymization, GANs, image-to-
image translation

1. INTRODUCTION

Anonymization is an important topic in medical imaging and
data sharing, to guarantee privacy for the test subjects. This
is especially important for neuroimaging [1], where head
volumes are collected, and for subjects with a specific dis-
ease. Furthermore, the General Data Protection Regulation
(GDPR) often requires anonymization. Virtually all data
sharing initiatives in the neuroimaging field therefore remove
facial features from MRI volumes before they are shared with
the community. At least two techniques are currently being
used: removing all facial features (e.g. using FreeSurfer [2])
or blurring the face [3]. Face removal was used in the 1000
Functional Connectomes Project [4], while face blurring was
used in the Human Connectome Project [5].
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Deep learning has been extensively used for medical
imaging [6, 7], as these new methods in many cases provide
superior performance compared to traditional image process-
ing algorithms. In particular, generative adversarial networks
(GANs) [8, 9, 10] have recently become a very popular tool
for a multitude of tasks, such as realistic image synthesis,
denoising, domain translation, and superresolution [11, 12].
A conditional GAN can for example be used to generate CT
images from MRI [13, 14], PET images from MRI [15] or
T1-weighted MR images from T2-weighted images [16, 17].

New machine learning techniques, in combination with
fast computing, have provided great benefits for the medical
imaging field. However, these techniques have also opened
the door to certain malicious applications. In this work, we
attempt to highlight this problem by demonstrating that a
GAN can be used to restore facial features of anonymized
T1-weighted images. Our code is available at https:
//github.com/DavidAbramian/refacing.

2. DATA

The data used was obtained from the IXI dataset [18], a multi-
site MRI dataset including T1, T2, PD, MRA and diffusion
data from 581 subjects. In this work we employ only the T1
images, which are provided without any facial anonymiza-
tion. The images have also not been coregistered or normal-
ized to a common space. Table 1 provides more details about
the composition of the IXI dataset and in particular the T1
images.

3. METHODS

3.1. Anonymization

Two different anonymization procedures were applied to the
data. The first was the mask face software [3], which applies
blurring to the facial surface while conserving the structure
beneath the face. The second is the mri deface function from
the FreeSurfer package [2], which zeroes out all the voxels
from the subject’s face, including deeper facial structures.



Location Scanner Num. subjects Image dim. (vox.) Vox. size (mm)
Guy’s Hospital Philips Gyroscan Intera 1.5T 322 150× 256× 256 1.2× 0.938× 0.938

Hammersmith Hospital Philips Intera 3T 185 150× 256× 256 1.2× 0.938× 0.938
Institute of Psychiatry GE 1.5T 74 146× 256× 256 1.2× 0.938× 0.938

Table 1. Composition of the IXI dataset.

3.2. GAN model

We employed the CycleGAN unsupervised image-to-image
translation framework [10] to reconstruct facial features from
anonymized data. CycleGAN is a generative adversarial net-
work which employs two generators and two discriminators,
all of which are convolutional neural networks, to simultane-
ously learn the mappings between the two domains A and B.
Because the data is unpaired, the problem of finding a map-
ping between two domains is underdetermined. To counteract
this, CycleGAN employs a cycle consistency constraint that
requires that data converted to another domain and back be as
close to the original as possible.

We used an implementation of 2D CycleGAN previ-
ously developed in our group [17], based on the Keras API
[19]. The model is trained to transform images between the
anonymized and the original domains. The generators in the
GAN have 24 convolutional layers, while the discriminators
have 5.

3.3. Training

The model was trained using individual head slices. To gen-
erate the training data, 21 sagittal slices were extracted from
each subject. This was done for the original dataset as well
as for both anonymized versions. Each slice was normalized
with the 99.5 percentile value of its corresponding original
volume. All the images were of size 256× 256 pixels.

Two different sets of images were used for training the
CycleGAN: the first included subjects scanned at Guy’s Hos-
pital, and the second included subjects scanned at all three
locations. In the first case, 6300 images (300 subjects) were
used for training and 462 (22 subjects) for testing, while in
the second case 10500 images (500 subjects in total; 284, 151,
and 65 from each site respectively) were used for training and
1701 (81 subjects in total; 38, 34, and 9 from each site respec-
tively) were used for testing.

In both cases the training was performed for 200 epochs,
with linear decay of the learning rate applied during the sec-
ond half of the training. The training time for the Guy’s data
was about 2 days, while for the whole dataset it was close to
4 days on an Nvidia Titan X Pascal graphics card.

3.4. Evaluation

Qualitative evaluation of the results was performed by vi-
sual comparison of the original and reconstructed images.

Quantitative results are provided in the form of correlation
coefficients and structural similarity indices (SSIMs) between
the original and the reconstructed test images, as well as be-
tween the original and defaced. The former metric represents
the global correlation between two images, while the latter
is aimed at predicting the perceived quality of a target image
when compared to a reference image. We restrict our anal-
yses to the front half of the images, since we are interested
only in the face. It is important to highlight the difficulty in
quantitatively evaluating the perceived realism of an image,
since existing metrics may not closely track the nuances of
the human visual and pattern recognition systems.

4. RESULTS

4.1. Face blurring

Our approach managed to convincingly reconstruct the facial
features for the face-blurred images (see Figure 1). The re-
sults for the single dataset experiment were particularly con-
sistent (see Figure 3). Results were also positive for the full
experiment, but showing a slight dependence of reconstruc-
tion quality on acquisition site. Qualitatively the images from
Guy’s Hospital attained the best results, followed by those of
Hammersmith Hospital, and finally those of the Institute of
Psychiatry.

The quantitative results in Figures 4 and 5 show a high
and approximately constant correlation and SSIM for both
models. In all cases the differences between the mean met-
rics for the anonymized and the reconstructed images are very
small. This, together with the fact that the metrics do not track
the subjective variation in reconstruction quality for the three
datasets, points to the difficulty in quantifying reconstruction
quality.

4.2. Face removal

Only limited success was achieved for the face-removed im-
ages (see Figure 2). While the GAN managed to restore a
credible face in some cases, this rarely resembled the original
face. The results also suffered from mode collapse, with par-
ticular image patches occurring in the output for many differ-
ent input images. Another common problem is a sharp verti-
cal cutoff on the front of the face, especially on the nose. This
is due to the heads of many of the subjects used for training
being cut against the boundaries of the volume



Fig. 1. Typical results of refacing face-blurred images. Left: results for training using only subjects from Guy’s hospital,
Right: results for training using data from all 3 sites. Top row: original image, middle row: face-blurred image, bottom row:
reconstructed image. CycleGAN learns to perform a deconvolution, to reconstruct the anonymized face.

Fig. 2. Typical results of refacing face-removed images. Left: results for training using only subjects from Guy’s hospital,
Right: results for training using data from all 3 sites. Top row: original image, middle row: face-removed image, bottom row:
reconstructed image. CycleGAN learns to add a face, but in many cases it is not the correct face.

Fig. 3. Example results for all 21 slices of a test subject from the Guy’s Hospital data. Good results are achieved for most slices.
Top row: original image, middle row: face-blurred image, bottom row: reconstructed image.
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Fig. 4. Correlation and structural similarity between original
and reconstructed test images after training using only sub-
jects from Guy’s hospital. As expected, it is easier to recon-
struct face blurred images, compared to face removed images.

The reconstructed faces for the single dataset experiment
are generally more shallow compared to the original data.
Outcomes were slightly better for the full experiment, with
a similar pattern of dependence on the acquisition site as seen
in the face blurring case. Figures 4 and 5 show consistently
worse quantitative results for the face-removed images com-
pared to the face-blurred ones. Again, the differences in mean
metrics across datasets do not match the qualitative evalua-
tion. Mean correlation is the one metric that sees a significant
improvement from refacing, compared to the defaced images.

5. DISCUSSION

The successful reconstructions raise some concerns about
the potential vulnerability of certain common anonymization
methods used for MRI data. While the current implementa-
tion has only been shown to work on test data coming from
the same dataset used to train the model, pre-trained net-
works are commonly used outside of their original domain.
As an example, the Human Connectome Project [5] provides
face-blurred data of 1113 subjects, which could have been
used to test the generalization properties of our procedure.
However, to respect the privacy of these subjects, we have
not attempted to apply our trained GANs on them. In addi-
tion, the generalization properties of the network could be
improved by training it on datasets acquired from multiple
sites and with different scanning parameters.

Restoring facial features from blurred data requires that
CycleGAN learns a deconvolution. Given the amount of in-

200 400 600 800 1000 1200 1400 1600
Image index

0.6

0.7

0.8

0.9

1
Correlation coefficient

Refaced (face-blurred)
Refaced mean (face-blurred)
Defaced mean (face-blurred)
Refaced (face-removed)
Refaced mean (face-removed)
Defaced mean (face-removed)

200 400 600 800 1000 1200 1400 1600
Image index

0.6

0.7

0.8

0.9

1
Structural similarity index (SSIM)

Fig. 5. Correlation and structural similarity between original
and reconstructed test images after training using data from
all 3 sites. Vertical lines separate images by acquisition site
(left to right: Guy’s Hospital, Hammersmith Hospital, Insti-
tute of Psychiatry). Means were calculated separately for im-
ages from each site.

formation remaining in the image, such as some of the fa-
cial bones, and even the trajectory traced by the blurred face,
this algorithm proved to be reversible to a significant extent.
Restoring the complete face from zeroed out data poses a
much more challenging inpainting problem. Even then, some
success was achieved using an established GAN approach. In
other domains, great success has been achieved by using dedi-
cated inpainting architectures [20], which can be another way
to perform refacing.

In regards to the model employed, the choice to use a
2D GAN was made on the basis of constraints in available
memory and processing time. When applied to every slice
of a volume, such an approach would show discontinuities
between contiguous slices. For this reason, no attempt was
made to identify the subjects using volume renderings. Fu-
ture work might examine the possibility of using a 3D GAN,
which we expect would yield better results and solve the dis-
continuity problem. Another possible avenue for future inves-
tigation would be the use of a supervised learning model such
as Pix2Pix [9], since the available data is paired.

A potential legitimate application for refacing can be the
improvement of morphometric estimates from anonymized
data. It has been shown that even minimal anonymization
procedures such as facial blurring can have an impact on mor-
phometric estimates, such as subcortical volume and cortical
thickness [21]. Recovering the face of each subject could im-
prove the correctness of these estimates.
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