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Sammanfattning

För att upprätth̊alla ett positivt momentum i s̊aväl tekniska som logistiska utmaningar p̊a

dagens bilmarknad har stora biltillverkare börjat använda sig av virtuella simuleringsverktyg.

Dessa verktyg möjliggör utveckling av diverse fordonsmodeller l̊angt innan resurser investeras

i en fysisk prototyp.

Detta projekt fokuserar p̊a utvecklingen av ett verktyg som potentiellt kan hjälpa att

optimera dynamiska beteendeparametrar för ett fordon. Detta uppn̊as genom att skapa en

optimeringsrutin för att ställa in de olika parametrarna för den elektroniska servostyrningen

(EPAS). Denna process görs vanligtvis manuellt, genom test p̊a provbana, p̊a grund av

sv̊arigheterna att korrelera subjektiva bedömningar (SA) med objektiva mätetal (OM). Att

automatisera denna process kan bidra till att minska den övergripande forsknings- och

utvecklingstiden genom att tillhandah̊alla en baslinje för EPAS-parametrarna som i efterhand

kan finjusteras genom manuell justering p̊a provbana.

Verktyget är byggt genom att ansluta olika program i en optimeringsmiljö som kallas

ModeFrontier. Modellering och simuleringar utförs i IPG CarMaker, med efterbehandling av

resultaten i Sympathy for Data. Flera optimeringsalgoritmer testades för att uppn̊a bästa

optimeringsrutinen. EPAS-parametrarna best̊ar av det grundläggande styrmomentet, aktiv

retur och aktiv dämpning, och fungerar som invärden till optimeringsrutinen där utvärdena

fr̊an modellen är objektiva mätetalen, vilket ger en tydlig indikation p̊a den dynamiska

prestandan hos en komponent. Dessa mätvärden optimeras för att passa Steering

DNA-strukturen, som unikt beskriver egenskaperna hos ett fordon. Det slutliga optimerade

fordonet testas manuellt p̊a provbana för att bestämma den verkliga körkänslan.
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Abstract

To keep up with technological as well as logistical challenges of the modern automobile

market, major car manufacturing firms have resorted to virtual simulation tools. This enables

the development as well as validation of vehicular models much before resources are invested

into a new physical prototype.

This project focuses on the development of a tool that would help in optimising the handling

parameters of a vehicle. This is achieved by creating an optimization routine for tuning the

various parameters of the Electronic Power Steering (EPAS). This process is usually done

manually, by on-track testing, due to the difficulties in correlating Subjective Assessments

(SA) with Objective Metrics (OM). Automating this process would help to reduce the overall

research and development time, by providing a baseline tune for the EPAS parameters which

could then be finely tweaked by manual track testing.

The tool is built by interfacing various software in a multi-objective optimisation environment

known as ModeFrontier. The modelling and simulations are performed in IPG CarMaker, with

the post processing of the results taken care of by Sympathy for Data. Multiple optimisation

algorithms were tested to achieve the best optimisation routine. The EPAS parameters,

namely the Basic Steering Torque, Active Return and Active Damping, act as the input to

the optimization routine. The outputs of the model are the Objective Metrics, which provide

a clear indication of the dynamic performance of a component. These metrics are optimised

to fit the Steering DNA structure, which uniquely describes the attributes of a vehicle. The

final optimised vehicle is manually tested at the track, to determine the real driving feel.

Keywords: Electronic Power Assist Steering, Optimization, Subjective Assessment, Objective

Metrics
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Nomenclature

ABBREVIATIONS

AD Active Damping

AR Active Return

BST Basic Steering Torque

DOE Design of Experiments

ECU Electronic Control Unit

EPAS Electronic Power Assisted Steering

FMU Functional Mock-Up Unit

MOGA Multi-Objective Genetic Algorithm

OM Objective metrics

SA Subjective Assessments

SiL Software In the Loop
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1. Introduction

This master thesis was carried out at the Driving Dynamics department in Volvo Car Cor-

poration, Gothenburg. Volvo Cars was founded in 1927 as a subsidiary of the ball bearing

manufacturer SKF. Volvo Cars manufactures and markets vehicles of various types including

sport utility vehicles, station wagons and executive sedans.

In a competitive market with rapid development of technology, vehicle manufacturers are mov-

ing their research and development work towards a virtual, simulation driven environment.

Cars are getting more complex, with customers having greater demands, expecting releases of

multiple variants in short spans of time. With conventional manufacturing and testing meth-

ods, these demands are difficult to adhere to, and hence the switch to virtual development was

imminent. With a reduction in the number of physical prototypes required, manufacturers are

able to reduce costs, lead times, and stress on resources. This method of development is very

beneficial to both manufacturers and the environment.

Reduction of lead time is of high priority in the automotive industry, and this includes reducing

time for development. When dealing with vehicle testing for handling and steering feel, a new

vehicle concept requires extensive testing to achieve a base tune, before further fine tuning

of the vehicle, to deem it production ready. This is a fairly long process, and also occurs

relatively later in the design phase, and requires data from vehicles of previous generations.

The objective of the thesis was to remove these dependencies, by optimising the electronic

power steering parameters to achieve an ideal base tune for the vehicle.

Vehicle dynamics testing in general is a particularly tricky domain to move into the virtual

environment, since a large portion of the physical testing is concentrated on the feeling and

experience of driving a car. Gómez et al. (2015) found correlations between these subjective

feelings and the objective test metrics, which will be used in the virtual environment. [1] The

advantage of dealing with objective metrics is that the final assessments are not dependant on

the individual carrying out the tests.

In order to isolate the objective metrics and extract the ideal results from testing, the vehicles

are subjected to different maneuvers. These maneuvers help to highlight a certain aspect of the
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Introduction

handling performance of the vehicle. A validated virtual vehicle model is used, and multiple

iterations of the various maneuvers are performed to help obtain an optimal model. All these

simulations can be performed on various software, but its a challenge to compile the results into

something substantial. Hence, this optimal model is obtained with the help of an optimisation

software which invokes different optimisation routines. A well-defined optimization routine on

one single platform rather than multiple software’s ensures the physical labour, as well as the

time required for manual tuning of the model real-time on the track, is reduced.

2



2. Literature Study

2.1 EPAS System

The steering subsystem forms the basis for any interaction between the driver and the wheels.

The most simple and commonly used method to implement this is the rack and pinion steer-

ing. As the name suggests, the rotational movement of the steering wheel is converted to the

translational movement of the rack with the help of a pinion gear. The rack is further con-

nected to the tie-rods which aid in changing the directional motion of the wheels. However,

this mechanical system requires heavy input from the driver, especially at lower speeds, to

negotiate sharp turns and hence is not considered an ergonomically viable solution in premium

vehicles. Thus, in order to improve the handling and stability of the vehicle, keeping in mind

the driving experience, the Electronic Power Assist Steering, commonly known as the EPAS,

was developed. The primary objective of this system was to provide an assisting torque to the

driver, thus reducing the required driver input. [2]

There exist multiple ways through which the power assist can be induced in the steering. These

include hydraulic systems, electro-hydraulic systems, and the EPAS. The most popular amongst

these is the EPAS, where an assisting torque is provided on the steering column or an assisting

force on the rack. The EPAS comes in the following variants.

1. Motor mounted the steering column.

2. Motor mounted on the steering rack connected co-axially via a belt and ball nut gear.

3. Motor driving a second pinion gear.

The steering system analyzed during the course of this project came in the second variant, with

a belt and ball nut gear, as seen in the figure 2.1. The EPAS was then modelled in a fully

functional vehicle environment for further evaluation and optimization. [3]

3



2.1. EPAS SYSTEM Literature Study

Figure 2.1: Electronic Power Assist Steering

2.1.1 Modelling

The steering subsystem is a software-in-loop (SiL) model, designed in the Simulink environment,

thus having the ability to be accessed by IPG CarMaker for full vehicle analyses via script

files coded in MATLAB. As mentioned earlier, the EPAS system consisted of two distinct

subsystems, the electronics and the mechanics. This was replicated in the Simulink model

for the steering, thus allowing easier access to parameters for identification and modification

purposes. [3]

• Mechanics

The mechanical part of the model represents the transmission of the external driver input

from the steering column through the torsion bar, and the pinion gear to the rack. Other

major elements include the modelling of the friction elements, the definition of inertia’s

for the various rotating masses, and the modelling of the servo, rack, and pinion gears.

Each sub-block consists of equations representing the inputs, outputs, and the functions

present using mathematical operations. Parameters such as angles, angular velocities, and

torque were used to define these equations. The primary inputs to the components such

as the spindle, upper steering column, input shaft, torsion bar, output shaft, and the rack

were well documented.

Each of these components have a non-linear, speed dependent friction model comprising

static, tangent-hyperbolic and hysteresis frictions. These frictional models also depend on

the aforementioned parameters. Furthermore, the models also consist of a combination of

4



2.1. EPAS SYSTEM Literature Study

look-up tables and constants which are variant specific.

The blocks within the Simulink interface are formulated on the basis of mathematical

equations which are used to define the model, thus accurately depicting the functioning of

steering system.

• Electronics

The electronics part of the model mainly comprises of the servo motor, the ball nut gear,

and the Electronic Control Unit (ECU). These blocks comprise of multiple input and

output signals corresponding to parameters such as the voltage, current, and temperature

of the ECU. The ECU block also consists of signals which refer to control parameters,

acting on multiple subsystems of the vehicle model.

Most functions of the SiL steering model are stored within the electronic block and form

the core functionalities of the steering system. Additionally, the parameters from the

mechanical subsystem are also referenced as they work in tandem, in order to produce the

desired level of assistance necessary for the driver.

2.1.2 Functions

Within the EPAS model in the Simulink interface, there exist multiple functions ranging from

Steering system controller settings to torque creating functions. [3] The parameters which act

as the inputs to the optimization process are primarily the torque creating functions in the

steering system. They influence certain attributes of the EPAS, such as the assistance torque

provided, the return-ability of the steering, the friction compensation in the system, the end

stops for the rack travel as seen in figure 2.2.

Figure 2.2: Torque creating functions

A summation of these functions result in the generation of the motor torque, which serves the
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2.1. EPAS SYSTEM Literature Study

purpose of the EPAS system. These built-in functions consist of parameters which are enclosed

within the ECU block of the Simulink interface and are elaborated below.

• Basic steering torque

The first function dealt with was the basic steering torque, more commonly known as the

boost curves. Primary parameters involved in the definition of this function are the rack

assist forces from the steering and the longitudinal velocity of the vehicle. The boost curves

are formulated on the basis of the servotronic functionality of the EPAS system, where

assistance is provided with the help of the motor either hydraulically or electrically. [4]

The values of the steering torque were plotted as a function of the rack assist force pro-

vided to the system. The basic steering torque function was logarithmic in nature, which

monotonously increased with an increment in speed.

An increase in speed resulted in an increased level of assistance torque provided for the

same values of rack assist force. The values of assistance torque saturated beyond a

certain value, for increasing values of rack assist force. Thus, manipulating these boost

curves would give an indication of how heavy or light the steering felt under different

driving conditions. Another important aspect which could be studied from these curves

was the on-center behaviour of the steering. [4]

• Active return

The second function which was studied was the active return. As the name suggests,

this function controls the return-ability of the steering wheel, for any input provided

by the driver. Hence the primary parameter influencing the return was the magnitude

of the steering wheel angle. As mentioned previously, most functions within the steer

subsystem are control signals. The ECU thus acts as a multiple input - multiple out

(MIMO) control block. This results in the possibility of multiple steering functions being

coupled. The return-ability function in this case coupled with the damping function is

influential in limiting to motor assist torque output. Computing and modifying the return-

ability function is useful as it is indicative of the metrics pertaining to the overshoot and

return behaviour of the steering. [3]

• Active damping

The active damping function, as the name suggests, affects the damping of the steering

input. Coupled to the active return function, it essentially has effects on both the return-

ability as well as maintaining the stability of the steering under different driving conditions.

6



2.1. EPAS SYSTEM Literature Study

The Damping function specifically aids in the stabilization of the rotor under transients.

These conditions involve highly dynamic steering inputs.

The magnitude of most control functions present within the steering system are limited by

their characteristic curves and extended boundary conditions. The values of parameters

such as the return speed, assist torque, and rack assist force cannot exceed certain pre-

defined values. Meeting these conditions preserved the functionalities and the effects they

had on the overall driving performance. In addition to the overshoot and return behaviour

of the steering, the active damping function is also indicative of the metrics corresponding

to steering torque feedback. [2]

2.1.3 Tuning catalogue

Each of the torque creating functions have multiple parameters stored within the configuration

file (.xml), which influence the final motor assist torque acting on the system. In order to

identify the variables or parameters which actually influence the magnitude of these functions,

a tuning catalogue published by the supplier of the model was used. Thus, a list of parameters

that can be calibrated to achieve optimal results was defined.

• Basic steering torque

In the case of the assistance function, the calibration parameters are a list of 7 boost curves

which are defined at vehicle velocities between parking speeds and highway driving speeds

as seen in figure 2.3. [2]

Figure 2.3: Basic Steering Torque
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2.2. IPG CARMAKER Literature Study

• Active return

For the return function the identified calibration parameters are dependent on the inputs

provided by the driver, which affect the return behaviour of the steering under different

driving condition (longitudinal velocities).

• Active damping

In order to calibrate the damping function, four parameters which can be influenced by

driver input are considered. Each of these parameters are plotted as a function of the

factor of active damping present in the system.

2.2 IPG CarMaker

The primary simulation environment for the purpose of this project was IPG CarMaker. Due

to its ability to define maneuvers, evaluate vehicle dynamics characteristics, pick tire models,

and complete simulations five times faster than real time, CarMaker helps reducing the lead

time on the completion of the optimization routine. The CarMaker user interface can be seen

in figure 2.4.

Figure 2.4: IPG CarMaker

An influential feature which set CarMaker apart from other multi-body simulation environments

was its ability to replace any subsystem in the vehicle with a custom model defined by the

user. Since CarMaker interfaces really well with both MATLAB and Simulink, the customized

software in loop model could be plugged in. The results from these simulations could then

8



2.3. OPTIMISATION SOFTWARE Literature Study

further be exported to multiple post processing environments vis-à-vis Matlab, Sympathy for

Data, and ADAMS Car for analysis.

2.3 Optimisation Software

ModeFrontier is a comprehensive multidisciplinary and multi-objective optimization software.

Its innovative algorithms and effective integration with leading simulation tools ease the engi-

neering process. ModeFrontier has become essential for increasing the understanding of cost

and performance factors while reducing the product development time in multiple industries. [5]

ModeFrontier does away with traditional engineering practices of finding the optimal solution

using trial and error, and instead employs the concept of intelligent design space exploration

using various optimisation algorithms. The software allows users to build up a logic workflow

to graphically formulate the problem, followed by evaluating and optimising the designs with

the ability to monitor the progress in real-time.

2.4 Uniform Latin Hypercube Sampling

The Latin Hypercube Sampling Method, similar to the Monte Carlo Sampling Method, gen-

erates a set of random points between a given set of limits. However, since the Monte Carlo

Method relies on pure randomness, it can generate points which aren’t uniform over the design

space, resulting in crowded areas or areas left unexplored. The Latin Hypercube Sampling

Method, however, though relying on randomness as well, conforms to a uniform distribution.

Hence the points are more spread out, with nearly the entire design space being explored. This

is also very helpful when running a small number of iterations, in comparison to the number of

parameters. [6]

2.5 Optimisation algorithms

Many different optimisation algorithms were tried and tested for the project. Finally, two

algorithms were decided on, for their varied approaches, but simple implementations. The two

algorithms were Simplex and MOGA2.

9



2.5. OPTIMISATION ALGORITHMS Literature Study

2.5.1 Simplex

The Simplex Method in ModeFrontier, also known as Downhill Simplex or the Nelder Mead

Method, is a common optimisation algorithm used to obtain the maximum or minimum of a

cost function in multi-dimensional space. This heuristic algorithm uses the concept of a simplex,

which is a polyhedron with N+1 vertices in an N-dimensional space. The algorithm tries to

iteratively alter the worst vertex, bringing the final value closer to that of the ideal design. The

algorithm stops when the difference between the final and penultimate design is lower than the

termination accuracy, or when the maximum number of iterations is reached. [7]

The Downhill Simplex performs four unique operations in order to improve the positioning of

the worst vertex. These are,

1. Reflection: The algorithm first tries to reflect the position of the worst vertex in the

opposite direction, as shown in figure 2.5a. If the reflected point is equivalent to the best

point before the operation, the Simplex is accepted. In case the reflected point is better

or worse than the best point before the operation, the Simplex moves onto the consequent

operations.

2. Expansion: For the cases where the reflected point is better than the best point before

the operation, the reflected point is further expanded in the direction of the reflection,

as shown in figure 2.5b. If the point obtained through expansion is not as good as the

original reflected point, the algorithm reverts to the original reflection.

3. Contraction: For the cases where the reflected point is worse than the best point before

the operation but better than the worst point before the operation, the reflected point

is shrunk back against the direction of the optimisation, as shown in figure 2.5c. If this

point is better than the original reflected point, the Simplex is accepted, else the algorithm

reverts to the original reflection.

4. Multiple Contraction: For the cases where the reflected point is worse than the worst point

before the operation, the reflection is discarded and all the points of the Simplex, with the

exception of the best point, is contracted towards the best point. This operation is shown

in figure 2.5d.

10



2.5. OPTIMISATION ALGORITHMS Literature Study

(a) Reflection (b) Expansion

(c) Contraction (d) Multiple Contraction

Figure 2.5: Simplex

In figure 2.5, H is the worst point, L is the best point, N is any other point on the polyhedron

and R is the reflected point.

2.5.2 Multi-Objective Genetic Algorithm (MOGA-II)

Genetic Algorithm is a type of optimisation method which is based on natural selection and

Darwin’s Theory of Evolution. MOGA-II is an improved version of the original Multi-Objective

Genetic Algorithm by Poloni. It uses the concept of multi-search elitism, which allows it to

preserve solutions without prematurely converging into a local optimum and improves the

overall convergence of the algorithm. [8]

The elitism operator proceeds in the following manner to try an obtain the global optimum.

• Each of the discrete parameters helps to form a chain, the concatenation of all of which

finally forms the chromosomes. The algorithm begins with the initial population of chro-

mosomes and uses it to generate newer generations or offspring. This is done using one of

the following operations, chosen at each step and applied to the parent.

1. Crossover

(a) One Point Crossover: The interchanging of the parent chromosomes to produce

the two offspring is done by randomly selecting a crossover point.

11
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(b) Two Point Crossover: The interchanging of the parent chromosomes to produce

the two offspring is done by randomly selecting two crossover points.

(c) Uniform Crossover: The interchange is handled a little differently, with the algo-

rithm deciding which of the parents will contribute which gene to the offspring.

This allows the parents to interact at the gene level instead of the segment level.

Figure 2.6 shows the different types of crossovers.

Figure 2.6: MOGA-II

2. Mutation: The genetic material of the chromosome is altered and the new design may

be entirely new to the gene pool. Mutation helps in preventing the algorithm from

saturating at a local optimum.

• Once all of the offspring are generated, the ’fitness’ of the individuals are computed to

arrive at the best design. The Darwinian evolutionary theory of Survival of the Fittest is

then employed. All the non-dominated designs are added to the elite set, and any duplicate

or dominated designs are removed.

• The next generations are then computed and the process is continued till convergence is

achieved or the maximum number of generations are reached.

2.6 Subjective Evaluation

In addition to objective tests and optimisation, subjective testing is necessary to gauge the

driveability of the final design iteration of any optimisation. Subjective evaluations are primar-

ily done by experienced test driver, who can accurately describe subtle and specific changes in

12
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vehicle behaviour. A major part of the subjective testing and tuning performed at Volvo is

done at their test track in Hällered, including the tuning of the EPAS parameters.

The car is tested on the High Speed Oval for on-centre behaviour, and on Handling Track 2 for

on-the-limit handling performance, as can be seen in figure 2.7.

Figure 2.7: Volvo Proving Grounds - Hällered
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3. Maneuvers and metrics

The influence of both subjective assessments and objective metrics on the study of vehicle per-

formance have already been mentioned in the previous section. The subjective assessments are

performed by multiple expert drivers in a single-blind test, where they have minimal informa-

tion of the vehicle configuration. Following a series of tests which include the first impression,

constant radius, slaloms a subjective feedback is obtained from the driver. The feedback is

specific to certain dynamic attributes of the vehicle. In most cases the feedback from the

drivers are both recorded and filled in on a pre-defined questionnaire. The final feedback is

then translated to ratings which can then be used as a tool for comparison between different

configurations of the same vehicle as well as comparison between different vehicles. [1]

The objective metrics are functions derived from the dynamic vehicle parameters obtained from

similar test events performed by the drivers. The values of these Metrics, have pre-defined

ranges based on the kind of configuration deemed necessary by the vehicle manufacturer. The

links between SA’s and OM’s have played a vital role in understanding the behaviour of the

vehicle from the perspective of the driver and comparing them against results obtained from

the CAE simulations. [1]

3.1 Maneuvers

Any multi-objective optimization routine is heavily dependent on the inputs to the process and

the outputs from the process. However, the optimization of any input and its ability to satisfy

a particular value for the output depends on the quality of the loadcase defined. Since the focus

of the optimization process was on the driving performance, the loadcases used were basically

different dynamic and steady state maneuvers. These maneuvers could be defined with multiple

variants, with each variant being specific to a certain region in the driving spectrum. These

regions could be distinguished and characterized by the values of certain dynamic parameters

obtained such as the lateral acceleration, yaw rate. The definition of these variants depended

on parameters such as the lateral acceleration and the longitudinal velocity of the vehicle. The
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3.1. MANEUVERS Maneuvers and metrics

following loadcases were used for the purpose of this project.

1. Ramp steer

The ramp steer maneuver is performed at a specific velocity with a steady increment in

Steering wheel Angle over the duration of the manoeuvre as seen in figure 3.1. Factors

such as the Lateral Acceleration and Yaw rate at steady state can be obtained from the

maneuver. [3]

Figure 3.1: Ramp Steer Maneuver

Since the value of steering wheel angle at a specific lateral acceleration could be obtained

from the maneuver, ramp steer was used as a pre-event for most dynamic maneuvers used

to determine the dynamic behaviour of the vehicle.

2. On-Center

The on-center test as per definition, characterized the steering performance at low fre-

quencies and moderate lateral accelerations. At values of lateral accelerations that were

low, it is indicative of the steering performance with mild corrections. At values of lat-

eral acceleration considered moderate, it is indicative of steering performance with heavy

inputs. For instance, negotiating a hair-pin bends. [3]

As seen in figure 3.2, the maneuver is performed by providing a sinusoidal steering input

with a fixed amplitude and frequency. Multiple variations of the on-center test could be
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used, depending on the desired response of the vehicle to be examined. These variations

include a range of longitudinal velocities at low and moderate lateral accelerations. The

frequency of steering input was limited to prevent the saturation of tyres by ensuring they

stayed in the linear range.

Figure 3.2: On Center Maneuver

The steering wheel angle amplitudes at the specified lateral accelerations were obtained

from the pre-event, simulated at the specified speed with a steady state steering input over

a duration of time.

3. Swept steer

The swept steer maneuver covers a wide range of vehicular characteristics which includes

straight ahead drivability, steady state turning as well the lateral dynamics (roll behaviour)

thus forming the complete driving spectrum.
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Figure 3.3: Swept Steer Maneuver

From figure 3.3 it can be seen that maneuver was performed by providing a steering input

with constant jerks, thereby building up the lateral acceleration upto the desired value.

Two variations of the swept steer maneuver were used for the purpose of this project.

(a) Low-G swept steer (LSS)

This particular test-run was performed at high speeds. The methodology for the

maneuver was the same, where the steering wheel angle input was provided ensuring

the lateral acceleration is built up in steps upto a predefined target value. [3]

The steering wheel angle amplitude was obtained on the basis of the steering wheel

velocity (rad/S) required to build up lateral acceleration in the above defined pro-

cedure. The Low-G swept steer characterized the straight-ahead drivability of the

vehicle subject to mild turns on the steering wheel.

(b) High-G swept steer (HSS)

This particular test-run was performed at a velocity lower than the Low-G swept steer.

However for the same velocity, the pre-defined target value of lateral acceleration was

higher. [1]

Thus, the High-G swept steer characterized the steady state turning behaviour of the

vehicle as well as the roll dynamics at both ends of the driving spectrum.
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4. Frequency response

The frequency response maneuver characterizes the turning performance of the vehicle at

both steady states and transients. In the linear driving range, the magnitude and phase

delays of variables such as the lateral acceleration and yaw rate at different steering wheel

frequencies were determined. [1]

A frequency sweep is performed at high speeds with a steering wheel angle amplitude cor-

responding to moderate values of lateral acceleration. The steering wheel angle frequency

was gradually increased in steps of 0.1 Hz as seen in figure 3.4.

Figure 3.4: Frequency Response Maneuver

5. Sine with dwell

The sine with dwell is an evasive manoeuvre which is used to evaluate the vehicle responses

under unseen circumstances. It characterizes the time delays between variables such as

the yaw rate response and the steering wheel angle amplitude.
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Figure 3.5: Sine With Dwell Maneuver

From figure 3.5 it can be seen that the test-run is performed by giving a sinusoidal input

with the steering amplitude being held constant at the peak value for a certain dura-

tion.This steering amplitude is obtained from the pre-event. The input is then multiplied

by factors in steps of 0.5 until the vehicle rolls over. [1]

3.2 Objective Metrics

As discussed in the previous sections, OM’s were functions that were used to quantify in num-

bers,the dynamic performance of the vehicle, which in turn helped build the DNA. Each of

these metrics has a specific target value, within a pre-allocated range. This target was consid-

ered to be the optimal value which would enhance the performance of a particular attribute

within the subsystem. Furthermore, these metrics could be used as a bench marking tool by car

manufacturers to compare, analyze and optimize the performance of any particular subsystem

based on the competition in the market.

Since the focus was majorly on the steering system, following a literature survey on the

previous work done on the subject, a list of 27 OM’s were identified. The list of all the metrics

can be seen in figure 3.6. The quantification of the vehicle performance could be broadly

classified into 3 levels. [1]
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Figure 3.6: List of Objective Metrics

The broadest classification included the straight ahead controllability, cornering ability and

the first impression tests. At a more dynamic-specific level the metrics were classified on the

basis of attributes such as the response, roll control and the torque feedback.

As each of these metrics are maneuver specific, the reliability and accuracy of the final values

depend on the event performed. The objective metrics are functions that take into account

a fixed number of vehicle parameters. There was a possibility that the response obtained

from multiple metrics would be indicative of the same vehicle characteristics. Furthermore,

these Metrics were the outputs to the optimization process. Hence, taking all 27 metrics into

consideration would result in unreliable results. [1]

Keeping in mind the aforementioned possibilities, a correlation study was performed for

all the 27 objective metrics. Following the study as seen in figure 3.7, the Pearson’s linear

correlation coefficient was obtained. The values of this co-efficient varied between -1 and 1,

with values over 0 representing a positive, and the values less than 0 representing a negative

correlation.
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Figure 3.7: correlation study of OM’s

Any value greater than 0.5 indicated a strong correlation between the two metrics in question.

Similarly any value less than -0.5 indicated a strong negative correlation. On this basis a list

of the following 10 OM’s were chosen, which covered the dynamic performance of the vehicle

under all possible driving conditions. [1]

1. Lateral acceleration response gain (high speed)

This metric represents the steady state value of acceleration gain. It Is indicative of the

sensitivity of the steering experienced by the driver at high speeds. The value of this

metric could be computed from equation 3.1

Response gain =
Ay

SWA ∗ 100
(3.1)

where Ay = Lateral acceleration in G’s,

SWA = Steering wheel angle input in Degrees

Which is the gradient of the cross plot between the lateral acceleration and the steering

wheel angle .

2. Gain linearity

The steering sensitivity ratio as the name suggests is a ratio between the value of steering

sensitivity between moderate and low values of lateral acceleration. The steering sensitivity
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could be computed from the gradient of the cross-plot between the lateral acceleration and

the steering wheel angle between the defined values of lateral acceleration normalized to

100◦of steering wheel angle.

3. Torque build-up

Also known as torsional rate, this metric represents the steering wheel torque per 100

units of steering wheel angle. Measured in [Nm/100 SWA] (as seen in equation 3.2), it

was indicative of the stiffness of the steering wheel felt by the driver.

Build-up =
SWT

SWA ∗ 100
(3.2)

where SWT = Steering Wheel Torque in N-m,

SWA = Steering wheel angle input in ◦

The metric was obtained from the slope of the cross plot between steering wheel angle and

steering wheel torque.

4. Torque dead-band

The torque dead-band in degrees refers to the Steering wheel angle at which a specific

value of steering wheel torque is produced. Measured in [degrees], it is an average of the

left and right turn direction metrics.

The metric was obtained from the cross plot between the steering wheel angle and steering

wheel torque. Similar to the torsional rate, the dead-band is representative of the torque

feedback in the vehicle under straight ahead driving with minute changes.

5. Friction feel

The friction feel for the steering could be defined as the measure of friction or damping

present in the steering system during on-center. It is an indicator of the mechanical friction

present in the system, thus the effort required to overcome the damping present in the

steering system.

The value for friction feel was obtained by taking the average of direction response for left

and right turns in the cross-plot for steering wheel angle and lateral acceleration where

the value for lateral acceleration is zero.
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6. Lateral acceleration – steering wheel angle phase time lag

The phase time lag could be defined as the equivalent time of the frequency when the lateral

acceleration lags the steering wheel angle signal by 45◦. This can be seen in equation 3.3

Time Lag =
1

8 ∗ f45◦
(3.3)

where f45◦ = Frequency at 45◦phase lag in Hz

Measured in [mS] this metric is representative of the steering response of the vehicle. A

lower value indicated a better response whereas a higher value indicated a worse response.

7. Total roll-rate gradient during cornering

The roll gradient during cornering measured in [deg/G] is representative of the roll dynam-

ics of the vehicle. It characterizes both the steady state as well as the transient driving

conditions under cornering.

In quantitative terms the value of the metric was the slope of the cross-plot between the

lateral acceleration and the roll angle which is represented in equation 3.4.

Roll rate =
Roll Angle

Ay

(3.4)

where Ay = Lateral acceleration

Roll Angle = Roll angle of vehicle during cornering in ◦

Since the metric indicates cornering ability under both steady state and transient driving,

a highly dynamic maneuver could be used to determine the value.

3.3 Correlation study

Following the definition of both the inputs (ECU Parameters) and the outputs (Objective Met-

rics) to the optimization process, one stand-out feature was the dependency on the velocities.

On one hand the inputs which were to be optimized were parameters defined as a function
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of the vehicular velocity, whereas the outputs which helped quantify the results were metrics

which depended on the maneuvers performed at specific vehicular velocities.

Figure 3.8: List of Maneuvers and OM’s

This fact was essential in narrowing down the number of events that were required to produce

the necessary results. Thus, from a list of 7 maneuvers which included 18 variants, only

9 loadcases(including variants) were deemed necessary to obtain the desired responses. For

instance, since the lateral acceleration response gain metric evaluated the response gain at

high speeds with mild turns, the on-center maneuver could be used to obtain an accurate

value. Similarly metrics such as the gain linearity, torque build-up and torque dead-band were

heavily dependent on the values of steering wheel torque in steady state. Thus, indicative of

the steering response under straight driving. Hence the low-G swept steer maneuver could be

used to estimate the value of these metrics. In metrics such as roll-rate, required high values of

lateral acceleration. Thus, dynamic maneuvers such as the frequency response, or high-G swept

steer would provide a more accurate indication of the values of these metrics. The final list of

maneuvers used can be seen in figure 3.8. This resulted in a more robust optimization process

with a much lower lead time on both the simulation as well as post processing environments.
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4. Simulation environment

IPG CarMaker was the primary simulation environment within the optimization loop. The

initial setup of the vehicle model on IPG CarMaker involved designing the road surface and

defining the type of driver who would execute the maneuver. Furthermore, parameterization of

a predefined vehicle model was done using a combination of look-up tables from measurement

or multi-body simulation data. These were primarily the kinematics and compliance (K&C)

tests for the suspension model in the vehicle. They included values for the stiffness of springs

(N/mm) ,dampers (N/mm), bushings and anti-roll bars on both the front and rear ends of the

vehicle. These values were obtained from simulations on ADAMS Car a multi-body simulation

software from MSC, which specializes in building and analyzing vehicle dynamics models. [9]

Figure 4.1: CarMaker Vehicle Setup
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Additionally, the definition of the tire model used was necessary as it affected the quality of

the output data obtained post simulation. Predefined values obtained from calculations with

respect to the aerodynamics of the vehicle model, the weight distribution as well as the Inertia

modelling of the both the sprung mass and unsprung mass of the model were plugged in to

obtain results which could be validated in the future. The sprung masses values included the

inertia’s Ixx, Iyy and Izz for the four wheels whereas the unsprung mass values included the

definition of the center of gravity position and inertia values for the chassis. The values of the

above mentioned parameters could be modified in the dialog box shown in figure 4.1. [3]

The focus of this project was on the steering system. The modelling of both the mechanical and

electric subsystems of the EPAS were done on Simulink. Since IPG CarMaker had an inbuilt

functionality in the form of a plug-in for models in Simulink, the steering model could be both

used and modified for the purpose of this project. These models were exported and initialized

with the help of scripts coded in MATLAB.

4.1 Test runs

One of the primary elements which had to defined, in order to evaluate the parameters, were

the maneuvers, also known as test runs within the IPG environment. The definition of these

test runs required inputs from the IPG environment such as the road surface, the longitudinal

velocity, the steering wheel angle and the lateral acceleration. They were defined in steps which

replicate a real time test including options to define the type of driver, with either manual inputs

or using the inbuilt functionality of the IPG Driver. Different steps within a particular test run

involved the definition of both lateral and longitudinal dynamics of the vehicle in terms of the

duration and magnitude of braking, acceleration, clutch and the steering wheel angle input.

The test run could be modified and saved by adding steps between different conditions that

were initially defined. [9]
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Figure 4.2: Maneuver definition

The maneuvers implemented during the course of this project were pre-defined, standardized,

test procedures by Volvo Car Corporation. The definition of these manoeuvres required specific

values of certain primary parameters such as the lateral acceleration, longitudinal velocity of

the vehicle, the steering wheel angle magnitude, the steering wheel velocity as seen in figure 4.2.

Additional options such as the definition of time period and amplitudes for sinusoidal sweeps

aided the modification of these events during the simulation process.

4.2 Inputs and outputs

Once the definition of both the inputs and the maneuvers was completed the next step was

to define the output quantities which would influence the calculation of the OM’s chosen for

the purpose of this project. Furthermore,extracting only the necessary data from these simu-

lations,was essential in reducing the time required for post processing the data which in turn

would reduce the lead time on the optimization.
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Figure 4.3: Output configuration file

A list of output quantities and saved as a separate configuration file that could be extracted

and read when the data was being post processed as seen in figure 4.3. Once the configuration

file was created and saved it could be pointed to a particular directory where the results files

would be saved. This was also essential when the data would be post processed as the software

used for processing,Sympathy for Data,required a specific folder structure. This was necessary

as different sub-blocks within in the software pointed to files in different locations within this

folder structure. [9]

Figure 4.4: IPG Control
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Another interesting yet important feature in the CarMaker environment was the ability to both

visualize and plot data real-time,when the manoeuvre was being performed. This was possible

with the plug-in’s IPG Movie and IPG Control respectively.From figure 4.4 it could be seen

that this feature enabled verification of the input data which would go into the optimization

routine,at an early stage and this was essential in reducing the time required to debug the

errors encountered at later stages in the project.

4.3 Interfacing

The setup of the vehicle model, the definition of maneuvers in the CarMaker environment and

its ability to interface with MATLAB and Simulink have been spoken about in length. In

order to perform simulations on CarMaker with different versions of the steering model, it was

necessary to initially find a suitable interface which would aid in making modifications to the

model at different stages.

• CarMaker for Simulink

Since the Optimization routine involved running multiple iterations of the simulations in

the CarMaker environment, running the Simulink model via the start-up script coded in

Matlab was not possible. The reason behind this was, the start-up script included the

initialization of multiple software’s such as IPG CarMaker, Matlab, Simulink. Thus, the

lead time to complete a single simulations on IPG CarMaker and store the result data was

too long .

• FMU

Hence an alternate procedure was used to run IPG CarMaker as the standalone simula-

tion environment, with all the aforementioned data being plugged into the vehicle model

remotely. This was achieved with the help of the Functional Mock-up Interface (FMI).

The FMI offers the possibility to make use of models exported by third party tools in a

standardized form as so-called Functional Mock-Up Units (FMU). [10]

– Setup

In order to integrate a new FMU into IPG CarMaker it had to be imported first. The

FMU interface on CarMaker had multiple tabs with options to plug-in, import, con-

figure and debug the FMU’s. The FMU’s were classified on the basis of the subsystem
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they’re modelled. The entire list of FMU’s could be seen on the overview tab in the

GUI as shown in figure 4.5. Based on how the FMU is configured it returned the status

of either New, Ready or Error which was helpful during the debugging phase. [11]

Figure 4.5: List of all FMU’s [11]

– Configuration

To configure the plug-in, the desired FMU was chosen on the basis of the model

class and then further edited.Since the focus was on the steering and the power-train

subsystems, the FMU for latest version of the power-train was pre-compiled. However

since this was not possible for the steering model, an FMU for a 2016 version of the

steering subsystem was used instead. Once a model class had been attributed to the

FMU, the FMU’s inputs and outputs needed to be connected to suitable signal sources

and their respective destinations in CarMaker.
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Figure 4.6: Steering FMU setup

From figure 4.6 it could be seen that there were multiple options to configure the

signals. The signal sources for the FMU inputs included interface variables, datadict

quantity, real time expression and constant values. Whereas the signal destinations

for the FMU outputs had the interface variable and datadict quantity options. The

option to add FMU inputs and outputs to the data dictionary was helpful during the

debugging phase as it was possible to view if the FMU outputs were used elsewhere

in the model. Once the configuration of a particular FMU was complete the GUI was

closed thus saving the current configuration setting as the default setting. [12]

– Parameterization

The simulation on IPG CarMaker could be started via the FMU by selecting the de-

sired FMU. Optimization of the parameters of the steering subsystem involves modifi-

cation of these parameters continuously. For every FMU these parameters were stored

in an internal description file in the .xml format called ”modeldescription.xml”. [12]

Since the parameters needed for the purpose were present in the description file for

the steering model, the FMU builder was used to point to the description file con-

taining the parameters for the particular variant of the subsystem. This description

file for different variants could be parsed as well as overwritten when the input was
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modified. To modify the parameters the FMU would unpack a ZIP-file which contains

the description file, edit the parameters in the .xml file and pack everything again.

– Debugging

To avoid instances where the FMU would not behave as expected, the debugging

logging was switched on. Thus keeping a track of the the internal state of the FMU

during the simulation and the outputs from the FMU after the simulation. Since the

project involved modifying a large number of inputs, multiple times, leaving the debug

logging permanently switched on, slowed down calculations significantly and swamped

the CarMaker log file with unnecessary output. This lead to reaching CarMaker’s

internal log file size limit, thus ignoring further logging. The size limit (about 10 MB)

was chosen intentionally, and is hard-coded into CarMaker and cannot be changed by

the user. [10]

∗ One way to handle excessive logging was to redirect the logging output from the

FMU to an external file. In order to separate FMU debug logging output from reg-

ular CarMaker log messages, the following entry in the project directory’s Data/-

Config/SimParameters file:”FMU.Logging.ToFile = value” was made. The

field containing value could be filled in with binaries. The value 1 indicated the

messages would go to an external log file called ”FMU.log”. The default value was

0, which indicated the messages were stored in the CarMaker log file.

∗ Another way to handle this issue was to suppress all FMU log messages before

a given time in the simulation. This was done by adding the following entry in

the project directory’s Data/Config/SimParameters file:”FMU.Logging.Start

= value”. The field value could be filled in by specifying a global time. This

would indicate the when the FMU logging would start.

∗ Further options were available to deal with this issue where-in the C-code on the

basis of which the FMU was compiled could be editted and thus helping filter the

output being logged. These fixes were really helpful throughout the optimisation

process as the Simulation environment (IPG CarMaker) would not crash due to

excessive warnings or errors or output logs generated from the FMU.
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4.4 Process automation

Following the setup of the vehicle model, test runs and the output quantities, it was evident

that the process involved multiple interactions between software’s. This was necessary to both

modify the inputs as well as initialize the simulations in IPG CarMaker. Thus in-order to keep

the optimization process efficient and robust, the next step was to automate the simulation

process within IPG CarMaker. This was achieved using a combination of the Test Manager

and Script Control features.

4.4.1 Test manager

A test series in the test manager basically consisted of test runs that were executed automati-

cally one after another. The test manager also offered multiple functionalities to optimize the

preparation, execution and analysis these TestRuns. This feature aided the definition of mul-

tiple variants of the same maneuver (on-center, frequency response) by modifying parameters

in the Test Manager interface. All the elements within the defined test series were executed

sequentially from top to bottom. [9]

• Creating the test series

The optimization process involved running multiple simulations for different variants of

different maneuvers. Hence, the first step in process automation within the Test Series

was to create groups pertaining to different variants of the same maneuver. Figure 4.7

shows the definition of a group of on-center maneuvers with multiple variants.
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Figure 4.7: Group in Test Series

This ensured a well structured series of steps with the possibility to define different pa-

rameter settings for different groups. Once a group was created and the desired name was

set, we proceeded to define the vehicle configuration. This included the definition of the

vehicle name, Tyre models used, distribution of loads on the vehicle.

One of the key features which was utilized before the initialization of each maneuver was the

definition of named values,key values and test space variables. These referred to variable

types which could be defined by the user in the test series. These user defined variables

could then be modified before the initialization of a group within the test series. [10]

The named value was thus any editable parameter defined by the user which would take

effect only in a test run simulation. Within the on-center test series, the steering wheel

angle amplitude of vehicle was defined as a named value using the following syntax :

[Type -NValue Name- Amplitude Value- 20]

The key values referred to the variables that could modify info-file keywords. This mainly

applied for settings that did not have an editable parameter field in the CarMaker GUI

(Eg : different tyre models, different vehicle data set).

Test space variables were auxiliary variables that are only known within the test series.

They basically stored and calculate values. Within the test series shown in figure 4.7, the

parameter lateral acceleration was set as a test space variable. This functionality could be

created in the settings blocks of the test manager GUI with the following syntax :
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[Type -TS Name- Lateral acceleration Value- 0.2]

• Calculations, Criterion and Diagrams

An interesting feature within the Test Manager was the option to perform calculations of

characteristic values both online and offline. The values obtained from these calculations,

influenced the outcome of the simulation. To calculate values real-time, ”real time expres-

sions” were used. To define Real time expressions, the syntax RTexpr was used followed

by the definition of a new quantity whose name was identical to the previously specified

identifier of the characteristic value. [10]

Real-time expressions were implemented in a few places during the setup and automation

of the simulation environment :

1. The first instance of real time expressions being used was the definition of test runs.

In the maneuver dialog box of the CarMaker GUI, real time expressions were used to

define the initialization and termination condition of the Test Runs.

2. Another instance was when real time expressions served as trigger for mini-maneuver

commands. Once the defined condition was satisfied, the mini-maneuver command

was executed.An example of the same was ”[Car.v=0.0] Log “Maneuver fin-

ished!”, where the following syntax was entered in the mini-maneuver commands

dialog box.

3. The final instance where real time expressions were used was in the offline calculation

of parameters, via script control commands. Here the values were calculated on the

basis of a user defined function after the simulation was completed by analyzing stored

result data. The path to the script file containing the functions was pre-defined before

the definition of the characteristic values.The scripting which was based on the TCL

command language and will be discussed further in detail in the coming section.

Features such as definition of criterion and plotting figures though available, were not

utilized as the post-processing of data took place in a separate environment, independent

of IPG CarMaker. Furthermore the use of these features for analysis or cross-referencing,

would defeat the purpose of automating the process within the simulation environment .

• Global and local settings

The settings option on the Test Series GUI gave the possibility to define configurations

applicable to more than just a single Test Run.The placement of these settings, within
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the Test Series was vital, as they would influence every TestRun, Variation at a lower

level. The Test Manager provided two kinds of settings: Global settings and local Settings

blocks.

The section Global Settings were defined at the start of the test series. The settings

defined here applied to all the groups, test runs and variations present in the test series.

Global Settings contained named values, key values, test space variables and the Script

files. These files contained both real time expressions and script control commands coded

in .tcl language.

Figure 4.8: Global settings

Figure 4.9: Local settings

In stark contrast the local settings block could be added at different stages of the test
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series as seen in figures 4.8 and 4.9. These settings were applicable only to the level they

were placed in. For Instance if the settings were placed at the top level of a group, they

applied to every test run and variation within the group.

In order to define a script file within the settings item, StartProc and EndProc syntax

were necessary as they were indicative of start process and end process in the .tcl language.

In order to deactivate these commands a new settings blocks had to be defined with new

commands which would overwrite the previously defined settings.

• Test runs and variations

Following the definition of the global settings, calculations, script files the last step in

setting up the test manager was the definition of the test runs and their variants.The

test-series defined for the sine with dwell maneuver seen in figure 4.10 required multiple

variants with each variation referring to a different value of steering wheel angle at the

same value of lateral acceleration.

Figure 4.10: Test Runs and Variations

In order to setup the test run, the pre-defined test run which was earlier created and saved

was chosen. Similarly multiple test runs could be chosen to be a part of a group within

the test series. Once the test run was selected, the necessary named values, key values

and test space variables in order to define the variants of the particular maneuver, were

scripted. Thus an entire Test Series was setup pertaining to each of the maneuvers and

their variants that were necessary to extract the Objective Metrics.
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4.4.2 Script control

Script control is a tool which enabled the automation the initiation, modification and execution

of various tasks within IPG CarMaker, using a simple script language (Tcl/Tk).As mentioned

in previous sections variable types such as named values, key values, test space variables and

script files played a vital role in the both setting up the test series and execution of the process

automation. [10]

Within script control all the aforementioned variable types could be defined with specific com-

mands. This included setting new variables within the test space, extracting the values of

these variables at specified instances and the storage of results in specific directories. This was

deemed necessary as the results from the simulation environment were processed independently

in a different software.

Figure 4.11: Script file in Test Manager

From figure 4.11 it could be seen that the script files were strategically placed in the Test Series,

thus ensuring complete process automation of multiple maneuvers with modifications to various

parameters.

• Process flow

As mentioned in previous sections every test run/maneuver required a certain pre-event

to extract the values of Inputs such as the Steering Wheel Angle at specific values of

Lateral acceleration for different vehicle speeds. Thus every script file defined for process

automation followed a specific procedure which is shown in figure 4.12.
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Figure 4.12: Process automation

– Step 1

In order to initialize the pre-event,StartProc command was used followed by the

definition of the name of the event. This ensured CarMaker initialized the event and

stored the result files from the same at the defined location. The EndProc was used

to both terminate the pre-event and initialize the DNA maneuver, the results from

which would be used to obtain the objective metrics.

– Step 2

Once the pre-event was terminated , the next step was the preparation of the results

file from the pre-event and the definition of the test space variables within the script

file. This syntax ensuring all the named Values in the settings block would be prepared

for the desired value of the test space variable. The test space variable in this case was

a particular value lateral acceleration of 0.2 G’s. The real time expression ensured that

CarMaker went through all the values for steering wheel angle for values of Lateral

acceleration lesser than or equal to the specified value.

– Step 3

Following this, the corresponding value of steering wheel angle at the specified value

of lateral acceleration was found. The next step was to replace the named value

Amplitude with the value obtained. The code primarily ensured the previously

defined value for amplitude would be erased. Following which a new test space variable

was created.The value of the new test space variable was obtained from the result files

of the pre-event as mentioned in the previous step.

– Step 4

The script file also included the possibility to generate variations using specific com-

mands. Following the completion of simulations, the result files were stored in a

pre-defined directory, accessible to the post-processing environment ”Sympathy for

Data”.
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5.1 Esteco ModeFrontier

With the simulation environment set up, the next step was to automate the entire procedure for

optimisation. This was carried out using the optimisation software, ModeFrontier by Esteco.

The vehicle maneuvers were iterated in ModeFrontier, and the outputs then optimised. The

flow for this optimisation study is described in further detail in section 5.2.

Though ModeFrontier is a very powerful tool capable of syncing with most software available

in the market, it does not have direct link nodes for either IPG CarMaker or Sympathy for

Data. Hence these links needed to be coded, for which a mixture of Python, TCL/TCP, and

MS DOS functions were utilised. Also, for an effective optimisation routine, it is required that

there should be no user inputs, with a fully automated process. Additional scripting was carried

out in order to make this possible and will be discussed along with the others in the following

sections as well. Another goal for the project was to make the tool as user-friendly as possible,

so it is not a burden for the test engineers to use.

With multiple software interfacing with each other, and various test maneuvers taking place,

each simulation was expected to take a considerable amount of time. And with around 500 to

1000 simulations per optimisation run, this time needed to be kept within check in order to

have feasible optimisation runs. This too has been further discussed in the following sections.
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5.2. PROCESS FLOW Optimization Environment

5.2 Process flow

Figure 5.1: Optimisation Process Flow

The process flow, as shown in figure 5.1, can be broken down into three major components.

Each of the components will be studied in further detail in the coming sections.

1. Setting up the vehicle for a test.

2. Performing the test with the required maneuvers.

3. Extracting the test metrics and optimisation.

The ModeFrontier Flow was modelled to mimic the aforementioned process flow, with three

sections of the flow and blocks in each section working to achieve the desired responses. This

flow is seen in figure 5.2.
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5.3. VEHICLE SETUP Optimization Environment

Figure 5.2: ModeFrontier Process Flow

5.3 Vehicle setup

The first part is setting up the vehicle. The physical components of the vehicle will remain the

same throughout the series of tests. The parameters altered are the ECU parameters of the

steering, and as mentioned earlier, the steering boost curves, the active return, and the active

damping will be dealt with first. The study was undertaken for these three parameters, but the

work shown and results discussed henceforth, will specifically be with respect to the steering

boost curves. The routine can be later mimicked for both the active return and active damping

functions.

In case of the boost curves, there consist 10 input parameters.

• 6 boost curves, each corresponding to a specific speed

• The different vehicle speeds at which the boost curves are defined

• Maximum rack force at each speed

• Maximum rack force possible

• Maximum assistance torque

The parameters other than the 6 boost curves are pre-determined through physical limitations

or calculations, hence it was only the 6 curves which needed to be optimised. However, the

boost curves are vectors consisting of 9 values each, with every value describing a point on the

curve. So the optimisation needed to account for the curve and its properties.
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5.3. VEHICLE SETUP Optimization Environment

The initial approach to this problem was to move each point on the curve, optimising it to

its best value. The curve connecting all the optimised points would be the optimised curve.

However, there were two major problems with this approach.

1. With a total of 54 inputs, the optimisation run would not be effective unless it is evaluated

for a very large number of iterations.

2. If each point is optimised individually, there is a possibility that the final curve will not

be smooth, and this is not a comfortable setting for the driver.

Hence, instead of looking at the curve as a collection of points, it was studied as a single entity.

A function would be constructed to fit all the given points of the curve, and then the coefficients

of the function would be optimised to get the best curve.

The Curve Fitting Toolbox on Matlab was first used to try and generate the function, which

could then be used in optimisation. The Curve Fitting Toolbox generated a second-degree

exponential equation 5.1.

f(x) = 1.987 ∗ e−0.02434.x − 0.5177 ∗ e−2.371.x (5.1)

This function was built into the optimisation problem and a few tests were conducted. However,

it was seen that the function was still too specific and was unable to explore the entire design

space. Minor changes to the coefficients of the function brought about large changes in the

curve and it was not possible to use continuous values to explore the whole space.

The function needed to be simplified, display the trend of the curve and explore the extent of

the design space. From the spread of the points in figure 5.3, it was deduced that a logarithmic

curve as in equation 5.2 would be used. However, a few added constraints were required due

to the nature of the boost curves, specifically,

1. The curve would need to start from the origin.

2. A boost curve for a higher speed requirement needs to have points of higher values than

that for a lower speed requirement

3. The steep rise of a general logarithmic curve needs to be reduced.
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5.3. VEHICLE SETUP Optimization Environment

Figure 5.3: Boost Curves - Initial Values

f(x) = logA(x) (5.2)

With these constraints, the general equation of the boost curve finally used was equation 5.3.

f(x) = A ∗ ln(x + e
B
A )−B (5.3)

A major advantage of this design is that the equation further reduces the number of input

variables to 2 per curve, making it a total of 12 input variables.

In order to verify the curve, to see if it able to explore the entire design space, a Matlab slider

function was created and the curve was checked at various values of A and B.

With the optimisation concept finalized, this was implemented into the ModeFrontier flow. To

do so, 6 vector input variables were created in ModeFrontier. Each of these inputs contained

two variables, defining the values of A and B for the corresponding boost curve. These variables

are altered by the software at every iteration of the optimisation. The upper and lower bounds

of these values were determined from the physical limitations of the rack force and steering

torque. The bounds are as follows,
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A = {0.800, 1.000}

B = {0.000, 6.000}

The boost curve data is stored as an array of points in a .xml file, which has a parent-child

structure as seen in figure 5.4. However, the inputs provided for each simulation from the

optimisation environment are the coefficients of the equation which fit the curve formed by

these points. Hence there is the need for a process to calculate the point data from the given

coefficients of the curve. To do this, a python script is used. The script gathers the following

data in order to compute the array of points for the new simulation.

1. obtains the values of the equation coefficients from ModeFrontier,

2. parses the .xml file to obtain the x-values of the boost curve,

3. obtains the equation type from the user at the start of the optimisation.

Figure 5.4: .xml File Structure

Once the equation is solved, the script uses a find-replace function, parses the XML and replaces

the old configuration with the new one.

5.4 Test runs

The test runs for the various SDNA maneuvers were initially performed in CarMaker for

Simulink, since the Software-in-Loop steering module was modelled on it. Since CarMaker

was to be accessed in Simulink, the easiest way to do so through ModeFrontier was to use a

Matlab script. The cmguicmd commands were used in order to do so. The code for the same

is given below.
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5.5. METRIC EXTRACTION Optimization Environment

CarMaker VSR Env

sim ( ’ CarMaker VSR Env ’ )

cmgiucmd ( ’ LoadTestRun ”C/ Thesis2018 / . . . ” ’ )

cmguicmd ( ’ StartSim ’ , 0)

cmguicmd ( ’ StopSim ’ , 60000)

This was a simple solution, however, it came with a few problems. The main problem was

the slow Simulink interface, which required nearly a minute or two to open the CarMaker

environment. This cost valuable time during the runs, increasing the overall optimisation time

by nearly 12 to 16 hours. Another big disadvantage was licensing. With Matlab having limited

licenses, and with a single computer opening and closing nearly 500 iterations of Matlab in a

day, there were problems at the servers.

Hence this interface needed to be altered, and Python was used instead of Matlab as the

connection between CarMaker and ModeFrontier. The maneuvers were coded in TCL, which

was referred using the Python scripts. And since Python was being used, the steering Simulink

model needed to be replaced with a functional mock-up unit (FMU) which is explained in detail

in the coming section. This process greatly reduced the interaction time between the software,

facilitating faster optimisation runs. In addition to this, multiple instances of CarMaker could

be run on different ports, with Python providing different TCL scripts to each port, allowing

the optimisation environment to run the simulations in parallel. To run CarMaker on different

ports, batch scripts were utilised.

A functional mock-up unit, or FMU, is a tool independent standard to support both model

exchange and co-simulation of dynamic models using a combination of XML-files and compiled

C-code. [11] The Simulink steering model was converted into an FMU, which was then imported

into the Functional Mock-Up Interface of CarMaker, which allows the FMU to be dynamically

linked and co-simulated in the CarMaker environment.

5.5 Metric extraction

With the vehicle test runs carried out, the data was post-processed using Sympathy for Data.

Sympathy was executed using batch scripts, first running the .sydata flow to configure the

CarMaker results, followed by the maneuver flow.

Sympathy for Data is made to be used by engineers who want to look at the characteristics
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5.5. METRIC EXTRACTION Optimization Environment

and performance of the vehicles that were tested or simulated. Hence, it provides documents in

MS Excel and PDFs with graphs and other visual aids to help understand the data. However,

since Sympathy is being used as an element in the optimisation process to extract the values of

the metrics and feed the data back for optimisation, the processes for the generation of these

documents were terminated and instead csv files were generated with metric data. A python

script was then used to extract the data from the csv files and fed back into the ModeFrontier

environment. This was one of the major time savers in the project, cutting down the time of a

single run of Sympathy from about 4 minutes, to under a minute.
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6. Metric Optimisation

6.1 Single-objective optimisation

Single objective optimisation, as the name states, is the optimisation of a single objective

function. Though it seems counter-intuitive to use single objective optimisation for the problem

in hand, we do so to simplify the optimisation process, thus improving the chances of reaching

an optimum value and to do it quickly. The multi-objective problem is converted into a single-

objective optimisation problem by utilizing a cost function. This cost function, which is an

indicator of how much the current model varies from the ideal model, is defined using normalised

values of the outputs and the targets, obtained from the Steering DNA Sheet. The final cost

function used is given in equation 6.1.

costfunction =
1

n

n∑
i=1

abs(ti − yi) (6.1)

where n = Number of parameters,

tn = Normalised Target,

yn = Normalised Output

The final objective of the optimisation is to minimise this cost function, to attain a configuration

as close to that of the ideal vehicle. Also, since the values were normalised to between 0 and

1, the absolute value of the difference was used instead of the squared value, which would have

subdued the large errors instead of amplifying them.

6.2 Design of experiments and sensitivity analysis

With a large number of input parameters in the optimisation problem, the runs were not

effective unless a large number of iterations were run. In order to increase the effectiveness of
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each optimisation run, and reduce the number of redundant parameters, a sensitivity analysis

was planned. A sensitivity analysis is used to detect the most influential parameters in the

optimisation by studying both the individual effects that the parameter has to the results, as

well as the interaction effects between multiple parameters.

In order to obtain a sensitivity analysis, a Design of Experiments was set up. The Uniform

Latin Hypercube Method was used to generate the DOE table and the sensitivity analysis was

then carried out in ModeFrontier. On studying the results of the sensitivity analysis, which

can be seen in figure 6.1, it is observed that the basic steering torque curves V4 and V5 are the

ones which have the highest influence on the results. Hence the consequent optimisation runs

are carried out using these parameters only.

Figure 6.1: Sensitivity Analysis
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7. Results

The in-built post-processing capabilities of ModeFrontier are utilised to visualise the data and

draw conclusions. Data for both Simplex and MOGA are plotted and studied. First, a history

plot for the error in the cost function is studied as can be seen in figure 7.1 and figure 7.2.

The minimum error in the Simplex run was found to be 0.682 and the minimum error in the

MOGA-II run was found to be 0.779.

Since the optimization routine was being studied and validated, they were performed on an

older version of the steering system. By doing so, there was access to a vehicle tuned version

of the steering system which could be the basis to compare the results with. In the coming

figures, the value obtained by the optimization routine is denoted by the red curve and the

pre-tuned value is denoted by the blue curve. The red curve, which shows the optimal value as

obtained by ModedFrontier, initially starts as a flat line with y=0, and slowly builds up as the

optimization progresses.

Figure 7.1: History Plot - Cost Function (Simplex)
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Results

Figure 7.2: History Plot - Cost Function (MOGA-II)

(a) Simplex (b) MOGA-II

Figure 7.3: Optimised Basic Steering Torque V4

The optimisation was first run at country road speeds (V4), using both algorithms, as can be

seen in figure 7.3. It was then run at highway speeds (V5), as can be seen in figure 7.4.
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(a) Simplex (b) MOGA-II

Figure 7.4: Optimised Basic Steering Torque V5

The results are finally plotted onto the steering DNA sheet as shown in figure 7.5, and the 8

steering metrics are studied.

(a) Simplex (b) MOGA-II

Figure 7.5: Steering DNA
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8. Conclusion

8.1 Main Findings

In both the optimisation runs, as seen in the history plots in figures 7.1 and 7.2, we can see

spikes in the error, where the optimiser has attempted to mutate the data. Mutation is required

to avoid being stagnant at a local optimum, however is not done too often as that causes the

optimiser to randomly guess which can cause it to run for longer periods of time.

One observation, in particular, is that both algorithms achieve their design with minimum

error within the first 300 iterations, making the next 200 iterations inconsequential. With one

optimisation run lasting between 36 to 48 hours, there is a lot of potential with respect to

time-saving if the optimisation can be terminated more efficiently. With both optimisation

algorithms producing similar values of the cost function, there is not much to choose between

them in this respect.

Moving onto the basic steering torque curves, in the figure 7.3a, which is the Simplex opti-

mization of the basic steering torque, the curve is observed to slightly overestimate the steering

torque in the on-centre region and slightly underestimate it in the off-centre region. However,

it does follow it relatively close and should provide a similar driving feel as the pre-tuned value.

In the figure 7.3b, which is the Genetic Algorithm optimization for the same, both the opti-

mised and pre-tuned curves are near identical in the on-centre region. However, the MOGA

optimization grossly underestimates the off-centre portion of the basic steering torque. This

would lead to good inputs with smooth driving but would not provide enough torque feedback

to the driver in cases of sudden or jerky inputs.

Similar trends are seen in figure 7.4, which is the optimised basic steering torque curve when

the car is travelling at highway speeds. With the Simplex optimisation, shown in figure 7.4a,

the on-centre performance is better, with the curve not overestimating the steering torque by

a large margin. Though, the off-centre performance is relatively poor as compared to the lower

speed optimisation. This trend is observed in the Genetic Algorithm optimisation too, as seen
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in figure 7.4b. The off-centre performance is poor and the final point in the curve is being

underestimated.

On observing the generated DNA sheet, it is found to be very reasonable, with a major deviation

primarily in the values of friction feel, and minor deviations in the cornering metrics.

The poor off-centre performance was something to consider, and a few reasons for this are

discussed.

• The number of off-centre metrics used in the optimisation are much lower than the number

of on-centre metrics. This could be countered by appropriately weighing the off-centre

metric, giving it higher influence during the optimisation routine, causing it to better

optimise the points.

• Achieving the peak force values during most tests is very difficult and in some cases

nearly impossible with the given tests. The one test which comes close to achieving the

maximum value is the Parking Effort Test. However, this test was not performed during

the optimisation routine due to certain aforementioned problems, and hence that portion

of the curve was not properly optimised. The maximum defined rack force is 12500 N,

however, the maximum achieved by the logger during the tests performed was just shy of

8500 N.

• The biggest problem with the optimisation was the final point in the basic steering torque

curves, which denote the maximum rack force. However, the test engineers at the track

also do not optimise this final point and instead use the predefined value sent by the

steering ECU manufacturer. The optimisation routine could be tuned in a similar way, to

keep this point constant while optimising for the rest. This would improve the off-centre

performance considerably.

8.2 Subjective Evaluation

A test driver at Volvo helped out with testing the optimised function on track and providing

feedback on the behaviour of the vehicle, and the comments given were recorded and sum-

marised.

The curves obtained from optimisation using the Simplex algorithm were used for the testing.

Since the on-centre behaviour was adequate using both methods, the decision was taken with
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respect to the off-centre characteristics. With a high off-centre deviation from the pre-tuned

car, the MOGA optimised curves would result in minimal feedback from the steering at high

speeds when a significantly rapid input is provided. This could make it unsafe for the driver

and hence the Simplex values were used.

During testing on the High Speed Oval, the primary comment from the test driver was that the

steering felt good at low speeds, but light at high speeds. This was an expected outcome since

the V4 BST curve (at 80 kmph) gave a lower error with the pre-tuned curve, as compared to

the V5 BST curve (at 120 kmph). Another recurring comment, which was primarily felt at the

High Speed Handling Track, was that the steering felt light off-centre but had good on-centre

characteristics. Again, this was an expected result, with the reasons for why the optimisation

was unable to predict off-centre characteristics, discussed previously.

The final conclusion from the test was that the optimisation routine was a very good and quick

method to achieve the baseline values for a pre-series car, but final manual tuning and testing

would be required before the car is ready for production.
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