
IT 18 063

Examensarbete 30 hp
November 2018

Dancing with Theremins

Rahmanu Hermawan

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Dancing with Theremins

Rahmanu Hermawan

This project is building a wireless sensor network for a room-scale Theremin
instrument using ZigBee protocol. The Theremin is an instrument that is played
entirely without touching it. The instrument based on electromagnetic fields, which
are being "disturbed" by the limbs of the player. Theremin has two antennas, vertical
antenna for controlling the pitch and horizontal antenna to control the volume.
Unfortunately, the playing of Theremin is limited to the area around the antenna.

This case, however, also means that it will be necessary to redesign the theremin in
some aspects. We will try out a couple of ultrasound sensors, which will be used to
detect the movements of the player’s bodies. We also utilised those ultrasound
sensors along with microcontroller, FreeRTOS, and ZigBee devices to create a
wireless sensor network.

In the end, after did some evaluations and concluded that to replace the
electromagnetic field, we can use the ultrasound sensors. Besides, ultrasound sensors
have a decent accuracy to measure an object distance. Our room-scale Theremin (we
call it Thereminz) make music using MIDI by converting the detected distance into
MIDI note. We configured Thereminz to create MIDI note-on, note-off, and pitch
bend to particular movements.

Tryckt av: Reprocentralen ITC
IT 18 063
Examinator: Justin Pearson
Ämnesgranskare: Pontus Ekberg
Handledare: Lars Oestreicher

Contents

1 Introduction . 9
1.1 Background . 9
1.2 Research question . 10
1.3 Delimitation . 10
1.4 Thereminz overview . 10

1.4.1 Ultrasound sensor . 11
1.4.2 Microcontroller . 13
1.4.3 FreeRTOS . 13
1.4.4 ZigBee . 14
1.4.5 MIDI . 17

1.5 Structure of the report . 18

2 Literature Study . 20

3 The Antennas . 23
3.1 Distance Antenna . 23

3.1.1 Hardware . 23
3.1.2 Software . 26

3.2 Acceleration Antenna . 31
3.2.1 Hardware . 31
3.2.2 Software . 31

4 Base Station . 34
4.1 Hardware . 34
4.2 Software . 34

5 Evaluation and Result . 42

6 Conclusion and Future Work . 50

References . 51

Appendices . 53

List of Figures

Figure 1.1:Diagram of the whole “Dancing with Theremins” system 11
Figure 1.2:HC-SR04 ultrasound sensor has a transmitter (T) and a receiver
(R) [3] . 13
Figure 1.3:The timing diagram of serial data in serial communication [12] 17
Figure 1.4:The structure of note-on message in MIDI [12] . 18
Figure 1.5:MIDI note value and the corresponding note [11]. Numbers in
the first row show the octave . 19
Figure 3.1:Schematic diagram of an antenna in the system . 24
Figure 3.2:The implementation of distance antenna . 25
Figure 3.3:A distance antenna with the box case . 25
Figure 3.4:The final version of the distance antenna . 26
Figure 3.5:RTOS tasks design inside the antenna software . 27
Figure 3.6:Schematic diagram of the acceleration antenna . 32
Figure 4.1:Schematic diagram of base station . 35
Figure 4.2:Final form of base station . 35
Figure 4.3:RTOS task design inside the base station software . 36
Figure 4.4:Plot of ideal distance to MIDI note in the Theremins between
50cm and 400cm . 40
Figure 5.1:Configuration set up of third round of distance accuracy
measurement . 42
Figure 5.2:Scenario 1: placing each antenna on each corner of the area 46
Figure 5.3:Scenario 2: placing all of the antenna in the center of the area . . 46

1. Introduction

1.1 Background
The Theremin is an instrument that is played entirely without touching it [13],
which makes it an almost magic device. It has been intriguing people with its
sound and way of playing since it was invented in 1914 by Leon Theremin.
The instrument based on electromagnetic fields, which are being "disturbed"
by the limbs of the player. Because of electromagnetic usage, unfortunately
also means that the areas reach a limited space around the antenna. Making a
super-theremin is not just a case of making it bigger and with a more powerful
electromagnetic field.

Theremin, as mentioned, is played without touching or even handling the
instrument physically. Division of Visual Information and Interaction in Up-
psala University, under The MUMIN project, has utilised Theremin to help
children with weak muscles to play music even without full control over the
arms. On the downside, the original theremin is very difficult to play in a tuned
fashion due to its sensitivity. Also, a minimal movement such as finger move-
ment will change the pitch. There is currently a new version of the Theremin,
called a Theremini. It has some features such as pitch control, which allows
the Theremini’s player to play a perfect pitch. Some people think this is a clear
example of cheating the original idea, but it does play a significant role in the
MUMIN-project.

This thesis project will pick some of the best parts of the Theremin(i) and
modify it to produce an instrument that will extend it into a choreographic
multi-user instrument. The idea is to develop a "dance floor" where the music
is created interactively by the “dancers” through the dance. We called our
developed Theremin as Thereminz.

Under MUMIN-project, this project is helping children with weak muscles
to play music with minimal movement. Room-Theremin is one solution to
help them. For illustration, a child on a wheelchair will be able to play mu-
sic by moving forward or backwards while facing one of Thereminz’ antenna.
The Thereminz, hopefully, can also help a dance community to create an aes-
thetic dance work using Thereminz in the future.

This case, however, also means that it will be necessary to redesign the
theremin in some aspects. The electromagnetic field does not have the required
reach for the setup. Instead, it will be tried out a couple of ultrasound sensors,
which will be used to detect the movements of the bodies. This means that
the function will be slightly different from the original theremin, but has the

9

advantage that is possible to get better control over the generated music. In
the end, we hope Thereminz can be a digital musical instrument alternative
for everyone.

1.2 Research question
As a preliminary study, there are some research questions which can be an-
swered at the end of this project. The questions are:

1. What is the possibility of building a room-Theremin?
2. Can ultrasound sensors be used to build a room-Theremin?
3. How is the room-Theremin’s performance compared with the original

Theremin?

1.3 Delimitation
We state some limitations of this project. This work will focus on building the
hardware and software implementation for the Thereminz and also do some
testings. As we only do “proof of concept” research, we will not do optimisa-
tion on the system. The user interface in the computer which is a customised
synthesiser, will not be covered by this work. Hence, in this project, we used
an available open source synthesiser to generate the music.

In the hardware part, we used microcontrollers, wireless communication
modules, and ultrasound sensors to detect the movement. We also developed
the software in Arduino C-language under FreeRTOS environment. We test
our system with some methods. They are distance measurement accuracy,
distance to musical-expression capability, and comparing the Thereminz and
Theremin performance. Some feedback from testing parts will be used for the
future development of the system.

1.4 Thereminz overview
As mentioned earlier, to make a dance-floor, a room-scale theremin is needed.
In this project, we call the room-scale theremin as Thereminz. Four of an-
tennae built a Thereminz system which detects the distance and movement of
the participants. An additional antenna which detects the acceleration is also
utilised to produce drum sounds. All of the antennas send the message to the
base station. In the base station, the microcontroller translates the distance-
message into MIDI message to the computer. A synthesiser in the computer
synthesises MIDI messages to some interesting sounds.

Figure 1.1 illustrates an overview of the Thereminz. Generally, the Therem-
inz is a wireless sensor network with the star topology. Each node (K, L, M, N,

10

Figure 1.1. Diagram of the whole “Dancing with Theremins” system

and ACC) communicates via radio frequency with the base station (BS) using
ZigBee protocol. Inside a node, there are three main hardware components: a
microcontroller, ultrasound sensors, and an XBee router. Via a power supply
circuit, a 9V battery powers all of them. In this project, we call these nodes
antennas.

The base station consists of two main hardware components: an Arduino
Uno board and an XBee coordinator. The base station is connected to a PC
via USB to produce sound. A synthesiser does the sound production in the PC
through the speakers.

Each antenna (except the acceleration antenna ACC) in the Thereminz utilises
ultrasound sensors to replace the electromagnetic field of the original Theremin.
Many people cannot perform the original Theremin because of the interfer-
ence explained by Martin et al. [9]. They explain that a thereminist, theremin
player, usually gets interference by another player when performing in a stage
or small room. On the other hand, Thereminz encourages people to play to-
gether.

In term of detection range, compared to original Theremin, Thereminz has
more extended detection range. Thereminz can detect a movement up to four
meters. By using the potentiometer on each antenna, the user can variate the
detection range regarding the room size. The following subsections (ultra-
sound sensor, FreeRTOS, microcontroller, ZigBee, MIDI) will discuss the re-
spective main components.

1.4.1 Ultrasound sensor
An ultrasound sensor is a sensor which utilises ultrasonic wave to detect an
object. It works in ways similar to radar and other sensors which is utilising
Doppler theory. In an ultrasound sensor, two transducers transmit and receives

11

the ultrasound wave. Once the ultrasound wave is transmitted, it will hit an ob-
ject and reflects toward the receiving transducer which converts the ultrasound
wave into an electrical signal. Hence, the distance between the object and sen-
sor can be evaluated using Equation 1.1. Where d is the distance, v is speed
of sound and t is traveling time duration of ultrasound wave from transmitting
transducer to receiving transducer [18].

d =
v∗ t

2
(1.1)

In this project, 16 HC-SR04 ultrasound sensors are used to detect the dis-
tance. The specifications of HC-SR04 are listed below [21].

• Power supply: +5 VDC
• Working current: 15 mA
• Ranging distance: 2 - 400 cm
• Resolution 0.3 cm
• Measuring angle: 30 degree
• Trigger input pulse width: 10 uS
• Dimension: 45mm x 20mm x 15mm
• Weight: approx. 10g

Figure 1.2 shows the HC-SR04 ultrasound sensor. This sensor has four pins,
VCC, GND, TRIG, and ECHO. All of them have a different function. VCC
and GND are for power connection. They need to be connected to +5 VDC
and ground respectively. TRIG pin is responsible for sending the ultrasound
wave. This pin should be connected to a digital pin in microcontroller and set
to HIGH for 10uS. At this point, TRIG pin will send eight cycles of ultrasonic
burst at 40 KHz. After the ultrasound wave hits an object, it will be reflected
and received by ECHO pin. Using this pin, we can do distance measurement
[21].

To calculate the distance to the object, the duration of ECHO pin stays
HIGH can be tracked. The ultrasound burst travelling time is the time ECHO
pin stays HIGH. Using Equation 1.1, where v = 343m/s (in standard temper-
ature and pressure), the distance can be calculated.

The expected delay, which is the maximum travelling time, for the mea-
surement if the sensor gets maximum distance will be explained as follows.
Let us assume the sensor hits an object in 400 cm. Therefore, the travelling
time is

t =
d

v∗2
=

0.4
343∗2

= 2.33ms (1.2)

Because of the longest travelling time is 2.33 ms, the measurement delay
must not faster than 2.33 ms otherwise the calculation will be incorrect.

12

Figure 1.2. HC-SR04 ultrasound sensor has a transmitter (T) and a receiver (R) [3]

1.4.2 Microcontroller
The microcontroller as the central processing unit controls everything from
blinking LEDs until wireless communication through the ZigBee network.
Generally, any microcontroller is suitable for this project as long as it can
cover all of the needs such as digital pins, analogue pins, serial communica-
tion hardware, and other peripherals. In this project, we use ATMega328P.

ATMega328P is one of 8-bit AVR microcontroller produced by Atmel. It
is one of RISC-based which has 32 kB flash memory, one kB EEPROM, 2kB
SRAM, 23 GPIO, three timers with compare modes, interrupt pins, SPI serial
port, serial programmable USART, and 6-channel 10-bit ADC [4].

Because of its popularity, there are many references about it. Some of them
are Instructable.com and hackster.io, both of them may DIY-project which use
a microcontroller like ATMega328P or ATMega168 as the main component.
The most popular microcontroller development board, Arduino, also uses AT-
Mega328P on their Arduino Uno product.

A project which uses an ATMega328P or any microcontroller is replicable
and reproducible. Once the schematic and the program is well documented,
the project can easily be replicated by other interested people. Arduino is an
open source hardware device which is well maintained and documented by
the company. Also, Arduino publishes their complete schematic and provides
a special IDE to program the microcontroller. Because of well documented,
there is much Arduino-like board produced by some small companies and even
for private usage.

1.4.3 FreeRTOS
FreeRTOS is a professional-grade embedded real-time operating system (RTOS)
that is free to use and open source [8]. Real Time Engineers Ltd is the devel-
oper, maintainer, and owner of FreeRTOS. This RTOS is suitable for embed-
ded systems using a small microprocessor or microcontroller like ATMega328P.
In addition, it has compatibility with a large variety of microcontrollers or mi-
croprocessor.

13

FreeRTOS support both soft and hard real-time applications. Soft real-time
system requirements are the system which states a time deadline, but breaking
the deadline will not make the system fail. For example is the sound system in
a computer or a blinking LED in a portable MP3 player. If the system misses
some deadlines, the system still works fine. [10]

On the other hand, hard real-time system requirements are the systems
which state a time deadline, and it must not miss the deadline. Once one
deadline is missed, the system probably will behave abnormally. For example
is the airbag system in a car. If the airbag is not active at the right time, the
driver and perhaps the passenger will eventually have a severe injury. [10]

FreeRTOS organises the application as a collection of independent threads
of execution. Because most of the microcontroller or small microprocessor has
only one core, only one thread can be executed by the processor at one time.
In FreeRTOS, a thread is called as a task. The kernel decides the thread/task
execution by examining the assigned priority of a task. However the tasks can
have some different priorities, the priority assignment is not easy. For exam-
ple, if the tasks contain a mix of hard and soft real-time system requirements.
[10]

As one of real-time kernel scheduler, FreeRTOS also offers some bene-
fits [2]. They are modularity, maintainability, easier testing, code reuse, im-
proved efficiency, idle time, power management, flexible interrupt handling,
and mixed processing requirements.

1.4.4 ZigBee
ZigBee is a protocol that leverages IEEE 802.15.4 protocol. IEEE 802.15.4 is
a technical standard which specify the low-rate wireless personal area network
(LR-WPAN). It defines the physical layer (PHY) and media access control
(MAC) for LR-WPAN.

The IEEE 802.15.4 physical layer has a responsibility to manage data trans-
mission and reception using a certain radio channel. There are three opera-
tional frequency bands under IEEE 802.15.4 standard, 2.4 GHz, 915 MHz,
and 868 MHz. There are 16 channels between 2.4 and 2.4835 GHz, ten chan-
nels between 906 and 928 MHz, and one channel between 868 and 868.6 MHz
[27].

The IEEE 802.15.4 physical layer is responsible of the following tasks [27].
• Selection of channel frequency.
• Clear channel assessment.
• Radio transceiver activation and deactivation.
• Energy detection.
• Link quality indication (LQI)

14

There are two operational modes in IEEE 802.15.4 medium access con-
trol, non-beacon-enabled and beacon-enabled mode. In a non-beacon-enabled
mode, there are no beacon or superframes. An unspotted carrier sense multiple
access with collision avoidance (CSMA/CA) mechanism rules the medium ac-
cess. On the other hand, in beacon-enabled mode, medium access is ruled by
slotted CSMA/CA. In addition, beacon-enabled mode also enables guaranteed
time slots (GTS) for nodes that are requiring guaranteed bandwidth.

As mentioned earlier, IEEE 802.15.4 is the basis of ZigBee. According to
[15], there are two identifications of ZigBee, FFD (Full Function Device) and
RFD (Reduced Function Device). An FFD device is usually powered by AC
electricity thus it can always actively listening on the network. On the other
hand, an RFD device is usually powered by battery or other portable power
sources. Thus it makes an RFD device only capable of doing limited tasks
because it is not listening to all the time.

ZigBee adopts the IEEE 802.15.4 both FFD and RFD concepts and creates
three ZigBee protocol devices. They are ZigBee coordinator which is repre-
sented as an FFD device, ZigBee router which is represented as an FFD device,
and ZigBee end device which is represented by an FFD and RFD device. [15]

ZigBee coordinator is acting as the sink or the server of the network. It
coordinates the other nodes who join the network. It also routes messages
between nodes in the network. ZigBee router is acting the routing device in
the network. If needed, It can expand the network range and also manage if
more nodes want to join the network. ZigBee end device is acting as the sensor
interface or executes control function. [15]

In term of network topologies, three common ZigBee networks can be set
up as the star, cluster tree, and mesh. Figure 3.3 shows the network topologies.
First is the star network. This network configuration involves a ZigBee coor-
dinator and some routers or end devices. A star network the simplest network
topology which can be created using ZigBee. This project is implementing
star network topology

Second is the cluster tree network. This network configuration involves
ZigBee coordinator, ZigBee router, and ZigBee end device. This network
topology is a little bit more complicated than the star network. It allows Zig-
Bee routers act as the guard that allows ZigBee device to join the network via
it. Each ZigBee end device cannot communicate directly without ZigBee co-
ordinator or ZigBee router. It is possible to create a cluster tree topology by
connected some star networks.

Third is the mesh network topology. It is the most complex network because
it allows multi-hop communication between the nodes and also between nodes
and sink.. In addition, a ZigBee end device may communicate directly with
each other as long as it set up to be FFD device.

Concerning configuration mode, ZigBee has two modes. They are trans-
parent mode (AT) and Application Programming Interface (API) mode. In
transparent mode, a ZigBee coordinator and ZigBee router can communicate

15

directly without encryption. The router receives the information accurately as
it transmitted. In addition, this mode is designed for more human interaction.
That is why AT mode is not using any encryption. [16]

On the other hand, the API mode is not human-friendly. The researcher
designs it so the nodes in the network can communicate with each other ef-
ficiently [16].However, when API mode is used in the application, we as a
human need to decrypt the whole received message to get the exact transmit-
ted message.

ZigBee is not a device
The bottom-line about ZigBee, ZigBee is not a device. ZigBee can be im-
plemented manually on to a project which uses a microcontroller or any mi-
croprocessor [23]. However, to simplify ZigBee implementation, XBee can
be utilised. XBee is one of wireless communication device which has Zig-
Bee stack specification. It is developed by DIGI [1]. There also some xbee
libraries which can be used to simplify the implementation.

XBee is a ZigBee device
In this project, we used XBee-pro series 2 which has the specification as fol-
lows:

• Long range data transmission, up to 60m
• Transmission power of 10mW
• Source and destination addressing
• Unicast and broadcast communications
• Low power. TX and RX peak current in is 250 mA and 55mA respec-

tively.
• 3.3 VDC operational voltage.
• Supports AT and API mode
• Comes with free X-CTU software which can be used to configure XBee.

The datasheet of XBee Pro Series 2 gives information that XBee has band-
width 31 250 Byte per second. Therefore we can expect that in one second,
the maximum data which can be sent is 31.250 kB. Because each antenna in
Thereminz sends 1 Byte distance data to base station, we can assume that the
1 Byte data can be sent in 32 microsecond.

There is also a scanning mechanism in XBee which scans all of the in-
volved nodes in the network at first initialisation. As a default, the duration of
the scanning time is 2.95 seconds. When a collision happens, the exponential
algorithm will perform a random time delay to retransmit the data. The dura-
tion of the random time is between 15.36 ms and 251.65824 seconds at 250
kb/s. Let us assume that when the collision happens, the random time is 15.36
ms. Adding the sending time 32 microseconds and random time 15.36 ms, we
can expect that the duration of transmitting one-music-package is 15.392 ms.

16

Figure 1.3. The timing diagram of serial data in serial communication [12]

1.4.5 MIDI
Musical Instrument Digital interface or widely called as MIDI is an interface
which can standardise any electronic synthesiser that had been developed by
some manufacturers [5]. Based on [12], MIDI is not only for controlling mu-
sical notes but also capable of controlling some lighting effects or other con-
ventional musical applications.

In technical terms, MIDI uses an asynchronous serial interface to commu-
nicate with the computer with the speed of communication of 31 250 symbols
per second. The rate seems very odd. However, the Universal Asynchronous
Receiver Transmitter (UART) chip need a clock oscillator that is 16 times the
required speed. Then for the solution, in the old days, the engineer used 1
MHz crystal to build into an oscillator because it was easy and cheap [14].

The following example is explaining why 16 times required speed be needed.
By using one 1 MHz crystal feed into two circuits and then a UART, we will
automatically get 31 250 KHz. Let us assume each branch oscillates in 500
000 KHz. Then by divide it in 16 we can easily get a oscillator which oscillates
in frequency of 31 250 KHz. [14].

The asynchronous serial data is the data which is sent one bit at a time.
There are many variations of it. However, the data has a start bit as the start
signal, data bits, and end bit as the stop signal [14]. Therefore, in the serial
communication, the computer will acknowledge the data by captured it after
the start bit is acknowledged. An example of serial communication in daily
life is entering a letter to the computer from the keyboard. Figure 1.3 shows
how does serial data behave.

Concerning MIDI message, it is closely related to serial communication.
MIDI communication is built on serial communication. Some common MIDI
messages are note-on, note-off, control change, and some many more mes-
sages. In this project, we use note-on, note-off, and control change.

Each MIDI message affiliates with a MIDI channel. There are 16 channels
from 0 to 15 which can be used in MIDI communication [14]. In a MIDI

17

Figure 1.4. The structure of note-on message in MIDI [12]

channel, the user can send some MIDI messages such as note on, note off,
and a control change sequentially. There is no limitation of how many MIDI
messages can be sent, but there is a limit of how many messages can be sent
per second due to communication speed limitation.

Moving on now to consider how does the MIDI message work. We take
an example of the note-on message. Figure 1.4 shows the structure of the
note-on message. Entirely, there are 3 bytes in the note-on message. The first
byte specifies the command, the second byte specifies the note, and the third
byte specifies the velocity. The first byte (command byte) embeds the channel
information. A value between 0 to 127 must be passed on the second and third
byte to play a specific note. Those values are representing 11 note octaves and
the velocity respectively. Also, most of “standard” velocity value is set to 100.
Figure 1.5 shows the correlation between MIDI value and note.

1.5 Structure of the report
This report is structured as follows. Chapter 2 will provide some of the related
works. Chapter 3 will discuss the design of antennas’ hardware and software.
Chapter 4 will discuss the design of the base station’s hardware and software.
All of the works will be evaluated in Chapter 5. In the end, Chapter 6 will
discuss the conclusion of the work.

18

Figure 1.5. MIDI note value and the corresponding note [11]. Numbers in the first
row show the octave

19

2. Literature Study

During pre-study, we investigated some references which relate to MIDI, FreeR-
TOS, the ultrasound sensor, and wireless sensor network using ZigBee. How-
ever, almost none of them (MIDI, FreeRTOS, ultrasound sensors, and Zig-
Bee) are implemented together in the previous researches. This project will
pick some parts of the related works to gain some insights on how should we
implement the Thereminz.

MIDI
Liu et al. [20] digitalised the original Theremin by using Arduino and MAX/MSP.
They modified the original Theremin to be a quad-theremin which is a Theremin
that has four antennas. The Arduino is programmed using Processing lan-
guage. Their work concludes that comparing with the original Theremin,
playing quad-theremin is easier. They also claimed that the quad-theremin
is more interactive because it can follow any scenarios which are planned on
MAX/MSP.

They used term “digital Theremin” because they add a frequency-to-voltage
converter LM2970 and feed it to the analogue-digital converter (ADC) in Ar-
duino to generate MIDI message. Through MAX/MSP they defined specific
functions to each antenna. The first one controls volume and velocity. The
second one controls PGM and timbre during the performance. The third one
controls the tremolo effect. The last one controls selection between usual way
or reverse way of playing [20].

The main similarity between [20] and this project is we are sending MIDI
message from Arduino to PC. However, on the other hand, Liu et al. still
used the electromagnetic field as their note source since they digitalised four
original Theremins into one digital Theremin. In our project, we replaced the
electromagnetic field by ultrasound sensor.

Since Liu et al. used original Theremin, it is may still be challenging to
play it properly due to sensitiveness. However, the quad-theremin has more
MIDI controller because they configure each antenna to different functions.
Our project hopefully will have more comfortable playability because we have
less sensitivity than original Theremin.

In 2015, Guarnizo and Rios were developing a portable electronic percus-
sion using some accelerometer sensors [17]. The accelerometer sensors acted
as a movement sensor. By capturing the body movement of the user, the
captured-movement was translated into MIDI message to produce the mu-
sic. An eigenfilter identification algorithm was implemented to filter the raw
movement data from the accelerometer sensor.

20

To avoid noise addition during a performance, they placed the sensor care-
fully inside a 3D-printed custom drumstick. The accelerometer sensor output
is fed to ADC in a microcontroller.

Since they want to produce different sounds by some different stroke dy-
namics (piano, mezzo forte, and forte), they do filtering and processing of raw
data from the sensors. Then, Eigenfilters is chosen. Eigenfilters enhance the
signal segments that are meant to produce a sound response.

Eigenfilter is one of a statistical-type optimum filter. It is designed to max-
imise an input’s Signal to Noise Ratio (SNR). Eigenfilter can estimate the
waveform of the noise-free signal by maximising the highest component of a
signal with added noise. When the system determines what sound response
must be produced, it communicates with a portable device using the MIDI
protocol.

The similarity between [17] and this project is accelerometer utilisation to
detect a specific movement. However, in this project, we only take raw data
from accelerometer sensors and filter it with a simple filter to determine a
sound response.

Setiyono et al. implemented an infrared guitar instrument in 2012 [25].
Their guitar does not have strings to play the musical notes and chords. Pairs
of infrared and photodiode sensors replaced the guitar strings. The user can
easily block the infrared rays which are continuously received by the photodi-
ode to play a note. The blocking signal will be processed by a microcontroller
and translated to MIDI message. They claimed that their infrared guitar is
more comfortable to be played than a conventional guitar. It is because the
user can perform a chord effortlessly by using only one finger. Moreover, the
player’s fingertip will not hurt when playing the infrared guitar.

From [25], there is a similarity with this project. We both use a microcon-
troller to generate MIDI message to the computer. However, the infrared guitar
has full MIDI tone span and can generate chord. To generate a chord, we need
to play three different note at the same time. Unfortunately, Thereminz does
not accommodate it.

FreeRTOS and ZigBee
Amine and Mohamed implemented both FreeRTOS and ZigBee to built their
wireless sensor network which is reported in [7]. Their wireless sensor net-
work is proposed to increase the safety in a risky area by locating the person
and verify if the person has applied all of the safety standard procedures or not.
The wireless sensor network itself is a system built of Arduino, FreeRTOS, and
ZigBee protocol. They use six FreeRTOS tasks: Task 1 (RSSI Measurement);
Task 2 (Measurement of acceleration); Task 3 (Gyroscope); Task 4 (Mobility);
Task 5 (Communication); Task 6 (RFID reader). Task 5 (communication) has
the higher priority among them. Unfortunately, in their report, they do not
specify the ZigBee and FreeRTOS software. The result is their system able to
protect the person in the workspace with limited accuracy.

21

In 2015, Patil and Patil implemented a real-time monitoring system in a
wireless sensor network by using FreeRTOS and ZigBee [22]. FreeRTOS
is running on an ATMega128A, which connects to other devices, such as
ZigBee-device, sensors, and power source. In term of the FreeRTOS task,
they implemented four tasks: IdleTask, SensorTask (priority 3), SerialTask
(priority 1), and AlarmTask (priority 2). The semaphore is also implemented
for task synchronisation. The scheduler will suspend and then call Idle Task
when all of the tasks finish their task. A web-based application is also de-
veloped to acquire the data. The result of their implementation, their system
works well and can be implemented where real-time response is needed.

Ultrasound sensor
In the animal world, there are some animals which using ultrasound wave to
navigate their activity. One of them is bat. Bat navigation system is known as
a very decent bio-sonar system. Some researchers even studied bat navigation
system to develop vehicles with automatic obstacle avoidance [29].

Yamada et al. were using three adult Japanese horseshoe bats (Rhinolo-
phus ferrumequinum nippon) in their experiment. The bats are observed in a
controlled environment which has obstacles made of plastic chains that were
attached to the ceiling of the room. Those bats were forced to fly in S-shaped
without hitting the obstacles. Echolocation sounds emitted by the bats were
recorded using custom telemetry microphone which is attached to the back of
the bats. They also arranged a microphone array in the room to measure the
horizontal pulse direction. By fitting the sound pressure levels vectors of each
microphone in the array to a Gaussian function, then the pulse direction can
be determined [29].

After extract the information from the bat’s experiment, they developed an
algorithm implemented to an experimental vehicle. After doing 100 obstacle-
avoidance trials, the total success rates were 13% for the conventional system
and 73% for double-pulse scanning (DPS) algorithm.

In Indonesia, Atmaja et al. [8] designed a parking guidance system (PGS)
for UBINUS Anggrek Campus’ parking. They built the PGS using ultra-
sound sensors (HC-SR04), a real-time operating system (FreeRTOS), micro-
controller PIC32, and RS485 communication protocol.

Their system successfully helps drivers to find an available parking slot in
the parking area inside UBINUS Anggrek Campus. While utilising RTOS and
three ultrasound sensors, they can prevent the interference that might occur by
placing each sensor in 2 m distance. They claim that the PGS can measure the
distance of 10 - 280 cm.

According to [29] and [8], they both give a hypothesis that ultrasound sen-
sors can be used as a replacement to the electromagnetic field in Theremin.
Hence, a room-scale Theremin can be built of them.

22

3. The Antennas

In this project, we define the wireless node in the network as the antenna.
There are two kinds of antennas in the project. The first one is the ultra-
sound antenna which will be called as distance antenna. The second one is the
accelerometer antenna which will be called as acceleration antenna. In this
section, those two kinds of the antenna will be discussed separately.

3.1 Distance Antenna
As mentioned earlier, the distance antenna is the antenna which utilises the
ultrasound sensor as the distance detector. Within this subsection, the antenna
will be discussed in two parts, hardware and software.

3.1.1 Hardware
The distance antennas primarily consist of microcontroller ATMega328P as
the central processor, XBee module as the communication device, and four
ultrasound sensors as the distance detector. Figure 3.1 shows the schematic
for the antenna.

In term of hardware selection, we chose the ultrasound sensor as a dis-
tance sensor. Because an ultrasound sensor can sense an object up to four
meters, it is possible to build a room-scale theremin. ATMega328P is cho-
sen because a microcontroller is needed to calculate the distance. Lastly, for
wireless communication, we chose to utilise XBee as it is accommodating the
ZigBee protocol.

According to Figure 3.1, all of the ultrasound sensors have a dedicated trig-
ger and echo pin. All of the trigger pins are connected to pin B, and the echoes
are connected to pin D. Using microcontroller, the microcontroller will gen-
erate pulse through the trigger pin to produce an ultrasound wave within a
specific interval. When the ultrasound wave hit an object, the sound wave
will bounce back and captured by echo pin. More detail about the distance
calculation will be discussed in the software subsection.

To notify the user, two Light Emitting Diodes (LED)s are also connected to
PB0 and PB1. The LED on PB0 (Red LED) is notifying whether the user is
still in the detection range or not. Another LED is notifying the XBee com-
munication status. There is also a potentiometer connected to ADC0 through

23

Figure 3.1. Schematic diagram of an antenna in the system

24

Figure 3.2. The implementation of distance antenna

Figure 3.3. A distance antenna with the box case

pin PC0. The potentiometer can variate the maximum distance detection of
the antenna. So the antenna can be fit in almost any place.

We also connected a 16 MHz crystal to XTAL1 and XTAL2 so the mi-
crocontroller can oscillate up to 16 MHz. The antenna is also programmable
through programming port P1 via In System Programming (ISP).

The XBee connects to XBeeBreakout which is labelled as P2 in the Figure
schematic. Port P2 is dedicated to serial communication especially XBee. Tx
and Rx pin on the microcontroller is connected to Din and Dout respectively.
Theoretically, as long as we have FTDI chip, those pins can also be used to
do another serial communication such as access serial monitor in the Arduino
IDE.

In term of the power supply, the antenna can be easily powered by a DC
power source which has a maximum 35 V such as 9 V battery or a 12 V DC
power source. It is recommended to use a 9V battery to power it up to make
it portable. Figure 3.2 and 3.3 are showing the implemented distance antenna
board and distance antenna with case respectively.

Figure 3.4 shows the final distance antenna. It was a little bit hard to adjust
the ultrasounds position because they are easily interfering each other. To
cover 90-degree direction, we arrange the ultrasound sensor with roughly 22.5-
degree gap.

25

Figure 3.4. The final version of the distance antenna

3.1.2 Software
In the software part, Instead of make a bare metal software for the antenna,
FreeRTOS is chosen to run it on a microcontroller. It will make future de-
velopment more flexible. However the implementation seems too big for just
some simple tasks, FreeRTOS gives some benefits such as modularity and eas-
ier testing.

There is a FreeRTOS library which can be used to implement it on a mi-
crocontroller. Even, there is specifically an Arduino FreeRTOS library which
is compatible with several Arduino boards such as Uno, Leonardo, Mega and
many more [26]. Because of it, we use Arduino FreeRTOS library in this
project.

Other libraries which are used in this software are NewPing1 and XBee2

library. NewPing library is a library for managing ultrasound sensors. Inside
it, some functions to calculate the distance is embedded. The XBee library is
managing ZigBee communication via XBee. To use XBee library, the XBee
must be configured in API mode. This library is supporting both XBee series
1 and 2.

In term of task design, there are two same priority tasks in the antenna
software. They are TaskDistance and TaskBlinkLED. TaskBlinkLEDis always
checking if the user is out-of-range or not. The second task, TaskDistance, is
sending the detected distance to the base station over XBee. Listing 3.1 and

1https://bitbucket.org/teckel12/arduino-new-ping/wiki/Home
2https://github.com/andrewrapp/xbee-arduino

26

Figure 3.5. RTOS tasks design inside the antenna software

3.2 show the TaskDistance and TaskBlinkLED routine respectively. The tasks
diagram is depicted in Figure 3.5.

We assigned the same priority level to both of tasks because those tasks
must not preempt each other. If the tasks preempt each other, the antenna
may send wrong data to base station. We tried to assign TaskDistance to have
higher priority level than TaskBlinkLED. But it turned out that one of them
was not executed. When TaskDistance has higher priority, scheduler always
gives the time to TaskDistance and that makes TaskBlinkLED will not be ex-
ecuted.

Listing 3.1. TaskDistance routine in antenna K and M
1 f o r (; ;) {
2 / / Se tup maxDis tance by u s i n g P o t e n t i o m e t e r
3 maxDis tance = ana logRead (POT_PIN) ;
4 maxDis tance = map (maxDis tance , 0 , 1023 , 50 , 400) ;
5
6 f o r (u i n t 8 _ t i =0 ; i < SONAR_NUM; i ++) {
7 s e n s o r [c u r r e n t S e n s o r] . t i m e r _ s t o p () ;
8 c u r r e n t S e n s o r = i ;
9 cm [c u r r e n t S e n s o r] = 0 ;

10 s e n s o r [c u r r e n t S e n s o r] . p i n g _ t i m e r (echoCheck , maxDis tance
) ;

11
12 d e l a y (5 0) ;
13 }
14 } / / End of f o r l oop

Listing 3.2. TaskBlinkLED routine within all antennas
1 f o r (; ;) {
2 m e s s a g e S e n d S t a t u s () ;
3
4 i f ((cm [0] >= maxDis tance) | | (cm [1] >= maxDis tance) | |
5 (cm [2] >= maxDis tance) | | (cm [3] >= maxDis tance)) {
6
7 / / Turn LED ON t o i n d i c a t e " o u t o f r a n g e
8 d i g i t a l W r i t e (LED_DETECT , HIGH) ;
9

10 }
11 e l s e {

27

12
13 / / B l i n k t h e Led t o i n d i c a t e i n s i d e t h e r a n g e
14 f l a s h L e d (LED_DETECT , 100) ;
15
16 } / / End of E l s e s t a t e m e n t
17
18 } / / End f o r loop

In Listing 3.1, the distance is captured in line 9. Line 9 calls echoCheck()
function to check if there is an object within maximum distance or not. When
an object is detected, the microcontroller will capture the distance using Equa-
tion 1.1. The ultrasound sensor is pinged one by one sequentially to prevent
interference within the sensor array.

The maximum distance detection for the antenna is captured by sensing an
analogue signal value through pin A0 (ADC0). Then the analogue value is
mapped to value between 50 to 400 which represents the maximum distance
detection. A map() function in Arduino is shown by Equation 3.1. Where x
is the value we want to map, in_min and in_max are the mapping minimum
value and maximum value respectively, out_min and out_max are minimum
and maximum target value.

result = (x− in_min)∗ (out_max−out_min)/(in_max− in_min)+out_min
(3.1)

To send only one distance data to the base station, we implemented a filter
to filter the sensor reading. The filter is implemented as a function in Listing
3.3. It filters data from the sensors by taking the average distance between the
two sensors. We consider filtering only two neighbour sensors because they
are closed to each other.

Listing 3.3. Code snippet of distanceFilter() inside all distance antenna software
1 u n s i g n e d i n t d i s t a n c e F i l t e r (u i n t 8 _ t s e n s o r) {
2 i f (cm [0] && cm [1]) {
3 # i f d e f ANTENNA_L_N
4 c h e c k P o s i t i o n () ;
5 # e n d i f
6
7 avg = cm [0] + cm [1] ;
8 avg = avg / 2 ;
9 }

10 e l s e i f (cm [1] && cm [2]) {
11 # i f d e f ANTENNA_L_N
12 c h e c k P o s i t i o n () ;
13 # e n d i f
14
15 avg = cm [1] + cm [2] ;
16 avg = avg / 2 ;
17 }
18 e l s e i f (cm [2] && cm [3]) {
19 # i f d e f ANTENNA_L_N
20 c h e c k P o s i t i o n () ;

28

21 # e n d i f
22
23 avg = cm [2] + cm [3] ;
24 avg = avg / 2 ;
25 }
26 e l s e avg = cm [s e n s o r] ;
27
28 r e t u r n avg ;
29
30 } / / End f u n c t i o n

The distance data range is between 0 to 400, but XBee library only supports
8-bit. It means we can only send distance data in range 0 to 255. Therefore,
two bitmath operations are operated at line 11 and 12 in Listing 3.4. In line 11
we do bit shift and bitwise operation to capture the first byte of the distance.
Then in line 12 only do bitwise to capture the second byte . When the message
is sent to the base station, the base station will compile the parsed message.To
illustrate how it works, there is an example in Listing 3.5.

Listing 3.4. Code snippet of pingResult() function
1 vo id echoCheck () {
2 i f (s e n s o r [c u r r e n t S e n s o r] . c h e c k _ t i m e r ()) {
3 t imeStamp [c u r r e n t S e n s o r] = m i l l i s () ;
4 cm [c u r r e n t S e n s o r] = s e n s o r [c u r r e n t S e n s o r] . p i n g _ r e s u l t /

US_ROUNDTRIP_CM ;
5 p i n g R e s u l t (c u r r e n t S e n s o r) ;
6 }
7 }
8
9 vo id p i n g R e s u l t (u i n t 8 _ t s e n s o r) {

10 u n s i g n e d i n t temp = d i s t a n c e F i l t e r (s e n s o r) ;
11 p a y l o a d [0] = temp >> 8 & 0xFF ;
12 p a y l o a d [1] = temp & 0xFF ;
13 xbee . send (zbTx) ;
14
15 # i f d e f DEBUG
16 S e r i a l . p r i n t (s e n s o r) ;
17 S e r i a l . p r i n t (" ") ;
18 S e r i a l . p r i n t (temp) ;
19 S e r i a l . p r i n t l n (" cm") ;
20 # e n d i f
21 }

Listing 3.5. Bith-math operation to convert 16-bit number to 8-bit number
1 temp = 300
2 temp = 0b 0000 0001 0010 1100
3 p a y l o a d [0] = 0000 0001 0010 1100 >> 8 & 0xFF = = 0000 0000 0000

0001 & 0xFF = 0000 0001
4 p a y l o a d [1] = 0000 0001 0010 1100 & 0xFF = 0010 1100

Concerning TaskBlinkLED, Listing 3.2 is showing the TaskBlinkLED. The
blinking LED is decided to be implemented as a task because the checking

29

mechanism should happen uninterruptibly. There is one essential condition in
the task. If there is an object within the detection range or not. If the object is
inside the range, the LED will keep blinking. Otherwise, the LED will keep
turn on.

Antenna L and N not only detect the distance but also detect the user posi-
tion against the antenna. Therefore, we added checkPosition() function in the
software as shown in Listing 3.6. CheckPosition() function is checking user
position when two ultrasound sensors in the antenna detect an object. If there
is a movement from one ultrasound sensor to another within timeThreshold,
the antenna will consider that as a movement. After that, the antenna will send
either 800, 900, 1000 as left, right, and centre position respectively. We chose
those numbers to distinguish between distance and movement detection.

Listing 3.6. Code snippet of checkPosition() inside antenna L and N software
1 vo id c h e c k P o s i t i o n () {
2 i n t t i m e T h r e s h o l d = 3 3 ;
3
4 / / L e f t
5 i f ((t imeStamp [0] > t imeStamp [1] + t i m e T h r e s h o l d)) {
6 i n t tempL = 800 ;
7 pay loadL [0] = tempL >> 8 & 0xFF ;
8 pay loadL [1] = tempL & 0xFF ;
9 xbee . send (zbTxL) ;

10
11 # i f d e f DEBUG
12 S e r i a l . p r i n t l n (" l e f t ") ;
13 # e n d i f
14
15 }
16 / / R i g h t
17 e l s e i f (t imeStamp [3] > t imeStamp [2] + t i m e T h r e s h o l d) {
18 i n t tempR = 1000 ;
19 payloadR [0] = tempR >> 8 & 0xFF ;
20 payloadR [1] = tempR & 0xFF ;
21
22 # i f d e f DEBUG
23 S e r i a l . p r i n t l n (" r i g h t ") ;
24 # e n d i f
25 }
26 / / C e n t e r
27 e l s e {
28 i n t tempC = 900 ;
29 payloadC [0] = tempC >> 8 & 0xFF ;
30 payloadC [1] = tempC & 0xFF ;
31 xbee . send (zbTxC) ;
32
33 # i f d e f DEBUG
34 S e r i a l . p r i n t l n (" c e n t e r ") ;
35 # e n d i f
36 }
37
38 } / / End f u n c t i o n

30

3.2 Acceleration Antenna
The hardware and software design is the same as the ultrasound antenna. The
significant difference is in the power supply. In the acceleration antenna, there
are two power outputs, 3.3V and 5V. In this section, we will discuss both the
hardware and software implementation.

3.2.1 Hardware
As mentioned earlier, generally the hardware design is similar to the dis-
tance antenna. Figure 3.6 shows the schematic diagram of acceleration an-
tenna. There are two accelerometer sensors (MPU6050) connected to micro-
controller ATMega328P. Those two sensors connect to the microcontroller via
Two Wire Interface (TWI). Also, TWI in ATMega328P is compatible with
Inter-Integrated Circuit (I2C).

TWI is one of communication interface supported by ATMega328P via
SCL (Serial Clock) and SDA (Serial Data) pin. It allows ATMega328P man-
age up to 128 slaves with different address [4].

As explained above, there are two accelerometer sensors connected to AT-
Mega328P. To distinguish the address, we modified pin AD0 in MPU6050.
In the schematic diagram of MPU6050 breakout [6], it is mentioned that two
MPU6050 can be connected to the same TWI bus pin AD0 must be modified.
As the default, an MPU6050 has address 0x68, and pin AD0 on the board has
low logic (connected to ground). When pin AD0 is modified to have high logic
(connected to VCC), the address will change to 0x69. Therefore, we modified
one of the sensor’s pin AD0. Thus, two MPU6050s are sharing same TWI bus
with different addresses.

3.2.2 Software
Similar to the hardware part. The software for acceleration antenna is simi-
lar to distance-antenna software. However, there is only one periodic task in
acceleration antenna software.

TaskIMURead, the only task, is responsible for reading acceleration data
from the sensor periodically. There is motionDetection() function which is
responsible to continuously polling if there is a specific movement detected.
The specific movement is when X-axis or Z-axis is accelerating more than
9006 value. The value is the data from ADC reading. There is no unit for it.
We chose 9006 based on experiment. That number is suitable to determine
a hitting-drum movement. When a movement is detected, a message will be
sent to the base station over XBee. Accelerometer sensor one will send the
message “b”, and accelerometer sensor two will send message “c”. In addi-
tion, a LED is also turn on when it detects a movement. Listing 3.6 and 3.7

31

Figure 3.6. Schematic diagram of the acceleration antenna

32

are showing the routines.

Listing 3.7. TaskIMURead routine
1 f o r (; ;) {
2 a c c e l g y r o 1 . g e t A c c e l e r a t i o n (&ax1 , &ay1 , &az1) ;
3 a c c e l g y r o 2 . g e t A c c e l e r a t i o n (&ax2 , &ay2 , &az2) ;
4
5 az1 = az1 − 16384 ; / / c a l l i b r a t e z (1 6 3 8 4 / g)
6 az2 = az2 − 16384 ; / / c a l l i b r a t e z (1 6 3 8 4 / g)
7 m o t i o n D e t e c t i o n () ;
8
9 vTaskDelay (5 0 / portTICK_PERIOD_MS) ;

10
11 } / / End f o r

Listing 3.8. Code snippet of motionDetection() function inside TaskIMURead routine
1 vo id m o t i o n D e t e c t i o n () {
2 i f (ax1 >= a x 1 T h r e s h o l d | | az1 >= a z 1 T h r e s h o l d) {
3 d i g i t a l W r i t e (LED_ACC1 , HIGH) ;
4 xbee . send (zbTxC) ;
5 m e s s a g e S e n d S t a t u s () ;
6
7 }
8 e l s e d i g i t a l W r i t e (LED_ACC1 , LOW) ;
9

10 i f (ax2 >= a x 2 T h r e s h o l d | | az2 >= a z 2 T h r e s h o l d) {
11 d i g i t a l W r i t e (LED_ACC2 , HIGH) ;
12 xbee . send (zbTxB) ;
13 m e s s a g e S e n d S t a t u s () ;
14
15 }
16 e l s e d i g i t a l W r i t e (LED_ACC2 , LOW) ;
17 }

Not all of the codes are built from scratch. In order to increase the effec-
tivity of MPU6050 utilisation, an MPU6060 library is used. That library is a
common library when pairing an Arduino and MPU6050 sensor. In this pro-
gram, we only captured raw acceleration data from the sensor. Because of that,
to be able to play the acceleration antenna correctly, the two MPU6050 sen-
sors must be precisely in a horizontal position. Otherwise, those sensors will
eventually detect a movement in X or Z-axis whereas there is no movement
made by the user.

33

4. Base Station

In this section, hardware and software of the base station will be discussed in
separate sections.

4.1 Hardware
The base station is made of an Arduino, an XBee module, and some LEDs.
The Arduino is acting as the controller and XBee as the communication mod-
ule. There are also some LEDs which are giving notification about the wireless
communication status and MIDI note-on/note-off messages. There is a switch
to either sending MIDI messages or raw distance data to the computer. The
switch defines what signal be sent to the computer over serial communication.
A 10K variable resistor is also attached to the analogue pin A0 of Arduino.
It adjusts the maximum distance of the reading sensor. Figure 4.1 shows the
schematic of the base station.

The variable resistor is a little bit redundant since the maximum distance is
adjustable directly from the antennas. However, because there is a possibility
that the antennas send a maximum-adjusted-distance, the base station needs to
filter it out to minimise an anomaly MIDI sound.

Figure 4.2 shows the final base station. Through USB cable, the base station
is still programmable. However, there is a significant problem which can be
happened while uploading the program. In order to upload a program to the
base station, the Rx and Tx connection between XBee and microcontroller
must be disconnected. Otherwise, the program cannot be uploaded. That is
important because XBee and the microcontroller are sharing the same pins for
serial communication.

4.2 Software
It has previously been mentioned this project runs FreeRTOS on the micro-
controller. In the base station software, there are three tasks with the same
priority level. They are TaskAntennaReceive, TaskAntennaKL, and TaskAn-
tennaMN. TaskAntennaReceive is a periodic task, and the other two tasks are
event-driven tasks. Figure 4.3 shows the task organisation inside the base sta-
tion software.

34

Figure 4.1. Schematic diagram of base station

Figure 4.2. Final form of base station

35

Figure 4.3. RTOS task design inside the base station software

As the default, FreeRTOS is a preemptive RTOS. That means a task can
preempt another task. Regarding this part, we implemented a non-preemptive
RTOS to produce some proper MIDI messages. A proper MIDI message
means a note-on message must be turned-off by a note-off message in a spe-
cific interval. Otherwise, there will be a hanging note-on message which af-
fects the sound.

Let us now consider the task routines. TaskAntennaKL and TaskAnten-
naMN have the same routine. They manage the received message from the
respective antenna. The received message is gathered from TaskAntennaRe-
ceive. It collects parsed messages from the antenna and passes it to respective
antenna subroutine. Listing 4.1 is showing the code snippets of the message
collection method.

A good illustration of the workflow is investigating when there is an incom-
ing message from antenna K. When the message comes, the message source
is assessed. We compiled the message and stored it in a variable in line 15. In
line 15, when the two 8-bit data arrive, they are united as one 16-bit number by
doing bitmath operation. After that, a flag of the respective antenna subroutine
is raised to give a signal of other tasks to run.

Listing 4.1. Code snippet of message collection method inside TaskAntennaReceive
1 xbee . r e a d P a c k e t () ;
2 / / check i f a p a c k e t was r e c e i v e d :
3 i f (xbee . g e t R e s p o n s e () . i s A v a i l a b l e ()) {
4 i f (xbee . g e t R e s p o n s e () . g e t A p i I d () == ZB_RX_RESPONSE) {
5 xbee . g e t R e s p o n s e () . getZBRxResponse (ZbRx) ;
6 }
7
8 remoteAddr = ZbRx . ge tRemoteAddress64 () . g e t L s b () ;
9

10 s w i t c h (remoteAddr) {
11
12 / / I f t h e r e i s d a t a from Antenna K
13 c a s e 0x5B45 :
14 / / s t o r e 2 8− b i t d a t a t o 1 16− b i t d a t a
15 d i s t a n c e K = (ZbRx . g e t D a t a (0) * 256) + ZbRx . g e t D a t a (1) ;
16 f l agAntennaK = t r u e ;

36

17 b r e a k ;

In the TaskAntennaKL point of view, the message is considered as distance
data. If the switch is on MIDI-mode, the distance will be converted to MIDI
note-on and note-off. Otherwise, it will not be converted. Listing 4.2 is show-
ing the code snippet of it.

Listing 4.2. Code snippet of distance to MIDI conversion in the antenna K subroutine
1 i f (! s w i t c h S t a t e) {
2 d i g i t a l W r i t e (LED_DETECT , HIGH) ;
3
4 i f (d i s t a n c e K <= maxDis tance) {
5 d i s t a n c e K = map (d i s t a n c e K , 1 , maxDis tance , t a rge tVa lKLo

, t a r g e t V a l K H i) ;
6 n o t e = d i s t a n c e K ;
7
8 i f (xSemaphoreTake (xSer ia lSemph , (T ickType_ t) 5)

== pdTRUE) {
9

10 d i g i t a l W r i t e (LED_K , HIGH) ;
11
12 midi . noteOn (CH1 , note , v e l o c i t y) ;
13 b y t e tempNote = n o t e ;
14 d e l a y (delayNoteOn) ;
15 mid i . n o t e O f f (CH1 , tempNote) ;
16 d e l a y (d e l a y N o t e O f f) ;
17
18 d i g i t a l W r i t e (LED_K , LOW) ;
19
20 xSemaphoreGive (xSe r i a lSemph) ;
21 }
22 }
23 }

We can see in Listing 4.2; line 5 does the distance-to-MIDI conversion.
Distance data is mapped to value between 95 and 60. According to Figure 1.5,
those values represent MIDI note which covers 3 octaves.

The delayNoteOn and delayNoteOff are 150 and 50 respectively. Those
delays are needed after noteOn() and noteOff() respectively in order to cre-
ate an aesthetic sound. Otherwise, the noteOn and noteOff events cannot be
distinguished.

Let us take another example. Now we are discussing the workflow when
there is an incoming message from antenna L. We will skip the receiving-
message part because it is the same for all messages.

In the antenna L point-of-view, the message will still be considered as a
distance data with additional information. The additional information is val-
ues weather 800, 900, or 1000. Those values give the information of object
movement. It represents move-to-left, move-to-right, and move-to-centre re-
spectively. Using the messages from the antenna, base station send pitch-bend
MIDI message over the respective channel to the computer. Listing 4.3 shows
the code snippet of it.

37

Listing 4.3. Code snippet of distance-to-MIDI conversion in the antenna L subroutine

1 i f (d i s t a n c e L == 800) {
2 i f (xSemaphoreTake (xSer ia lSemph , (T ickType_ t) 5) == pdTRUE

) {
3
4 d i g i t a l W r i t e (LED_L , HIGH) ;
5 p i t c h B e n d (CH1 , loc a lNo teL , −5000) ;
6 d i g i t a l W r i t e (LED_L , LOW) ;
7
8 xSemaphoreGive (xSe r i a lSemph) ;
9 }

10 }
11 / / C e n t e r pann ing h a n d l i n g
12 e l s e i f (d i s t a n c e L == 900) {
13 i f (xSemaphoreTake (xSer ia lSemph , (T ickType_ t) 5) == pdTRUE

) {
14
15 d i g i t a l W r i t e (LED_L , HIGH) ;
16 p i t c h B e n d (CH1 , loc a lNo teL , 0) ;
17 d i g i t a l W r i t e (LED_L , LOW) ;
18
19 xSemaphoreGive (xSe r i a lSemph) ;
20 }
21 }
22 / / R i g h t pann ing h a n d l i n g
23 e l s e i f (d i s t a n c e L == 1000) {
24 i f (xSemaphoreTake (xSer ia lSemph , (T ickType_ t) 5) == pdTRUE

) {
25
26 d i g i t a l W r i t e (LED_L , HIGH) ;
27 p i t c h B e n d (CH1 , loc a lNo teL , 5000) ;
28 d i g i t a l W r i t e (LED_L , LOW) ;
29
30 xSemaphoreGive (xSe r i a lSemph) ;
31 }
32 }

We can see at line 5; the MIDI pitch-bend message is sent. Inside pitch-
Bend() function there are also Note-on and note-off command sent along with
pitch-bend command. It is because we need to bend a pitch (note). Otherwise,
we cannot hear a note is bent when a pitch-bend is sent. A single pitchbend
command is only bending a note if there a noteOn() message is sent. When
there is not noteOn() command sent, a bended note will not be generated.

Semaphore
In the previous section, it is mentioned that MIDI communication based on
serial communication. That indicates that XBee and MIDI are physically
sharing serial communication bus. To prevent a preemption between TaskAn-
tennaReceived, TaskAntennaKL, and TaskAntennaMN, aside assign some pri-
ority level, a binary-semaphore is also implemented. Listing 4.3 line 2 and 8
show how the semaphore is implemented.

38

At line 2 in the Listing 4.3, the semaphore is checked if it is available or
not. If the semaphore is available, the MIDI-operation is running. Otherwise,
the subroutine will still be blocked until the semaphore can be obtained.

Producing MIDI sound
There are two components which are needed to produce sound from MIDI.
They are a serial-to-MIDI converter and a synthesiser. In this project, we
used ttymid1 as the serial-to-MIDI converter and fluidsynth2 to produce some
sounds. In the computer, serial-to-MIDI converter is converting the serial sig-
nal message from the base station to MIDI. Our ttymidi output is shown in
Listing 4.4. Then those messages will be synthesised by fluidsynth.

Listing 4.4. Output of ttymidi when it receives MIDI message from base station

1 S e r i a l 0x90 Note on 001 085 100
2 S e r i a l 0x80 Note o f f 001 085 000
3 S e r i a l 0x90 Note on 000 081 100
4 S e r i a l 0x80 Note o f f 000 081 000
5 S e r i a l 0x90 Note on 001 000 100
6 S e r i a l 0 xe0 P i t c h bend 001 03192
7 S e r i a l 0x80 Note o f f 001 000 000
8 S e r i a l 0x90 Note on 001 000 100
9 S e r i a l 0 xe0 P i t c h bend 001 03192

10 S e r i a l 0x80 Note o f f 001 000 000
11 S e r i a l 0x90 Note on 000 083 100
12 S e r i a l 0x80 Note o f f 000 083 000
13 S e r i a l 0x90 Note on 000 092 100
14 S e r i a l 0x80 Note o f f 000 092 000

According to Listing 4.4, ttymidi captured some MIDI messages. They are
note-on and off in channel 2 (line 1 and 2), note-on and off in channel 1 (line
3 and 4), and pitch-bend in channel 2 (line 6 and 9).

Returning briefly to the MIDI message structure, in listing 4.4 line 1, the
note-on command has three columns of numbers. Each column represents
each data byte. The first column gives information on what channel is it. The
second column gives information about the MIDI-note value. In addition, the
last column represents the velocity.

Ideal distance to note
In term of distance-to-MIDI-note ratio, Thereminz has flexibility to adjust the
ratio depends on the room size. Figure 4.4 is showing the plot of the ideal value
distance to MIDI note in the Thereminz. The longer the distance detection, the
distance-to-note is less sensitive. The shorter the distance, the distance-to-note
is more sensitive.

1ttymidi is one of program to convert serial-to-midi in a computer. http://www.varal.org/
ttymidi/
2fluidsynth is an synthesiser open-source software. http://www.fluidsynth.org/

39

http://www.varal.org/ttymidi/
http://www.varal.org/ttymidi/
http://www.fluidsynth.org/

Fi
gu

re
4.

4.
Pl

ot
of

id
ea

ld
is

ta
nc

e
to

M
ID

In
ot

e
in

th
e

T
he

re
m

in
s

be
tw

ee
n

50
cm

an
d

40
0c

m

40

Software problem
There was a problem in the freeRTOS utilisation. In the base station, we could
not create more than three tasks while utilise XBee library in API mode. In the
library documentation [24], it mentioned that the library is designed to run in
one thread application. Because of resource conservation, XBee library only
supports storing one response packet in one time. Therefore, the antenna tasks
(AntennaKL and AntennaMN) must be executed in the time prior when the
flag is raised and must free the buffer so the next data can be stored safely.
This solution can be applied in future development.

Another problem is sometimes the base station does not send a MIDI mes-
sage after some periods. The base station does not give any response if there is
an event from antenna L or N. It only gives a response to antenna K or M. We
do not know yet what caused this problem. When that event occurs, the so-
lution is just restarting the system, so the base station starts giving a response
from antenna L or N.

Even though XBee has its collision-avoidance algorithm [19], the algorithm
seemed not suitable for this project. The algorithm prevents the collision by
creating a random delay before the packet is sent. When XBee wants to send
a packet, it first checks if the channel clear or not. If the channel is clear, the
packet will be sent. However, if the channel is not clear, the packet will be sent
after a random time delay. The random time delay is based on the exponential
backoff algorithm. When c collision happens, the algorithm will choose a time
between 0 and 2c−1 as the delay. In the first collision, each sender will wait
0 or 1 slot time. After the second collision, senders will wait anytime between
0 and 22− 1 slot time. After the third collision, senders will wait anytime
between 0 and 23−1. The delay will increase exponentially as the number of
retransmission attempts increase.

In this project, the random delay seemed not synchronised with the execu-
tion of the task. To illustrate, let’s take a look following example. If there
is an event detected by antenna L or N, the base station does not allocate a
free slot for them. The base station is already flooded by the message from
antenna K or M. The solution for future development is to implement another
collision-avoidance algorithm such as do scheduling for the message transmit-
ting. The base station gives a signal to antennas to send the message as follows
scenario. The first one is signalling antenna K to send, then L to detect if there
is a movement (pitch bend) or not. The second one is signalling antenna M
and L sequentially.

41

5. Evaluation and Result

In this chapter, we evaluate the system. There are some evaluation compo-
nents. The first, we evaluated the distance measurement accuracy. The second
one, we evaluated the Thereminz under two configurations set up. The third,
we compare the performance of Theremin and Thereminz in term of sensi-
tivity. At last, from the technical point of view, task execution analysis is
performed.

Distance measurement precision
During this evaluation, we compared the distance measurement between ul-
trasound sensors and ruler. The purpose of this evaluation is evaluating how
accurate the ultrasound sensors compared to a ruler. There were three itera-
tions in the experiment. The experiment was conducted in three rounds. At
first two rounds, we only activated one and two ultrasound sensors in only one
antenna to evaluate the accuracy of the sensor. Then, in the third round, we
activated all of the antennae and set up the experiment based on Figure 5.1.

In the first two round experiments, we used antenna K as the measuring
device and another (turned off) antenna to be the detected object. The object
was correctly set to face the activated ultrasound sensor in antenna K. On the
ground; we placed a 200 cm ruler toward ultrasound sensor direction. The
object (another antenna) was moved from 10 cm to 200 cm with 10 cm gap.
We monitored the ultrasound sensor measurement at the computer connected
to the base station. Table 5.1 shows the experiment result.

According to Table 5.1, the standard deviation of both 1-sensor and 2-
sensors measurement increase along with longer distance. The smallest de-
viation is 0.50 when 1-sensor measures the distance from 10 to 50 cm. On the
other hand, the most significant deviation is 2.50 when 1-sensor measures 200
cm and 2-sensors measure 140, 170, 180, and 200 cm.

Figure 5.1. Configuration set up of third round of distance accuracy measurement

42

Ta
bl

e
5.

1.
E

xp
er

im
en

tr
es

ul
to

fr
ul

er
an

d
ul

tr
as

ou
nd

se
ns

or
m

ea
su

re
m

en
t(

al
lu

ni
ts

ar
e

cm
)

R
ul

er
1- se

ns
or

(1
)

1- se
ns

or
(2

)

1- se
ns

or
(3

)

2- se
ns

or
s

(1
)

2- se
ns

or
s

(2
)

2- se
ns

or
s

(3
)

A
vg

1- se
ns

or

A
vg

2- se
ns

or
s

St
de

v
1- se

ns
or

St
de

v
2- se

ns
or

s
10

11
11

11
12

11
12

11
.0

0
11

.6
7

0.
50

0.
96

20
21

21
21

22
21

24
21

.0
0

23
.3

3
0.

50
1.

71
30

31
31

31
32

32
32

31
.0

0
32

.0
0

0.
50

1.
00

40
41

41
41

43
42

45
41

.0
0

43
.3

3
0.

50
2.

08
50

51
51

51
53

53
54

51
.0

0
53

.3
3

0.
50

1.
73

60
62

62
63

64
64

63
62

.3
3

63
.6

7
1.

26
1.

89
70

73
72

72
74

74
74

72
.3

3
74

.0
0

1.
26

2.
00

80
82

82
82

84
85

84
82

.0
0

84
.4

4
1.

00
2.

22
90

93
92

93
94

95
95

92
.6

7
94

.6
7

1.
41

2.
38

10
0

10
2

10
2

10
3

10
5

10
5

10
4

10
2.

33
10

4.
67

1.
26

2.
38

11
0

11
2

11
2

11
2

11
3

11
3

11
3

11
2.

00
11

3.
33

1.
00

1.
73

12
0

12
3

12
2

12
2

12
3

12
3

12
3

12
2.

33
12

3.
67

1.
43

1.
89

13
0

13
3

13
3

13
2

13
4

13
4

13
3

13
2.

67
13

3.
67

1.
73

1.
89

14
0

14
3

14
3

14
4

14
4

14
4

14
4

14
3.

33
14

4.
33

1.
50

2.
50

15
0

15
3

15
3

15
3

15
4

15
4

15
4

15
3.

00
15

4.
00

1.
50

2.
50

16
0

16
3

16
3

16
3

16
4

16
4

16
4

16
3.

00
16

4.
00

1.
50

2.
00

17
0

17
3

17
3

17
3

17
5

17
5

17
5

17
3.

00
17

5.
00

1.
50

2.
50

18
0

18
3

18
3

18
4

18
5

18
5

18
5

18
3.

33
18

5.
00

1.
73

2.
50

19
0

19
5

19
5

19
4

19
5

19
5

19
5

19
4.

67
19

4.
67

2.
38

2.
38

20
0

20
5

20
5

20
5

20
5

20
5

20
5

20
5

20
5

2.
50

2.
50

43

We also performed regression linear to both averages of 1-sensor and 2-
sensors for each measurement. The regression linear shows the standard error
for 2-sensor is slightly higher than 1-sensor. Those are 0.60 and 0.47 respec-
tively.

Those errors occur because the detected object does not have a flat surface.
As we used one of the antennae as the object, it has a spherical surface. Re-
call briefly about the way of ultrasound sensor work based on the Doppler
principle. To be able to get an accurate measurement value as ruler, a flat sur-
face object is needed. Because of measurement accuracy is not critical in this
project. We can say that the deviation is tolerable.

At the third round, we asked one participant to stand on five different spots
A, B, C, D, and E one by one based on Figure 5.1. While he stood, we mon-
itored the measurement at the computer connected to the base station. The
experiment was conducted in three iterations. Table 5.2 shows the result.

Regarding Table 5.2, K-real, L-real, M-real, N-real are the measurement
distance using a ruler. In three iterations, we measured each spot from four
different antennae. The number shows each iteration result after the antenna
name (i.e. K1, K2, K3).

Generally, the deviation for each measurement is big. Only four measure-
ments have less than 10 cm deviation. Those big deviations occur because the
ultrasound sensor did not measure the same spot as ruler did. Ruler measured
the distance between the edge of the antenna and the spot. On the other hand,
ultrasound sensor measured the distance between ultrasound sensor and par-
ticipant’s body. Physically, the participant is a big person. When he stood on
a spot, ultrasound wave hit his body and measure his body’s distance.

However the person stood still on the spot, the measurements were different
each time. The ultrasound sensor may have crosstalk with other ultrasound
sensors in the system. Because the antenna is facing each other when locating
the person, the ultrasounds at the antenna are easily doing crosstalk with each
other. The crosstalk made the ultrasound sensor receive wrong ultrasound
wave; then it made a wrong calculation.

Thereminz evaluation
In this part, Thereminz is evaluated under two scenarios. We invited 5 partic-
ipants to play the Thereminz. Each of them faced one antenna. Four partic-
ipants faced distance antenna, and one participant was playing accelerometer
antenna. In the first scenario, each antenna is placed at each corner of the
experiment area. The second, antennas were placed in the centre of the area.
Figure 5.2 and 5.3 shows the scenarios.

Under the first and second scenario, we dynamically variated maximum
distance from 50 cm to 200 cm. It turned out; Thereminz did not perform as
good as expected. There were some unresponsive behaviours. The pitch bend
was hard to produce by base station whereas the antenna L or N is sending the

44

Ta
bl

e
5.

2.
E

xp
er

im
en

tr
es

ul
to

fr
ul

er
an

d
ul

tr
as

ou
nd

se
ns

or
m

ea
su

re
m

en
ti

n
di

ffe
re

nt
sp

ot
s

(a
ll

un
its

ar
e

cm
)

Sp
ot

K re
al

L re
al

M re
al

N re
al

K
1

L
1

M
1

N
1

K
2

L
2

M
2

N
2

K
3

L
3

M
3

N
3

K
L

M
N

St
d.

de
v K

St
d.

de
v L

St
d.

de
v M

St
d.

de
v N

A
16

0
70

17
0

21
4

13
7

60
17

4
18

4
14

4
11

2
16

2
16

4
15

2
11

1
16

3
15

4
14

4.
33

94
.3

3
16

6.
33

16
7.

33
9.

95
27

.1
6

5.
74

26
.4

6
B

80
15

8
21

8
15

3
70

14
4

19
2

97
10

9
92

16
4

12
2

72
15

9
18

3
12

3
83

.6
7

13
1.

67
17

9.
67

11
4.

00
18

.0
3

31
.5

8
22

.4
4

22
.9

1
C

15
6

19
2

16
0

91
14

0
18

0
16

0
97

13
5

17
7

17
0

92
12

1
17

5
14

2
61

13
2.

00
17

7.
33

15
7.

33
83

.3
3

14
.4

5
7.

62
11

.6
6

16
.3

8
D

21
2

15
0

88
15

5
20

3
14

3
13

0
14

1
20

3
17

4
12

3
16

4
20

4
16

8
13

7
14

5
20

3.
33

16
1.

67
13

0.
00

15
0.

00
4.

36
14

.6
4

21
.7

6
10

.3
4

E
14

8
13

4
15

1
15

1
12

8
14

0
15

9
12

5
16

9
14

6
16

8
11

9
14

5
12

1
12

7
12

2
14

7.
33

13
5.

67
15

1.
33

12
2.

00
16

.8
2

10
.6

9
17

.5
9

14
.7

1

45

Figure 5.2. Scenario 1: placing each antenna on each corner of the area

Figure 5.3. Scenario 2: placing all of the antenna in the center of the area

message to the base station. The participant must move several times in front
of antenna L or N until base station gave a response.

It seems the base station was flooded by the messages from antenna K and
M. Thus when a message from antenna L or N came; base station did not
recognise it. In addition, there is a delay for 200 ms in base station receiving
task. It makes base station loses some messages. In the future development,
the delay of NoteOn/Off must be considered more carefully to prevent mes-
sage looseness.

In term of interference, Thereminz can manage interference within the sen-
sor array. However, the interference with another antenna still happens. Under
scenario 2 (Figure 5.3), the interference with other antennas can be reduced.
Even though, under scenario 1, the interference with other antenna occurs
all the time. The interference increases gradually as long as the maximum
distance. In 50 cm and 100 cm, Thereminz could manage the interference.
However, in the 150cm and 200 cm, Thereminz could not manage it.

Thereminz and Theremini comparison
Beside evaluate the performance of the Thereminz, we also compared the
playability with an original Theremin. There some opinions say playing the
Theremin is very challenging due to its sensitivity. Even by a small movement
of a finger, the pitch of original Theremin is changing [20].

Our experiment is comparing the distance-to-note performance between the
original Theremin and the Thereminz. In this case, we used a modern version
of Theremin by Moog (called as Theremini) as the comparison. Before the ex-
periment was conducted, we calibrate Theremini to generate MIDI note from

46

Table 5.3. Experiment result of Theremini’s note generation regarding distance be-
tween pitch antenna and user hand.

cm MIDI 1 MIDI 2 MIDI 3 MIDI Std. dev. MIDI
0 95 95 95 95.00 0.00
1 88 86 88 87.33 1.15
2 86 84 84 84.67 1.15
3 81 83 81 81.67 1.15
4 79 79 79 79.00 0.00
5 77 77 77 77.00 0.00
6 74 76 74 74.67 1.15
7 72 74 72 72.67 1.15
8 71 72 71 71.33 0.58
9 71 71 69 70.33 1.15

10 69 69 69 69.00 0.00
11 67 67 67 67.00 0.00
12 65 65 65 65.00 0.00
13 64 64 64 64.00 0.00
14 64 64 64 64.00 0.00
15 62 62 64 62.67 1.15
16 62 62 62 62.00 0.00
17 62 62 62 62.00 0.00
18 60 60 60 60.00 0.00

60 to 95. The calibration purpose is for gaining as close as the condition be-
tween Thereminz and Theremini. During the experiment, we gradually moved
our hand from 0 cm to 20 cm with 1 cm gap. The experiment is iterated three
times. Table 5.3 shows the experiment result. MIDI 1, MIDI 2, MIDI 3 show
the experiment iteration. After 18 cm, Theremini did not give any response. In
the calibration, we selected an option that Theremini does not give a response
if it does not sense hand’s presence. Also, we selected the Ionian scale at root
C.

Thereminz has more significant coverage area than original Theremin. To
create MIDI note from 60 to 95 using Thereminz, the user must move several
centimetres from one spot to another regarding maximum distance. On the
other hand, using original Theremin, the movement can be done in millimetre
ord. To be able to play an original Theremin properly, the player must do some
intensive practices.

According to Table 5.3, generally, there is no standard deviation for each
distance. It means Theremini is reliable to generate the note. Comparing col-
umn “Avg MIDI” with “MIDI Thereminz” which is the distance-to-note of
Thereminz, the trend of MIDI note is similar. However, the trend of “Avg
MIDI” is steeper than “MIDI Thereminz”. That is because Theremini has sev-
eral different scales such as Ionian, blues, major 3rd, and many more. How-
ever, Thereminz does not have the scales. Thereminz generates some plain

47

MIDI notes. In term of MIDI note reliability production, Thereminz is as
reliable as Theremini. Thereminz can produce MIDI note regarding distance.

Execution time
In this section, we evaluate the execution time of each task in each program
(i.e. taskBlinkLed in Distance Antenna, taskReceived in Base Station) sepa-
rately. In order to measure the execution time, we made a timestamp in the
beginning and ending of the task loop and record 1000 data from each task.

For the distance-antenna, based on the measurement, we estimate the WCET
of task distance is 387 ms. This is quite a long execution time because there
are four ultrasound sensors measure the distance in each 50 ms sequentially.
Other time which should be taken into account is the XBee transmission time,
instructions executions, and transmission collision which give the most signif-
icant time addition because of the exponential random time.

Inside Task Blink LED routine, there is messageSendStatus() function which
blinks the LED regarding the message status. When the message is success-
fully sent to the base station, LED will blink with 50 ms delay. However,
when there is an error during transmission, LED will blink with 200 ms delay.
This method is not appropriate because we occasionally add a delay in the
task. Another solution is replacing the LED with RGB LED. The LED can be
configured to different light colour regarding message status. The message-
SendStatus() function shows in the Listing 5.1

For the acceleration-antenna, we estimate the WCET is 460 ms. This time
contains delay 50 ms and the delay inside messageStatus() function which
must be taken into account. In the usual routine, the estimated execution time
is 160 ms which consist of task delay 50 ms, blink LED delay 100 ms, and
some executed instruction by the microcontroller. However, if there is an error
(i.e. the base station is not turned on), the estimated WCET is 460 ms because
there is 400 ms delay in LED blinking.

The most complex device, base station, we also measured the execution
time of each task. On Task Receive, after collecting 1000 measurement data,
we estimated the WCET is 252 ms. This time contains 200 ms task delay
and instructions execution. On the other hand, Task KL and Task MN have
different WCET even though they have the same routine. Based on the mea-
surement, we estimated the WCET of Task KL and Task MN are 524 ms and
336 ms respectively. Those two tasks’ WCET estimation contains a time de-
lay of 300 ms of MIDI productions, waiting for the semaphore, and XBee
collision-avoidance random time which increases exponentially.

The reason behind different WCET is Task KL was executed more frequent
than Task MN. Task Receive is way too slow in data sampling. It makes
Task KL, and Task MN are executed unfairly. Task KL was executed more
frequent than Task MN. This data surely give a suggestion not to put delay
inside semaphore.

48

Listing 5.1. Code snippet of messageSendStatus() function inside the distance-antenna
and aceleration-antenna software

1 vo id m e s s a g e S e n d S t a t u s () {
2 i f (xbee . r e a d P a c k e t (1 0 0)) {
3
4 / / s h o u l d be a z n e t t x s t a t u s
5 i f (xbee . g e t R e s p o n s e () . g e t A p i I d () ==

ZB_TX_STATUS_RESPONSE) {
6 xbee . g e t R e s p o n s e () . ge tZBTxSta tu sResponse (

t x S t a t u s) ;
7
8 / / g e t t h e d e l i v e r y s t a t u s , t h e f i f t h b y t e
9 i f (t x S t a t u s . g e t D e l i v e r y S t a t u s () == SUCCESS) {

10 / / s u c c e s s . t ime t o c e l e b r a t e
11 f l a s h L e d (LED_SEND, 50) ;
12 }
13 e l s e {
14
15 f l a s h L e d (LED_SEND, 200) ;
16 }
17 }
18 }
19 e l s e i f (xbee . g e t R e s p o n s e () . i s E r r o r ()) {
20 f l a s h L e d (LED_SEND, 500) ;
21 }
22 }

49

6. Conclusion and Future Work

To conclude the work, regarding the evaluation we did, there is a big possi-
bility to build a room-scale Theremin. Because of the scale and safety rea-
sons, some ultrasound sensors can be utilised. The utilisation of the ultra-
sound sensor and microcontroller give the flexibility to variate maximum de-
tection range. The maximum detection range can be adjusted between 50cm
to 400cm.

Comparing to Theremini, Thereminz has less sensitivity in term of distance-
to-note ratio. This is suitable to be played by ordinary people who do not
play a Theremin nor Theremini before. Because of the size, Thereminz must
be played by more than one person. Five people are recommended because
each person can face each antenna and do the movement respectively. It is
recommended to set up the Thereminz like in Figure 5.3 to prevent interference
between antenna.

For the future work, there are some parts which should be improved. Es-
pecially the wireless communication (ZigBee) and FreeRTOS. In the ZigBee
part, a custom collision-avoidance algorithm can be implemented to decrease
the message collision occurrences. The base station can be programmed to tell
the antenna to send the message in a specific time. In addition, to decrease ul-
trasound sensor interference between the antenna, the base station should tell
other antennas not to activate ultrasound when an antenna activate its ultra-
sound sensor. With this solution, hopefully, the interference between antennas
can be reduced drastically.

In the FreeRTOS part, the Thereminz will be more responsive if each an-
tenna subroutines are handled by one particular task. Thus, the similar antenna
can be assigned to have a different priority to others. This solution hopefully
can increase the base station response to any event from the antenna.

Another recommended improvement is making some note scales like in
Theremini. These scales can be chosen by investigating what scales are suit-
able to Thereminz. This improvement hopefully will increase the sound aes-
thetic and make Thereminz more playable as an alternative musical instru-
ment.

50

References

[1] DIGI . Digi XBee Ecosystem - Everything you need to explore and create
wireless connectivity. https://www.digi.com/xbee. visited on 2018-04-05.

[2] FreeRTOS . FreeRTOS - Market leading RTOS (Real Time Operating System)
for embedded systems with Internet of Things extensions.
https://freertos.org/index.html. visited on 2018-03-20.

[3] Intorobotics . Ultrasonic Sensors – Tutorials and Resources.
https://www.intorobotics.com/

interfacing-programming-ultrasonic-sensors-tutorials-resources/.
visited on 2018-04-24.

[4] Microchip . AVR ATMega328p Datasheet, 2018.
[5] MIDI.org . Homepage MIDI.org. https://www.midi.org/. visited on

2018-04-25.
[6] Sparkfun . SparkFun Triple Axis Accelerometer and Gyro Breakout -

MPU-6050 - SEN-11028 - SparkFun Electronics.
https://www.sparkfun.com/products/11028. visited on 2018-04-25.

[7] C. M. El Amine and O. Mohamed. A localization and an identification system
of personnel in areas at risk using a wireless sensor network. In 2013 The
International Conference on Technological Advances in Electrical, Electronics
and Computer Engineering (TAEECE), pages 127–131, May 2013.

[8] W. Atmadja, J. Yosafat, R. A. Setiawan, and I. I. Irendy. Parking guidance
system based on real time operating system. In 2014 International Conference
on Industrial Automation, Information and Communications Technology, pages
5–8, August 2014.

[9] Carmen Bachiller Martín, Jorge Sastre Martínez, Amelia Ricchiuti, Héctor
Esteban González, and Carlos Hernández Franco. Study of the Interference
Affecting the Performance of the Theremin, 2012.

[10] Richard Barry. Mastering The FreeRTOS Real Time Kernel, 2016.
[11] Greg Cerveny. MIDI Note Number Chart for iOS Music Apps.

https://medium.com/@gmcerveny/

midi-note-number-chart-for-ios-music-apps-b3c01df3cb19,
September 2017. visited on 2018-05-22.

[12] Mike Cook. Basic MIDI. In Arduino Music and Audio Projects, pages 31–47.
Apress, Berkeley, CA, 2015.

[13] Mike Cook. MIDI Instruments. In Arduino Music and Audio Projects, pages
103–139. Apress, Berkeley, CA, 2015.

[14] Mike Cook. More MIDI. In Arduino Music and Audio Projects, pages 49–65.
Apress, Berkeley, CA, 2015.

[15] Fred Eady. Hands-On ZigBee: Implementing 802.15.4 with Microcontrollers.
Elsevier Science & Technology, Oxford, UNITED STATES, 2007.

[16] Robert Faludi. Building Wireless Sensor Networks. O’Reilly Media, Inc, United
States of America, first edition, 2011.

51

https://www.digi.com/xbee
https://freertos.org/index.html
https://www.intorobotics.com/interfacing-programming-ultrasonic-sensors-tutorials-resources/
https://www.intorobotics.com/interfacing-programming-ultrasonic-sensors-tutorials-resources/
https://www.midi.org/
https://www.sparkfun.com/products/11028
https://medium.com/@gmcerveny/midi-note-number-chart-for-ios-music-apps-b3c01df3cb19
https://medium.com/@gmcerveny/midi-note-number-chart-for-ios-music-apps-b3c01df3cb19

[17] E. A. S. Guarnizo and L. M. R. Rios. Portable percussion MIDI controller. In
2015 20th Symposium on Signal Processing, Images and Computer Vision
(STSIVA), pages 1–7, September 2015.

[18] Leslie Hodges. Ultrasonic and Passive Infrared Sensor Integration for Dual
Technology User Detection Sensors, 2011.

[19] DIGI International. Product Manual v1.xEx - 802.15.4 Protocol.
http://www.digi.com, 2009.

[20] Tsung-Ching Liu, Shu-Hui Chang, and Che-Yi Hsiao. A modified
Quad-Theremin for interactive computer music control. In 2011 International
Conference on Multimedia Technology, pages 6179–6182, July 2011.

[21] Elijah J Morgan. HCSR04 Ultrasonic Sensor, November 2014.
[22] S. P. Patil and S. C. Patil. A real time sensor data monitoring system for

wireless sensor network. In 2015 International Conference on Information
Processing (ICIP), pages 525–528, December 2015.

[23] Emery Premeaux, Brian Evans, and Michael Turner. Arduino projects to save
the world. Springer, 2011.

[24] Andrew Rapp. xbee-arduino: Arduino library for communicating with XBee
radios in API mode. https://github.com/andrewrapp/xbee-arduino,
April 2018. original-date: 2015-02-17T03:56:48Z.

[25] R. Setiyono, A. S. Prihatmanto, and P. H. Rusmin. Design and implementation
Infrared Guitar based on playing chords. In 2012 International Conference on
System Engineering and Technology (ICSET), pages 1–5, September 2012.

[26] Phillip Stevens. Arduino_freertos_library: A FreeRTOS Library for all Arduino
AVR Devices (Uno, Leonardo, Mega, etc), April 2018. original-date:
2015-11-26T01:56:10Z.

[27] Stefano Tennina, Anis Koubâa, Roberta Daidone, Mário Alves, Petr Jurčík,
Ricardo Severino, Marco Tiloca, Jan-Hinrich Hauer, Nuno Pereira, Gianluca
Dini, Mélanie Bouroche, and Eduardo Tovar. IEEE 802.15.4 and ZigBee as
Enabling Technologies for Low-Power Wireless Systems with Quality-of-Service
Constraints. SpringerBriefs in Electrical and Computer Engineering. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[28] World Health Organisation (WHO). WHO | What are electromagnetic fields?
http://www.who.int/peh-emf/about/WhatisEMF/en/. visited on
2018-05-13.

[29] Y. Yamada, K. Ito, R. Kobayashi, and S. Hiryu. Obstacle avoidance navigation
system for cheap design sensing inspired by bio-sonar navigation of bats. In
2017 56th Annual Conference of the Society of Instrument and Control
Engineers of Japan (SICE), pages 3–6, September 2017.

52

http://www.digi.com
https://github.com/andrewrapp/xbee-arduino
http://www.who.int/peh-emf/about/WhatisEMF/en/

Appendices

53

Listing 1. Source code for distance antenna

1 / *
2 * Dancing wi th Theremin
3 *
4 * Rahmanu Hermawan
5 * Mas te r T h e s i s unde r MUMIN P r o j e c t
6 * Uppsa la U n i v e r s i t y
7 * Sweden
8 *
9 * Th i s program i s f o r t h e D i s t a n c e Antenna i n t h e sys tem

10 *
11 * Some l i b r a r i e s a r e used , t h e y a r e :
12 * 1 . Arduino FreeRTOS by h t t p s : / / g i t h u b . com / f e i l i p u /

Arduino_FreeRTOS_Library
13 * 2 . Xbee l i b r a r y by Andrew Rapp (h t t p s : / / g i t h u b . com / andrewrapp / xbee−

a r d u i n o)
14 * 3 . NewPing l i b r a r y by Tim Ecke l (h t t p s : / / p l a y g r o u n d . a r d u i n o . cc / Code /

NewPing)
15 *
16 * /
17
18
19 # i n c l u d e <Arduino . h> / / In E c l i p s e −IDE , t h i s l i b r a r y i s needed (must

be uncommented)
20 # i n c l u d e <Arduino_FreeRTOS . h>
21 # i n c l u d e <XBee . h>
22 / / # i n c l u d e <NewPing . h>
23 # i n c l u d e " l i b r a r i e s / NewPing / s r c / NewPing . h "
24
25 / * == * /
26 / * GLOBAL * /
27 / * == * /
28
29 vo id T a s k D i s t a n c e (vo id * p v P a r a m e t e r s) ;
30 vo id TaskBlinkLED (vo id * p v P a r a m e t e r s) ;
31
32 vo id d e t e c t E x i s t a n c e () ;
33 vo id c h e c k P o s i t i o n () ;
34 i n t d i s t a n c e F i l t e r () ;
35 vo id f l a s h L e d (i n t pin , i n t w a i t) ;
36 vo id m e s s a g e S e n d S t a t u s () ;
37 vo id echoCheck () ;
38 vo id p i n g R e s u l t (u i n t 8 _ t s e n s o r) ;
39 u n s i g n e d i n t d i s t a n c e F i l t e r (u i n t 8 _ t s e n s o r) ;
40
41 / / # d e f i n e DEBUG / / uncomment t h i s f o r a c t i v a t i n g debug mode (i .

e send s e r i a l p r i n t)
42 # d e f i n e ANTENNA_L_N / / uncomment t h i s f o r a c t i v a t i n g a n t e n n a L and

N
43
44 # d e f i n e LED_DETECT 8
45 # d e f i n e LED_SEND 9
46 # d e f i n e SONAR_NUM 4
47 # d e f i n e PING_INTERVAL 33 / / M i l l i s e c o n d s between s e n s o r p i n g s (29 ms i s

a b o u t t h e min t o a v o i d c r o s s−s e n s o r echo) .
48

54

49 # d e f i n e POT_PIN A0
50
51 / / S en so r A
52 # d e f i n e TRIG_PIN1 10
53 # d e f i n e ECHO_PIN1 2 / / PD2
54 / / S en so r B
55 # d e f i n e TRIG_PIN2 11 / / PB3
56 # d e f i n e ECHO_PIN2 3 / / PD3
57 / / S en so r C
58 # d e f i n e TRIG_PIN3 12 / / PB4
59 # d e f i n e ECHO_PIN3 4 / / PD4
60 / / S en so r D
61 # d e f i n e TRIG_PIN4 13 / / PB5
62 # d e f i n e ECHO_PIN4 5 / / PD5
63
64
65 / / V a r i a b l e s / /
66 i n t maxDis tance ; / / c e n t i m e t e r
67 i n t avg ;
68 u n s i g n e d long t imeStamp [SONAR_NUM] = {0 , 0 , 0 , 0 } ;
69 u n s i g n e d long p ingTimer [SONAR_NUM] ;
70 u n s i g n e d i n t cm [SONAR_NUM] ;
71 u i n t 8 _ t c u r r e n t S e n s o r = 0 ;
72
73 / / S en so r u l t r a s o n i c o b j e c t a r r a y
74 NewPing s e n s o r [SONAR_NUM] = {
75 NewPing (TRIG_PIN1 , ECHO_PIN1 , maxDis tance) ,
76 NewPing (TRIG_PIN2 , ECHO_PIN2 , maxDis tance) ,
77 NewPing (TRIG_PIN3 , ECHO_PIN3 , maxDis tance) ,
78 NewPing (TRIG_PIN4 , ECHO_PIN4 , maxDis tance)
79 } ;
80
81 / / C r e a t e new i n s t a n c e o f XBee l i b r a r y :
82 XBee xbee = XBee () ;
83
84 u i n t 8 _ t p a y l o a d [] = { 0 , 0 } ;
85 u i n t 8 _ t pay loadL [] = { 0 , 0 } ; / / LEFT
86 u i n t 8 _ t payloadC [] = { 0 , 0 } ; / / CENTER
87 u i n t 8 _ t payloadR [] = { 0 , 0 } ; / / RIGHT
88
89 / / u i n t 8 _ t payloadDummy [] = { ’L ’ } ;
90
91 / / SH + SL Address o f r e c e i v i n g XBee
92 XBeeAddress64 s i n k 6 4 = XBeeAddress64 (0 x0013a200 , 0x408D5A3E) ; / / Send

t o Base S t a t i o n
93 ZBTxSta tusResponse t x S t a t u s = ZBTxSta tusResponse () ; / / S t a t u s

r e s p o n s e
94
95 ZBTxRequest zbTx = ZBTxRequest (s ink64 , pay load , s i z e o f (p a y l o a d)) ;
96 ZBTxRequest zbTxL = ZBTxRequest (s ink64 , payloadL , s i z e o f (pay loadL)) ;
97 ZBTxRequest zbTxC = ZBTxRequest (s ink64 , payloadC , s i z e o f (payloadC)) ;
98 ZBTxRequest zbTxR = ZBTxRequest (s ink64 , payloadR , s i z e o f (payloadR)) ;
99

100 / * == * /
101 / * SETUP * /
102 / * == * /

55

103
104 vo id s e t u p () {
105 S e r i a l . b e g i n (1 1 5 2 0 0) ;
106
107 pinMode (LED_SEND, OUTPUT) ;
108 pinMode (LED_DETECT , OUTPUT) ;
109
110 p ingTimer [0] = m i l l i s () + 7 5 ;
111 f o r (u i n t 8 _ t i = 1 ; i < SONAR_NUM; i ++) p ingTimer [i] = p ingTimer [i −

1] + PING_INTERVAL ;
112
113 / / XBee Se tup
114 / / T e l l XBee t o use Hardware S e r i a l
115 xbee . s e t S e r i a l (S e r i a l) ;
116
117 / / Task S t u f f s
118
119 x T a s k C r e a t e (
120 T a s k D i s t a n c e
121 , (c o n s t portCHAR *) " D i s t a n c e "
122 , 128 / / S t a c k s i z e
123 , NULL
124 , 1 / / P r i o r i t y
125 , NULL) ;
126
127 x T a s k C r e a t e (
128 TaskBlinkLED
129 , (c o n s t portCHAR *) " BlinkLED "
130 , 128 / / S t a c k s i z e
131 , NULL
132 , 1 / / P r i o r i t y
133 , NULL) ;
134
135 } / / End s e t u p
136
137 vo id loop ()
138 {
139 / / Empty . Th ings a r e done i n Tasks .
140 }
141
142 / * == * /
143 / * TASKS * /
144 / * == * /
145
146 vo id T a s k D i s t a n c e (vo id * p v P a r a m e t e r s) {
147 / * Th i s t a s k w i l l c o n t i n u o u s l y s e n d i n g t h e d i s t a n c e d a t a t r o u g h

s e r i a l
148 *
149 * cm [0] = d i s t a n c e from s e n s o r A
150 * cm [1] = d i s t a n c e from s e n s o r B
151 * cm [2] = d i s t a n c e from s e n s o r C
152 * cm [3] = d i s t a n c e from s e n s o r D
153 *
154 * * /
155
156 (vo id) p v P a r a m e t e r s ;

56

157
158 f o r (; ;) {
159 maxDis tance = ana logRead (POT_PIN) ;
160 maxDis tance = map (maxDis tance , 0 , 1023 , 50 , 400) ;
161
162 f o r (u i n t 8 _ t i =0 ; i < SONAR_NUM; i ++) {
163 s e n s o r [c u r r e n t S e n s o r] . t i m e r _ s t o p () ;
164 c u r r e n t S e n s o r = i ;
165 cm [c u r r e n t S e n s o r] = 0 ;
166 s e n s o r [c u r r e n t S e n s o r] . p i n g _ t i m e r (echoCheck , maxDis tance) ;
167
168 d e l a y (5 0) ;
169 }
170 } / / End of f o r l oop
171
172 } / / End of Task Send Data
173
174 vo id TaskBlinkLED (vo id * p v P a r a m e t e r s) {
175 / * Th i s t a s k w i l l keep p e r i o d i c a l l y c h e c k i n g i f t h e d e t e c t e d d i s t a n c e

i s i n s i d e t h e r a n g e or not ,
176 * I f t h e d e t e c t e d d i s t a n c e i s o u t o f range , t h e LED w i l l n o t

b l i n k i n g .
177 *
178 * I n s i d e t h i s t a s k , we a l s o a r e a b l e t o s e t t h e maximum d i s t a n c e

u s i n g p o t e n t i o m e t e r .
179 * The number t h e r e i s i n c e n t i m e t e r .
180 * * /
181
182 (vo id) p v P a r a m e t e r s ;
183
184 f o r (; ;) {
185 m e s s a g e S e n d S t a t u s () ;
186
187 i f ((cm [0] >= maxDis tance) | | (cm [1] >= maxDis tance) | |
188 (cm [2] >= maxDis tance) | | (cm [3] >= maxDis tance)) {
189
190 / / Turn LED ON t o i n d i c a t e " o u t o f r a n g e
191 d i g i t a l W r i t e (LED_DETECT , HIGH) ;
192
193 }
194 e l s e {
195
196 / / B l i n k t h e Led t o i n d i c a t e i n s i d e t h e r a n g e
197 f l a s h L e d (LED_DETECT , 100) ;
198
199 } / / End of E l s e s t a t e m e n t
200
201 } / / End f o r loop
202
203 } / / End of Task B l i n k LED
204
205 / * == * /
206 / * FUNCTIONS * /
207 / * == * /
208
209 / *

57

210 * F u n c t i o n : c h e c k P o s i t i o n ()
211 *
212 * I t i s a f u n c t i o n t o d e t e c t i f t h e r e i s a movement from a s e n s o r t o

a n o t h e r s e n s o r o r n o t .
213 * The d e t e c t i o n i s pe r fo rmed by two u l t r a s o u n d s e n s o r s .
214 * The a l g o r i t h m u s e s a t ime d i f f e r e n c e compar i son between t h o s e two

s e n s o r s .
215 *
216 * /
217 vo id c h e c k P o s i t i o n () {
218 i n t t i m e T h r e s h o l d = 5 0 ;
219
220 / / L e f t
221 i f ((t imeStamp [0] > t imeStamp [1] + t i m e T h r e s h o l d)) {
222 i n t tempL = 800 ;
223 payloadL [0] = tempL >> 8 & 0xFF ;
224 payloadL [1] = tempL & 0xFF ;
225 xbee . send (zbTxL) ;
226
227 # i f d e f DEBUG
228 S e r i a l . p r i n t l n (" l e f t ") ;
229 # e n d i f
230
231 }
232 / / R i g h t
233 e l s e i f (t imeStamp [3] > t imeStamp [2] + t i m e T h r e s h o l d) {
234 i n t tempR = 1000 ;
235 payloadR [0] = tempR >> 8 & 0xFF ;
236 payloadR [1] = tempR & 0xFF ;
237 xbee . send (zbTxR) ;
238
239 # i f d e f DEBUG
240 S e r i a l . p r i n t l n (" r i g h t ") ;
241 # e n d i f
242 }
243 / / CENTER AREA
244 e l s e {
245 i n t tempC = 900 ;
246 payloadC [0] = tempC >> 8 & 0xFF ;
247 payloadC [1] = tempC & 0xFF ;
248 xbee . send (zbTxC) ;
249
250 # i f d e f DEBUG
251 S e r i a l . p r i n t l n (" c e n t e r ") ;
252 # e n d i f
253 }
254
255 } / / End f u n c t i o n
256
257 / *
258 * F u n c t i o n : f l a s h L e d ()
259 *
260 * J u s t a f u n c t i o n t o b l i n k a LED .
261 *
262 * /
263 vo id f l a s h L e d (i n t pin , i n t w a i t) {

58

264
265 d i g i t a l W r i t e (pin , HIGH) ;
266 d e l a y (w a i t) ;
267 d i g i t a l W r i t e (pin , LOW) ;
268 d e l a y (w a i t) ;
269 }
270
271 / *
272 * F u n c t i o n : m e s s a g e S e n d S t a t u s ()
273 *
274 * Th i s i s a f u n c t i o n t o g i v e i n f o r m a t i o n i f t h e message s e n d i n g i s

SUCCESS , UNSUCCESS, o r ERROR.
275 * I c i t e d from xbee l i b r a r y by Adrew Rapp
276 *
277 * /
278 vo id m e s s a g e S e n d S t a t u s () {
279 i f (xbee . r e a d P a c k e t (1 0 0)) {
280 / / g o t a r e s p o n s e !
281
282 / / s h o u l d be a z n e t t x s t a t u s
283 i f (xbee . g e t R e s p o n s e () . g e t A p i I d () == ZB_TX_STATUS_RESPONSE) {
284 xbee . g e t R e s p o n s e () . ge tZBTxSta tu sResponse (t x S t a t u s) ;
285
286 / / g e t t h e d e l i v e r y s t a t u s , t h e f i f t h b y t e
287 i f (t x S t a t u s . g e t D e l i v e r y S t a t u s () == SUCCESS) {
288 / / s u c c e s s . t ime t o c e l e b r a t e
289 f l a s h L e d (LED_SEND, 50) ;
290 }
291 e l s e {
292 f l a s h L e d (LED_SEND, 200) ;
293 }
294 }
295 }
296 e l s e i f (xbee . g e t R e s p o n s e () . i s E r r o r ()) {
297 f l a s h L e d (LED_SEND, 500) ;
298 }
299
300 }
301 / *
302 * F u n c t i o n : echoCheck ()
303 *
304 * I t i s a f u n c t i o n t o check i f t h e r e i s an o b j e c t d e t e c t e d w i t h i n

r a n g e
305 *
306 * /
307 vo id echoCheck () {
308 i f (s e n s o r [c u r r e n t S e n s o r] . c h e c k _ t i m e r ()) {
309 t imeStamp [c u r r e n t S e n s o r] = m i l l i s () ;
310 cm [c u r r e n t S e n s o r] = s e n s o r [c u r r e n t S e n s o r] . p i n g _ r e s u l t /

US_ROUNDTRIP_CM ;
311 p i n g R e s u l t (c u r r e n t S e n s o r) ;
312 }
313 }
314
315 / *
316 * F u n c t i o n : p i n g R e s u l t (u i n t 8 _ t s e n s o r)

59

317 *
318 * I t i s a f u n c t i o n t o c a p t u r e t h e d i s t a n c e measurement ,
319 * t h e n send i t t o base s t a t i o n ove r XBee
320 *
321 * /
322 vo id p i n g R e s u l t (u i n t 8 _ t s e n s o r) {
323 u n s i g n e d i n t temp = d i s t a n c e F i l t e r (s e n s o r) ;
324 p a y l o a d [0] = temp >> 8 & 0xFF ;
325 p a y l o a d [1] = temp & 0xFF ;
326 xbee . send (zbTx) ;
327
328 # i f d e f DEBUG
329 S e r i a l . p r i n t (s e n s o r) ;
330 S e r i a l . p r i n t (" ") ;
331 S e r i a l . p r i n t (temp) ;
332 S e r i a l . p r i n t l n (" cm") ;
333 # e n d i f
334 }
335
336 / *
337 * F u n c t i o n : d i s t a n c e F i l t e r (u i n t 8 _ t s e n s o r)
338 *
339 * I t i s a f u n c t i o n t o f i l t e r t h e d i s t a n c e measurement .
340 * I f 2 s e n s o r s d e t e c t an o b j e c t , i t w i l l r e t u r n t h e a v e r a g e o f i t .
341 *
342 * /
343 u n s i g n e d i n t d i s t a n c e F i l t e r (u i n t 8 _ t s e n s o r) {
344 i f (cm [0] && cm [1]) {
345 # i f d e f ANTENNA_L_N
346 c h e c k P o s i t i o n () ;
347 # e n d i f
348
349 avg = cm [0] + cm [1] ;
350 avg = avg / 2 ;
351 }
352 e l s e i f (cm [1] && cm [2]) {
353 # i f d e f ANTENNA_L_N
354 c h e c k P o s i t i o n () ;
355 # e n d i f
356
357 avg = cm [1] + cm [2] ;
358 avg = avg / 2 ;
359 }
360 e l s e i f (cm [2] && cm [3]) {
361 # i f d e f ANTENNA_L_N
362 c h e c k P o s i t i o n () ;
363 # e n d i f
364
365 avg = cm [2] + cm [3] ;
366 avg = avg / 2 ;
367 }
368 e l s e avg = cm [s e n s o r] ;
369
370 r e t u r n avg ;
371
372 } / / End f u n c t i o n

60

Listing 2. Source code for acceleration antenna

1 / *
2 * Dancing wi th Theremin
3 *
4 * Rahmanu Hermawan
5 * Mas te r T h e s i s unde r MUMIN P r o j e c t
6 * Uppsa la U n i v e r s i t y
7 * Sweden
8 *
9 * Th i s program i s f o r t h e a c c e l e r o m e t e r Antenna i n t h e sys tem .

10 * Th i s program i s a d a p t e d from h t t p s : / / g i t h u b . com / j r o w b e r g / i 2 c d e v l i b /
t r e e / m a s t e r / Arduino / MPU6050

11 *
12 * Some l i b r a r i e s a r e a l s o used i n t h i s program , t h e y a r e :
13 * 1 . Arduino FreeRTOS by h t t p s : / / g i t h u b . com / f e i l i p u /

Arduino_FreeRTOS_Library
14 * 2 . Xbee l i b r a r y by Andrew Rapp (h t t p s : / / g i t h u b . com / andrewrapp / xbee−

a r d u i n o)
15 * 3 . MPU6050 l i b r a r y by J . Rowberg (h t t p s : / / g i t h u b . com / j r o w b e r g /

i 2 c d e v l i b / t r e e / m a s t e r / Arduino / MPU6050)
16 *
17 * /
18
19 # i n c l u d e <Arduino . h> / / i n E c l i p s e −IDE , t h i s l i b r a r y

i s needed
20 # i n c l u d e <Arduino_FreeRTOS . h>
21 # i n c l u d e <XBee . h>
22 # i n c l u d e " l i b r a r i e s / MPU6050 / MPU6050 . h "
23 / / # i n c l u d e " l i b r a r i e s / ArduMIDI / ArduMIDI . h "
24
25 / * == * /
26 / * GLOBAL * /
27 / * == * /
28
29 vo id TaskIMURead (vo id * p v P a r a m e t e r s) ;
30
31 vo id f l a s h L e d (i n t pin , i n t w a i t) ;
32 vo id m e s s a g e S e n d S t a t u s () ;
33 vo id m o t i o n D e t e c t i o n () ;
34
35
36 / / Arduino Wire l i b r a r y i s r e q u i r e d i f I2Cdev I2CDEV_ARDUINO_WIRE

i m p l e m e n t a t i o n
37 / / i s used i n I2Cdev . h
38 # i f I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
39 # i n c l u d e " Wire . h "
40 # e n d i f
41
42 # d e f i n e LED_SEND 8
43 # d e f i n e LED_ACC1 9
44 # d e f i n e LED_ACC2 10
45
46 boo l b l i n k S t a t e = f a l s e ;
47 i n t a x 1 T h r e s h o l d = 9006 , a z 1 T h r e s h o l d = 9006 , a x 2 T h r e s h o l d = 9006 ,

a z 2 T h r e s h o l d = 9006 ; / / mot ion d e t e c t i o n t h r e s h o l d
48

61

49 i n t 1 6 _ t ax1 , ay1 , az1 ;
50 i n t 1 6 _ t ax2 , ay2 , az2 ;
51 i n t 1 6 _ t tempSense ;
52
53 MPU6050 a c c e l g y r o 1 ; / / Addr 0x68
54 MPU6050 a c c e l g y r o 2 (0 x69) ; / / Addr 0x69 (wi t h AD0 i s c o n n e c t e d t o VDD)
55
56 / / C r e a t e new i n s t a n c e o f XBee l i b r a r y :
57 XBee xbee = XBee () ;
58
59 u i n t 8 _ t payloadAcc1 [] = { ’ b ’ } ; / / Acc 1 ’ b ’ i n ASCII = 0x62
60 u i n t 8 _ t payloadAcc2 [] = { ’ c ’ } ; / / Acc 2 ’ c ’ i n ASCII = 0x63
61
62 / / SH + SL Address o f r e c e i v i n g XBee
63 XBeeAddress64 s i n k 6 4 = XBeeAddress64 (0 x0013a200 , 0x408D5A3E) ;
64 ZBTxSta tusResponse t x S t a t u s = ZBTxSta tusResponse () ;
65
66 ZBTxRequest zbTxB = ZBTxRequest (s ink64 , payloadAcc1 , s i z e o f (payloadAcc1

)) ;
67 ZBTxRequest zbTxC = ZBTxRequest (s ink64 , payloadAcc2 , s i z e o f (payloadAcc2

)) ;
68
69 / * == * /
70 / * SETUP * /
71 / * == * /
72
73 / / t h e s e t u p f u n c t i o n r u n s once when you p r e s s r e s e t o r power t h e boa rd
74 vo id s e t u p () {
75
76 / / j o i n I2C bus (I2Cdev l i b r a r y doesn ’ t do t h i s a u t o m a t i c a l l y)
77 # i f I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
78 Wire . b e g i n () ;
79 # e l i f I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
80 F a s t w i r e : : s e t u p (4 0 0 , t r u e) ;
81 # e n d i f
82
83 / / mid i . b e g i n () ;
84 S e r i a l . b e g i n (1 1 5 2 0 0) ;
85
86 / / i n i t i a l i z e d e v i c e
87 a c c e l g y r o 1 . i n i t i a l i z e () ;
88 a c c e l g y r o 2 . i n i t i a l i z e () ;
89
90 / / v e r i f y c o n n e c t i o n
91 S e r i a l . p r i n t l n (" T e s t i n g d e v i c e c o n n e c t i o n s . . . ") ;
92 S e r i a l . p r i n t l n (a c c e l g y r o 1 . t e s t C o n n e c t i o n () ? "MPU6050_1

c o n n e c t i o n s u c c e s s f u l " : "MPU6050_1 c o n n e c t i o n f a i l e d ") ;
93 S e r i a l . p r i n t l n (a c c e l g y r o 2 . t e s t C o n n e c t i o n () ? "MPU6050_2

c o n n e c t i o n s u c c e s s f u l " : "MPU6050_2 c o n n e c t i o n f a i l e d ") ;
94
95 pinMode (LED_SEND, OUTPUT) ;
96 pinMode (LED_ACC1 , OUTPUT) ;
97 pinMode (LED_ACC2 , OUTPUT) ;
98
99 / / s u p p l y your own a c c e l g y r o o f f s e t s here , s c a l e d f o r min

s e n s i t i v i t y

62

100 a c c e l g y r o 1 . s e t X A c c e l O f f s e t (−272) ;
101 a c c e l g y r o 1 . s e t Y A c c e l O f f s e t (7 8 0) ;
102 a c c e l g y r o 1 . s e t Z A c c e l O f f s e t (1 0 7 1) ;
103 a c c e l g y r o 1 . s e t X G y r o O f f s e t (1 6 7) ;
104 a c c e l g y r o 1 . s e t Y G y r o O f f s e t (−9) ;
105 a c c e l g y r o 1 . s e t Z G y r o O f f s e t (−2) ;
106
107 / / s u p p l y your own gyro o f f s e t s here , s c a l e d f o r min

s e n s i t i v i t y
108 a c c e l g y r o 2 . s e t X A c c e l O f f s e t (1 1 0 1) ;
109 a c c e l g y r o 2 . s e t Y A c c e l O f f s e t (−939) ;
110 a c c e l g y r o 2 . s e t Z A c c e l O f f s e t (1 1 0 7) ;
111 a c c e l g y r o 2 . s e t X G y r o O f f s e t (8 1) ;
112 a c c e l g y r o 2 . s e t Y G y r o O f f s e t (3 6) ;
113 a c c e l g y r o 2 . s e t Z G y r o O f f s e t (−5) ;
114
115 / / Tasks
116 x T a s k C r e a t e (
117 TaskIMURead
118 , (c o n s t portCHAR *) " IMURead"
119 , 128
120 , NULL
121 , 1
122 , NULL) ;
123
124 / / Now t h e t a s k s c h e d u l e r , which t a k e s ove r c o n t r o l o f

s c h e d u l i n g i n d i v i d u a l t a s k s , i s a u t o m a t i c a l l y s t a r t e d .
125 }
126
127 vo id loop ()
128 {
129 / / Empty . Th ings a r e done i n Tasks .
130 }
131
132 / * == * /
133 / * TASKS * /
134 / * == * /
135
136 vo id TaskIMURead (vo id * p v P a r a m e t e r s) { / / T h i s i s a t a s k .
137 / *
138 * Th i s t a s k i s r e s p o n s i b l e f o r a c q u i r i n g a c c e l e r a t i o n d a t a

from s e n s o r 1 and s e n s o r 2 .
139 * The p e r i o d f o r t h i s t a s k i s 50 ms .
140 *
141 * /
142
143 (vo id) p v P a r a m e t e r s ;
144
145 f o r (; ;) {
146
147 a c c e l g y r o 1 . g e t A c c e l e r a t i o n (&ax1 , &ay1 , &az1) ;
148 a c c e l g y r o 2 . g e t A c c e l e r a t i o n (&ax2 , &ay2 , &az2) ;
149
150 az1 = az1 − 16384 ; / / c a l l i b r a t e z t o be as c l o s e

as 0 (1 6 3 8 4 / g)

63

151 az2 = az2 − 16384 ; / / c a l l i b r a t e z t o be as c l o s e
as 0 (1 6 3 8 4 / g)

152
153
154 m o t i o n D e t e c t i o n () ;
155
156 vTaskDelay (5 0 / portTICK_PERIOD_MS) ;
157
158 } / / End f o r
159 } / / End t a s k
160
161 / * == * /
162 / * FUNCTIONS * /
163 / * == * /
164
165 / *
166 * F u n c t i o n : f l a s h L e d ()
167 *
168 * J u s t a f u n c t i o n t o b l i n k a LED .
169 *
170 * /
171
172 vo id f l a s h L e d (i n t pin , i n t w a i t) {
173
174 d i g i t a l W r i t e (pin , HIGH) ;
175 d e l a y (w a i t) ;
176 d i g i t a l W r i t e (pin , LOW) ;
177 d e l a y (w a i t) ;
178 }
179
180 / *
181 * F u n c t i o n : m e s s a g e S e n d S t a t u s ()
182 *
183 * Th i s i s a f u n c t i o n t o g i v e i n f o r m a t i o n i f t h e message s e n d i n g i s

SUCCESS , UNSUCCESS, o r ERROR.
184 * I c i t e d from xbee l i b r a r y by Adrew Rapp
185 *
186 * /
187 vo id m e s s a g e S e n d S t a t u s () {
188 i f (xbee . r e a d P a c k e t (1 0 0)) {
189
190 / / s h o u l d be a z n e t t x s t a t u s
191 i f (xbee . g e t R e s p o n s e () . g e t A p i I d () ==

ZB_TX_STATUS_RESPONSE) {
192 xbee . g e t R e s p o n s e () . ge tZBTxSta tu sResponse (

t x S t a t u s) ;
193
194 / / g e t t h e d e l i v e r y s t a t u s , t h e f i f t h b y t e
195 i f (t x S t a t u s . g e t D e l i v e r y S t a t u s () == SUCCESS) {
196 / / s u c c e s s . t im e t o c e l e b r a t e
197 f l a s h L e d (LED_SEND, 50) ;
198 } e l s e {
199 / / t h e remote XBee d i d n o t r e c e i v e our p a c k e t

. i s i t powered on ?
200 f l a s h L e d (LED_SEND, 200) ;
201 }

64

202 }
203 }
204 e l s e i f (xbee . g e t R e s p o n s e () . i s E r r o r ()) {
205 f l a s h L e d (LED_SEND, 500) ;
206 }
207
208 }
209
210 / *
211 * F u n c t i o n : m o t i o n D e t e c t i o n ()
212 *
213 * Th i s f u n c t i o n i s r e s p o n s i b l e t o a lways c h e c k i n g i f t h e r e i s a

movement which i s beyond t h e t h r e s h o l d o r n o t .
214 * When t h a t i s happen , a message w i l l be s e n t t o base s t a t i o n t h r o u g h

xbee .
215 *
216 * /
217 vo id m o t i o n D e t e c t i o n () {
218 i f (ax1 >= a x 1 T h r e s h o l d | | az1 >= a z 1 T h r e s h o l d) {
219 d i g i t a l W r i t e (LED_ACC1 , HIGH) ;
220 xbee . send (zbTxC) ;
221 m e s s a g e S e n d S t a t u s () ;
222
223 }
224 e l s e d i g i t a l W r i t e (LED_ACC1 , LOW) ;
225
226 i f (ax2 >= a x 2 T h r e s h o l d | | az2 >= a z 2 T h r e s h o l d) {
227 d i g i t a l W r i t e (LED_ACC2 , HIGH) ;
228 xbee . send (zbTxB) ;
229 m e s s a g e S e n d S t a t u s () ;
230
231 }
232 e l s e d i g i t a l W r i t e (LED_ACC2 , LOW) ;
233 }

Listing 3. Source code for base station
1 / *
2 * Dancing wi th Theremin
3 *
4 * Rahmanu Hermawan
5 * Mas te r T h e s i s unde r MUMIN P r o j e c t
6 * Uppsa la U n i v e r s i t y
7 * Sweden
8 *
9 * Th i s program i s f o r t h e Base S t a t i o n i n t h e sys tem .

10 *
11 * Some l i b r a r i e s a r e used , t h e y a r e :
12 * 1 . Arduino FreeRTOS by h t t p s : / / g i t h u b . com / f e i l i p u /

Arduino_FreeRTOS_Library
13 * 2 . Xbee l i b r a r y by Andrew Rapp (h t t p s : / / g i t h u b . com / andrewrapp / xbee−

a r d u i n o)
14 * 3 . ArduMIDI l i b r a r y by (h t t p : / / g i t h u b . com / Pecacheu / ArduMIDI /)
15 *
16 * /
17

65

18 # i n c l u d e <Arduino . h> / / In E c l i p s e −IDE , t h i s l i b r a r y i s
needed

19 # i n c l u d e <Arduino_FreeRTOS . h>
20 # i n c l u d e " semphr . h "
21 # i n c l u d e < H a r d w a r e S e r i a l . h>
22 # i n c l u d e <XBee . h>
23 # i n c l u d e " l i b r a r i e s / ArduMIDI / ArduMIDI . h "
24 / / # i n c l u d e <ArduMIDI . h> / / uncomment t h i s l i n e i f work i n

Arduino IDE
25
26 / * == * /
27 / * GLOBAL * /
28 / * == * /
29
30 / / d e f i n e t a s k s
31 vo id TaskAntennaRece ived (vo id * p v P a r a m e t e r s) ;
32 vo id TaskAntennaKL (vo id * p v P a r a m e t e r s) ;
33 vo id TaskAntennaMN (vo id * p v P a r a m e t e r s) ;
34
35 vo id f l a s h L e d (u i n t 8 _ t pin , i n t w a i t) ;
36 vo id p i t c h B e n d (u i n t 8 _ t ch , u i n t 8 _ t l o c a l N o t e , i n t bendVal) ;
37
38
39 # d e f i n e LED_MIDI_ON 2
40 # d e f i n e LED_K 3
41 # d e f i n e LED_L 4
42 # d e f i n e LED_M 5
43 # d e f i n e LED_N 6
44 # d e f i n e LED_ACC 7
45
46 # d e f i n e POT_PIN A0
47 # d e f i n e SWITCH 8
48
49 SemaphoreHandle_ t xSe r i a lSemph ;
50
51 u i n t 8 _ t s w i t c h S t a t e = 0 ;
52 u i n t 1 6 _ t maxDis tance = 0 ;
53 u i n t 1 6 _ t d i s t a n c e K = 0 , d i s t a n c e L = 0 , d i s t anceM = 0 , d i s t a n c e N = 0 ,

messageAcc = 0 ;
54 u i n t 1 6 _ t delayNoteOn = 150 ;
55 u i n t 1 6 _ t d e l a y N o t e O f f = 5 0 ;
56
57
58 / / MIDI s t u f f
59 u i n t 8 _ t noteK = 0 , noteM = 0 , v e l o c i t y = 100 ;
60
61 / / Antenna Acc MIDI v a r i a b l e s
62 u i n t 8 _ t b e a t N o t e = 8 1 ; / / drum n o t e
63 u i n t 8 _ t b e a t V e l = 100 ; / / V e l o c i t y v a l u e f o r t h e b e a t sound
64
65 / / C r e a t e new i n s t a n c e o f ArduMIDI l i b r a r y :
66 ArduMIDI midi = ArduMIDI (S e r i a l , CH_ALL) ; / / a l l c h a n n e l s
67
68 / / S e r i a l s t u f f s
69 i n t remoteAddr = 0 ;
70 boo l f l agAntennaK = f a l s e , f l a g A n t e n n a L = f a l s e ,

66

71 f lagAntennaM = f a l s e , f l agAntennaN = f a l s e ,
72 f l agAn tennaAcc = f a l s e , f l a g N o t h i n g = f a l s e ;
73
74 / / XBee s t u f f s
75 XBee xbee = XBee () ;
76 XBeeResponse r e s p o n s e = XBeeResponse () ;
77
78 ZBRxResponse ZbRx = ZBRxResponse () ;
79
80
81 / * == * /
82 / * SETUP * /
83 / * == * /
84
85 / / t h e s e t u p f u n c t i o n r u n s once when you p r e s s r e s e t o r power t h e boa rd
86 vo id s e t u p () {
87
88 midi . b e g i n () ; / / S e r i a l communica t ion u s i n g 115200 baud r a t e .
89
90 / / T e l l XBee t o use Hardware S e r i a l
91 xbee . b e g i n (S e r i a l) ;
92
93 pinMode (LED_MIDI_ON , OUTPUT) ;
94 pinMode (LED_K , OUTPUT) ;
95 pinMode (LED_L , OUTPUT) ;
96 pinMode (LED_M, OUTPUT) ;
97 pinMode (LED_N , OUTPUT) ;
98 pinMode (LED_ACC, OUTPUT) ;
99

100 pinMode (SWITCH, INPUT_PULLUP) ;
101
102 / / Now s e t up t a s k s t o run i n d e p e n d e n t l y .
103 x T a s k C r e a t e (
104 TaskAntennaRece ived
105 , (c o n s t portCHAR *) " TaskAntennaRece ived "
106 , 128 / / S t a c k s i z e
107 , NULL
108 , 1 / / P r i o r i t y
109 , NULL) ;
110
111 x T a s k C r e a t e (
112 TaskAntennaKL
113 , (c o n s t portCHAR *) " TaskAntennaKM "
114 , 128 / / S t a c k s i z e
115 , NULL
116 , 1 / / P r i o r i t y
117 , NULL) ;
118
119 x T a s k C r e a t e (
120 TaskAntennaMN
121 , (c o n s t portCHAR *) " TaskAntennaLN "
122 , 128 / / S t a c k s i z e
123 , NULL
124 , 1 / / P r i o r i t y
125 , NULL) ;
126

67

127 i f (xSe r i a lSemph == NULL) {
128
129 xSer i a lSemph = xSemaphoreCreateMutex () ;
130 i f ((xSe r i a lSemph) != NULL)
131 xSemaphoreGive ((xSe r i a lSemph)) ;
132 }
133
134 / / Now t h e t a s k s c h e d u l e r , which t a k e s ove r c o n t r o l o f

s c h e d u l i n g i n d i v i d u a l t a s k s , i s a u t o m a t i c a l l y s t a r t e d .
135
136 } / / End s e t u p
137
138 vo id loop ()
139 {
140 / / Empty . Th ings a r e done i n Tasks .
141 }
142
143 / * == * /
144 / * TASKS * /
145 / * == * /
146
147 / *−−* /
148 / * Antenna R e c e i v e r * /
149 / *−−* /
150 vo id TaskAntennaRece ived (vo id * p v P a r a m e t e r s) {
151 / *
152 * Th i s t a s k i s t o p e r i o d i c a l l y r e c e i v e d messages from t h e

a n t e n n a s .
153 * A semaphore i s used b e c a u s e t h e s e r i a l communica t ion i s

a l t e r n a t e l y o c c u p i e d by XBee and ArduMIDI .
154 *
155 * When a message i s r e c e i v e d , t h e s o u r c e w i l l be checked t h e n

t h e p a r s e d message w i l l be c o l l e c t e d .
156 * A f t e r i t pa r sed , i t w i l l be s e n t t o r e s p e c t i v e " a n t e n n a d u t y

"
157 *
158 * /
159 (vo id) p v P a r a m e t e r s ;
160
161 f o r (; ;) {
162
163 i f (xSemaphoreTake (xSer ia lSemph , (T ickType_ t) 5)

== pdTRUE) {
164
165 xbee . r e a d P a c k e t () ;
166
167 / / check i f a p a c k e t was r e c e i v e d :
168 i f (xbee . g e t R e s p o n s e () . i s A v a i l a b l e ()) {
169
170 i f (xbee . g e t R e s p o n s e () . g e t A p i I d () ==

ZB_RX_RESPONSE) {
171 xbee . g e t R e s p o n s e () .

getZBRxResponse (ZbRx) ;
172
173 }

68

174 remoteAddr = ZbRx . ge tRemoteAddress64 () .
ge tL sb () ;

175
176 s w i t c h (remoteAddr) {
177
178 / / I f t h e r e i s d a t a from

Antenna K
179 / / c a s e 0x5B45 :
180 c a s e 0x5B42 : / / i f we want

t o a c t i v a t e a c c e l e r a t i o n an tenna , p l e a s e comment t h i s l i n e
181 / / s t o r e 2 8− b i t d a t a

t o 1 16− b i t d a t a
182 d i s t a n c e K = (ZbRx .

g e t D a t a (0) * 256) + ZbRx . g e t D a t a (1) ;
183 f l agAntennaK = t r u e ;
184 b r e a k ;
185
186 / / I f t h e r e i s d a t a from

Antenna L
187 c a s e 0x5AB0 :
188 / / s t o r e 2 8− b i t d a t a

t o 1 16− b i t d a t a
189 d i s t a n c e L = (ZbRx .

g e t D a t a (0) * 256) + ZbRx . g e t D a t a (1) ;
190 f l a g A n t e n n a L = t r u e ;
191 b r e a k ;
192
193 / / I f t h e r e i s d a t a from

Antenna M
194 c a s e 0x5B4F :
195 / / s t o r e 2 8− b i t d a t a

t o 1 16− b i t d a t a
196 d i s t anceM = (ZbRx .

g e t D a t a (0) * 256) + ZbRx . g e t D a t a (1) ;
197 f lagAntennaM = t r u e ;
198 b r e a k ;
199
200 / / I f t h e r e i s d a t a from

Antenna N
201 c a s e 0x5B4B :
202 / / s t o r e 2 8− b i t d a t a

t o 1 16− b i t d a t a
203 d i s t a n c e N = (ZbRx .

g e t D a t a (0) * 256) + ZbRx . g e t D a t a (1) ;
204 / / S e r i a l . p r i n t l n (

d i s t a n c e N) ;
205 f l agAntennaN = t r u e ;
206 b r e a k ;
207
208
209 } / / End s w i t c h c a s e
210 } / / End i f d a t a a v a i l a b l e
211 xSemaphoreGive (xSe r i a lSemph) ;
212 } / / End i f semaphore
213
214 / / Read a n a l o g v a l u e from p o t e n t i o m e t e r

69

215 maxDis tance = ana logRead (POT_PIN) ;
216 maxDis tance = map (maxDis tance , 0 , 1023 , 50 , 400) ;
217
218 vTaskDelay (2 0 0 / portTICK_PERIOD_MS) ;
219 } / / End For loop
220 } / / End t a s k
221 / *−−* /
222
223 / *−−* /
224 / * Task Antenna K and L * /
225 / *−−* /
226
227 vo id TaskAntennaKL (vo id * p v P a r a m e t e r s) {
228 / *
229 * Th i s t a s k i s t o manage t h e message from a n t e n n a K, L , and

A c c e l e r o m e t e r .
230 *
231 * There a r e 3 s u b r o u t i n e s :
232 * 1 . A c c e l e r o m e t e r . Manage movement d a t a from a c c e l e r o m e t e r .
233 * 2 . Antenna K. Manage d i s t a n c e d a t a from a n t e n n a K
234 * 3 . Antenna L . Manage t h e movement d e t e c t i o n which i s s e n t

from a n t e n n a L
235 *
236 * /
237
238 (vo id) p v P a r a m e t e r s ;
239
240 / / Antenna K v a r i a b l e s
241 u i n t 8 _ t t a r g e t V a l K L o = 6 0 ;
242 u i n t 8 _ t t a r g e t V a l K H i = 9 5 ;
243
244 / / Antenna L v a r i a b l e s
245 u i n t 8 _ t t a r g e t V a l L L o = 5 0 ;
246 u i n t 8 _ t t a r g e t V a l L H i = 100 ;
247 u i n t 8 _ t l o c a l N o t e L = 0 ;
248
249
250 f o r (; ;) {
251 s w i t c h S t a t e = d i g i t a l R e a d (SWITCH) ;
252
253 / *
254 *

**
255 * Antenna Acc Sub−s u b r o u t i n e
256 *

**
257 * /
258
259 i f (f l agAn tennaAcc) {
260 d i g i t a l W r i t e (LED_ACC, HIGH) ;
261 i f (messageAcc == ’ b ’) {
262
263 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
264

70

265 midi . noteOn (CH3 ,
bea tNote , b e a t V e l) ;

266 d e l a y (delayNoteOn) ;
267 midi . n o t e O f f (CH3 ,

b e a t N o t e) ;
268 d e l a y (d e l a y N o t e O f f) ;
269
270 xSemaphoreGive (

xSe r i a lSemph) ;
271 }
272
273 }
274 e l s e i f (messageAcc == ’ c ’) {
275 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
276
277 midi . noteOn (CH3 ,

bea tNote , b e a t V e l) ;
278 d e l a y (delayNoteOn) ;
279 midi . n o t e O f f (CH3 ,

b e a t N o t e) ;
280 d e l a y (d e l a y N o t e O f f) ;
281
282 xSemaphoreGive (

xSe r i a lSemph) ;
283 }
284 }
285 f l agAntennaAcc = f a l s e ;
286 d i g i t a l W r i t e (LED_ACC, LOW) ;
287 } / / End i f
288
289
290 / *
291 *

**
292 * Antenna L Sub−s u b r o u t i n e
293 *

**
294 * /
295
296 e l s e i f (f l a g A n t e n n a L) {
297 d i g i t a l W r i t e (LED_L , HIGH) ;
298 l o c a l N o t e L = map (d i s t a n c e K , 1 , maxDis tance ,

t a r g e t V a l L H i , t a r g e t V a l L L o) ;
299
300 i f (! s w i t c h S t a t e) {
301 d i g i t a l W r i t e (LED_MIDI_ON , HIGH) ;
302
303 / / L e f t pann ing h a n d l i n g
304 i f (d i s t a n c e L == 800) {
305
306 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
307
308 p i t c h B e n d (CH1 ,

loca lN o teL , −5000) ;

71

309
310 xSemaphoreGive (

xSe r i a lSemph) ;
311 }
312
313
314 }
315 / / C e n t e r pann ing h a n d l i n g
316 e l s e i f (d i s t a n c e L == 900) {
317
318 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
319
320 p i t c h B e n d (CH1 ,

loca lN o teL , 0) ;
321
322 xSemaphoreGive (

xSe r i a lSemph) ;
323 }
324
325 }
326 / / R i g h t pann ing h a n d l i n g
327 e l s e i f (d i s t a n c e L == 1000) {
328
329 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
330
331 p i t c h B e n d (CH1 ,

loca lN o teL , 5000) ;
332
333 xSemaphoreGive (

xSe r i a lSemph) ;
334 }
335
336
337 }
338
339 } / / I f t h e s w i t c h i s OFF , i t w i l l send "RAW"

d a t a (d i s t a n c e measurement) t o compute r .
340 e l s e i f (s w i t c h S t a t e) {
341 d i g i t a l W r i t e (LED_MIDI_ON , LOW) ; / /

g i v e s i g n a l we a r e NOT i n MIDI mode
342
343 i f (d i s t a n c e L <= maxDis tance) {
344 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
345
346 S e r i a l . p r i n t ("L

") ; S e r i a l . p r i n t l n (d i s t a n c e L) ;
347
348 xSemaphoreGive (

xSe r i a lSemph) ;
349 }
350 }
351 e l s e i f (d i s t a n c e L >

maxDis tance) {

72

352 i f (xSemaphoreTake (
xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {

353 i f (d i s t a n c e L
== 800) S e r i a l . p r i n t l n (" L _ l e f t ") ;

354 e l s e i f (
d i s t a n c e L == 900) S e r i a l . p r i n t l n (" L _ c e n t e r ") ;

355 e l s e i f (
d i s t a n c e L == 1000) S e r i a l . p r i n t l n (" L _ r i g h t ") ;

356 xSemaphoreGive (
xSe r i a lSemph) ;

357 }
358 }
359
360 }
361 f l a g A n t e n n a L = f a l s e ;
362 d i g i t a l W r i t e (LED_L , LOW) ;
363 } / / End i f L
364
365 / *
366 * **
367 * Antenna K Sub−s u b r o u t i n e
368 * **
369 * /
370
371 i f (f l agAntennaK) {
372 d i g i t a l W r i t e (LED_K , HIGH) ;
373 / / I f t h e s w i t c h i s ON, i t w i l l send MIDI

s i g n a l t o computer .
374 / / Because o f INPUT_PULLUP , t h e s t a t e i s

i n v e r t e d
375 i f (! s w i t c h S t a t e) {
376 d i g i t a l W r i t e (LED_MIDI_ON , HIGH) ;
377
378 i f (d i s t a n c e K <= maxDis tance) {
379 noteK = map (d i s t a n c e K ,

1 , maxDis tance , t a r ge tV a l KH i , t a r g e t V a l K L o) ;
380
381 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
382
383 mid i . noteOn (CH1

, noteK , v e l o c i t y) ;
384 b y t e tempNoteK

= noteK ;
385 d e l a y (

delayNoteOn) ;
386 mid i . n o t e O f f (

CH1 , tempNoteK) ;
387 d e l a y (

d e l a y N o t e O f f) ;
388
389 xSemaphoreGive (

xSe r i a lSemph) ;
390 }
391
392 }

73

393 e l s e i f (d i s t a n c e K >
maxDis tance) {

394
395 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
396
397 midi . c o n t r o l C h a n g e (

CH1 , 123 , 0) ;
398 xSemaphoreGive (

xSe r i a lSemph) ;
399 }
400
401 }
402 } / / End i f s w i t c h
403 / / I f t h e s w i t c h i s OFF , i t w i l l send RAW

d a t a (d i s t a n c e measurement) t o compute r .
404 e l s e i f (s w i t c h S t a t e) {
405 d i g i t a l W r i t e (LED_MIDI_ON , LOW) ;
406
407 i f (xSemaphoreTake (xSer ia lSemph , (

T ickType_ t) 5) == pdTRUE) {
408
409 S e r i a l . p r i n t ("K") ; S e r i a l .

p r i n t l n (d i s t a n c e K) ;
410
411 xSemaphoreGive (xSe r i a lSemph) ;
412 }
413
414 }
415 f lagAntennaK = f a l s e ;
416 d i g i t a l W r i t e (LED_K , LOW) ;
417 } / / End i f K
418
419 } / / End f o r loop
420
421 } / / End Task
422
423 / *−−* /
424 / * Task Antenna M and N * /
425 / *−−* /
426
427 vo id TaskAntennaMN (vo id * p v P a r a m e t e r s) {
428 / *
429 * Th i s t a s k i s t o manage t h e message from a n t e n n a M, N, and

A c c e l e r o m e t e r .
430 *
431 * There a r e 3 s u b r o u t i n e s :
432 * 1 . A c c e l e r o m e t e r . Manage movement d a t a from a c c e l e r o m e t e r .
433 * 2 . Antenna M. Manage d i s t a n c e d a t a from a n t e n n a M.
434 * 3 . Antenna N. Manage t h e movement d e t e c t i o n which i s s e n t

from a n t e n n a N.
435 *
436 * /
437
438 (vo id) p v P a r a m e t e r s ;
439

74

440 / / Antenna M v a r i a b l e s
441 u i n t 8 _ t ta rge tValMLo = 6 0 ;
442 u i n t 8 _ t t a rge tVa lMHi = 9 5 ;
443
444 / / Antenna N v a r i a b l e s
445 u i n t 8 _ t t a r g e t V a l N L o = 5 0 ;
446 u i n t 8 _ t t a r g e t V a l N H i = 100 ;
447 u i n t 8 _ t l o c a l N o t e N = 0 ;
448
449 f o r (; ;) {
450 s w i t c h S t a t e = d i g i t a l R e a d (SWITCH) ;
451
452 / *
453 *

**
454 * Antenna Acc Sub−s u b r o u t i n e
455 *

**
456 * /
457
458 i f (f l agAn tennaAcc) {
459 d i g i t a l W r i t e (LED_ACC, HIGH) ;
460 i f (messageAcc == ’ b ’) {
461
462 i f (xSemaphoreTake (xSer ia lSemph , (

T ickType_ t) 5) == pdTRUE) {
463
464 midi . noteOn (CH3 , bea tNote , b e a t V e l) ;
465 d e l a y (delayNoteOn) ;
466 midi . n o t e O f f (CH3 , b e a t N o t e) ;
467 d e l a y (d e l a y N o t e O f f) ;
468
469 xSemaphoreGive (xSe r i a lSemph) ;
470 }
471
472 }
473 e l s e i f (messageAcc == ’ c ’) {
474
475 i f (xSemaphoreTake (xSer ia lSemph , (

T ickType_ t) 5) == pdTRUE) {
476
477 midi . noteOn (CH3 , bea tNote ,

b e a t V e l) ;
478 d e l a y (delayNoteOn) ;
479 midi . n o t e O f f (CH3 , b e a t N o t e) ;
480 d e l a y (d e l a y N o t e O f f) ;
481
482 xSemaphoreGive (xSe r i a lSemph

) ;
483 }
484 }
485 f l agAntennaAcc = f a l s e ;
486 d i g i t a l W r i t e (LED_ACC, LOW) ;
487 } / / End i f
488
489 / *

75

490 * **
491 * Antenna N Sub−s u b r o u t i n e
492 * **
493 * /
494 e l s e i f (f l agAntennaN) {
495 d i g i t a l W r i t e (LED_N , HIGH) ;
496 l o c a l N o t e N = map (d is tanceM , 1 , maxDis tance ,

t a r ge tV a l NH i , t a r g e t V a l N L o) ;
497
498 / / I f t h e s w i t c h i s ON, i t w i l l send MIDI s i g n a l t o

compute r .
499 i f (! s w i t c h S t a t e) {
500 d i g i t a l W r i t e (LED_MIDI_ON , HIGH) ;
501
502 / / L e f t pann ing h a n d l i n g
503 i f (d i s t a n c e N == 800) {
504
505 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
506
507 p i t c h B e n d (CH2 ,

loca lNoteN , −5000) ;
508
509 xSemaphoreGive (

xSe r i a lSemph) ;
510 }
511
512 }
513 / / C e n t e r pann ing h a n d l i n g
514 e l s e i f (d i s t a n c e N == 900) {
515
516 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
517
518 p i t c h B e n d (CH2 ,

loca lNoteN , 0) ;
519
520 xSemaphoreGive (

xSe r i a lSemph) ;
521 }
522
523 }
524 / / R i g h t pann ing h a n d l i n g
525 e l s e i f (d i s t a n c e N == 1000) {
526
527 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
528
529 p i t c h B e n d (CH2 ,

loca lNoteN , 5000) ;
530
531 xSemaphoreGive (

xSe r i a lSemph) ;
532 }
533 }
534 } / / End i f s w i t c h

76

535 / / I f t h e s w i t c h i s OFF , i t w i l l send RAW d a t a (
d i s t a n c e measurement) t o computer .

536 e l s e i f (s w i t c h S t a t e) {
537 d i g i t a l W r i t e (LED_MIDI_ON , LOW) ; / / g i v e

s i g n a l we a r e NOT i n MIDI mode
538
539 i f (d i s t a n c e N <= maxDis tance) {
540 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
541
542 S e r i a l . p r i n t ("N") ;

S e r i a l . p r i n t l n (d i s t a n c e N) ;
543
544 xSemaphoreGive (

xSe r i a lSemph) ;
545 }
546 }
547 e l s e i f (d i s t a n c e K > maxDis tance) {
548 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
549
550 i f (d i s t a n c e N == 800)

S e r i a l . p r i n t l n (" N _ l e f t ") ;
551 e l s e i f (d i s t a n c e N ==

900) S e r i a l . p r i n t l n (" N _ c e n t e r ") ;
552 e l s e i f (d i s t a n c e N ==

1000) S e r i a l . p r i n t l n (" N _ r i g h t ") ;
553
554 xSemaphoreGive (

xSe r i a lSemph) ;
555 }
556 }
557 }
558 f lagAntennaN = f a l s e ;
559 d i g i t a l W r i t e (LED_N , LOW) ;
560 } / / End i f N
561 / *−−* /
562
563 / *
564 * **
565 * Antenna M Sub−s u b r o u t i n e
566 * **
567 * /
568 e l s e i f (f lagAntennaM) {
569 d i g i t a l W r i t e (LED_M, HIGH) ;
570 i f (! s w i t c h S t a t e) {
571 d i g i t a l W r i t e (LED_MIDI_ON , HIGH) ;
572
573 i f (d i s t anceM <= maxDis tance) {
574 noteM = map (d is tanceM , 1 , maxDis tance

, ta rge tValMHi , ta rge tValMLo) ;
575
576 i f (xSemaphoreTake (xSer ia lSemph , (

T ickType_ t) 5) == pdTRUE) {
577

77

578 midi . noteOn (CH2 , noteM ,
v e l o c i t y) ;

579 b y t e tempNote = noteM ;
580 d e l a y (delayNoteOn) ;
581 midi . n o t e O f f (CH2 , tempNote) ;
582 d e l a y (d e l a y N o t e O f f) ;
583
584 xSemaphoreGive (xSe r i a lSemph

) ;
585 }
586
587 }
588 e l s e i f (d i s t anceM > maxDis tance) {
589
590 i f (xSemaphoreTake (

xSer ia lSemph , (T ickType_ t) 5) == pdTRUE) {
591
592 midi . c o n t r o l C h a n g e (CH2 ,

123 , 0) ;
593
594 xSemaphoreGive (

xSe r i a lSemph) ;
595 }
596
597 }
598
599 } / / End i f s w i t c h
600 / / I f t h e s w i t c h i s OFF , i t w i l l send RAW d a t a (

d i s t a n c e measurement) t o computer .
601 e l s e i f (s w i t c h S t a t e) {
602 d i g i t a l W r i t e (LED_MIDI_ON , LOW) ;
603
604 i f (xSemaphoreTake (xSer ia lSemph , (

T ickType_ t) 5) == pdTRUE) {
605
606 S e r i a l . p r i n t ("M") ; S e r i a l . p r i n t l n (

d i s t anceM) ;
607
608 xSemaphoreGive (xSe r i a lSemph) ;
609 }
610
611 }
612 f lagAntennaM = f a l s e ; / / r e s e t f l a g Antenna M
613 d i g i t a l W r i t e (LED_M, LOW) ;
614 } / / End I f M
615 } / / End f o r
616 } / / End t a s k
617
618 / * == * /
619 / * FUNCTIONS * /
620 / * == * /
621
622 / *
623 * F u n c t i o n : f l a s h L e d ()
624 *
625 * J u s t a f u n c t i o n t o b l i n k a LED .

78

626 *
627 * /
628 vo id f l a s h L e d (u i n t 8 _ t pin , i n t w a i t) {
629 d i g i t a l W r i t e (pin , HIGH) ;
630 d e l a y (w a i t) ;
631 d i g i t a l W r i t e (pin , LOW) ;
632 d e l a y (w a i t) ;
633 }
634
635 / *
636 * F u n c t i o n : p i t c h B e n d (u i n t 8 _ t ch , u i n t 8 _ t l o c a l N o t e , i n t bendVal)
637 *
638 * ch = c h a n n e l (CH1 , CH2 , . . . , CH16)
639 * l o c a l N o t e = l o c a l N o t e L (a n t e n n a L) o r l o c a l N o t e N (a n t e n n a N)
640 * bendVal = number between −8000 and 8000
641 *
642 * F u n c t i o n t o p roduce p i t c h b e n d message .
643 *
644 * /
645 vo id p i t c h B e n d (u i n t 8 _ t ch , u i n t 8 _ t l o c a l N o t e , i n t bendVal) {
646 midi . noteOn (CH1 , l o c a l N o t e , v e l o c i t y) ;
647 midi . p i t chBendChange (CH1 , bendVal) ;
648 b y t e tempLocNote = l o c a l N o t e ;
649 d e l a y (delayNoteOn) ;
650 midi . n o t e O f f (CH1 , tempLocNote) ;
651 d e l a y (d e l a y N o t e O f f) ;
652 }

79

	1 Introduction
	1.1 Background
	1.2 Research question
	1.3 Delimitation
	1.4 Thereminz overview
	1.4.1 Ultrasound sensor
	1.4.2 Microcontroller
	1.4.3 FreeRTOS
	1.4.4 ZigBee
	1.4.5 MIDI

	1.5 Structure of the report

	2 Literature Study
	3 The Antennas
	3.1 Distance Antenna
	3.1.1 Hardware
	3.1.2 Software

	3.2 Acceleration Antenna
	3.2.1 Hardware
	3.2.2 Software

	4 Base Station
	4.1 Hardware
	4.2 Software

	5 Evaluation and Result
	6 Conclusion and Future Work
	References
	Appendices

