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Abstract 

Smart environments are increasingly common. By utilizing sensor data from the indoor 

environment and applying methods like machine learning, they can autonomously 

control and increase productivity, comfort, and well-being of occupants.  

The aim of this thesis was to model indoor climate in conference rooms and use K-

means clustering to determine quality levels. Together, they enable categorization of 

conference room quality level during meetings. Theoretically, by alerts to the user, this 

may enhance occupant productivity, comfort, and well-being. Moreover, the objective 

was to determine which features and which k would produce the highest quality clusters 

given chosen evaluation measures.  

To do this, a quasi-experiment was used. CO2, temperature, and humidity sensors were 

placed in four conference rooms and were sampled continuously. K-means clustering 

was then used to generate clusters with 10 days of sensor data. To evaluate which 

feature combination and which k created optimal clusters, we used Silhouette, Davis 

Bouldin, and the Elbow method.  

The resulting model, using three clusters to represent quality levels, enabled 

categorization of the quality of specific meetings. Additionally, all three methods 

indicated that a feature combination of CO2 and humidity, with k = 2 or k = 3, was 

suitable.  

Keywords 

Ubiquitous computing, model development and analysis, unsupervised learning, smart 
environment, indoor climate. 
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1 Introduction 
 

Weiser (1999) proposed a vision of the future where computers would become integrated in our 

everyday lives to the point where we would cease to notice them. To explain this, he coined the 

term ubiquitous computing, also known as pervasive computing. This trend has emerged in 

different areas, smart environments being one of them (Satyanarayanan, 2001; Davies & 

Clinch, 2017). 

 

A smart environment can be described as “one that is able to acquire and apply knowledge 

about the environment and its inhabitants in order to improve their experience in that 

environment” (Cook & Das, 2007, p. 54). A common setting for this type of environment is in 

office buildings.  

 

There is a distinct relationship between human behavior and indoor air quality (Lin et al., 2017). 

It has also been concluded that occupancy can be determined by measuring CO2, temperature, 

and humidity (Candanedo & Feldheim, 2016; Szczurek, Maciejewska & Pietrucha, 2017). 

There are approaches that use machine learning to control HVAC (Heating, Ventilation, Air 

Conditioning) by learning from the behavior of the users and adapting toward their needs (Peng, 

Rysanek, Nagy & Schlüter, 2018). Machine learning can be defined as “the systematic study of 

algorithms and systems that improve their knowledge or performance with experience” (Flach, 

2012, p. 3). 

 

By analyzing indoor climate (air quality, temperature, space, acoustics, lighting) with statistical 

models or machine learning to enable autonomous smart environments, it is possible to increase 

well-being and productivity of occupants and decrease energy consumption (Cook & Krishnan, 

2014; Mozer et al. 1995; Peng et al., 2018). In order to implement a system that applies machine 

learning effectively, it is necessary to model the indoor environment to determine which factors 

are relevant and suitable to consider.  

 

This thesis was in collaboration with ROL Ergo, a company specialized in smart office solutions 

and activity-based workplaces (ABW’s). The purpose of ABW’s is to reduce costs, increase 

flexibility and save space (Rolfö, Eklund & Jahncke, 2018). ROL Ergo is a part of the Mining 

Actionable Patterns from complex Physical Environments (MAPPE) research project at 

Jönköping University, which is about creating machine learning solutions that can provide 

understandable explanations of predictions. According to ROL Ergo, what is needed is 

technology that goes further than describing the data collected. Users desire technology that can 

automatically predict and explain e.g. office and resource use, productivity, or user satisfaction 

based on sensor data. A possible use of this technology could be an algorithm that predicts room 

quality and alerts the user about current room quality status.  

 

As literature shows, there are approaches to how smart environments can be used to control 

indoor climate, and research about which factors can be controlled to enhance productivity. 

However, as far as we are aware, there is no research about how indoor climate in conference 
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rooms can be modeled to categorize room quality level. Therefore, this thesis aimed to 

contribute to the knowledge base by creating a model of indoor climate in conference rooms 

and using K-means clustering to determine quality levels, which enables categorization of 

quality level of meetings. Moreover, the objective was to determine which features and which 

k produces the highest quality clusters given chosen evaluation measures. 

2 Background 

The outline of this chapter is as follows. First, smart environments are reviewed followed by 

indoor climate. The potential relationship between indoor climate, occupant productivity, and 

well-being is explained. Thereafter, the possible connection between smart environments and 

indoor climate, and implementation of smart environments using machine learning and data 

mining is described. Lastly, the research problem is addressed. 

2.1 Smart environments 
 

A smart environment continuously perceives the environment and based on the goals and 

outcomes makes automated decisions about what actions to take to change the state of the 

environment. It can be defined as “one that is able to acquire and apply knowledge about the 

environment and its inhabitants in order to improve their experience in that environment” (Cook 

& Das, 2007). The components range from physical sensors and actuators, software interfaces 

and sensor networks, methods for data mining and predictions, to decision making.  

 

Different domains where smart environments are applied encompass traditional infrastructure, 

industry sectors, and personalized digital services (Curry & Sheth, 2018). Liang, Cao, Liu and 

Liang (2016) envision a smart world, where advanced techniques like advanced networks, 

ubiquitous sensing, and collaborative computation are used to enable a more productive, safe, 

efficient, and connected world.  

 

A smart world contains smart cities, which are cities that through investments in human and 

social capital and communication infrastructure promote a high quality of life and economic 

growth, while managing natural resources wisely (Caragliu, Del Bo & Nijkamp, 2011).   

 

Smart buildings and indoor environments like homes and offices are a part of smart cities. They 

use multiple sensors and actuators to react to the occupants and/or the utilities without the 

occupants’ need to intervene with the system (Torunski, Othman, Orozco & El Saddik, 2012). 

According to De Silva, Morikawa and Petra (2012), there are three main categories of smart 

homes in the literature; ones that support the well-being of inhabitants by detecting behavior, 

ones that store and retrieve multimedia captured within the home, and ones that deal with 

surveillance by detecting information that can raise alarms.  

2.2 Indoor climate 
 

Indoor climate is important not only for energy consumption saving, but it is indicated to affect 

the occupants’ comfort, health, and productivity. Indoor climate can be defined as; thermal 
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environment, air quality, acoustics, and lighting (European Standard, 2006). These factors are 

indicated in the literature to affect productivity in indoor environments. Additional factors are 

office layout, biophilia and views, look and feel, and location and amenities (Al Horr et al., 

2016).  

 

Productivity, defined as ratio of output to input (Al Horr et al., 2016), is not just about speed of 

work, it is about mental and physical health (Browning, 2012). It is indicated that humans 

experience a higher level of happiness in a natural environment. Biophilia is a hypothesis that 

implies that there is an instinctive bond between humans and their attraction to nature (Wilson, 

1984). Therefore, biophilic design, meaning built environment integrated with nature, is often 

seen as a luxury for employers. In workplaces, this encompasses plant life, water, breezes, 

sounds, scents, and other natural elements (Browning, 2012).  

 

Indoor thermal comfort is a major factor that affects productivity of occupants. An office 

environment that is satisfactory for occupants may reduce complaints and absence while 

increasing productivity. Comfort has positive effects on well-being and can be defined as the 

absence of unpleasant sensations. It constitutes the physical environment (air, climate), 

functional environment (disturbances, resources), and psychological environment (privacy, 

territory) (Al Horr et al., 2016). 

 

A high CO2 concentration in the air is connected to physiological changes, which lead to a 

decrease in the user's functional ability. To improve productivity, there needs to be appropriate 

ventilation in relation to the number of occupants in a building (Vehviläinen et al., 2016). 

Human metabolism is the main source of CO2 in indoor environments. No toxic effects or 

cognitive performance losses are expected below 10 000 ppm (Zhang, Wargocki & Lian, 2016) 

but at levels above 10 000 ppm there are measurable effects on the respiratory system (Maresh 

et al., 1997) as well as heart rate and systolic blood pressure (Bailey, Argyropoulos, Kendrick 

& Nutt, 2005). Arbetsmiljöverket (Swedish Working Environment Agency) (2009) state that 

the ambition should be to keep CO2 below 1000 ppm. They also specify that indoor air 

temperature should be kept at 20-24 °C in winter and 20-26 °C in summer. It has been indicated 

that CO2, temperature, and humidity correlate in indoor environments, since they are exuded 

by humans (Lazovic, Stevanovic, Jovasevic-Stojanovic, Zivkovic & Banjac, 2016).  

 

Very low or very high indoor humidity can cause discomfort since the humidity affects the 

perception of air temperature. Humidity below 40% is considered low, and can cause eye, skin, 

and mucous membrane irritation. At 30% and below, skin irritation and static electricity are the 

biggest concerns (Derby & Pasch, 2017). 

2.3 Intelligent analysis of indoor climate for increased well-being 
 

A smart environment may control indoor environment factors to optimize energy consumption 

as well as productivity and well-being. This often involves control of HVAC in buildings. By 

control and reduction of the consumption of energy, an optimal indoor climate can be 

maintained for both environment and cost purposes. For example, by detection of occupancy, 
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the HVAC system and lighting in the building can be optimized (Candanedo & Feldheim, 

2016). 

 

To make a smart environment further understand the context of the environment and make 

automated decisions, intelligent analysis is necessary. Automated support can be provided by 

analysis of indoor climate data from sensors with algorithms and machine learning techniques 

like data mining (Cook & Krishnan, 2014). 

 

Drawing from the pervasive computing vision of Weiser (1999) and other research motivated 

by it, Davies and Clinch (2017) identify a new research area called pervasive data science. It is 

characterized by “a focus on the collection, analysis (inference) and use of data (actuation) in 

pursuit of the vision of ubiquitous computing” (Davies & Clinch, 2017, p. 1). They consider 

smart environments to be one of the most obvious applications of pervasive data science and 

include algorithms for processing pervasive sensor data as a topic of research. In practice, this 

could involve smart environments which utilize sensor data to understand the context of the 

environment and make autonomous decisions regarding its climate. 

 

There are several approaches to control an indoor climate in a smart environment. Merabet, 

Essaaidi, Benhaddou, Khalil and Chilela (2018) developed a model, which with environment 

sensor data as well as information about the occupants, could predict their thermal comfort and 

automatically adjust the environment accordingly. With the same purpose in mind, Peng et al. 

(2018) used supervised and unsupervised learning to develop a control strategy which 

responded to occupant behavior and successfully controlled the cooling system in an office.  

2.4 Problem description 
 

The problem is associated to how the indoor environment can be modeled with relevant data to 

enable use of machine learning e.g. autonomous decisions, pattern recognition or predictions. 

 

In order to utilize sensor data from the environment for machine learning solutions, it is 

necessary to model the specific environmental factors. Hence, to model indoor climate in an 

office environment, suitable factors need to be considered. Humans prefer different types of 

indoor climate and it may be difficult to create statistical models with subjective data based on 

perception. Useful connections can be drawn between objective data that is indicated by 

research to affect the brain capacity e.g. CO2 and temperature (Vehviläinen et al., 2016), as well 

as humidity. There are many different factors that can be studied and modeled to draw 

connections, and one can use statistical models to determine which relationships are relevant.  

 

Specifically, this thesis aims to contribute to the knowledge base by modeling conference room 

environments, using clustering to categorize meeting room quality, and evaluating the 

clustering performance. This knowledge can be used in a smart office environment to enhance 

the comfort and productivity. Furthermore, it can provide means to create more energy efficient 

environments by establishing awareness of the indoor climate. 
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3 Related work 

The literature shows different ways in which smart environments are used to monitor human 

activity, analyze human behavior’s impact on indoor climate, and decrease energy 

consumption. It also shows how environmental data can be analyzed with K-means clustering. 

Mozer et al. (1995) conducted research on home automation using machine learning. They saw 

potential in a system that operates the home and adapts to the behavior of the occupants, both 

to meet their needs and the energy consumption goals of the home. They explored neural 

network reinforcement learning and prediction techniques as tools to use adaptive control in a 

residence that was equipped with multiple sensors and actuators.  

 

To study how human behavior affects indoor air quality, Lin et al. (2017) collected behavior 

data from sensors and chemical indoor air quality measurements in two smart home 

environments. They used machine learning algorithms to see what indoor air quality factors 

were impacted by smart home features. The results showed that there is a strong relationship 

between human behavior and indoor air quality. This result is useful knowledge to us when we 

select factors to measure and analyze. 

 

Candanedo and Feldheim (2016) measured the accuracy of predictions regarding occupancy in 

a room using light, temperature, CO2, and humidity data. Szczurek et al. (2017) did a similar 

study with a time series of CO2 concentration, temperature, and humidity to determine 

occupancy during a 60-minute period as well as determine duration of occupancy periods. The 

experiment was successful, and it was concluded that certain measured amounts of CO2, 

temperature, and humidity could be used to determine occupancy. This supports our decision 

to study temperature, CO2 and humidity, since this indicates that they are affected by utilization.  

 

To decrease HVAC energy consumption in an office building, Peng et al. (2018) used a control 

strategy based on supervised and unsupervised learning that responded to the occupants’ 

behavior. It was used to control an office cooling system and succeeded to improve energy 

savings by between 7% and 52% compared to a conventional cooling system. 

 

Merabet et al. (2018) conducted an experiment where a sensor network measured the thermal 

comfort of users and adjusted the environment accordingly. They concluded that biometric 

information about the occupants, like height and waist size, could be used to create a logistic 

regression predictive model of thermal comfort. They said their results can pave the way to 

systems that can predict comfort of occupants and automatically adjust the environment. 

 

Li, Logenthiran, Phan and Woo (2018) proposed a power alert system for a smart home with 

an energy management system. Using the K-means clustering algorithm, they classified power 

consumption into three levels (high, average, low). They evaluated the clustering performance 

and concluded that the system succeeded to perform reliable clustering and created energy 

consumption awareness for residents. Since K-means clustering was successfully used to 
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cluster power consumption levels in a smart home, we consider it a suitable method to cluster 

indoor environmental factors since it is a related area with similar data. 

 

Evaluation of clustering performance can be used to verify that the clustering algorithm that is 

used achieves a satisfactory result. Celestino et al. (2018) used several evaluation measures, 

e.g. Silhouette, to see if K-means clustering with a reduced dimension of features was preferable 

to using a high dimension of features. The conclusion was that the method that reduced the 

number of features improved clustering performance. Since we do not know which k is suitable, 

we too aim to use Silhouette, among other methods, to verify that we get a fair result. 

 

The literature contains a substantial amount of research in these areas, but there was no research 

found in our literature search that specifically addresses how indoor climate can be modeled to 

analyze conference room quality with K-means clustering. Neither was there any research about 

categorization of conference room quality during meetings to provide feedback to the 

occupants. 

4 Aim and Scope 
 

The purpose of this thesis is:   

To model indoor climate factors in conference rooms and use K-means clustering to categorize 

quality levels, use measures to evaluate which feature combination and which k that produces 

the best results, and to evaluate the model by fitting meetings into it. 

  

This is done with a quasi-experiment in smart office conference rooms to measure and analyze 

CO2, temperature, and humidity sensor data in connection to room quality. The K-means 

clustering algorithm is used to cluster the data which enables categorization of conference room 

quality during meetings. The clustering is then evaluated to determine the best clustering 

performance depending on feature selection and k, number of clusters. To evaluate the model 

further, meetings are fitted into it to determine meeting quality. 

  

The purpose is supported by the following research question:   

• How can CO2 level, temperature, and humidity in a conference room be modeled to 

categorize room quality? 

5 Method  
 

The objective of the study was to determine how indoor climate factors best could be modeled 

to categorize room quality. This included feature engineering, design and application of the 

experiment, and use of evaluation measures to analyze the results. The literature review led us 

to the selection of indoor climate factors that may be suitable to study. Our study had an 

empirical quantitative approach and used a quasi-experiment as research method.  
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5.1 Experiment design 
 

The aim of the quasi-experiment was to answer the research question. A quasi-experiment has 

a similar purpose as true experiments; testing a hypothesis about manipulable causes. The 

biggest difference is that a quasi-experiment lacks random assignment and does not necessarily 

indicate a true causal relationship (Shadish, Cook & Campbell, 2002). It was not reasonable to 

assign employees who used the conference rooms randomly since they all work at ROL Ergo 

and we wanted to explore a natural setting. Additionally, we were not looking to answer a 

research question about a true causal relationship. Hence, we chose a quasi-experiment. The 

quasi-experiment was structured into different phases seen in Figure 1.  

 

 

Figure 1. Description of phases of the quasi-experiment. 

Phase one involved creating a model of room quality, which meant measuring and collecting 

data from the selected indoor climate factors using sensors. We chose to measure temperature, 

CO2, and humidity based on our literature search, which confirmed that these factors are exuded 

by humans, hence human occupancy impacts indoor climate (Lazovic et al., 2016; Lin et al., 

2017; Candanedo & Feldheim, 2016). It also indicated that human productivity, comfort, and 

well-being is affected by these factors (Al Horr et al., 2016). 

 

Temperature, CO2, and humidity sensors were installed in four conference rooms at ROL Ergo 

and streaming data was collected for ten working days. Booking data was also collected to 

determine when meetings occurred and number of participants in each meeting. We assumed 

that all participants that were invited and had not declined, attended the meetings. We also 

assumed that extreme outliers and values outside the range of the sensors were false, therefore 

they were removed.  

 

In phase two, the data was prepared and used with K-means clustering. In phase three, we 

examined which features and which number of K that resulted in high-quality clusters. This 

was done by using Silhouette, Davies Boulding Index, and the Elbow method. To test the found 

clusters, we labeled the clusters to create qualitative descriptions of what each cluster 

represented. After this we took data points from specific meetings and categorized them.  

5.2 Data collection 
 

The sensors used to measure CO2, temperature, and humidity can be seen in Table 1. They use 

an I2C protocol to communicate and were sampled every minute. One of each sensor was placed 

in every room at 1.2 m above the floor, which is at occupant height approximately half-way 

from floor to ceiling (Yun & Kim, 2013). Two rooms were of larger size (s958 and s959) and 

the remaining two rooms were of smaller size (s960 and s962).  
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Figure 2. Floor plan of ROL Ergo (ROL Ergo, personal communication, May 5, 2019). 

The sampled data from the sensors, as well as booking data, was collected working days during 

working hours, 07.00-18.00, in separate json-files. We chose not to collect data outside of these 

hours since the HVAC was turned off and few occupants were present. The data was extracted 

with a Python script, which organized it into arrays; CO2, temperature, bookings, and 

timestamps. We added criterions in the script, for example all CO2 values below 400 were 

recognized as false data and therefore not used. The limit was chosen based on interval limits 

of the CCS811 sensor (see Table 1). We also removed all temperature values below 18 °C since 

temperatures this low were uncommon and when they occurred it was likely an error, based on 

temperatures surrounding these values. 

 

Table 1 

Table listing the sensors used in the experiment. 

 

Name 

 

Manufacturer 

 

Type 

 

Unit 

 

Interval 

 

Format 

BME280 Bosch Temperature 

Humidity 

Celsius 

Percent 

0 - 850 

0 - 100 

Integer 

Integer 

CCS811 AMS CO2   Ppm 400 - 29206 Integer 

 

10 days of data from temperature, CO2, and humidity sensors was combined into one data set. 

One data point in this set consists of one measurement of temperature, CO2, and humidity each, 

at a certain point in time. The purpose of this set was to use it to generate the clusters with K-

means clustering. Since we wanted as much data as possible to create a comprehensive model 

of the indoor climate, both during meetings and not, we chose to include both. 

 

In the case of meetings, we extracted the start and finish time of each meeting and calculated 

the mean CO2 level, temperature, and humidity during each specific meeting. This included 

conversion of integers to floats. After this, each meeting, with start and finish time, was 
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connected to its average CO2, temperature, and humidity level, as well as number of occupants. 

All booking data was censored to protect the identity of the occupants.  

5.3 Feature Engineering 
 

The features we chose to use in the experiment were CO2 level, temperature, and humidity. 

They are quantitative, meaning they have a real numerical scale (Flach, 2012). In addition, for 

the meeting data sets, number of occupants, timestamps (year-month-day-hour-minute), mean 

CO2 level, mean temperature, and mean humidity were used to create few data points 

representative of whole meetings.  

5.4 Clustering 
 

The K-means clustering algorithm, also known as “Lloyd’s Algorithm”, was introduced in 1967 

as a solution to difficult classification problems. The algorithm is an unsupervised learning 

algorithm that classifies different groups of data based on pre-determined k number of clusters. 

Unsupervised learning uses data without labels, i.e. previous information about the data, to learn 

(Flach, 2012). We chose K-means clustering since it is a popular clustering algorithm and we 

found in the literature that it was used in a related area by Li et al. (2018). They described the 

algorithm as follows: 

1. Initialize k centroids 

2. Assign every data point to nearest centroid 

3. Recalculate the k centroids with the same data points 

4. Repeat step 2 and 3 until the centroids no longer shift their position 

See Figure 3 to see our flow chart of the K-means clustering algorithm based on the previous 

description of the algorithm.  
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Figure 3. Flow chart of K-means algorithm. 

 

In our case, the first step in the K-means clustering algorithm was to plot our data and visualize 

it in a diagram. Then we randomly picked three points somewhere in the diagram and marked 

them as cluster centers, also known as centroids. The next step was to identify the closest 

centroid for each point by calculating the Euclidean Distance (d), 

 

𝑑 =  √(𝑥2 −  𝑥1)2 + (𝑦2 −  𝑦1)2 + (𝑧2 − 𝑧1)2 

 

We assigned all points to a centroid, updated the centroids based on the points, and repeated 

the process until no centroid shifted their position. After that we marked all the points with 

different colors to represent different clusters. In our case we used teal, blue, and green. The 

colors had no other meaning than which cluster it represented. 

5.5 Evaluation 
 

Since clustering, unlike supervised techniques, uses no previous information about existing 

partitions of the data, it is not possible to know if the cluster quality is dependent on the structure 

of the data or the performance of the algorithm (Menardi, 2010). Hence, because K-means 

clustering requires the input of number of k’s, evaluation of the clustering performance and 

structure of the data is necessary to determine which k produces the best cluster quality. For 

this purpose, we used internal evaluation measures; Silhouette analysis, Davis Bouldin Index, 

and the Elbow method. Three measures were chosen since it is recommended that several 

evaluation measures are used considering they might perform differently with different sets of 
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data. Additionally, no measure is dominant in all contexts (Hämäläinen, Jauhiainen & 

Kärkkäinen, 2017). Since there is no prior information of the datasets, only internal measures 

were chosen. External measures are available, but require prior information about the dataset 

(Rendón, Abundez, Arizmendi & Quiroz, 2011). 

 

Silhouette analysis is based on the tightness and separation of clusters. It uses a measurement 

of how close each data point is to the allocated cluster, compared to a measure of the distance 

from the closest alternative cluster (Menardi, 2010). To determine the Silhouette, the partitions 

from a clustering algorithm and the proximities between the data points are needed (Rousseeuw, 

1986). The Silhouette for the elements si is defined as 

 

𝑠𝑖 =
𝑏𝑖 − 𝑎𝑖

max {𝑎𝑖, 𝑏𝑖}
 

 

Which results in a coefficient between –1 and 1, where 1 is a positive result. Results with si 

near 1 are considered good, while si near 0 indicates that the observation lies between clusters, 

and observations with si below 0 indicates they are placed in the wrong cluster (Menardi, 2010). 

An average si can be determined either per cluster, or from the entire data set (Lleti, 2004). We 

used code from Scikit-learn to calculate and visualize the Silhouette (Pedregosa et al., 2011).  

 

Additionally, we used Davies Bouldin Index. It is a measure of the computing quality of 

clustering. Similar to Silhouette, clusters that are less dispersed and further apart will result in 

a better score. The Davies Bouldin Index formula is defined as 

 

𝐷𝐵𝐼 =
1

𝐾
∑ 𝑚𝑎𝑥

𝑖;𝑗≠𝑖

𝑠𝑖 + 𝑠𝑗

𝑑𝑖,𝑗

𝐾

𝑖=1

 

 

Where 𝑠𝑖 =
1

|𝐶𝑖|
 ∑ 𝑥𝑗 ∈  𝐶𝑖 || 𝑥𝑗 − 𝑣𝑖 || is a measure of scatter within the cluster i, k is the number 

of clusters, xi is an n dimensional feature vector assigned to cluster i, vi is the center of the 

cluster i, Ci represents the cluster i. The output known as the Davies Bouldin score is a float 

and the minimum score is zero with lower values indicates better clustering (Xiao, Lu & Li, 

2017). 

 

Furthermore, we used the Elbow method with Scikit-learn (Pedregosa et al., 2011). The Elbow 

method calculates Sum of Square Distances (SSD) for a chosen k. SSD is the sum of the average 

Euclidean distance of each point to the centroid. It is calculated as follows, 

 

𝑆𝑆𝐷 =  ∑ ||𝑥
𝑖

− 𝑥𝑗||
2

𝑛

𝑖,𝑗=1

 

 

(Witsenhausen, 1974). This is plotted with, for example, k from 1-10 on the x-axis and SSD on 

the y-axis. The idea is that the graph levels out when adding another k does not significantly 
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reduce SSD, which is where the optimal k is located. This becomes visually clear as the graph 

forms an “elbow” (Soni,, 2012). 

 

When the suitable k has been determined, labels can be assigned to the clusters. The labels are 

based on the temperature, CO2, and humidity limits from Arbetsmiljöverket (2009) and Derby 

and Pasch (2017). This means that clusters with temperature within the 20 - 26 °C range, CO2 

below 1000 ppm, or humidity above 20% are considered good quality. Clusters outside these 

limits are considered bad. If more than two clusters are used, the labels will range from bad, 

medium, and good quality. 

 

6 Results 

We plotted the results of the K-means clustering algorithm including the centroids so that we 

could receive a visual result. As shown in Figure 4a above, CO2 is placed on the x-axis and 

 

 
   (a)          (b) 

 

 

              
           (c)                            (d) 

Figure 4. Visualization of the result from the K-means clustering algorithm; (a) CO2 in 

relation to humidity, (b) temperature in relation to CO2, (c) temperature in relation to 

humidity, (d) Names of the colors that we are referring to. 
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humidity on the y-axis. We see that the teal colored cluster, with low CO2 values, covers the 

whole humidity axis’ range, while the blue and the green clusters are gathered in the middle 

and upper range of the humidity’s axis. When looking at the CO2 we can see a distinct border 

between the teal, blue and green cluster. We can see that humidity increases along with the CO2.  

 

In Figure 4b the temperature is placed on the x-axis and CO2 on the y-axis. Here we see that 

the teal cluster with the lowest CO2 covers the whole temperature axis. The blue and green 

clusters are spread out through the middle axis of the temperature and the middle and high range 

of the CO2 axis.  

 

In Figure 4c, the temperature is placed on the x-axis and the humidity on the y-axis. We can see 

that the teal and the blue clusters cover the whole temperature axis and the green covers the 

middle temperature axis. When looking at the humidity, the teal covers the lower area, the blue 

covers the middle area and the green covers the upper area. 

 

Table 2 

Silhouette score for all respective feature combinations. 

 

k 

 

CO2, Humidity, Temp 

 

CO2, Humidity 

 

CO2, Temp 

 

Humidity, Temp 

2 0.73 0.72 0.73 0.61 

3 0.68 0.68 0.68 0.50 

4 0.61 0.61 0.61 0.49 

5 0.59 0.60 0.60 0.48 

6 0.57 0.57 0.56 0.46 

7 0.57 0.57 0.57 0.45 

8 0.57 0.57 0.57 0.42 

9 0.56 0.56 0.57 0.41 

10 0.55 0.55 0.56 0.43 

 

Looking at the results from the Silhouette analysis, it can be seen in Table 2 than the Silhouette 

scores are similar except for the feature combination humidity and temperature, which is lower. 

k = 2 and k = 3 resulted in the highest Silhouette scores, see Table 2. Their average Silhouette 

scores are illustrated by the red vertical lines shown in Figure 5a and 5b.  
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’  

(a)         (b) 

Figure 5. Silhouette score for k; (a) k = 2, (b) k = 3. 

 

The average Silhouette was calculated based on the entire data set. The size of each cluster was 

also illustrated by the vertical size of the Silhouettes. We can see that Figure 5a has a higher 

average Silhouette index, while Figure 5b has a slightly lower one. However, Figure 5b displays 

a result where each cluster has a similar Silhouette score, meaning that the clusters have a higher 

Silhouette score independent of each other.  

 

The Davies Bouldin index analysis indicated k = 2 as preferred, since it has the lowest score. 

See Table 3.  

 

Table 3 

Result from the Davies Bouldin Index analysis for each k. 

 

Number of k 

 

Davies Bouldin 

2 2.00 

3 6.14 

4 16.73 

5 28.77 

6 55.58 

7 82.36 

8 99.45 

9 126.32 

10 142.75 
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From the Elbow method we used temperature, CO2, and humidity with the combinations: CO2 

and temperature, CO2 and humidity, temperature and humidity and all three of them together. 

The result showed no significant difference between the different combinations. Therefore, we 

only show the graph containing all three of them. If we look at the graph, we can see how that 

the marginal gain drops and creates an angle in the graph where 2 < k < 3.  

 

 
   (a)                (b) 

Figure 6. Elbow method result with CO2, humidity and temperature; (a) Results from the Elbow 

method, (b) same graph as graph (a) but with help lines added. 

 

With a small margin, by looking at the slope where it forms an Elbow, it is inclined that k = 3 

is slightly better than k = 2 for our type of dataset. It is also possible to see this when drawing 

a help line between the start and the finish point in the Elbow diagram and then from each point 

to the line using Euclidean distance, see Figure 6b. The point with the longest distance to the 

help line indicates the optimal k (Soni, 2012) 
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Figure 7. Determination of which cluster each meeting (1, 2, 3) belongs to; (a) based on Figure 

4a, (b) based on Figure 4b, (c) based on Figure 4c. (d) Names of the colors that we are  

referring to. 

We added meetings to see which clusters they would be categorized into. To visualize the result, 

we show three meetings where each meeting is marked by a number. For information about the 

data from the meeting, see Table 4. 

 

Table 4 

Description of meetings and their respective features.  

 

Meeting 

 

Occupants 

 

Date 

 

Duration 

 

Temp 

 

CO2 

 

Humidity 

 

Room 

1 8 24/4/19 70 min. 25.3 3079.9 25.8 s962 

2 3 26/4/19 90 min. 25.7 1577.1 37.5 s960 

3 2 3/5/19 60 min. 26.1 555.3 18.9 s960 

 

Meeting 1 was categorized into the green cluster, meeting 2 was categorized into the blue cluster 

and meeting 3 was categorized into the teal cluster.   

 
   (a)       (b)  

               
 (c)                 (d) 

 

(c) 
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7 Discussion 

7.1 K-means results 

What each cluster represents is different levels of temperature, CO2, and humidity, which can 

be labeled using limits for indoor climate. When the K-means clustering algorithm was 

executed with k = 3, labels were assigned to the clusters. Looking at Figure 4, teal was labeled 

‘good’, blue ‘medium’, and green ‘bad’ quality. 

After we visualized the result, we could see an indication of CO2 increasing with humidity (see 

Figure 4a). This suggests a relationship between CO2 and humidity, which is in line with 

findings by Lazovic et al. (2016). The clusters in Figure 4a also indicate the quality levels of 

CO2, with distinct cluster limits at approximately 1000 ppm and 2500 ppm. This correlates well 

to the CO2 limit recommendations found in the literature where <1000 ppm is considered good 

(Arbetsmiljöverket, 2009). When looking at temperature and CO2, it was indicated that high 

CO2 levels occurred at temperatures between 24 and 27. However, this may have occurred since 

94% of all temperatures in the data set were between these values. Furthermore, temperature 

and humidity did not indicate any visible correlation but were quite evenly distributed 

regardless of their respective levels. Temperature and humidity showed no correlation even 

though they often covary (Lazovic et al., 2016). This could be because the correlation was not 

strong enough to be clearly visible, or because temperature could have been controlled more 

efficiently by the HVAC than CO2. 

7.2 Evaluation results 

The results from the Silhouette and the Elbow method indicated that both k = 2 and k = 3 were 

suitable, while the Davis Bouldin Index indicated that k = 2 was suitable. The result from k = 3 

(Figure 5b) showed that each independent Silhouette had a similar, high score compared to each 

other, while k = 2 (Figure 5a) had a total average better Silhouette but larger difference between 

independent Silhouettes. This means there is less difference between cluster quality when k = 

3, than when k = 2. Therefore, when choosing between k = 2 and k = 3, there is a trade-off 

between higher average Silhouette, and more defined independent Silhouettes. The results also 

showed that the Silhouettes were similar when using humidity and CO2, or temperature and 

CO2 for clustering, as when using all three features. However, temperature and humidity used 

together returned slightly lower Silhouette scores (see Table 2). This relates to our analysis of 

the visualization of the clusters where temperature and humidity showed no correlation. 

These evaluation measures give us insight into the quality of clusters depending on number of 

k, but one should also consider the purpose of the clusters when determining which k is suitable. 

Since we wanted to show quality levels, k = 2 or k = 3 were suitable options because higher k’s, 

more levels, would be difficult to comprehend and therefore not useful for this purpose. 
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7.3 Categorization of meetings  

When data from specific meetings was analyzed by categorizing the meetings to clusters, it was 

possible to tell that CO2 levels were higher, and humidity levels slightly higher, when more 

occupants attended the meetings. This correlates to the causal relationship between human 

presence, CO2 and humidity (Zhang, Wargocki & Lian, 2016; Lazovic et al., 2016). However, 

temperature showed little correlation to occupancy. In Figure 7, each meeting from Table 4 is 

visualized and one can tell that each meeting was categorized to the appropriate cluster when  

k = 3, depending on its temperature, CO2, and humidity values. However, it was not clear that 

either k = 2 or k = 3 could explain other patterns, like if one of the clusters encompassed all 

collected meeting data and another cluster only non-meeting data. 

7.4 Validity threats 

We verified that we measured relevant data since CO2, temperature, and humidity are exuded 

by humans and are generally accepted in the literature to be important factors to maintain a 

productive work environment and can be used to measure occupancy. Since we did not alter 

the features or indoor environment, there was no risk of threatening the treatment validity before 

or during measurement. However, there was a small risk of the employees at ROL 

unconsciously altering their behavior since they knew that data was being collected. We did not 

consider this a significant threat since the employees at ROL are used to sensors in the office 

environment. 

Furthermore, poorly functioning sensors could result in inaccurate data. This was noticeable in 

the raw data, where missing or invalid data from sensors occurred. We counteracted this threat 

by removing all data from days with errors and removing any extreme or unpredictable outliers. 

However, this also posed a risk that we removed data that we thought had errors but did not. 

The best solution to counteract these threats is to use high quality sensors and verify that they 

are always functioning.  

In the case of meetings, we did not take into consideration if there had been a meeting prior to 

a meeting that we collected measurements from. This means the previous meeting could have 

impacted the measurements, which matters when analyzing the impact of number of occupants. 

This is something to bear in mind for future research where, for example, a baseline level for 

CO2, temperature, and humidity in the specific rooms could be determined, and only meetings 

with this start level could be used. Furthermore, the data of number of occupants during the 

meetings was not necessarily correct. This data was collected from a booking system, so there 

is a possibility that some occupants did not actually participate in a meeting they were invited 

to. However, the booking system showed if the meeting had occurred at all. To ensure accurate 

data, there is a need for a more effective method that determines number of occupants 

automatically. 

Our results are generalizable to other environments since they follow generally accepted 

relationships between occupancy and indoor climate. However, since the clusters are based on 
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data from a specific environment, new measurements and cluster calculations should be done 

in the said environment to be able to utilize the categorization effectively. In an automated 

system, data can be measured continuously. 

We consider the results valid in terms of how levels of room quality are determined, since we 

use generally accepted limits for CO2, temperature, and humidity to analyze the results. 

Additionally, we used three evaluation measures to confirm that the K-means clustering 

algorithm produced satisfactory clusters. 

8 Conclusions 

After clusters were defined using the K-means clustering algorithm, it was possible to assign 

three meeting to specific clusters depending on their features. This meant it was possible to 

categorize the quality level of the respective meetings. Since this was the main purpose of the 

thesis it was an important result. We were also able to determine the optimal number of k, k = 

2 or k = 3, using Silhouette, Davies Bouldin Index, and the Elbow method. Our results 

confirmed that CO2 and humidity correlated in response to usage of conference rooms, while 

no discernible patterns could be found using temperature. A limitation that may have affected 

the validity was the occurrence of incorrect sensor data, and uncertain data of the number of 

occupants during meetings. In future research, we suggest that sensors are checked regularly 

and that a more sophisticated method for determining number of occupants is applied. 

We suggest that future research explores how qualitative aspects can be included in the model 

of room quality. This enables study of subjective data such as personal preference of look and 

feel, biophilia and views, and distance and amenities. In a working product, this could entail 

that the user is able to not only get recommendations for conference rooms based on level of 

quality from objective sensor data, but on subjective data about their personal preference and 

previous ratings of rooms. 

The contribution of this thesis to the knowledge base is a model of indoor climate in conference 

rooms, to enable categorization of room quality during meetings. It is also an evaluation of 

which features, and number of k is suitable for determining levels of room quality with K-means 

clustering. Moreover, it contributes as a preceding study to the MAPPE research project, and 

to ROL Ergo, with increased knowledge about how sensor data can be utilized in conference 

rooms. At last, it can provide means to create more energy efficient environments by 

establishing awareness of the indoor climate.  
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