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Evaluation of Climate Model Performance for Water Supply
Studies: Case Study for New York City
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Abstract: Evaluating the suitability of data from global climate models (GCMs) for use as input in water supply models is an important
step in the larger task of evaluating the effects of climate change on water resources management such as that of water supply operations.
The purpose of this paper is to present the process by which GCMs were evaluated and incorporated into the New York City (NYC) water
supply’s planning activities and to provide conclusions regarding the overall effectiveness of the ranking procedure used in the evaluation.
A suite of GCMs participating in Phase 3 of the Coupled Model Intercomparison Project (CMIP3) were evaluated for use in climate change
projections in the watersheds of the NYCwater supply that provide 90% of the water consumed by NYC. GCM data were aggregated using the
seven land-grid points surrounding NYC watersheds, and these data with a daily timestep were evaluated seasonally using probability-based
skill scores for various combinations of five meteorological variables (precipitation, average, maximum and minimum temperatures, and wind
speed). These are the key variables for the NYC water supply because they affect the timing and magnitude of water, energy, sediment, and
nutrient fluxes into the reservoirs as well as in simulating watershed hydrology and reservoir hydrodynamics. We attempted to choose a subset
of GCMs based on the average of several skill metrics that compared baseline (20C3M) GCM results to observations. Skill metrics for the study
indicate that the skill in simulating the frequency distributions of measured data is highest for temperature and lowest for wind. However, our
attempts to identify the best model or subgroup of models were not successful because we found that no single model performs best when
considering all of the variables and seasons. DOI: 10.1061/(ASCE)WR.1943-5452.0001054. This work is made available under the terms of
the Creative Commons Attribution 4.0 International license, http://creativecommons.org/licenses/by/4.0/.

Author keywords: Evaluation GCM models; Global climate models (GCMs); Probability-based skill score; Fourth assessment report in
Coupled Model Intercomparison Project (AR4, CMIP3); Adaptation; Water supply.

Introduction

Water utilities are increasingly incorporating climate change into
their planning activities using several methodologies. New York
City’s Department of Environmental Protection (NYCDEP) has
undertaken a Climate Change IntegratedModeling Project (CCIMP)
to evaluate the potential effects of climate change on New York
City’s (NYC’s) water supply. This project uses a suite of global
climate models (GCMs) and an integrated system of watershed
and reservoir models (NYCDEP 2013). The watershed and reser-
voir models require many meteorological variables: precipitation,
average, maximum and minimum temperatures, and wind speed,
which are referred to in this note as Ppt, Tave, Tmax, Tmin, and
Wind, respectively. These variables are needed as inputs to the
models simulating reservoir hydrodynamics, watershed hydrology,
and vegetation (Anandhi 2016; Anandhi et al. 2011, 2013, 2016).
They affect the timing and magnitude of hydrologic inputs, the
fluxes of dissolved and particulate nutrients into the reservoirs,

and the reservoir hydrodynamics and mixing. In previous studies,
we evaluated a methodology that would rank GCMs based on the
accuracy of their historical climate simulations (i.e., baseline or
20C3M) in relation to snow water equivalent simulations that are
a component of hydrologic models used by NYCDEP (Anandhi
et al. 2011).

The expected impacts of climate change on the NYC water sup-
ply will affect both the quality and quantity of water stored in the
supply. Water quality issues have at times limited the use of differ-
ent reservoirs, and the NYCDEP must make operational decisions
considering both quality and quantity. The novelty of this study is
that we simultaneously evaluate a suite of metrological variables
that are needed as inputs for models that affect both reservoir water
quality and quantity. This significantly increases the number of
meteorological variables that must be considered. We demonstrate
the use of skill scores (Johnson and Sharma 2009; Raisanen 2007)
for evaluating GCM performance for the complete set of meteoro-
logical variables that are needed to force the watershed and reser-
voir models used in the CCIMP, and to document how NYCDEP
has used this methodology as part of the CCIMP. We are not aware
of any other water supply that has undertaken such a broad evalu-
ation of GCM performance using the skill score methodology.

Study Region and Data

Our focus is on the Catskill and the Delaware subsystems of the
New York City water supply system, which are located west of
the Hudson (WOH) River. Together, the WOH watersheds provide
90% of NYC’s daily water demand and are the largest unfiltered
water supply system in the United States. The system consists
of six reservoir watersheds [Cannonsville, Askokan, Nerversink,
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Fig. 1. (Color) (a) Two spatial scales: the seven closest land grids (CLG) used in the main this paper and closest to the grid cell closest to the center of
the west of Hudson WOH watershed (CCG); (b) WOH reservoir watersheds; and (c) methodology followed in this study.
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Schoharie, Rondout, and Pepacton; see Fig. 1(b)], which encom-
passes an area of approximately 4,100 km2.

Historical Measurements

Meteorological measurements of Ppt, Tmax, Tmin, Tave, and Wind
were used in the skill score comparisons described subsequently.
Two types of observed data (OD1 and OD2) were used in this study
for the skill score comparisons. OD1 is from the daily 1=8-degree
gridded reanalysis product produced by Maurer et al. (2002). Data
for the five meteorological parameters was taken from seven grid
cells surrounding the NYC WOH watershed [closest land grids
(CLG) boxes in Fig. 1(a)]. These were then averaged to give a single
daily value representative of the entire watershed area. OD2 is based
on measurements made at meteorological stations (17 precipitation,
and 3 temperature) distributed within the WOH watersheds [loca-
tions provided in Fig. 1(b)]. Spatial averages of air temperature
and precipitation were used to calculate basin average values for each
reservoir watershed (details provided in Supplemental Data). Wind
data were collected from a single shore-based station near each res-
ervoir [Fig. 1(b)]. These were also averaged to give a single WOH
value.

Baseline (20C3M) GCM Scenarios

Data associated with multiple realizations of the baseline scenario
(20C3M) from 20 GCMs were downloaded, and from these data
the five meteorological variables were extracted (Table S1). The
number of useable GCM realizations ranged between 30 and 45
depending on the climate variables evaluated. The GCMs were
from research groups participating in the World Climate Research
Programme’s (WCRP’s) Couple Model Intercomparison Project
Phase 3 (CMIP3) multimodel simulations. The grids surrounding
the study region were extracted and then interpolated to a common
2.5º grid using bilinear interpolation (yellow boxes in Fig. 1).

Methodology

The methodology followed in this study is briefly described in this
section [Fig. 1(c)] and is described in greater detail in Supplemental
Data. Basic steps include the following: identifying the purpose of
GCM evaluation for the water utility (e.g., estimating changes in
water quality); identifying the climate variables that play a role
in the processes of concern (e.g., wind in reservoir mixing); deter-
mining the spatial scales (e.g., watershed) and temporal scales
(e.g., seasonal) of interest; and identifying and estimating the per-
formance metrics (e.g., skill score) to rank the GCM’s performance.

In order to quantify the relationship between the observed
meteorological data and that obtained in the 20C3M GCM sce-
narios, metrics of similarity were estimated using both parametric
(e.g., mean) and nonparametric (e.g., various percentiles) statistical
measures (described in Supplemental Data) as well as skill scores
(SS) based on probability distribution functions (PDF). PDF-based
SS are calculated from the overlapping area between the PDFs as-
sociated with observed measurements and the same meteorological
variable obtained from 20C3M GCM scenario. SS is estimated
mathematically using equations in Anandhi and Nanjundiah (2015)
and ranges between 0 (no overlap of PDFs; GCM derived and
observed PDFs are dissimilar) and 1 (complete overlap of PDFs;
GCM derived and observed PDFs are same). More details of
SS may be obtained from Perkins et al. (2007), Anandhi and
Nanjundiah (2015) and Supplemental Data.

Results and Discussion

Comparison of CMIP3 Models to Observed Data

The SS ranged from 0.65 to 0.95 for Ppt in all four seasons at CLG
scale using OD1 dataset (Fig. 2). The solid red line is the mean
while the shaded region represents the variation in PDFs for a

Fig. 2. (Color) Probability distribution functions (PDFs) of daily precipitation (Ppt), average temperature (Tave), maximum temperature (Tmax),
minimum temperature (Tmin), and wind speed (Wind). The x-axis for precipitation is in log scale.
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meteorological data simulated by the different AR4 climate
models in the CLG region (seven land-grid points surrounding
NYC watersheds) for four seasons [December-January-February
(DJF), March-April-May (MAM), June-July-August (JJA), and

September-October-November (SON)]. In each panel, the black
bold line represents the PDF obtained using daily observed data
(OD1) for the study region. Differences between the PDFs of ob-
served Ppt and that derived from most of the GCMs are larger

Fig. 3. (a) Statistics, namely mean, standard deviation, minimum, and maximum values of the models and observations for climate variables
Ppt, Tave, Tmax, Tmin, andWind; and (b) median; interquartile range; and 5th, 25th, 75th, and 95th percentile values of the models and observations
for climate variables Ppt, Tave, Tmax, Tmin, and Wind.
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Fig. 4. (a) Summary of skill scores as a function of seasons where box and whisker plots indicate skill scores obtained for all the GCMs including all
the seasons for CLG using OD1 dataset; and (b) ranking of GCMs in this study.
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during summer and fall seasons (smaller skill scores). The reasons
for this may be that the GCM models tend to overestimate the
number of small Ppt events (1–3 mm=day, Fig. 2) and small to
medium Ppt events (Fig. 3, minimum; 5th–75th percentiles). Sim-
ilar overestimation of small events (GCM drizzle) were observed in
Australia (Perkins et al. 2007) and India (Anandhi and Nanjundiah
2015). The boxplots in Fig. 3 are interpreted as follows: middle line
shows the median value; top and bottom of box show the upper and
lower quartiles (i.e., 75th and 25th percentile values); and whiskers
show the minimum and maximum model values. The triangle and
circle in the boxplots represent the observed and GCM ensemble
mean of the statistics for seasons DJF, MAM, JJA, and SON. The
gir GCM statistic values calculated were excluded from the plots.
Box and whisker plots indicate statistics calculated for daily cli-
mate variable calculated for the various AR4 climate models across
the four seasons, namely DJF, MAM, JJA, and SON for CLG spa-
tial scale (seven land-grid points surrounding NYC watersheds) and
OD1 dataset. The overestimation of small events contributes to an
overestimation of total precipitation even though the models also
tend to underestimate larger events in summer and fall (Figs. 2
and 3). Note that the models underpredicted the median and stan-
dard deviation of Ppt in all of the seasons (Fig. 2, median).

SS ranged from 0.55 to 0.95 for Tave, 0.3 to 0.95 for Tmax, and
0.4 to 0.95 for Tmin in the four seasons [Fig. 4(a)]. The figure is
interpreted as follows: middle line shows the median value; top and
bottom of box show the upper and lower quartiles (i.e., the 75th and
25th percentile values); and whiskers show the maximum and mini-
mum percentile skill scores. The outliers are indicated by a “+.”
The circle in the figure represents the mean skill score each of the
seasons (DJF, MAM, JJA, and SON). Among the temperatures,
Tave was better simulated than Tmax and Tmin. The reasons for
lower SS may be that the GCM models were underestimating the
number of cold days and overestimating the number of warm days
especially during winter season (Tmax and Tmin in Fig. 2). However,
the largest temperature biases—as well as the largest between-model
variability—were found in summer (Columns 2–4 in Fig. 2).

SS ranged from 0.2 to 0.95 for Wind in the four seasons
[Fig. 4(a)]. In most cases, the GCM simulated Wind distribution
compared unfavorably to the observed distribution (Fig. 2). The
reasons for the lower SS is because models overestimated smaller
winds (Fig. 3, minimum; Fig. 2, 0–5 m=s) and underestimated the
mean and median winds as well as the frequency of large events.
The largest model biases and the largest between-model variability
were found for smaller events. Additionally, the models tended
to overestimate the frequency of small events (0–5 m=s) and under-
estimate the frequency of large events. Similar results were ob-
served for OD2 data set at CCG scale (figure not shown).

GCM Ranks and SS Ranking Procedure (CLG to OD1)

The results of the probability-based SS ranking procedure at the
CLG scale using OD1 dataset for all ensemble members of a
GCM are summarized as a function of season [Figs. 4(a) and S1] and
the SS is arranged in descending order for each variable [Fig. 4(b)].
In the figure, the AR4 climate models are ranked based on average
skill scores for spatial scale CLG using OD1 dataset. For a variable
and GCM, the average skill score is calculated from the skill scores
of different realizations for a GCM and four seasons (DJF, MAM,
JJA, and SON) in each realization. The GCM with the highest skill
score is given rank 1. While calculating the average ranks, only
GCMs that have all five meteorological variables were used. The
closeness of the statistical measures of the GCM data to equivalent
observations can be seen in Fig. 3. In general, no one model was
consistently ranked best by SS for all the meteorological variables

(Ppt, Wind, Tave, Tmax, and Tmin), or during all the seasons (DJF,
MAM, JJA, and SON). Overall, the magnitudes of SS did not vary
between seasons for Ppt andWind, although there was a higher vari-
ability in SS during summer for Ppt [Fig. 4(a)]. For temperature,
there were generally lower magnitudes of SS during summer. Over-
all, spring had a higher mean/median skill score for all five variables.
Fall’s mean/median SS were also high for temperature variables and
wind. For each meteorological variable, different ensemble members
of the same model had similar SS in the SS ranking procedure
(i.e., cc4 and cc6). This can indicate that the skill scores were not
due to random or chaotic processes but were in fact related to model
formulation. Ensemble average SS showed no clear relationship be-
tween SS and three model characteristics (horizontal resolution,
convective scheme, and flux correction).

Overall rankings are in Table 1. The cs5 seemed to have con-
sistently low ranks in the region for Ppt and temperature variables.
The gir had very different statistics (not shown due to being out-
side the range of figures) compared with the rest of the models
for Ppt.

Our results show that when GCMs are ranked by skill score and
a variety of statistics for different metrological variables, there is no
obvious way to choose a subset of models that are clearly superior.
First, we did not find certain models as clearly superior; instead,
there was a gradual decrease in model skill along a continuum
from highest to lowest skill score. Second, different models per-
formed better for different meteorological variables and perfor-
mance measures. This can greatly complicate choosing a subset
of models when simulations depend on multiple meteorological
drivers. The simplest way to choose a subset of models is to identify
how many models are appropriate for the variable(s) of interest,
then choose a subset from these based on the combined SS rankings
that include all needed meteorological variables. For the NYC
water supply watershed region and when evaluating multiple met-
rological parameters, we concluded that using as many GCM data-
sets as possible was the best strategy. We were not able to identify a
clear subset of models that was superior for all the meteorological
variables used in our water supply simulations. However, we were
able to eliminate several GCM data sets that clearly underpre-
formed. Even though our evaluation was not able to clearly identify
GCM models that preformed best for our purposes, we feel that
documentation of this methodology is valuable. Results could be
different when fewer meteorological parameters are needed, or in
other geographical regions where the GCMs may agree to a greater
extent.

Summary and Conclusions

The analysis presented in this note leads to several conclusions:
• No single GCM performed well for all the variables considered

in the study.

Table 1. Top five GCMs with highest skill score from each meteorological
variable observed in WOH watersheds

Meteorological variable Top five GCMs with highest skill scorea

Ppt inm, gao, iap, mih, and mim
Tave miu, cc4, cc6, cs0, and mpi
Tmax cc4, cc6, mim, ing, and mpi
Tmin miu, cc6, cnr, cs0, and bcr
Wind cc6, cs0, cc4, cs5, and miu
aThese rankings need not be the same for other regions, evaluation method,
and CMIP5 GCMs. The details of the GCMs are available in Table S1.
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• The mean and median of all GCM data over the entire time
period compares well with the mean and median of all the mea-
sured data (OD1 and OD2) for Ppt and temperature variables
(Tave, Tmax, and Tmin).

• Winds in the region were not well simulated by the GCMs.
Based on the results of this study, one way to choose a subset of

GCM datasets is identifying GCMs with the highest average skill
scores across all variables. Skill scores can then be used to elimi-
nate the worst-performing models from the ensemble set (e.g., in
our case, cs5 and ips). Water quality simulations would then be
based on a reduced (but still relatively large) number of GCMmod-
els, and the results will be more constrained due to the elimination
of the poorly preforming GCMs. A second approach for when com-
putational resources are limiting would be to use the skill scores to
choose a smaller subset of models that would likely lead to results
that are representative of the study. In our study region, the top five
models were cc6, cc4, gao, ing, and cs0.

Several studies in NYCDEP document the use of these results in
CCIMP for simulating future changes in water quantity and quality.
The second phase of the CCIMP are currently using GCM simu-
lations from CMIP5. Other criteria (such as climate change sensi-
tivity) may be included in the choice of models, but such analysis is
beyond the scope of this study. The average ranking we used is just
one way to create a single ranking, though considering and weight-
ing the ranking for each variable is probably more informative.
Future studies can build on this research by testing the performance
and convergence of CMIP5 model datasets to similar ranking
procedures.
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