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Abstract The Pliocene was characterized by a gradual shift of global climate toward cooler and drier
conditions. This shift fundamentally reorganized Earth's climate from the Miocene state toward
conditions similar to the present. During the Pliocene, the progressive restriction of the Indonesian
Throughflow (ITF) is suggested to have enhanced this shift toward stronger meridional thermal gradients.
Reduced ITF, caused by the northward movement of Australia and uplift of Indonesia, impeded global
thermohaline circulation, also contributing to late Pliocene Northern Hemisphere cooling via atmospheric
and oceanographic teleconnections. Here we present an orbitally tuned high‐resolution sediment
geochemistry, calcareous nannofossil, and X‐ray fluorescence record between 3.65 and 2.97 Ma from the
northwest shelf of Australia within the Leeuwin Current. International Ocean Discovery Program Site
U1463 provides a record of local surface water conditions and Australian climate in relation to changing ITF
connectivity. Modern analogue‐based interpretations of nannofossil assemblages indicate that ITF
configuration culminated ~3.54 Ma. A decrease in warm, oligotrophic taxa such asUmbilicosphaera sibogae,
with a shift from Gephyrocapsa sp. to Reticulofenestra sp., and an increase of mesotrophic taxa (e.g.,
Umbilicosphaera jafari and Helicosphaera spp.) suggest that tropical Pacific ITF sources were replaced by
cooler, fresher, northern Pacific waters. This initial tectonic reorganization enhanced the Indian Oceans
sensitivity to orbitally forced cooling in the southern high latitudes culminating in the M2 glacial event
(~3.3 Ma). After 3.3 Ma the restructured ITF established the boundary conditions for the inception of the
Sahul‐Indian Ocean Bjerknes mechanism and increased the response to glacio‐eustatic variability.

1. Introduction

The Indonesian Throughflow (ITF) is a key element of the global thermohaline circulation representing the
last remaining tropical connection facilitating warm water exchange between the world's oceans (Kuhnt
et al., 2004; Gallagher et al., 2017; Figure 1 and see supporting information text S1 for details on the physical
oceangraphic setting). Modeling studies suggest that ITF variability has a major influence on ocean heat dis-
tribution (Brierley & Fedorov, 2011; Cane & Molnar, 2001; Di Nezio et al., 2016; Jochum et al., 2009), yet its
contribution to the global climatic evolution is difficult to resolve due to the tectonic complexity of the
Indonesian Archipelago (Brierley & Fedorov, 2011; Gordon et al., 2010; Gordon & Kamenkovich, 2010;
Holbourn et al., 2011; Kuhnt et al., 2004; Spooner et al., 2011; Susanto & Song, 2015). Generally, ITF restric-
tion is likely driven by two distinct mechanisms: (1) sea level‐driven restriction leading to the emergence of
shelf areas restricting the ITF paths only to the deep marine troughs during glacial intervals (De
Vleeschouwer et al., 2018; Di Nezio et al., 2016; Holbourn et al., 2011; Xu et al., 2008, 2006; Zuraida et al.,
2009); and (2) geometric reorganization of the Indonesian Gateway system caused by tectonic activity linked
to the northwardmovement of the Australasian Plate and the related collision with the Eurasian Plate (Cane
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& Molnar, 2001; Christensen et al., 2017; Karas et al., 2017; Kuhnt et al., 2004; Molnar & Cronin, 2015;
Sarnthein et al., 2017).

There is evidence suggesting that an important uplift phase began during the Late Miocene to Early Pliocene
(Cane & Molnar, 2001; Hall, 2002; Hall et al., 2011; Kuhnt et al., 2004; Molnar & Cronin, 2015; Tate et al.,
2017), with tectonic restriction of the ITF having a major effect on global thermohaline circulation by the
late Early Pliocene (Cane & Molnar, 2001; Gallagher et al., 2009; Karas et al., 2009, 2011b; Karas et al.,
2017). The ITF reorganization during the Pliocene has also been causally linked to the marine isotope stage
(MIS) M2 glacial event at ~3.3 Ma (Brigham‐Grette et al., 2013; De Schepper et al., 2014, 2013; Lisiecki &
Raymo, 2005) with modeling and paleoceanographical studies showing that tectonic ITF restriction had
major effects on global climate by changing the heat exchange between the Pacific and the Indian Oceans
(Cane & Molnar, 2001; De Schepper et al., 2014; De Vleeschouwer et al., 2018; Gallagher et al., 2009;

Figure 1. Map showing the position of Sites U1463, Ocean Drilling Program (ODP) 763A, ODP 806, and Deep See Drilling
Project (DSDP) 214 (white dots) in relation to the major current paths of the Indonesian Throughflow (ITF) and the
eastern Indian Ocean. Color gradients denote temperature (red‐blue) and salinity (green) gradients within the currents.
Current paths along Western Australia were adapted from Furue et al. (2017), Wijeratne et al. (2018), and B. Wilson
(2013)). The dominant throughflow paths and major equatorial Pacific and Indonesian currents are based on observations
and models in Gordon et al. (2010) and Schiller et al. (2007, 2010). Green arrows indicate monsoonal freshwater discharge
into the South China Sea from major Southeast Asian rivers (i.e., Mekong‐, Pearl‐, and Red River). Red shaded ocean
areas represent the outer boundary of the 29 °C isotherm of the Indo‐Pacific Warm Pool. Colors on land approximate
current vegetation cover in Australia and themaritime continent from satellite images. Basemap and satellite images used
to generate this figure were generated in GeoMapApp (http://www.geomapapp.org). Pacific currents: North Equatorial
Current (NEC), North Equatorial Counter Current (NECC), South Equatorial Current (SEC), and South Equatorial
Counter Current (SECC). Indian Ocean currents: Indonesian Throughflow (ITF = dominant outflows from the
Indonesian Archipelago), South Java Current (SJC), South Equatorial Current (SEC), East Gyral Current (EGC), Holloway
Current (D'Adamo et al., 2009; B.Wilson, 2013), and Leeuwin Current (LC), which are considered as one current system in
this work, Leeuwin Undercurrent (LUC), West Australia Current (Schott et al., 2009).
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Gallagher et al., 2017; Karas et al., 2009, 2011b; Karas et al., 2017; Molnar & Cronin, 2015; Sarnthein et al.,
2017). The MIS M2 event is of particular interest as it represents a well‐recognized feature of global benthic
oxygen isotope records of both the LR04 stack (Lisiecki & Raymo, 2005) and DV17 mega splice (De
Vleeschouwer et al., 2017). The M2 event was also interpreted as a failed attempt of the Earth's climate state
to shift to Pleistocene‐like glacial‐interglacial mode (e.g., Haug & Tiedemann, 1998). More recently, a link
between Australian climate and Pliocene ITF restriction in relation to the changing Australian monsoon
system was postulated by Christensen et al. (2017). Sarnthein et al. (2017) further proposed possible telecon-
nections linking changes in ITF to Mediterranean Outflow variability in the Pliocene through a complex
interhemispheric coupled ocean/atmospheric teleconnection via the Indian Ocean and Africa. This is con-
trolled by the so called “Sahul‐Indian Ocean Bjerknes Mechanism,” linked to sea level‐driven changes in
landmass configuration (Di Nezio et al., 2016). The “Sahul‐Indian Ocean Bjerknes Mechanism” proposed
by Di Nezio et al. (2016) amplifies changes in Indian Ocean atmospheric circulation by increasing east‐west
sea surface temperature (SST) gradients similar to the Bjerknes mechanism in the Pacific (Bjerknes, 1969).
The mechanism leads to a positive feedback with ocean dynamical processes amplifying externally forced
climatic changes in the Indian Ocean during glacial sea level lowstands (Di Nezio et al., 2016).

In this study we present a multiproxy data set spanning the Early to Late Pliocene (~3.66 to 2.98 Ma) from
International Ocean Discovery Program (IODP) Expedition 356 Site U1463 (Gallagher et al., 2017), situated
on the Australian northwest shelf (NWS) within the path of the Leeuwin Current (LC), and directly influ-
enced by the ITF (D'Adamo et al., 2009; Wijeratne et al., 2018). The high recovery of material at Site
U1463 (Christensen et al., 2017; De Vleeschouwer et al., 2018; Gallagher et al., 2017) permits the reconstruc-
tion of high‐resolution record of Pliocene downstream ITF variability along the NWS. Geophysical borehole
records and sedimentological data from Expedition 356 have already proven instrumental in detailing the
long‐term climatic evolution of Australia throughout the Neogene (Christensen et al., 2017; Groeneveld
et al., 2017). Here we elucidate surface water conditions along the NWS in the critical Pliocene time interval
between 3.5 and 3 Ma, when tectonic ITF restriction is proposed to have significantly altered the ITF (Cane
& Molnar, 2001; Christensen et al., 2017; De Vleeschouwer et al., 2018; Gourlan et al., 2008; Karas et al.,
2009; Le Houedec et al., 2012). We applied an integrated approach using paleobiological (calcareous nanno-
fossil assemblages), geochemical (planktic foraminifer stable isotopes and bulk organic carbon, sulfur, and
carbonate content), and geophysical data including calibrated spectral gamma ray and X‐ray fluorescence
(XRF) elemental data (De Vleeschouwer et al., 2018) to reconstruct environmental changes along the
NWS and link them to contemporary climatic records in the region (Karas et al., 2009, 2011b; Wara
et al., 2005).

Our study provides novel insights into the temporal evolution of Pliocene ITF restriction in relation to global
climatic changes and investigates how tectonic ITF restriction and the transport of tropical waters from the
Pacific into the Indian Ocean may have increased the sensitivity of the Indian Ocean to orbitally driven
Antarctic ice sheet dynamics (Patterson et al., 2014), which potentially amplified the cooling during the
MIS M2 glacial event at 3.3 Ma in the Southern Hemisphere (De Vleeschouwer et al., 2018). To achieve this,
we present a detailed timeline of how changes in ITF configuration heralded major changes in the eastern
Indian Ocean, which in turn affected global climatic patterns (Christensen et al., 2017; De Schepper et al.,
2014; Gallagher et al., 2009; Karas et al., 2009, 2011b; Karas et al., 2017; Sarnthein et al., 2017). We also
provide the first evidence for the increasingly important role glacio‐eustatic sea level changes had on the
Indian Ocean hydroclimate after MISM2 and show how they are linked to the shift in the Australian climate
system from a “humid interval (5.5–3.3 Ma)” to a “transitional interval (3.3–2.4 Ma)” (Figure 2 in
Christensen et al., 2017).

2. Materials and Methods

Site U1463 (145‐m water depth; 18°59′S, 117°37′E; Figure 1) yielded an expanded Plio‐/Pleistocene record
directly within the path of the LC downstream of the ITF (Figure 1; D'Adamo et al., 2009; De Deckker,
2016; Gallagher et al., 2017; Wijeratne et al., 2018). Its sediments represent outer shelf to shallow bathyal
(~400‐ to 1,200‐m water depth; Gallagher et al., 2017) mixed carbonate and siliciclastic fine‐grained sedi-
ments rich in planktic and benthic foraminifers as well as calcareous nannofossils. The material represents
a continuous paleoecological record of the Pliocene.
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Cores were sampled from Holes U1463B, U1463C, and U1463D between 277.84‐m core composite
depth below sea floor (CCSF) and 312.84 m CCSF with a continuous resolution of 20 cm. The targeted
interval was anchored between the last occurrence of Reticulofenestra pseudoumbilicus (>7 μm; 3.7 Ma)
and the last occurrence of Discoaster tamalis (2.8 Ma; Figure S1 and Table S1). For all subsequent ana-
lyses, we used the revised splice of De Vleeschouwer et al. (2018), which refines the shipboard splice
that was generated on board to a depth of 275.88 m below sea floor (Gallagher et al., 2017). The
age model used for this study was refined by tuning the δ18OT. sacculifer record published in De
Vleeschouwer et al. (2018) to austral eccentricity‐tilt‐precession (ETP) composite derived from the
LA04 (Laskar et al., 2004) astronomical solution, with the differences between the age models shown in
Figure S2. The discrepancy between the current age model age‐depth model and the age‐depth model
of De Vleeschouwer et al. (2018) never exceeds 0.04 Ma. The refined age model results in an average
sample resolution of ~4 kyr that allowed for independent correlation with other Indian Ocean and
IPWP Sites.

2.1. Calcareous Nannoplankton

A total of 172 samples (Table S2) were prepared for calcareous nannoplankton assemblage studies and bios-
tratigraphy following the methods of Bordiga et al. (2015). Five milligrams of freeze‐dried sample were sus-
pended in 50 ml of NH3 buffered ultrapure milli‐Q water. The suspension was ultrasonicated for ~30 s and
subsequently 1 to 1.5 ml were transferred onto a 30 × 24 mm cover slip. Buffered milli‐Q water was added to
reach a total volume of 1.5 ml on the cover slip, sufficient to fully cover its entire surface area. After slowly
drying on a hot plate (~50 °C) the cover slip was mounted on a standard microscopy slide using Norland No.
61® optical mounting medium and cured under ultraviolet light. Slides were examined using standard polar-
ized light microscopy (Olympus BX53, Japan Agency for Marine‐Earth Science and Technology, JAMSTEC)
and scanning electron microscopy imaging (Zeiss Gemini DSM 982, University of Graz). For assemblage
work at least two transects consisting of 24 field views with 1‐mm spacing were counted along the short axis
within the first and third quarter of the cover slip. Additional transects were counted if the minimum
number of specimens was not reached. Absolute number of identifications per slide is consequently depen-
dent on overall nannoplankton abundance in each sample. On average ~600 specimens were identified per
sample (Table S2). Table S2 also contains total nannofossil abundances as coccoliths per gram of sediment
(N/gsediment; cf. Bordiga et al., 2015).
2.1.1. Taxonomic Remarks
Taxonomic identification is based on Perch‐Nielsen (Perch‐Nielsen, 1985) and Young (Young, 1998) and
supplemented by the Handbook of Calcareous Nannoplankton 1–5 (Aubry, 1984, 1988, 1989, 1990, 1999)
and the Nannotax3 website (Young et al., 2014), with additional taxonomic notes given in the supporting
information Text S2. The taxonomic distinction of the reticulofenestrids (genus Reticulofenestra and
Gephyrocapsa; Figures 2a, 2b, and 2e, and S3) is poorly defined in the Neogene (see Young, 1998, for discus-
sion). Reticulofenestra species are generally distinguished by placolith size, with various research groups
using different size ranges (Gibbs et al., 2005; Imai et al., 2017; Jatiningrum & Sato, 2017; Wade & Bown,
2006). In this study we distinguished different species of the reticulofenestrids using the following
taxonomic criteria:

Small Gephyrocapsa sp.: reticulofenestrids <3 μm in length with a distinct angled
bar spanning the central area.

Medium Gephyrocapsa sp.: reticulofenestrids >3 μm in length with a distinct angled
bar spanning the central area (maximum recorded
length of specimens of this morphotype is 3.8 μm in the
studied samples).

Reticulofenestra minuta: reticulofenestrids <3 μm in length without a bar
spanning the central area.

Reticulofenestra haqii: reticulofenestrids 3–5 μm in length with an open
central area.

Reticulofenestra antarctica: reticulofenestrids 3–5 μm in length with a closed
central area.

Reticulofenestra pseudoumbilicus (small): all reticulofenestrids 5–7 μm in length.
Reticulofenestra pseudoumbilicus (sensu stricto): all reticulofenestrids >7 μm in length.
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2.1.2. Statistical Analyses
Total calcareous nannofossil abundance was converted to relative abundance, to avoid effects from changes
in sedimentation rates on nannofossil accumulation over the studied interval. For diversity analysis several
indices were calculated including the total taxa present (Table S2), species evenness (J'; Figure S3m and
Table S2), and the classical Shannon‐Wiener diversity index (H′; Figure S3n and Table S2; Auer et al.,
2014; Sokal & Rohlf, 1995). To avoid issues arising from potentially nonnormal multivariate distribution,
the relative nannofossil abundances were arcsine root transformed (e.g., Sokal & Rohlf, 1995) prior to cluster
analysis (Figures S4 and S5) and principal component analysis (PCA; Figure S6), as incorporated in the sta-
tistics package PAST (v3.16; Hammer et al., 2001). Hierarchical clustering in this study usedWard's method
(e.g., Sokal & Rohlf, 1995) with Euclidean similarity (Hammer & Harper, 2006; Sokal & Rohlf, 1995; Ward,
1963), to group samples with similar assemblage composition. Major clusters were defined using a cutoff

Figure 2. Geochemical and calcareous nannofossil and data converted to age (in kyr) based on the refined age model of
De Vleeschouwer et al., 2018 and plotted together with the intervals defined by cluster analysis (see Figure S3 for com-
parison). Underlay represents major events at the northwest shelf . Gray bars are showing proposed Indonesian
Throughflow (ITF) restriction ~3.54 Ma, extend of marine isotope stage M2 ~3.31–3.26 Ma (Lisiecki & Raymo, 2005);
the proposed intensification of Southern Hemisphere cooling (Riesselman & Dunbar, 2013) and/or northern hemisphere
cooling beginning to affect the tropics (Philander & Fedorov, 2003) ~3.0 Ma. Cooling at Site 763A between 3.5 and 3.4 Ma
(Karas et al., 2011b) is shown as a colored (red‐blue) interval. These intervals are used to anchor long‐term trends
(= text at top of the figure) in the data shown: (a) abundance of Reticulofenestra minuta indicating stressed environmental
conditions; (b) abundance of small Gephyrocapsa, with the end of its acme at Site U1463 clearly visible ~3.54 Ma; (c)
abundance of Umbilicosphaera sibogae (note the decrease toward 3.54 Ma); (d) abundance of Calcidiscus leptoporus susp.
small, note the pulses in abundance after 3.54, 3.35, and 3.20 Ma, and the high variability after 3.20 Ma; (e) abundance of
medium sized reticulofenestrids (combining Reticulofenestra haqii and R. antarctica). Note the three distinct pulses in
abundance ~3.54, ~3.35, and ~3.20 Ma.
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similarity of <0.75. Subclusters were defined based on visual separation of the clusters at different similarity
values in eachmajor cluster. Following cluster definition for the sample set, PCA using the Bray‐Curtis simi-
larity was performed (Hammer & Harper, 2006; Sokal & Rohlf, 1995), which shows the sample distribution
in the two‐dimensional space expressed by principle components PC1 and PC2, defining the orthogonal
space that accounts for the highest variance in the sample set (Hammer & Harper, 2006; Sokal & Rohlf,
1995). To test the validity of the results, bootstrapping (N = 1,000) was applied. Furthermore, a second ana-
lysis was run using the unweighted pair group method with arithmetic mean (UPGMA) hierarchical cluster-
ing with Bray Curtis similarity (Bray & Curtis, 1957; Hammer &Harper, 2006; Sokal & Rohlf, 1995; bootstrap
N= 1,000; Figure S5). For the final interpretation we relied onWard's method since it was designed to create
well defined clusters, which were supported by the results of UPGMA clustering (Figures S4 and S5). To
explore the contribution of individual taxa to the clusters, a similarity percentage analysis (SIMPER; Sokal
& Rohlf, 1995) was performed using Bray‐Curtis similarity. Subsequently, intervals with similar cluster dis-
tribution were grouped together, to show larger trends and shifts in assemblage composition. The defined
intervals where then evaluated with regard to the distribution of individual nannofossil taxa within them
and reflect mean paleoenvironmental conditions that persisted at Site U1463 using available information
on the ecological preferences of the present nannofossil taxa. Cluster analysis was also run excluding
nannofossil taxa with global extinctions events during the study interval (i.e., Sphenolitus spp.) to test the
contribution of its extinction to the cluster distribution. As exclusion did not affect cluster distribution sig-
nificantly, the taxon was included in the statistical analysis as patterns of decline preceding extinction events
can still provide valuable information on local paleoenvironmental changes (Gibbs et al., 2004, 2005).

2.2. Carbon and Sulfur Analysis, and Calcite Equivalent Carbonate Content

Total carbon (TC) and sulfur content was determined for 207 samples on and off the splice (Table S3).
For analysis ~0.1 g of freeze‐dried and ground sample were measured using a Leco CS‐300 carbon and
sulfur analyzer (University of Graz). For total organic carbon (TOC) analysis ~0.1 g of freeze‐dried and
ground sample was fully decalcified using stepwise addition of 2N HCl. After decalcification samples
were washed with distilled water to remove excess HCl and dried before being measured. Calcite‐
equivalent carbonate content CaCO3(calcite‐eq.) (Table S3) was calculated by using the stoichiometric for-
mula: CaCO3(calcite‐eq.) = (TC − TOC)×8.34 (Grunert et al., 2010; Stax & Stein, 1995). For brevity
CaCO3(calcite‐eq.) is referred to as CaCO3 or “carbonate content” hereafter. The C/S ratio was calculated
using TOC and sulfur concentrations (Table S3).

2.3. XRF Elemental Analysis

The relative elemental composition of Site U1463 sediment cores was determined by measuring split core
surfaces with a third generation Avaatech XRF core scanner at the XRF Core Scanning Facility of the
Gulf Coast Repository at Texas A&M University (De Vleeschouwer et al., 2018). Measurements were taken
every 2 cm at source energies of 9 kV (no filter) and 30 kV (Pd filter, 1.25 mA). Idle time for each measure-
ment was 6 s. Element intensities were obtained by converting the raw XRF spectra using the iterative least
squares software package from Canberra Eurisys (WIN AXIL). Due to drilling disturbance, several core
sections were not scanned and consequently appear as gaps in the record (Figure 3e); XRF core scanning
results are reported as natural logarithmic ratios. We used elemental ratios to infer relative changes in total
terrigenous influx, defined as ln((Al + K)/Ca), as well as dust flux (i.e., the flux of heavy minerals such as
zircon and rutile), defined as ln((Fe + Ti + Zr)/(Al + K)), at Site U1463. These ratios and their use as
paleoclimate proxies are similar to those from Holocene sediment cores from the Timor Sea, north of Site
U1463 (Kuhnt et al., 2015). However, we included Al in our proxy for total riverine influx, to account for
potential changes in weathering rates on the Australian continent, which may change the ratio of
illite/smectite to kaolinite (Ehrmann et al., 2013; Gingele et al., 2001; Gingele & De Deckker, 2004; Wei
et al., 2006). The ln((Al + K)/Ca) ratio was subsequently compared to discrete measurements of carbonate
content (Figure 3e).

2.4. Recalculated Mg/Ca Temperatures and Ice Volume Corrected δ18O Values of Sea
Surface Water

Trilobatus sacculifer Mg/Ca temperature records from Ocean Drilling Program (ODP) Site 806 (Wara et al.,
2005; red graph in Figure 4a) and Site 763 (Karas et al., 2011b; blue graph in Figures 3a and 4a) were
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recalculated to compare them to each other using the species specific equation (Mg/
Ca = 0.377×exp(0.09×T)) given in Anand et al. (2003). Deep See Drilling Project (DSDP) Site 214 sea surface
temperatures are based on a combined record of T. sacculifer (light gray dots) and Globigerinoides ruber
(black dots) published by Karas et al. (2009; orange graph in Figure 4a). G. ruberMg/Ca temperature records
were calculated using the species specific equation (Mg/Ca = 0.395×exp(0.09×T); Anand et al., 2003). DSDP

Figure 3. Comparison of long‐term oceanographic trends between 3.56 and 2.97 Ma along the northwest shelf at sites
763A (Karas et al., 2011b) and Site U1463 with climatic conditions in the Australian hinterland (Christensen et al.,
2017; De Vleeschouwer et al., 2018; this study), major events as defined in Figure 3 are again shown: (a) Site 763A Ca/Mg
temperature record (Karas et al., 2011b), showing SSTs decreasing south of Site U1463 shortly after the assemblage
shift ~3.54 Ma (black arrow); (b) recalculated δ18Oivc‐sw (Karas et al., 2011b) showing two intervals of increased sea
surface water freshening (black arrows) at Site 763A; (c) C/S ratio showing bottom water oxygenation as a proxy for water
column mixing at Site U1463. (d) X‐ray fluorescence (XRF) elemental ratios ln((K + Al)/(Ca)) (= riverine influx) and
ln((Fe + Ti + Zr)/(Al + K)) (= dust flux) are shown with their long‐term trends (21 pt. running mean). Discrete
measurements of calcite equivalent calcium carbonate content (wt.%; blue dots) are shown in conjunction with the
ln((K + Al)/(Ca)) record. The running means of the XRF records were superimposed to show relative changes in
precipitation (riverine influx) versus aridity (windblown dust) at Site U1463. This long‐term comparison uses the same
scale as their respective XRF ratios plotted below and above. Below the XRF records the transition between humid
and transitional intervals (after Christensen et al., 2017) at 3.3 Ma is shown.MIS =marine isotope stage; ITF = Indonesian
Throughflow.
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Figure 4. Temperature records (Deep See Drilling Project [DSDP] Site 214 and Ocean Drilling Program [ODP] sites 763A
and 806) in comparison with selected data from Site U1463 (De Vleeschouwer et al., 2018; this study) to illustrate the
relative progression of events in Pliocene ITF restriction (see Figure 2) between 3.56 and 2.97 Ma in the larger context of
the tropical Indo‐Pacific region (Figure 1). (a) Comparison of surface Mg/Ca temperature records from DSDP Site 214
(orange) and ODP Sites 763A (blue; 11‐pt running mean) and 806 (red; 11‐pt running mean), as well as the subsurface
G. crassaformis record from Site 214 (purple). All temperature records are plotted on the same temperature scale; (b) Site
214 subsurface δ18OG. crassaformis data (Karas et al., 2009). (c) δ

18OT. sacculifer (De Vleeschouwer et al., 2018) shown
together with austral ETP calculated from the LA04 astronomical solution (Laskar et al., 2004); note long‐term shifts
between 3.54 and 3.40Ma as well as after 3.05Ma. (d) Site U1463 δ13CT. sacculifer data showing a significant drop related to
increased upwelling along the northwest shelf after marine isotope stage (MIS) M2, record is shown together with the
eccentricity curve from the LA04 astronomical solution (Laskar et al., 2004). (e) LR04 benthic isotope stack (Lisiecki &
Raymo, 2005) superimposed on the abundance of Pseudoemiliania spp. showing the increasing respond to glacial/inter-
glacial cyclicities after MIS M2. ITF = Indonesian Throughflow.
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Site 214 subsurface temperatures are derived from Globorotalia crassaformis (Karas et al., 2009) and calcu-
lated using the equation Mg/Ca = 0.339×exp(0.09×T) (purple graph in Figure 4a; Anand et al., 2003).

To calculate the temperature‐corrected oxygen, isotope values of surface waters (δ18Osw) the equation of
Bemis et al. (1998) and Thunell et al. (1999) expressed as

δ18Osw V–SMOWð Þ ¼ 0:27þ T °C
� �

−16:5þ 4:8*δ18Ocalcite V–PDBð Þ
4:8

was applied to the Site 763A δ18OT. sacculifer data of Karas et al., 2011b; Figure 3a). To correct for the δ18O
offset of changing ice volume (δ18Oicv‐sw), we followed the same approach as Karas et al. (2011a). The
benthic δ18O of the LR04 isotope stack (Lisiecki & Raymo, 2005) was normalized to the modern value
and reduced to 75%, to account for the ~0.87–1.3‰ last glacial/interglacial global ice volume difference
before subtracting it from the calculated δ18Osw values (Karas et al., 2011a; Schrag et al., 2002;
Waelbroeck et al., 2002).

3. Results
3.1. Calcareous Nannofossil Assemblages
3.1.1. Preservation
Generally, nannofossil preservation is moderate tomoderately good in the sampled interval (Gallagher et al.,
2017). Under both scanning electron microscopy and light microscopy, frequent overgrowth was observed
especially on specimen of Calcidiscus spp.; reticulofenestrids were largely unaffected by noticeable over-
growth. Calcareous nannofossil preservation was inversely correlated to carbonate content resulting in
the best preservation occurring in the lowermost section. Total nannofossil abundances (N/gsediment) shows
a low correlation with species evenness (r = −0.122; Figure S3 and Table S2), indicating that low diversity is
not an effect of low abundance (i.e., selective dissolution of more fragile taxa).
3.1.2. Nannofossil Diversity
Nannofossil diversity was generally moderate to low, which is typical for shelf environments. A total of 34
taxa were identified with median diversity of 13 taxa per sample (maximum = 21, minimum = 6; Table
S2). Both species evenness and Shannon diversity index show a strong trend through time (Figure S3).
Species evenness progressively decreases from the base of the record (~3.65 Ma) until reaching a minimum
at ~3.4 Ma. After 3.4 Ma species evenness increases again, reaching a new steady state by 3.3 Ma and display-
ing strong variability until the end of the studied interval (~2.98 Ma). The Shannon diversity index similarly
decreases between ~3.66 and 3.41 Ma before showing a marked diversity increase from ~3.31 to 3.23 Ma
exhibiting strong short‐term variability until 2.97 Ma.
3.1.3. Cluster and SIMPER Analysis
Cluster analysis (Ward's method) resulted in three clusters representing sample groups with a similar
nannofossil assemblage composition. The clusters were defined at a cutoff distance of ~2.5 with a cophenetic
correlation coefficient of 0.90. Bootstrapping provided good support for the separation between all three
clusters (Figure S4). Separation between the three defined clusters was also strongly supported by boot-
strapped results of the UPGMA clustering using Bray‐Curtis similarity (cophenetic correlation: 0.89;
Figure S6). Ward's method bootstrapping also supported the separation of cluster 1 into two subclusters with
a relatively low distance of ~1.5; however, this was not supported by UPGMA. While we show the two
subclusters in Figures 2, 4, and S3 and also cluster dendrograms and PCA (Figures S4–S6) for methodological
veracity, we did not consider them in subsequent data treatment and interpretation. This decision is based
on their low distance and weak support in UPGMA, which suggests that the two subclusters may not
reflect an unambiguous paleoecological signal. The exclusion of Sphenolithus spp. from cluster analysis
was also tested and showed no significant changes in clustering, indicating that local paleoenvironmental
conditions are the main factor controlling cluster distribution. SIMPER analysis (Table S4) using Bray
Curtis similarity showed that the separation of the three main clusters can be mainly explained by the abun-
dance of R. minuta, R. haqii and R. antarctica, as well as the presence of Gephyrocapsa spp., U sibogae and
Sphenolithus sp. These had contributions >3% and cumulatively accounted for ~71.7% of the total variance
between the defined clusters (Table S5). The clusters are thus representative of similar nannofossil taphocoe-
noses present in each sample, which can be summarized as taphogroups (e.g., Auer et al., 2014):

10.1029/2018PA003512Paleoceanography and Paleoclimatology

AUER ET AL. 643



Taphogroup (TG)1 consists of two subgroups defined by cluster 1A and 1B and dominates the base of the
studied interval from 312.84 to 302.14 m CCSF (~3.65–3.50 Ma). TG1 is defined by the high abundances of
small Gephyrocapsa (average ~36.2%), Reticulofenestra minuta (~41.2%), R. haqii (~8.6%), and Sphenolithus
spp. (~4.8%). The occurrence of Umbilicosphaera sibogae (up to ~3%) within this TG was notable; TG2 is
formed by cluster 2 and reflects taphocoenoses still dominated by R. minuta (average ~61.4%) with a high
contribution of R. antarctica (~13%) and R. haqii (~16.2%). TG2 exhibits the highest average contribution
of C. leptoporus subsp. small (~2.1%) and is the only TG with a contribution of Pseudoemiliania sp. above
1% (average ~1.1%). TG3 is formed by cluster 3 and reflects taphocoenoses dominated by R. minuta (average
~82.5%) with subordinate contributions of R. haqii (~7.2%). Notable is the low abundance of R. antarctica
(~3.3%) and the similar but slightly lower Calcidiscus leptoporus subsp. small (~2%) compared to TG2.
Numerical differences in taxon abundance of the defined TGs are summarized in Table S5.

3.2. Geochemical proxies
3.2.1. XRF‐Based Proxies for Riverine Input and Dust Flux
We used ln((Al + K)/Ca) as a proxy for riverine input since Site U1463 is likely to contain terrigenous
material from both direct riverine influx as well as windblown particles from arid regions. Furthermore,
despite its higher water depth (~400–1,200 m) in the Pliocene (Gallagher et al., 2017), the sites setting
on the NWS may result in significant contributions of both benthic and planktic carbonates. We thus com-
pared the ln((Al + K)/Ca) ratio to both discrete measurements of CaCO3 and to total nannofossil abun-
dances (N/gsediment). The high inverse correlation of carbonate content with ln((Al + K)/Ca) (r = −0.82;
Figures 3e and S7a) and low correlation with total nannofossil abundances (r = −0.33, Figure S7b) indi-
cates that ln((Al + K)/Ca) is controlled by CaCO3 content but planktic carbonate production does not con-
trol total carbonate content at Site U1463 over the studied interval. Total nannofossil abundances are also
weakly correlated to ln((Al + K)/Ca) (r = 0.46, Figure S7c). As CaCO3 is lowest when sedimentation rates
are high (Figure S7d), it can be assumed that carbonate content is predominantly forced by riverine influx
and not the deposition of carbonate producers (both benthic and planktic) on the NWS during the
Pliocene. The ln((Al + K)/Ca) ratio is also highly correlated with NGR derived and XRF derived potassium
concentrations (r = 0.98, not plotted) used in previous studies to characterize riverine influx at Site U1463
(Christensen et al., 2017; De Vleeschouwer et al., 2018).

The use of ln((Fe + Ti + Zr)/(Al + K)) as a dust proxy is supported by its negative correlation (r = −0.69) to
ln((Al + K)/Ca) thereby showing an inverse relationship of dust flux compared to riverine sources of
terrigenous material (Figure 3e). The two ratios together thus reflect relative changes between humidity
and aridity on the Australian hinterland at Site U1463 (Figure 3e). The ln((Al + K)/Ca) ratio shows a pro-
gressive decrease between 3.66 and 3.45 Ma reflecting declining riverine influx at Site U1463 (Figure 3e).
After 3.30 Ma terrigenous influx stays relatively low apart from a short (~80 kyr) increase from 3.15 to
3.10 Ma, which represents a disruption in the long‐term progressive reduction of riverine input that con-
tinues until ~2.97 Ma. Dust flux at Site U1463 remains stable and relatively low before increasing around
3.33 Ma, at the end of the Australian Humid Interval of Christensen et al. (2017; Figure 4e). Subsequently,
dust flux reduces simultaneously with increasing riverine influx between 3.15 and 3.10 Ma. Dust flux then
increases again until ~3.00 Ma and remains high until the end of the studied interval at 2.97 Ma.
3.2.2. C/S Ratio
The C/S ratio reflecting changes between organic carbon burial and sulfate reduction shows relatively
low values between 3.66 and 3.55 Ma before increasing and reaching a new steady state by 3.39 Ma
(Figure 3c). This state of relatively high but variably values persists until a further short increase between
3.16 and 3.04 terminates the interval of increased C/S values by again dropping significantly around 3.04
until 2.97 Ma.

4. Discussion
4.1. Calcareous Nannofossil Paleoecology

While the exact ecological parameters for individual calcareous nannoplankton taxa are often difficult to
pinpoint even in the modern ocean (e.g., Baumann et al., 2005; Boeckel et al., 2006; Boeckel & Baumann,
2004, 2008; Bollmann, 1997; Cachão et al., 2000; Okada & Honjo, 1973; Silva et al., 2008; Ziveri et al.,
2004), it is still possible to make generalized inferences on their ecological preferences in the past (e.g.,
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Auer et al., 2014, 2015; Ballegeer et al., 2012; Couapel et al., 2007; De Schepper et al., 2011; Gibbs et al., 2004;
Grelaud et al., 2009; Lees et al., 2005; Marino et al., 2014; Saavedra‐Pellitero et al., 2014; Wade & Bown,
2006). Changes in nannofossil assemblage composition in the absence of significant dissolution or reworking
are thus reflective of changing paleoenvironmental conditions over time. The three taphogroups defined by
cluster analysis can be interpreted to represent distinct paleoenvironmental conditions at Site U1463.

Taphogroup 1 (TG1) represents a warm to tropical neritic assemblage with high abundance of small
Gephyrocapsa sp. (Figures 2b and S3c) and Reticulofenestra minuta (Figures 2a and S3g). Comparatively
more oligotrophic marine conditions and salinities (>35 psu) are implied by relatively low abundance of
the r‐selected opportunist R. minuta (Auer et al., 2014, 2015; Haq, 1980; Lohmann & Carlson, 1981) and
the high abundance of small Gephyrocapsa sp., which is commonly associated with well stratified water
masses in tropical and subtropical continental margin settings with salinities ~35 psu (Boeckel et al.,
2006; Boeckel & Baumann, 2008; Bollmann, 1997; Okada & Honjo, 1973; Takahashi & Okada, 2000;
Ziveri et al., 2004). The presence of warm oligotrophic (i.e., tropical) water masses is indicated by common
Umbilicosphaera sibogae (Figures 2c and S3l), which today is present in the equatorial assemblages of the
Indian and Pacific Ocean, and the hemi‐pelagic regions off the coast of Australia (Baumann et al., 2016;
Boeckel et al., 2006; Boeckel & Baumann, 2004, 2008; Guerreiro et al., 2005; Kinkel et al., 2000; Okada &
Honjo, 1973; Young et al., 2017). This interpretation is supported by the presence of the upper photic zone
species (<50‐m water depth) Umbellosphaera spp. (Figure S3j), regarded as a classical tropical taxon in
the modern ocean preferring warm to temperate oligotrophic open marine conditions (Boeckel et al.,
2006; Boeckel & Baumann, 2004, 2008; Hagino & Okada, 2006; Kinkel et al., 2000; Okada & Honjo, 1973;
Okada & Wells, 1997). The presence of common Oolithotus spp. (Andruleit, 2007; Boeckel et al., 2006;
Boeckel & Baumann, 2004, 2008; Gartner, 1972; Young et al., 2017) further supports the interpretation that
stratified water masses persisted during the deposition of TG1 (Figure S3e).

Taphogroup 2 (TG2) is defined as a eutrophic to mesotrophic assemblage by the common occurrence of med-
ium sized reticulofenestrids R. haqii and R. antarctica (Figures 2e and S3h), generally associated with neritic
environmental conditions and elevated nutrient conditions associated with locally confined upwelling (Auer
et al., 2014, 2015; Haq & Lohmann, 1976; Lohmann & Carlson, 1981; Wade & Bown, 2006). Reticulofenestra
antarctica is documented to favor elevated nutrient conditions in relatively shallow waters by Wade and
Bown (2006). Less stable environmental conditions with potentially seasonally fluctuating temperature,
salinity, and/or nutrient levels are implied by the increased abundance of the opportunistic (r‐selected)
R. minuta (Figure S3g), able to proliferate in highly variable environmental conditions (Auer et al., 2014,
2015; Lohmann & Carlson, 1981; Wade & Bown, 2006). Relatively cooler and nutrient enriched intermediate
water masses potentially including Sub‐Antarctic Mode Water (SAMW; see Text S1) are implied by the
increased abundance and continuous occurrence of Calcidiscus leptoporus subsp. small (Figure S3b).
Today the small morphotype of Calcidiscus leptoporus exhibits broad ecological adaption with a possible affi-
nity for cool subpolar water masses and elevated nitrate levels in its preferred habitat between 50‐ and 100‐m
water depth (Baumann et al., 2016; Boeckel et al., 2006; Boeckel & Baumann, 2004, 2008; Cachão & Moita,
2000; Ferreira & Cachão, 2005; Hagino & Okada, 2006; Knappertsbusch, 1993; Renaud et al., 2002; Ziveri
et al., 2004).

Taphogroup 3 (TG3) is dominated by R. minuta (Figure S3g) indicating neritic waters rich in terrigenous
nutrients and environmental conditions favoring r‐selected opportunists (Auer et al., 2014, 2015; Haq &
Lohmann, 1976; Lohmann & Carlson, 1981; Wade & Bown, 2006). Common but discontinuous occurrence
of C. leptoporus subsp. small (see above; Figure S3b) hints at cooler water masses reaching the intermediate
photic zone than in TG1 but generally warmer than in TG2. This is also supported by the low occurrence of
R. antarctica and R. haqii (Figure S3h), two species favoring environments with elevated upwelling‐derived
nutrient levels. TG3 is consequently regarded as reflecting highly variable environmental conditions with
variable surface water temperatures and/or salinity levels coupled with potentially significant nutrient
influx from the hinterland.

4.2. The Relationship Between C/S Ratio and Water Column Mixing

A comparison of the C/S ratio and δ18OT. sacculifer values at Site U1463 shows a strong coevolution of the two
data sets between 3.5 and 3.0 Ma (Figures 3c and 4c). The beginning of this covariation coincides with the
start of a noticeable SST drop and δ18Oivc‐sw rise (local sea surface salinity decrease) recorded at Site 763
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(Karas et al., 2011b), indicating that C/S values at Site U1463 were affected by paleoenvironmental changes
which occurred along the NWS. These changes closely coincide with a distinct subsurface water cooling at
Site 214 (Figure 3a), which Karas et al. (2009) relate to a switch in dominant ITF water masses from central
Pacific to more northern Pacific regions (Karas et al., 2009, 2011b).

To explain this covariation, we consider the C/S ratio to be reflective of changes in the fixation sulfur (i.e.,
pyritization) compared to the overall availability of organic matter within the sediment water interface
(e.g., Berner & Raiswell, 1983, 1984; Morse & Berner, 1995; Sagemann et al., 1999). The C/S ratio is thus
strongly related to the prevailing redox conditions within the sediment and/or water column (Zou et al.,
2012). Low C/S ratios are usually caused by increased water column stratification leading low oxygen con-
centrations at the sediment water interface, resulting in increased pyrite formation (= sulfur fixation) rela-
tive to organic matter burial (Berner & Raiswell, 1983; Morse & Berner, 1995; Sageman & Lyons, 2003). This
relationship was documented in Holocene to Late Pleistocene samples spanning the last 48 ka in the Sea of
Japan (Zou et al., 2012). Following the interpretation of Zou et al. (2012) we thus assume that increased
(reduced) water turbulence leads to higher (lower) oxygenation at the sediment water interface.
Increasing (decreasing) oxygenation would consequently decrease (increase) pyritization relative to organic
matter consumption leading to an increase (decrease) in C/S values.

Changes in the Site U1463 C/S ratio together with significant contemporary changes in SSTs and SSS at
Site 214 and 763A are thus likely related to a shift in prevailing water masses and/or ocean stratification
as an effect of paleooceanographic changes along the NWS related to both ITF strength and local wind dri-
ven upwelling (Figures 1, 2, 5, and 6). Accepting this interpretation shows that although δ18OT. sacculifer

values between 3.66 and 2.97 Ma are predominantly controlled by insolation driven changes in local
SSTs at Site U1463 (De Vleeschouwer et al., 2018), a continuous decrease between 3.5–3.4 Ma can be
directly linked to the proposed switch to northern Pacific ITF source waters rather than locally rising
SSTs (Figure 4c).

4.3. Paleoenvironmental Model

Using the distribution of taphogroups over time, in combination with XRF riverine influx, dust flux proxies,
and C/S ratio derived estimates of changes in water column stratification, allowed the definition of intervals
reflective of changing paleoecological conditions (Figures 2, 4, and S3):

Interval 1 “Tropical ITF source mode” (312.84–302.74 m CCSF; 3.66–3.54 Ma): TG1 dominates this interval
reflecting a tropical warm water masses in a neritic shelf setting. Common occurrence of open marine
and warm oligotrophic shallow photic zone species U. sibogae and Umbellosphaera spp. indicates at least
intermittently oligotrophic conditions. Interval 1 also exhibits an acme of small Gephyrocapsa, which also
reflects a well‐stratified (sub)tropical neritic setting (Figures 2a, 2b, and 2, 4, and S3). The rare, discontinuous
occurrence of poorly preserved deep photic zone oligotrophic Discoaster spp. and the occurrence of
Oolithotus spp. provides further support for the presence of well stratified water masses with moderately ele-
vated nutrient conditions (Figure S3). This is corroborated by the presence of Sphenolithus spp. (Figures S3i
and Table S5), although their global extinction ~3.51Ma (Gibbs et al., 2005; Gradstein et al., 2012; Figure S3i)
makes this taxon's use as a paleoecological indicator somewhat problematic. Its pattern of decline at Site
U1463 toward 3.54 Ma nevertheless appears to have been linked to local paleoenvironmental changes and
is thus likely also related to the proposed change in ITF source waters. The last occurrence of
Sphenolithus spp. (relative abundance <1%) is subsequently recorded at 3.513 Ma at Site U1463.

The strong influence of open marine oligotrophic surface water in interval 1 is also reflected in the low C/S
ratio (Figure 3c). C/S values suggest relatively low oxygen levels at the sediment water interface (Berner &
Raiswell, 1983, 1984). High but decreasing values of terrigenous influx and low values of dust flux indicate
generally high but continuous humidity in the hinterland of Australia (Figure 3d), during the final stages of
the Australian humid interval (Christensen et al., 2017; Krebs et al., 2011). Dust flux varies only slightly
between 3.66 to 3.54 Ma, likely indicating a relatively stable vegetation cover during the Australian
Humid Interval (Figure 3e; Krebs et al., 2011). The decreasing humidity in Interval 1 was likely forced by
the progressive uplift of the maritime continent creating a moisture barrier north of Australia (e.g.,
Christensen et al., 2017).
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We interpret Interval 1 as reflecting a stage in the Pliocene tectonic ITF reorganization that still exhibited a
strong connection to the equatorial Pacific (Figures 5a and 6a; Cane &Molnar, 2001; Christensen et al., 2017;
Karas et al., 2009). These findings are supported by Nd isotopic studies indicating that a strong equatorial
connection between the Indian and Pacific Oceans persisted until ~3.54 Ma (Gourlan et al., 2008; Le
Houedec et al., 2012). This tropical ITF connection transported warm, oligotrophic, and saline equatorial
Pacific waters to the eastern Indian Ocean, fueling a broad and very stable shallow water current of warm
equatorial Pacific waters along the NWS. This equatorial ITF mode led to open marine conditions in the
surface waters. Capping relatively cooler and nutrient‐rich Indian Ocean waters this proto LC resulted in
a comparatively well‐stratified water column at Site U1463. The resultant strong and deep thermocline
and nutricline enabled the proliferation of tropical, oligotrophic nannoplankton flora in the shallow to
intermediate photic zone (0–100 m) at Site U1463 (Figures 5a and 6a). This mode is reflected in the
Indian Ocean by high Mg/Ca temperatures and high δ18Oivc‐sw values at Site 763A indicating the

Figure 5. Tectonic and oceanographic change throughout the studied interval between 3.65 and 2.97 Ma. Tectonic maps are inferred by the data provided in Hall
(2002). Current abbreviations follow the same scheme as in Figure 1. Red shaded ocean areas represent the theorized extend of the 29 °C isotherm in the Indo‐
Pacific Warm Pool (IPWP). (a) Map showing the proposed open equatorial connection between the Pacific and the Indian Ocean. Deep water exchange likely
became restricted earlier by progressive restriction of the Halmahera straight and uplift of Halmahera after 5 Ma (Hall, 2002; Hall et al., 1988). The extent of
northern vegetation is inferred from Krebs et al. (2011); (b) configuration with landmasses potentially above sea level after 3.54 Ma (Molnar & Cronin, 2015) shown
in red. Deep blue lines indicate active subduction zones during the Pliocene (Hall, 2002, 2012). Uplift of Timor is implied by 3.5 Ma (Tate et al., 2017); closure of the
Halmahera straight and uplift of Halmahera during this timeframe is implied by modeling data and field studies (Audley‐Charles, 2011; Cane & Molnar, 2001;
Godfrey, 1996; Gold et al., 2017; Hall, 2002; Hall et al., 1988; Kuhnt et al., 2004; Molnar & Cronin, 2015). Vegetation cover was reduced in this map to reflect lower
riverine influx indicating reduced precipitation. Desertification remained weak; (c) throughflow geometry with the potentially maximum emergent land during
marine isotope stage M2 (assuming a sea level lowstand of −30 m with modern‐day shelf configuration of the Sunda and Sahul shelves). Aridification and reduced
vegetation cover (after Krebs et al., 2011) reflects our riverine influx and dust flux records; (d) modern configuration (Figure 1) as a reference to compare the
modern throughflow geometry to the proposed geometry changes between 3.65 and 2.97 Ma. NEC =North Equatorial Current; NECC= North Equatorial Counter
Current; SEC = South Equatorial Current; SECC = South Equatorial Counter Current.
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extension of these tropical Pacific surface waters further south along the NWS (Karas et al., 2011b; Karas
et al., 2017) and also into the equatorial Indian Ocean at DSDP Site 214 (Karas et al., 2009; Karas et al., 2017).

Interval 2 “Transition to northern ITF source” (302.54–297.64 m CCSF; 3.54–3.46 Ma). This interval repre-
sents a departure from the tropical assemblage components of TG1 present in Interval 1 and is characterized
by alternating TG2 and TG3. In addition to the extinction of Sphenolithus spp. recorded at 3.513 Ma at Site
U1463, the beginning of Interval 2 also marks the disappearance of common U. sibogae (Figures S3l and 2c)
and increasing occurrence of the mesotrophic taxa Helicosphaera spp. and Umbilicosphaera jafari (+ U.
foliosa; Figures S3d and S3k). Coupled with a drop in H′ diversity and species evenness (Figures S3m and

Figure 6. Conceptional oceanographic model along the Australian northwest shelf (NWS) reflecting the position of the
Leeuwin Current (LC) in an idealized northeast‐southwest transect between sites 763A and U1463. (a) Slope model
shows the equatorial LC along the NWS inferred by nannofossil assemblage data and the paleogeographic configuration
proposed in Figure 5a before 3.51 Ma. The proposed configuration explains an explanation for a relatively deep thermo-
cline even during glacials along the NWS and suppressed upwelling through low along shore wind stress. (b) Slope
model shows the proposed effect of northern mode Indonesian Throughflow (ITF) along the NWS between 3.51 and
3.34 Ma and interglacials after 3.3 Ma. An extensive low salinity cap dominates along the NWS being transported by a
stronger and cooler ITF from northern sources in the South China Sea. Thermocline depth is slightly reduced but
upwelling remains suppressed by the surface cap before 3.3 Ma (pink dashed line); after 3.3 Ma a much shallower ther-
mocline persisted in the eastern Indian Ocean (pink solid line). (c) Slope model reflecting glacial lowstand restricted
ITF first established duringmarine isotope stage (MIS)M2 (~3.3Ma), significant sea level lowstand restricts connections to
the North Pacific weakening the LC and allowing for stronger along shore winds and thus upwelling through the “Sahul‐
Indian Ocean Bjerknes” mechanism (Bjerknes, 1969; Di Nezio et al., 2016).
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S3n), these assemblage shifts indicate a significant change from oligotrophic to more mesotrophic condi-
tions. This shift falls together with the abrupt end of the small Gephyrocapsa dominance (Figure S3c) and
a continuous increase of R. minuta (Figure S3g). It is important to note that the end of this Pliocene
Gephyrocapsa acme displays a widely diachronous occurrence as shown by several globally distributed
records (Ballegeer et al., 2012; Gibbs et al., 2004, 2005; Marino & Flores, 2002). Our data thus lend further
support to the interpretation proposed by Ballegeer et al. (2012) that the smallGephyrocapsa acme represents
a response to decreases in local water column stratification during the Pliocene.

The increase in deeper dwelling (50–100 m) C. leptoporus subsp. small during Interval 2 (Figures S3b and 4f)
may indicate a stronger influence of SAMW unrelated to a major global glaciation and/or sea level lowstand
(Lisiecki & Raymo, 2005; Miller et al., 2012). This may hint at a shallowing of the LC at Site U1463 at this
time (Figures 2 and 4e). Increasing nutrient availability and thus increasing water column mixing is also
reflected by the increased abundance of medium sized reticulofenestrids R. haqii and R antarctica
(Figure S3h) and a proliferation of the more nutrient‐adapted U. jafari and U. foliosa (Figure S3k), together
with an increase of opportunistic generalists such as Helicosphaera spp. (Baumann et al., 2005; Boeckel &
Baumann, 2004, 2008; Ferreira & Cachão, 2005; Okada & Honjo, 1973; Takahashi & Okada, 2000; Ziveri
et al., 2004; Figure S3d and Table S2).

Site 763A also shows decreasing SSTs between 3.52 and 3.40 Ma (Karas et al., 2011b; Karas et al., 2017). Here
decreasing SSSs indicated by δ18Oivc‐sw (Figure 3b), in line with the C/S ratio trends at Site U1463
(Figure 3c), suggest that the switch to cooler low‐salinity waters around 3.5 Ma had a pronounced effect
on the NWS paleoenvironment. Site 214 (Karas et al., 2009) shows decreasing G. ruber/T. sacculifer and
G. crassaformis Mg/Ca temperatures after 3.5 Ma (Figure 4a), suggesting that changing surface and inter-
mediate water temperatures and potentially salinity levels in the ITF are the main driving factor for the
recorded changes between Interval 1 and 2 (Figures 2, 4, and 5). Overall high δ18OG. crassaformis values at
Site 214 between 3.6 and 3.3 Ma (Karas et al., 2009) further support this change in ITF source
waters (Figure 4b).

We therefore interpret Interval 2 at Site U1463 to reflect increasing “northern ITF source waters” from the
north Pacific as indicated by decreasing SST at Site 763 after 3.54 Ma. This interpretation is in line with the
proposed closure and/or restriction of the equatorial Pacific ITF pathway due to the uplift of Halmahera and
closure of the Halmahera strait (Godfrey, 1996; Gold et al., 2017; Hall, 2002; Hall et al., 1988; Kuhnt et al.,
2004; Molnar & Cronin, 2015; Wijeratne et al., 2018; Figures 2, 3, and 5b). This led to a possibly narrower
LC, similar to its modern configuration, with more turbulent flow and stronger LC eddy formation (Waite
et al., 2007). This changed LC resulted in stronger water column mixing and a shallower thermocline and
nutricline at Site U1463, which is well supported by the observed nannofossil assemblage changes.
Precipitation on the Australian continent reduced further during Interval 2, reflecting the latest stages of
the Humid Interval (Christensen et al., 2017), and is also reflected by slightly increased but still relatively
low influx of windblown dust at Site U1463 (Figures 3e).

Interval 3 “Northern ITF source mode” (291.13–297.44 m CCSF; 3.46–3.32 Ma): An acme of R. minuta
(Figures 2a and S3g) at Site U1463 during Interval 3 reflects paleoenvironmental conditions favoring
r‐selected opportunists (= TG3), which cope well in changing neritic environmental conditions. Most
open marine and tropical nannofossil species occur only intermittently as minor and accessory parts
of the assemblage (Figures 2c and S3g). We thus regard Interval 3 as reflecting a fully reconfigured
ITF transporting relatively cooler waters from the northern Pacific into the Indian Ocean (Figures 5b
and 6b). This is also reflected by high C/S values at Site U1463 and further dropping δ18Oivc‐sw values
and decreasing temperatures at Site 763 (Karas et al., 2011b). After ~3.4 Ma a drop in δ18OT. sacculifer

values at Site 763 (Karas et al., 2011b) compared to Site U1463 (De Vleeschouwer et al., 2018) reflects
decreasing ITF influence farther south (Figure 4a), starting with increase in global ice volume following
isotope stage MG4 (Lisiecki & Raymo, 2005). Terrigenous input and dust flux remain constant during
Interval 3 reflecting stable climatic conditions on the Australian hinterland at the end of the
Australian Humid Interval.

Interval 4 “M2 event glacial ITF mode” (290.74–287.54 m CCSF; 3.32–3.24 Ma): A dominance of TG2 in this
interval reflects cool, nutrient‐rich intermediate water masses and/or SAMW from the Indian Ocean reach-
ing Site U1463 during the MIS M2 glacial event. An increase in C. leptoporus subsp. small indicates an
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increased influence of relatively cooler (= SAMW) nutrient‐rich intermediate waters via the Leeuwin
Undercurrent in its habitat between 50‐ and 100‐m water depth. This is supported by a strong increase in
R. antarctica adapted to nutrient‐rich conditions with low freshwater input (Wade & Bown, 2006).
Together with stable isotopic values (De Vleeschouwer et al., 2018), these results show that while the LC
and thus ITF never ceased during the M2 glacial event, the flow along the NWS constricted allowing a
stronger influence of open Indian Ocean waters at Site U1463 via subsurface upwelling (e.g., De
Vleeschouwer et al., 2018). Today, a weaker LC reduces the warm‐water and low‐density cap along the
NWS allowing prevailing westward winds to increase Ekman transport and consequently (subsurface‐)
upwelling (D'Adamo et al., 2009; Ridgway & Godfrey, 2015; Thompson et al., 2011; Waite et al., 2007;
Wijeratne et al., 2018; Zhang et al., 2016).

Similar weak or subsurface upwelling was observed to significantly impact nannofossil assemblages along
the LC over the last 30 kyr (Takahashi & Okada, 2000), indicating that the LC showed a similar response
during the M2 event as during the last glacial maximum (Figures 5c and 6c). Interval 4 thus represents a
response of nannoplankton assemblages to weaker and more restricted ITF waters flowing along the shelf
areas during cooler austral autumn and winters (Bahmanpour et al., 2016; Rousseaux et al., 2012;
Wijeratne et al., 2018). Such a reduced LC would allow for intermittent subsurface upwelling, caused by
increased wind shear and a weakened warm, low‐salinity, surface water cap, leading to a shallower mixed
layer (Rousseaux et al., 2012; Figures 5c and 6c). The termination of Interval 4 coincides with the transgres-
sion associated with MIS M1 (Lisiecki & Raymo, 2005; Miller et al., 2012). This sea level highstand also
marks the termination of the ~0.5 ‰ offset between the isotopic values of site 763 and U1463 (De
Vleeschouwer et al., 2018), indicating that the LC again reached Site 763A by ~3.2 Ma. These results imply
a link between the observed paleooceanographic changes and the end of the Australian Humid Interval and
the beginning of the Transitional Interval at 3.3 Ma (Andrae et al., 2018; Christensen et al., 2017; Di Nezio
et al., 2016; Krebs et al., 2011; Sniderman et al., 2016)

Interval 5 “Post M2 glacial/interglacial ITF mode” (287.44–277.84 m CCSF; 3.23–2.97 Ma): the final interval
reflects the response of local oceanographic conditions to increased glacial/interglacial amplitudes and sea-
sonality after MIS M2 (De Vleeschouwer et al., 2018; Lisiecki & Raymo, 2005). TG2 and TG3 alternate on an
orbital scale showing cooler and more open marine TG2 dominantly occurring during ETP maxima in gla-
cial times (Figures 4c and 4e). In particular, the glacial intervals KM2, K2, G22, and G20 (Figure 4e) reflect
the response of the LC and ITF to increased effects of glacio‐eustatic variability in the Indian Ocean after
MIS M2. The strong response of the LC to MIS KM4 and MIS K2 also suggests that comparatively small
sea level drops (~20–30 m; Miller et al., 2012) sufficiently altered the path of the LC along the NWS following
MIS M2 (e.g., Di Nezio et al., 2016). Stronger upwelling is also implied by the δ13CT. sacculifer data of De
Vleeschouwer et al. (2018) during MIS KM4 (~3.2 Ma; Figures 4d). Both δ13CT. sacculifer and classical glacial
indicators like Pseudoemiliania spp. (see Gartner, 1972) show a strong precessional pacing imparted on long‐
term orbital variability (Figures 4c–4e). Overall, our nannofossil assemblages thus indicate a stronger
response of upwelling sensitive taxa during glacials than in interglacials (Figures 2d, 2e, 4d, and 4e). This
interpretation is in line withmodeling studies (Di Nezio et al., 2016). Their study suggests that sea level drops
around 30 m are enough to significantly alter the hydroclimatic conditions along northwest Australia,
leading to stronger upwelling and reduced humidity via the Sahul‐Indian Ocean Bjerknes mechanism with
an increased east‐west tilt of the Indian Ocean thermocline. In summary, it appears that the heightened
glacial/interglacial variability after 3.3 Ma resulted in oceanographic conditions along the NWS that were
already comparable to its proposed Pleistocene configuration implying a stronger ITF and Leeuwin current
during interglacials and a weaker ITF during glacials leading to increased seasonal upwelling of cool
nutrient‐rich water masses of the Leeuwin Undercurrent (Gallagher et al., 2009; Godfrey & Mansbridge,
2000; Ridgway & Godfrey, 2015; Spooner et al., 2011; Wijeratne et al., 2018).

Around MIS G20 (~3.0 Ma) a drop in C/S values (Figure 3c) also suggests a re‐establishment of more strati-
fied water conditions along the NWS, suggesting an at least seasonally reduced LC, supported by r‐selected
opportunists (Figure 2a) and potentially dropping SSTs shown by increased δ18OT. sacculifer values (Figure 4c;
De Vleeschouwer et al., 2018). Interestingly, G20 is also noted as a distinct change in the subtropical front in
the Tasman Sea resulting in the end of the small Gephyrocapsa acme at Site 590 (Ballegeer et al., 2012). The
authors relate this assemblage change to a significant shift in the dominant waters masses reaching
Tasmania and link it to the intensification of the atmospheric circulation related to late Pliocene climate
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cooling causing an increased equator to pole heat gradient (Ballegeer et al., 2012). Combined with strong
evidence pointing toward enhanced Southern Hemisphere cooling (Lisiecki & Raymo, 2005; Riesselman
& Dunbar, 2013), this indicates a further significant equatorward expansion of cool Antarctic water masses
at that time as a likely explanation for the observed SST drop at Site U1463.

Australian climate shows a variable pattern during interval 5 spanning the first ~300 kyr of the Transitional
Interval after MIS M2 (Figure 3d). These variable conditions in northern Australia during the Transitional
Interval may be related to sea level‐driven fluctuations in the Indian Ocean Bjerknes mechanism and/or
changes in the Australian Monsoon system, resulting in more seasonal precipitation during Austral
Summer and reduced aridity in winter during stronger interglacials like KM3 (Figures 3d and 4e). A link
to a globally changing monsoon system is also supported by a contemporary strengthening of the East
Asian Summer Monsoon (Ao et al., 2016). After ~3.10 Ma, however, terrigenous flux at Site U1463 drops
significantly, coupled with an increase in dust flux showing the inception of precession paced aridity
patterns in Australia until the end of the studied interval ~2.97 Ma ago (Figure 3d).

4.4. Implications of Pliocene Indonesian Throughflow Restriction

Our multiproxy analysis suggests that a dominant connection between the central equatorial Pacific and the
Indian Ocean persisted at least until 3.54 Ma, when a threshold in the tectonic configuration of the
Indonesian Archipelago was reached, resulting in a switch in dominant ITF pathways (e.g., Cane &
Molnar, 2001). This initial reconfiguration drastically altered oceanographic conditions (temperature, water
stratification, and nutrient levels) along the NWS leading to a pronounced decline of tropical, oligotrophic
nannoplankton taxa at Site U1463 (Figures 2b and 2c, and S3). This shift supports the hypothesis that
tectonic ITF reconfiguration significantly reduced equatorial heat transport from the IPWP into to the
Indian Ocean, in line with previous studies (Cane & Molnar, 2001; Karas et al., 2009; Karas et al., 2017;
Molnar & Cronin, 2015). Our data further indicate that this initial tectonically forced restriction during
the Pliocene did not necessarily restrict total throughflow volume but rather changed the dominant water
sources to cooler and lower‐salinity waters from the northern Pacific and the SCS (Cane & Molnar, 2001;
De Vleeschouwer et al., 2018; He et al., 2015; Karas et al., 2009, 2011b). The tectonic ITF reorganization
postdates increases in East Asian Summer Monsoon strength by at least 100 kyr (Ao et al., 2016), showing
that the observed shift in ITF waters ~3.54 Ma was likely not directly caused by monsoon‐related discharge
into the South China Sea (e.g., Kuhnt et al., 2004).

A comparison of δ18OT. sacculifer records from sites U1463 and 763A (De Vleeschouwer et al., 2018) already
suggested that LC dynamics were affected by a long‐term global sea level lowstand between ~3.4 and
3.2 Ma resulting in Site 763A temporarily falling outside the direct influence of the LC (De Vleeschouwer
et al., 2018; Miller et al., 2012). The recorded assemblage changes (Figures 2 and S3), and contemporary drop
in equatorial Indian ocean surface and thermocline SSTs at Site 214 (Karas et al., 2009; Figures 4a and 4c)
~3.5 Ma now confirm that significant changes in ITF source waters clearly preceded the isotopic offset
between Site U1463 and 763A by ~140 kyr (De Vleeschouwer et al., 2018).

The up to ~60‐m regression during MIS M2 (Miller et al., 2012) may have exposed significant Australian
Shelf areas for the first time (Figure 5c). MIS M2 was thus possibly the first time during the Pliocene that
Australian shelf exposure reached a critical threshold needed to fully establish the Sahul‐Indian Ocean
Bjerknes mechanism (Bjerknes, 1969; Di Nezio et al., 2016). The Sahul‐Indian Ocean Bjerknes mechanism
would have led to anomalous easterlies coupled with a high‐pressure cell forcing dry conditions in northern
Australia for the first time (Figure 3d) and also forcing thermocline shoaling and upwelling in the eastern
Indian Ocean duringMISM2 (Figures 2, 4, 5c, and 6c). This is supported by an increase in upwelling adapted
nannoplankton taxa and the increase in δ13CT. sacculifer at Site U1463, which both indicate progressively
increasing (sub)surface upwelling along the NWS after 3.3 Ma. Nevertheless, our nannofossil assemblage
data and δ13CT. sacculifer data (De Vleeschouwer et al., 2018) also imply the LC returned to an at least season-
ally strong mode transporting ITF waters along the NWS following the transgression associated with MIS
M1 (Figures 2, 4d, and 4e). This reinvigorated ITF also strengthened the LC enough for LC eddy to again
reach Site 763 by 3.2 Ma (De Vleeschouwer et al., 2018; Karas et al., 2011b). This strong but seasonally vari-
able LC is likely the effect of a stronger steric height gradient forcing the LC along the NWS after tempera-
ture and salinity gradients increased between the Indonesian Seaways and the south eastern Indian Ocean
(D'Adamo et al., 2009; Furue et al., 2017; Gordon et al., 2003; Wijeratne et al., 2018), resulting in a LC much
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closer to its later Pleistocene configuration (Gallagher et al., 2009; Spooner et al., 2011). We thus propose that
the reduced equatorial Pacific intermediate water component flowing into the Indian Ocean after ITF recon-
figuration ~3.54 Ma was unable to warm the eastern Indian Ocean enough to reverse the east‐west tilt of the
Indian Ocean thermocline that formed between 3.4 and 3.3 Ma (Figures 2, 5, and 6). After MIS M2 this
permanently tilted thermocline also made the equatorial Indian Ocean more susceptible to seasonality
driven subsurface upwelling during glacials and weaker ITF (Figures 5d and 6c). This model would explain
both the stronger glacial/interglacial variability after MIS M2 in our nannofossil records and by extent also
the isotopic offset between Site U1463 and 763A (De Vleeschouwer et al., 2018).

While it has been established that the long‐term history of Australian hydroclimate during the Pliocene was
linked to the uplift of theMaritime Continent by shifting control of Australian climate from the Pacific to the
Indian Ocean (Christensen et al., 2017), a clear constraint for this shift was missing until now. Our results
now confirm this shift occurred at MIS M2, when a combination of ITF restriction, Indian Ocean cooling,
and shelf exposure increased wind shear and thermocline shoaling, establishing an early form of the
Bjerknes mechanism in the eastern Indian Ocean. Crucially, a fully established Sahul‐Indian Ocean
Bjerknes mechanism by MIS M2 also provides a clear process based hypothesis able to explain observed
changes in African precipitation patterns and Mediterranean outflow during the Late Pliocene via the tele-
connection proposed by Sarnthein et al. (2017).

5. Conclusions

Our sub‐Milankovitch scale calcareous nannofossil and geochemical records from IODP Site U1463 com-
bined with existing Indo‐Pacific data (De Vleeschouwer et al., 2018; Karas et al., 2009, 2011b; Wara et al.,
2005) enabled us to reconstruct the timing and pacing of tectonic ITF restriction during the Pliocene
(3.66–2.97 Ma). The position of IODP Site U1463 within the upper branch of the LC provides new insights
into Pliocene ITF dynamics between 3.66 and 2.97 Ma, allowing us to distinguish changes caused by tectonic
ITF restriction from those imparted by global sea level variability, along the NWS:

1. The dominant equatorial connection between the Indo‐Pacific Warm Pool and the Indian Ocean via the
Indonesian Gateway had already ceased ~3.54 Ma, as shown by a distinct shift in nannofossil assem-
blages at Site U1463. These changes are in line with cooling equatorial Indian Ocean temperatures at
Site 214, pinpointing the switch to dominant northern Pacific ITF sources for the first time.

2. Nannofossil assemblages provide detailed insights into how initial ITF reorganization after 3.5 Ma led to
fundamental changes in paleoenvironmental conditions along the NWS and altered LC dynamics: The
northern mode ITF led to a weakening or at least constriction of the LC, resulting in Site 763A, further
offshore and downstream of the LC, reflecting a more open Indian Ocean signal, which became espe-
cially pronounced during a long‐term sea level lowstand between 3.4 and 3.2 Ma.

3. The MIS M2 glaciation at 3.3 Ma was amplified by a significant reduction in equatorial heat exchange
between the Pacific and Indian Ocean after 3.5 Ma. During MIS M2 sea level driven ITF restriction
further enhanced the observed thermal isolation of Antarctica (De Vleeschouwer et al., 2018; Patterson
et al., 2014) leading to the irreversible cooling of the eastern Indian Ocean (Karas et al., 2009, 2011b)
and Antarctica (Riesselman & Dunbar, 2013) from 3.3 Ma onward.

4. Nannofossil assemblage and δ13CT. sacculifer data show that the Pliocene sea level lowstand culminating in
MISM2 (Miller et al., 2012) likely established an early form of the Sahul‐Indian Ocean Bjerknes mechan-
ism leading to upwelling along the NWS (Di Nezio et al., 2016). This mechanism also enhanced season-
ality and aridification on the Australian Continent after 3.3 Ma, by establishing a more seasonally
variable LC (Godfrey & Mansbridge, 2000; Ridgway & Godfrey, 2015; Wijeratne et al., 2018).

5. The permanently tilted thermocline by 3.3 Ma and heightened glacial/interglacial LC variability after
~3.2 Ma resulted in oceanographic conditions along the NWS that were much closer to their
Pleistocene configuration characterized by a weaker (stronger) LC during glacials (interglacials)
(Gallagher et al., 2009; Spooner et al., 2011). These insights also illustrate the significant role eastern
Indian Ocean surface water conditions played during the inception of the Australian Transitional
Interval (Christensen et al., 2017).

This study thus provides a unique time series of Pliocene paleoenvironmental conditions along the north-
west shelf of Australia while linking them with long‐term changes in Australian climate. The observed local
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paleoenvironmental and paleoclimatological changes corroborate well‐established conceptual models of
Indian Ocean and Australian Climate dynamics. Combined, this resulted in a robust model tying local
environmental changes on the NWS to global Pliocene climatic trends. Our results also provide strong
support for the interhemispheric teleconnection proposed by Sarnthein et al. (2017). We show the direct
effect of changing ITF dynamics, especially in relation to changing sea level, had on past Australian and also
global climatic changes.
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