
INOM EXAMENSARBETE TEKNIK,
GRUNDNIVÅ, 15 HP

, STOCKHOLM SVERIGE 2019

Epistemic Structures for Strategic
Reasoning in Multi-Player Games

ERIK HANDBERG

LARA ROSTAMI

KTH
SKOLAN FÖR ELEKTROTEKNIK OCH DATAVETENSKAP

Epistemic Structures for
Strategic Reasoning in
Multi-Player Games

ERIK HANDBERG
LARA ROSTAMI

Bachelor in Computer Science
Date: June 18, 2019
Supervisor: Dilian Gurov
Examiner: Örjan Ekeberg
School of Electrical Engineering and Computer Science
Swedish title: Kunskapsstrukturer för strategiska resonemang i
flerspelarspel

iii

Abstract
A game can be visualised with a directed graph, where each node is a game
state and the edges are the players’ actions that lead to new game states. To ob-
tain thewinning condition of the gamewhilst avoiding the losing condition, the
players must perform the correct actions in coalition. The goal is thus to find
winning strategies for these games, which ensure that the winning condition is
reached. For games with imperfect information, the players might not be able
to distinguish some game states from each other, which makes finding strate-
gies harder. With the multiplayer knowledge subset construction (MKBSC),
one may reduce the original graph to an “expanded” graph, and from this new
graph try to find winning strategies, that can later be translated back into the
original game graph. In this report, we have investigated how we gain infor-
mation in each iteration of the MKBSC. This was done by introducing e-trees,
a mathematical tree construction that can visualise knowledge of the current
game state for each player in the game. It was found that these e-trees can
display how the knowledge develops for each player given any iteration of the
MKBSC, and that they can provide an intuitive way of understanding how
strategies are found in a game.

iv

Sammanfattning
Ett spel kan visualiseras med en riktad graf, där varje nod är ett speltillstånd.
Kanterna är spelarnas möjliga drag i spelet, där dragen leder till nya speltill-
stånd. För att vinna spelet utan att hamna i det förlorande tillståndet måste
spelarna utföra de rätta dragen tillsammans. Målet är därför att hitta vinnan-
de strategier i sådana spel, som garanterar att spelarna vinner. För spel med
imperfekt information kan spelarna inte nödvändigtvis urskilja vissa speltill-
stånd från varandra, vilket gör det svårare att hitta vinnande strategier. Med
den så kallade multiplayer knowledge subset construction (MKBSC) kan man
reducera grafen för det imperfekta spelet till en enklare graf, och försöka hitta
strategier i den nya grafen istället, för att sedan översätta den strategin så att
den passar originalgrafen. I den här rapporten har vi undersökt hur man får
information när man använder MKBSC, och vad man kan använda den infor-
mationen till. Det här gjordes genom att introducera “e-trees”, en matematisk
trädkonstruktion som kan visualisera kunskapen för varje spelare i spelet. Vi
kom fram till att MKBSC kan visualisera hur kunskapen för varje spelare ut-
vecklas vid varje iteration av MKBSC, och att träden ger en mer intuitiv bild
över hur strategier kan framställas ur ett spel.

Contents

1 Introduction 1
1.1 Research Question . 2

2 Background 3
2.1 Games on finite graphs . 3

2.1.1 Single player games with perfect information 3
2.1.2 Single player games with imperfect information 5
2.1.3 Multiplayer games with imperfect information 7

2.2 Representing knowledge in games 9
2.3 Knowledge-based algorithms on games 10

2.3.1 Knowledge based subset construction 10
2.3.2 Knowledge based subset construction for multiplayer

games . 10
2.3.3 A tool for applying MKBSC on games 13

2.4 Related Work . 14
2.4.1 k-trees . 14

3 Method 15
3.1 Idea . 15
3.2 Approach . 15

4 Results 16
4.1 Knowledge as epistemic states 16

4.1.1 Definition of epistemic states 16
4.1.2 Deconstructing epistemic states informally 17

4.2 Knowledge as e-trees . 18
4.2.1 Recursive definition of e-trees 18
4.2.2 Deconstructing an e-tree informally 19

4.3 Implementation of e-trees in the MKBSC-tool 21
4.4 Using the MKBSC-tool to find strategies 21

v

vi CONTENTS

5 Discussion 25
5.1 Improvement . 25

5.1.1 Mathematical definition of e-trees 25
5.1.2 Implementation of e-trees in the MKBSC-tool 25
5.1.3 Finding strategies for games with the MKBSC-tool . . 25

5.2 Limitation . 26
5.3 Usefulness of the MKBSC 26

6 Conclusion 28
6.1 Future work . 28

A Example images from the MKBSC-tool 30

Chapter 1

Introduction

Certain problems can be simulated with a game, where the problem’s solution
is the game’s winning condition. Consider, for example, a robot performing
a task in a factory environment, where the right actions must be executed in
the correct order to “win” the game. Each action leads to a game state, which
describes the state the game is in. We can visualise this game in a directed
graph, where the robot’s actions are edges, and the game states are the nodes.

In a game of chess, each player knows about every state in the game. The
player knows that one move will lead to a certain game state. We call this a
game of perfect information. In a game of poker however, the player might not
be able to obtain every piece of information there is in the game. The player
might not know what cards are held by the other players, which introduces
a different type of strategy as compared to chess. We call poker a game of
imperfect information. In this report, we will focus on the latter type of games.

The goal of a game is to reach a certain objective, which is possible with
a strategy. If we assume the players have memory in a game of imperfect
information, finding a strategy becomes a complex problem that could require
a lot of computational power to solve. However, if we assume the players have
no memory, finding strategies or concluding that there are none becomes a
simpler problem.

To help in the process of finding winning strategies, we can use theMulti-
player Knowledge-Based Subset Construction (MKBSC). The idea ofMKBSC
is to make use of the knowledge a player has about itself and the other players.

Each iteration of the construction computes each player’s knowledge about
the possible state of the game and generates a new game based on that knowl-
edge. In a sense, it allows players to consider not only their own knowledge,
but also the other players’ knowledges. In a sense, the MKBSC creaets a nest-

1

2 CHAPTER 1. INTRODUCTION

ing of knowledge, where the players can reason about the other players, and
for each iteration we allow the players to consider another level of knowledge.
This nesting of knowledge can just after a few iterations become complex and
difficult to comprehend.

When the construction has been iterated on a game one or multiple times,
it might be possible to find an epistemic strategy. Instead of looking at where
a player is at in the game, the player now only uses what knowledge it has
about itself and possibly about other players to make the decision on its next
move. Epistemic strategies are a natural way to represent strategies for players.
Imagine for example a poker player that doesn’t just look at the cards in its
hand and on the table, but also considers what the other players knows before
making a move.

A tool (we will refer to this tool as the MKBSC-tool), available at [1], has
previously been created that can apply MKBSC on games, and print out the
knowledge that players receive for each iteration of the MKBSC. The issue
with the MKBSC-tool, however, is that this nesting of knowledge becomes
hard to deconstruct and visualise. It is thus the goal of this paper to create a
newway of visualising knowledge of the players in a game as a result of having
applied MKBSC in the game.

1.1 Research Question
An idea of representing the nesting of knowledge with the MKBSC is to make
use of trees. In this paper, wewill attempt to visualise the nesting of knowledge
with the MKBSC with tree constructions.

1. For each iteration of the MKBSC, the nesting of knowledge about a
player’s current location becomes larger and more difficult to under-
stand. How can we create a new way of representing this nesting of
knowledge?

2. In previous works on the subject [2, 3], a tool [1] has been implemented
to allow users to implement and visualise the MKBSC on a game graph.
How can we extend this tool, as to make it display our knowledge con-
struction specified in the item above?

3. Given that the items above were succeeded, does our knowledge con-
struction aid us in finding epistemic strategies?

Chapter 2

Background

We begin by defining important concepts central to this paper.

2.1 Games on finite graphs
A finite game can be depicted on a directed graph. A player starts on a start-
ing node, and has, through various actions, the ability to traverse through the
graph. The objective of the game depends on how it is defined. We consider
the games as if there are players playing against one single entity, which we
call “nature”.

2.1.1 Single player games with perfect information
For depicting games on directed graph, we follow the notation in [4].

Game graphs We denote the game graph with the tuple

G = (L, l0,Σ,∆),

where:

• L is a finite set of states (the nodes in the game graph)

• l0 ∈ L is the initial state of the player

• Σ is the set of actions available to the player

• ∆ ⊆ L×Σ×L is a set of labelled transitions (the labelled edges in the
graph)

3

4 CHAPTER 2. BACKGROUND

An important detail here is that as the player traverses through the graph,
the player always knows their own location. Possible transitions for a player,
given a set of states S ⊆ L and an action σ ∈ Σ, are defined as

PostGσ (S) = {l′ ∈ L : l ∈ S and (l, σ, l′) ∈ ∆}

and will return all accessible states from the set of states S using the action σ.
An example of a situation modelled as a game graph is shown in figure 2.1.

This is the same example used by Jacobsson and Nylén [2], but with a different
context. In the example, a company making bird houses have automated the
part of the factory drilling the entry hole to the houses. A robot has been tasked
with drilling entry holes in bird houses. The robot is given either houses with
entry holes or houses without entry holes. The robot should only pass on
houses with entry holes, meaning that it first has to drill a hole in the houses
where it is missing.

Winning condition To succeed in the game, the player must fulfill the win-
ning condition of the game. In this paper, we will only consider reachability
conditions, meaning each graph has a state which the player must reach in or-
der to win. A graph can also have a losing state, meaning if the player reaches
this losing state, the winning state can never be reached [4].

Strategies We denote a play in G as an infinite sequence π = l0l1 . . . such
that ∀i ≥ 0, there exists σi such that (li, σi, li+1) ∈ ∆. A history is a “cut”
from a play such that π(i) = l0 . . . li. We denote the set of histories as L+ .

We can now define a strategy. A strategy in G for the player is a function
α : L+ → Σ that maps histories to actions. A strategy is memoryless if
the strategy only depends on the current node the player is in, meaning the
player cannot refer to previous moves to make a decision of the next move. If
the strategy requires some finite amount of memory it is called a finite-state
strategy [4].

CHAPTER 2. BACKGROUND 5

?

? ?

Figure 2.1: A situation with automated drilling of entry holes in bird houses, mod-
elled as a game graph. A robot receives newly assembled houses, some with en-
try holes and some without entry holes. The robot must drill entry holes in the
houses where this is missing. After receiving a house, the robot can either drill
a hole (action σ = D) or pass it on down the construction line (action σ =

P). The winning condition is to pass on houses with drilled entry holes, while
passing on a house without an entry hole is the losing condition. The states are
L = {start, hole, no hole, win, lose} where start is the initial state
l0. The set of actions available to the player (the robot) is Σ = {G,D,P} =

{Get bird house, Drill entry hole, Pass on bird house}

2.1.2 Single player games with imperfect information
We now consider games of imperfect information. In such a game, the player
cannot distinguish some locations from each other, meaning the player may not
necessarily knowwhich state the game is in. In this case, we partition the game
states into observations o, and we call the set of observationsO. The states in
a given observation are indistinguishable from each other to the player. Note
that the observations themselves are still distinguishable from each other. We

6 CHAPTER 2. BACKGROUND

denote this game as
G = (L, l0,Σ,∆,O)

This game is played the same way as in the case with perfect information,
however the player must now account for that only observations of the game
are visible, not the locations.

Note that with this definition we can still simplify it to a perfect informa-
tion game. If all observations contain a single location, then all locations are
distinguishable from each other, which is the definition of a perfect game [3].

Consider again the example with the robot drilling entry holes in bird
houses. Some time after the robot has been installed, a sensor on the robot
malfunctions, leaving it unable to detect whether or not an entry hole has al-
ready been drilled. This creates a situation that, when is modelled as a game
graph, is a game of imperfect information, see figure 2.2.

?

? ?

Figure 2.2: The same situation as figure 2.1, but with the modification that the robot
now can’t tell the difference between when an entry hole already has been drilled or
not (marked with the red striped line), making it a game of imperfect information. The
set of states L and the set of actions Σ are identical to the situation in figure 2.1, but
because this is a game if imperfect information there is now also a set of observations
O = {{start}, {hole, no hole}, {win}, {lose}}.

CHAPTER 2. BACKGROUND 7

2.1.3 Multiplayer games with imperfect information
Amultiplayer game of imperfect information plays similarly to a single player
game of imperfect information, and is defined as

G = (L, l0,Σ,∆,O)

with the difference from the single player case that

• Σ = Σ0 × Σ1 × · · · × Σn−1

• O = O0 ×O1 × · · · × On−1

where n is the number of players. A player i has thus the actions Σi and the
observationsOi available to them. Thismeans that players could have different
information and actions available to them in a certain state of the game.

Strategies in a multiplayer game consist of the joint strategies of the players
in the game. In the case of a reachability condition, the players usually share
the same winning condition. Note that the players may not share any informa-
tion between each other: we assume no communication in these games.

As an example, again consider the case of the bird house factory. Now, the
drilling of entry holes is instead handled by two robots working together. One
of the robots has a working sensor while the other robot has a malfunctioning
sensor, meaning that only one of them can tell the difference between a bird
house with an entry hole and a bird house without an entry hole, see figure
2.3.

8 CHAPTER 2. BACKGROUND

?

? ?

Figure 2.3: The similar situation as in figure 2.1 and 2.2, but with two robots working
together. In this version of the game player 0 can’t tell when a bird house already has
an entry hole drilled or not. Transitions in this game are written as tuples, where the
i:th entry in the tuple represents the action of player i.

Projecting games From the definition of a multiplayer game with imper-
fect information, it should be clear that each player sees the game differently,
meaning their observations may differ from each other. To see how a player
sees the game, we can project the game G onto player i, which creates a new
game graph, labelled (G|i), from the perspective of player i.

CHAPTER 2. BACKGROUND 9

?

? ?

Figure 2.4: The game (G|0) as seen in
figure 2.3, projected on player 0. The red
line shows that the player cannot distin-
guish between these two states.

?

? ?

Figure 2.5: The game (G|1) as seen in
figure 2.3, projected on player 1. In this
case, the player can distinguish all states
from each other.

2.2 Representing knowledge in games
We begin this section by recalling that all perfect games can be represented as
an imperfect game with all observations being singletons, meaning we need
only to consider imperfect games in this section.

Representing knowledge As mentioned in section 2.1, the state a player
can be located in is denoted as li, where li ∈ L. Suppose now that the state
li is the only state related to a observation, meaning the player can clearly
distinguish if the player is located in this state or not. The knowledge of the
player is represented as the set of the states in the observation, in this case
this would be represented as {li}. By following this logic, we can extend it to
multiple states. If the states li, lj, lk . . . are in the same observation (meaning
the states are indistinguishable from each other), we would denote the player’s
knowledge as {li, lj, lk . . . }.

Epistemic depth In a game, the knowledge a player has about the state of
the game, both its own knowledge and and its knowledge of other players’
knowledge, can be allowed to stretch deep. One way to describe this, as done
by Lundberg [3], is to define different levels of epistemic reasoning. At level
0, players do not have any knowledge as of what states of the game it and and
other players can be at, but can only perform an action based on its observation.
At level 1, players are allowed the knowledge of what states are possible based
on the current observation. Not until level 2 are the players allowed to reason

10 CHAPTER 2. BACKGROUND

about the (level 1) knowledge of other players. Generally, players are allowed
to reason about k levels of knowledge of other players at level k + 1 > 0.

Epistemic trees Since, for levels k > 1 of epistemic reasoning, a player
is allowed to reason about the knowledge of every other player, the possible
knowledges can branch out further as the epistemic level increases. An intu-
itive representation of this is with a tree. One such epistemic tree structure is
mentioned in section 2.4.1.

2.3 Knowledge-based algorithms on games

2.3.1 Knowledge based subset construction
The knowledge based subset construction (KBSC) is the idea of transforming
the game graph into a graph of knowledge. We convert the game graph into
what the the player’s knowledge of the game is in each state, and can with this
new information try to find a strategy in the game graph that might not have
been intuitively visible to us from the original game graph [2].

KBSC We use the definition in [3]. Given a game G = (L, l0,Σ,∆) of
perfect information, the knowledge based subset construction (KBSC) ofG is
defined as the perfect game that represents the knowledge the player has in the
game. We construct the graph

GK = (L, {l0},Σ,∆K)

where

• L = 2L\{∅} is powerset of L (the set of all subsets of L)

• ∆K = L × Σ× L

This new game graph represents the knowledge the player has in the game.
Note that all locations will have been transformed to knowledge sets which we
denote as {li}, which represent the knowledge the player has in this game state.

2.3.2 Knowledge based subset construction for mul-
tiplayer games

The multiplayer knowledge subset construction, proposed by [3], involves ap-
plying KBSC to each player individually, and then combining these graphs to

CHAPTER 2. BACKGROUND 11

form GK .

MKBSC We start by projecting the game onto each player, which creates
the new graphs (G|i).

We apply KBSC to each individual player graph, yielding (G|i)K . We
then combine each (G|i)K for each player to yield GK . We can thus define
GK = (G|0)K × (G|1)K × · · · × (G|n− 1)K .

Note that this new game graph involves all possible combination of game
states, but they might not be reachable or consistent in the context of the game.
We thus use a pruning operation ρ on (G|0)K × (G|1)K × · · · × (G|n− 1)K

to yield the final game graph, meaning

GK = ρ((G|0)K × (G|1)K × · · · × (G|n− 1)K)

Figure 2.6 displays an example of using the MKBSC on game G in figure
2.3, which is done by combining figure 2.4 and 2.5 with each other. Notice
that player 1 has gained an observation between the states
{{no hole, hole}, {hole}} and {{hole}, {hole}}. If player 1 knows
the game is in the state {hole}, it cannot determine whether player 0 thinks
the game is in the state {no hole, hole} or {hole}. It should thus be
clear that the MKBSC can introduce new observations to the players.

12 CHAPTER 2. BACKGROUND

(G, G) (G, G)(D, D)

(D, D)

~0

Start

Figure 2.6: The game GK , where G is the game seen in figure 2.3. Each
node represents the composition of knowledge for both players, given that
a certain action has been made. Consider, for example, the (G,G) ac-
tion on the node {start, start}. We could either end up in the node
{{hole, no hole}, {hole}} or {{hole, no hole}, {no hole}}. Notice
that the first element of these sets represent what player 0 knows, and the second
element represent what player 1 knows.

Notice that these observations take different epistemic meanings depend-
ing on how many times the MKBSC has been applied. In the graph G, an
observation between two states translates to a player not being able to tell the
difference between them. In the graph GK , where the MKBSC have been ap-
plied once, an observation between two states translates to a player not being
able to tell the difference between what knowledge the other player possesses

CHAPTER 2. BACKGROUND 13

in these games. For graphs GjK where the MKBSC has been applied j > 1

times, an observation between two states translates to a player not being able
to tell the difference between the other players knowledge of the other players
knowledge, and so on.

Strategy recovery When trying to find winning strategies in a game using
the knowledge gained from the MKBSC, the goal is to look for memory-less
strategies in the games resulting from the MKBSC. If such a memory-less
strategy can be found it can always be translated back to a finte-memory

2.3.3 A tool for applying MKBSC on games
In 2018 a Python library was developed by August Jacobsson and Helmer
Nylén [2], available at [1]. The tool can visualise any game graph and ap-
ply the MKBSC to it. Currently, when visualising a game graph, the default
option for presenting the knowledge of a player in a certain node is with a string
using a specific format designed by Nylén and Jacobsson. This string repre-
sentation works well for games that only has been iterated with the MKBSC
a few times, but as the game is further iterated the string representation of the
knowledge of a player becomes increasingly unreadable. We will refer to this
tool as the MKBSC-tool.

lose

hole

(P, D), (D, P), (P, P)

(D, D)

no hole

~0

win

(P, P)

(D, P), (P, D)

(D, D)

start

(G, G)

(G, G)

Figure 2.7: The graphG resulting from the implementation of the bird house example
in 2.3, drawn with the MKBSC-tool.

14 CHAPTER 2. BACKGROUND

{start-start}

{start-start}

{holeno hole-hole, holeno hole-no hole}

{holeno hole-hole}

(G, G)

{holeno hole-hole, holeno hole-no hole}

{holeno hole-no hole}

(G, G)

~0

{lose-lose}

{lose-lose}

(P, P), (D, P), (P, D)

{win-win}

{win-win}

(P, P)

{hole-hole}

{hole-hole}

(D, D)

(D, P), (P, D)

(D, D)

(P, P), (D, P), (P, D) (P, P)

(D, D)

Figure 2.8: The graphG2K , resulting from having applied theMKBSC onG in figure
2.7 two times. After a few iterations of the MKBSC, the string output in each node
becomes large and difficult to deconstruct as a reader.

2.4 Related Work

2.4.1 k-trees
One example of a tree representation of knowledge has been defined by Ron
Van DerMeyden, called k-tree [5]. The structure of these trees is defined using
mutual recursion, where a k-tree is a tuple 〈l, U1, . . . , Un〉. We denote l ∈ L
as a state in the set of states L, n as the number of players and Ui represents the
knowledge of the player i at level k. In a 0-tree no player has any knowledge of
the state of the game, meaning that all Ui in 〈U1, . . . , Un〉 are all equal to the
empty set. In a 1-tree, each Ui represents the knowledge of player i about the
state of the game. For k-trees with higher k each Ui represents the knowledge
of player i about both the state of the game and the knowledge that other players
have about the state of the game [5].

Chapter 3

Method

3.1 Idea
As mentioned before, one issue with the MKBSC-tool is that after a few it-
erations of the MKBSC, the string representations of a player’s knowledge in
the nodes in the game graph becomes too large (see figure 2.8). The purpose
of this report is to combine the idea of representing knowledge as trees (see
section 2.2) with the tool for applying the MKBSC.

We will formally define a new tree structure, based on the work in [5],
for representing knowledge of players in games. Furthermore, we will extend
upon the current MKBSC-tool as to allow it to represent players’ knowledge
with such trees. The idea for the tree structure is new and was presented to us
by our supervisor.

3.2 Approach
We will introduce a new recursive definition of a tree structure, which one can
use to construct the knowledge tree based on the knowledge the player has in
a specific game state.

Using this definition, wewill then implement this definition in theMKBSC-
tool, to allow it to display the knowledge of each player as trees, as an alterna-
tive to the current string representations (as seen in 2.8). This will be done by
adding a function to the existing python library for translating the knowledge
of players in states to a tree representation.

The implementation of the trees in the MKBSC-tool will be done model-
ing the tree with NetworkX. The image representations of the trees were then
created using Graphviz and Imagemagick.

15

Chapter 4

Results

The results of this paper will be presented as mathematical definitions.

4.1 Knowledge as epistemic states
We will describe the knowledge of the players in a game GjK , where j is the
number of times the MKBSC has been applied to the game G and j ≥ 1. The
nodes of the game GjK are called epistemic states, since they are structured
objects representing the nested knowledge of the players. We will use Ej as
notation for the set of possible epistemic states in the gameGjK , but the actual
set of epistemic states in GjK will in most cases be much smaller since not all
epistemic states in Ej will be reachable (as discussed in section 2.3.2). Each
epistemic state ej ∈ Ej is a tuple ej = 〈S0,j, S1,j, . . . , Sn−1,j〉where the length
n of the tuple is equal to the number of players in G. Each Si,j is a subset
of observation in the game G(j−1)K . More specifically, Si,j is a subset of an
observation for player i at the epistemic depth j − 1.

4.1.1 Definition of epistemic states
Definition 1. Let G = (L, l0,Σ,∆,O) be an n-player game with imperfect
information. The set of epistemic states Ej of depth j are defined inductively
as follows: {

E0 = L

Ej+1 = (2Ej)n
(4.1)

Notice the base case, where E0 is simply the states in G and j = 0 even
though we have previously said that j ≥ 1. In G, no player has yet been

16

CHAPTER 4. RESULTS 17

allowed to reflect on its knowledge of the game, and therefore the states in E0

can not be seen as epistemic. Regardless, we choose to use this notation for
simplicity.

4.1.2 Deconstructing epistemic states informally
Example 1. Consider the game GK in figure 2.6, and suppose we have the
epistemic state e1 = 〈{no hole, hole}, {hole}〉, see figure 4.1. We
would then have

e1 = 〈{no hole, hole}︸ ︷︷ ︸
S0,1

, {hole}︸ ︷︷ ︸
S1,1

〉

Notice that j = 1. The epistemic state is therefore at the lowest level of
knowledge.

Figure 4.1: A visual representation of the epistemic state e1 in example 1. This is a
node from the multiplayer version of the bird house game where the the MKBSC has
been applied once, see figure 2.6.

Example 2. Now consider the game G2K in figure 2.8, and suppose we have
the epistemic state e2 = 〈{〈{h, n}, {h}〉 , 〈{h, n}, {n}〉}, {〈{h, n}, {h}〉}〉,
where the node names have been shortened. The components of this epistemic
state are deconstructed into

e2 = 〈{

e1︷ ︸︸ ︷
〈

S0,1︷ ︸︸ ︷
{h, n},

S1,1︷︸︸︷
{h}〉,

e1︷ ︸︸ ︷
〈

S0,1︷ ︸︸ ︷
{h, n},

S1,1︷︸︸︷
{n}〉}︸ ︷︷ ︸

S0,2

, {

e1︷ ︸︸ ︷
〈

S0,1︷ ︸︸ ︷
{h, n},

S1,1︷︸︸︷
{h}〉}︸ ︷︷ ︸

S1,2

〉

Notice here that j = 2, so we are not at the lowest level of knowledge. We
have instead a nesting of knowledge of depth 2.

18 CHAPTER 4. RESULTS

4.2 Knowledge as e-trees
Similarly to how Ej is used as notation for the set all possible epistemic states
in the game GjK , we will use Fj for the set of all possible forests of e-trees
in the game GjK . Each forest fj ∈ Fj is a tuple fj = 〈T0,j, T1,j, . . . Tn−1,j〉
where the length n is equal to the number of players inG. Each Ti,j is an e-tree
representing the knowledge of player i in that epistemic state.

We will now define an e-tree, denoted as Ti,j , which will represent the
elements of an epistemic state ej in the graph GjK .

Definition 2. An e-tree for the ith player is a tree Ti,j in the game GjK , and is
given by

Ti,j ::= leaf(Si,1) | tree(Si,1, T0,j−1, T1,j−1, . . . Tn−1,j−1)

where

• Si,1 is the data kept in the current node.

• n is the number of players

• T0,j−1, T1,j−1, . . . Tn−1,j−1 each represent one or more e-trees, where
Ti,j−1 is equal to the empty set.

Intuitively, Ti,j−1 is equal to the empty set because what a player knows
about itself is not represented as a branch in the next, lower level of the tree.
Instead, this knowledge is kept in the current node, more specifically in Si,1.

The reason why each e-tree Tk,j−1, 0 ≥ k ≥ (n− 1)

4.2.1 Recursive definition of e-trees
Wewill now define a recursive method for creating an e-tree from an epistemic
state. We begin by defining a helpful function before we define e-trees.

Definition 3. The function node : Si,j 7→ Si,j extracts the knowledge the
player i possesses, and is given by{

node(Si,1) = Si,1

node(Si,j) = node(Si,j−1)
(4.2)

where Si,j−1 is the ith element from any set ej−1 ∈ Si,j .

CHAPTER 4. RESULTS 19

It might seem odd that we can pick any set in Si,j and choose the ith ele-
ment from it. Intuitively, this is explained by a player i in any epistemic state ej
always having the same knowledge about itself (look for example at the knowl-
edge of player 0 in example 2). Since we for this helper function only need the
information that a player has about itself, it does not matter which epistemic
state ej−1 we choose to look at.

We can now define e-trees.

Definition 4. An e-tree can be generated by the function χi,j : Si,j 7→ Ti,j ,
and is given by{
χi,1(Si,1) = leaf(Si,1)
χi,j(Si,j) = tree(node(Si,j−1), {χk,j−1(ej−1(k)) | 0 ≤ k < n, k 6= i, ej−1 ∈ Si,j})

(4.3)
where

• Si,j−1 denotes the ith element from the tuple ej−1 ∈ Si,j .

• ej−1(k) = Sk,j−1 is the kth element of the tuple ej−1

We now connect e-trees with forests.

Definition 5. Given an epistemic state ej = 〈S0,j, S1,j, . . . , Sn−1,j〉, we can
create a tuple of e-trees fj = 〈T0,j, T1,j, . . . Tn−1,j〉 that collect the information
for all players. We define the function χ : ej 7→ fj such that

fj = χ(ej) = 〈(χ0,j(S0,j), χ1,j(S1,j) . . . χn−1,j(Sn−1,j))〉 (4.4)

4.2.2 Deconstructing an e-tree informally
The following is an informal way to deconstruct the e-tree.

1. We start at a node, which we call the head. This is the knowledge player
i knows about its own location.

2. For each edge connected to the head, we have a label, j. The label rep-
resents player j.

3. Through this edge we reach another node, which we call the child. What
we can read from this is the knowledge that player i knows about what
state player j is in.

4. Repeat from step 1 for child node with player j.

20 CHAPTER 4. RESULTS

Example 3. Consider the epistemic state

e1 = 〈{hole, no hole}︸ ︷︷ ︸
S0,1

, {hole}︸ ︷︷ ︸
S1,1

〉

in example 1. We shall now retrieve f1 from this epistemic state, using defini-
tion 5.

f1 = χ(e1) = 〈χ0,1(S0,1), χ1,1(S1,1)〉

From definition 4, we retrieve{
χ0,1(S0,1) = leaf(S0,1)

χ1,1(S1,1) = leaf(S1,1)

We thus get the result

f1 = 〈
T0,1︷ ︸︸ ︷

tree(leaf({hole, no hole})),
T1,1︷ ︸︸ ︷

tree(leaf({hole}))〉

Figure 4.2: The tree representation of f1 = χ(e1), where e1 is epistemic state from
example 1. There are no edges in this graph, so we have no nesting of knowledge.

Example 4. Consider the epistemic state

e2 = 〈{〈{h, n}, {h}〉 , 〈{h, n}, {n}〉}, {〈{h, n}, {h}〉}〉

in example 2. We will now retrieve f2 from this epistemic state.

f2 = χ(e2) = 〈χ0,2(S0,2), χ1,2(S1,2)〉

From definition 4, we retrieve{
χ0,2(S0,2) = tree(node({h, n}), χ1,1({h}), χ1,1({n}))
χ1,2(S1,2) = tree((node{h}), χ0,1({h, n}))

Since node(Si,1) = Si,1 and χi,1(Si,1) = leaf(Si,1), the equation above
becomes

CHAPTER 4. RESULTS 21

{
χ0,2(S0,2) = tree({h, n}, leaf({h}), leaf({n}))
χ1,2(S1,2) = tree({h}, leaf({h, n}))

We thus get the result

f2 = 〈
T0,2︷ ︸︸ ︷

tree({h, n}, leaf({h}), leaf({n})),
T1,2︷ ︸︸ ︷

tree({h}, leaf({h, n}))〉

Figure 4.3: The tree representation of f2 = χ(e2), where e2 is epistemic state from
example 4. The leftmost tree represents T0,2, and the rightmost is T1,2. We use the
informal reasoning in the beginning of section 4.2.2 to interpret these trees. Consider
T0,2. When player 0 knows that the game state is in {hole, no hole}, it conse-
quently knows that player 1 knows that the game state is in either game state {hole}
or game state {no hole}.

4.3 Implementation of e-trees in the MKBSC-
tool

Themathematical definitions abovewere implemented in the existingMKBSC-
tool. The difference between the old knowledge structure and the e-tree struc-
ture can be seen in the Appendix A. The game used in the example is modeled
from the bird house factory situation previously used in the Background. The
GitHub repository can be retrieved from [6].

4.4 Using the MKBSC-tool to find strategies
We begin by considering the example in figure 2.7. When the game stars, the
bird house is received by both players with the action (G,G). For the next
game state, player 1 cannot see whether the bird house already has a hole or

22 CHAPTER 4. RESULTS

not. As seen in the projection (G|0) in figure 2.5, player 0 must consider these
two states as the same state. The only way to reach the win state is to pass the
bird house, however player 0 cannot distinguish when the bird house is ready
to pass. Therefore, there is no memoryless strategy in this game.

We next try to find if there are any strategies in GK . Applying MKBSC to
G with the MKBSC-tool, yields the graph below.

(G, G)

(G, G)

~0

(P, P)(P, P), (D, P), (P, D)

(D, D)

(D, P), (P, D)

(D, D)

~1

(P, P)(P, P), (D, P), (P, D)

(D, D)

Figure 4.4: The result of applying MKBSC to the game in figure 2.7 with the
MKBSC-tool.

Again, the bird house is received by both players with the action (G,G).
Consider the case where a bird house with a hole gets passed on. Player 0 can-
not distinguish this, however player 1 can. Notice the observation for player 1
for the epistemic states 〈{hole, no hole}, {hole}〉 and 〈{hole}, {hole}〉.
In words, this means player 1 can never be certain if player 0 knows whether
the bird house is ready to be passed on or not. Again, this results in the play-
ers not knowing when to pass on the bird house, so there is no memoryless
strategy in this game either.

Now we check if there are any strategies in G2K . Applying MKBSC to
GK with the MKBSC-tool, yields the graph below.

CHAPTER 4. RESULTS 23

(G, G)

(G, G)

(P, P), (D, P), (P, D)(P, P)

(D, D)

~0

(D, P), (P, D)

(D, D)

(P, P), (D, P), (P, D)(P, P)

(D, D)

Figure 4.5: The result of applying MKBSC to the game in figure 2.7 with the
MKBSC-tool.

24 CHAPTER 4. RESULTS

We start with the action (G,G). For player 0, the only action, regardless
of which state the players end up in, isD. Player 1 can distinguish between the
next two states, but again the only action for player 1 is also D, so their joint
action after (G,G) would be (D,D). After these actions, the game would end
up in the state 〈{〈{hole}, {hole}〉}, {〈{hole}, {hole}〉}〉. Here, both
players know that the game is in game state {hole}, and that the other player
knows about it as well, Thus, from there the players can choose action (P, P)

and win the game.
We have thus found a memoryless strategy in G2K . This strategy can then

be translated into a finite memory strategy inG, by allowing a memory slot of
2 for each player.

Chapter 5

Discussion

5.1 Improvement

5.1.1 Mathematical definition of e-trees
As seen in section 4, we have managed to successfully implement an abstract
definition of e-trees. With these trees, one can visualise the nesting of knowl-
edge much more readily than before.

5.1.2 Implementation of e-trees in the MKBSC-tool
We successfully implemented our definition of e-trees in the existingMKBSC-
tool. A visible improvement with the new tool is that the nesting of knowledge
in games becomes more structured. Compare, for example, figure A.3 with
figure A.4 in the Appendix. Apart from being more readable, we may also see
patterns we might not have seen with the old tool. In this case, we can see that
some nodes do not gain any new information through the MKBSC, whereas
we have two nodes that do gain information through the MKBSC.

5.1.3 Finding strategies for games with the MKBSC-
tool

As we saw in section 4.4, the MKBSC along with the e-tree knowledge con-
struction provides an intuitive way of determining whether GjK has a memo-
ryless strategy, and consequently determine if G has a finite memory strategy.

25

26 CHAPTER 5. DISCUSSION

5.2 Limitation
A limitation with our new tool is that it loses information for games where the
number of players is greater than 2.

Consider, for example, the epistemic state

S2 ={〈{〈{white}, {red, white}, {white}〉},
{〈{white}, {red, white}, {white}〉 ,
〈{red}, {red, white}, {red}〉},
{〈{white}, {red, white}, {white}〉}〉}

In this example, player 1 is not certain about if player 0 and 2 knows that
the game is in {red} or in {white}. However, player 1 knows that player 0
and 2 knows the same thing, meaning that for example player 1 knows that it
is not possible that player 0 knows that the game is in {red} while player 2
knows that the game is in {white}. Figure 5.1 shows how the corresponding
e-tree for that knowledge would look like.

{white}

{white, red}

1

{white}

2

{white}

0

{white}

2

{red}

0

{red}

2

{white}

0

{white, red}

1

Figure 5.1: An example of an e-tree in a game with three players.

Notice that all four knowledges for player 1 is shown in the tree below the
node {white, red} in the second level of the tree. However, there is no
association between the different knowledges, meaning that there is no way
to tell that player 1 can’t know that for example player 0 knows {red} while
player 2 knows {white}. That information is lost in this construction of the
e-tree in games with more than two players.

5.3 Usefulness of the MKBSC
The usefulness of the MKBSC is uncertain. What we do know is that if a
memoryless strategy can be found in a game resulting from the subset con-

CHAPTER 5. DISCUSSION 27

struction, it can be translated to a finite-state strategy in the original game.
The uncertainty lies in that even though the original game might hold a finite-
state strategy, a memoryless strategy might not be found in a game produced
by the MKBSC. It is not known which attributes of a game modeled as a graph
enables a memoryless strategy to be found as a result of the construction, and
therefore there is no way of knowing in advance if the construction will be
useful or not.

Modelling each players’ knowledge as a tree is an intuitive way of describ-
ing how the epistemic depth and each players’ knowledge increases for every
iteration of the MKBSC. This visualisation could potentially help discovering
patterns in game graphs which either guarantees that a finite-state strategy can
be found, or patterns that guarantees that such a strategy can’t be found. Fur-
thermore, this would in turn help understanding the usefulness of theMKBSC.

Chapter 6

Conclusion

We have investigated whether we can create a new structure for representing
the knowledge of each player in a game G when applying MKBSC on G. We
conclude that we have done so successfully with our introduction of e-trees.

Furthermore, we have successfully implemented this new construction in
the MKBSC-tool.

Finally, we have argued that with our new tree construction, one may be
able to more intuitively understand whether or not there is a finite memory
strategy in a game G, having found a memoryless strategy in GjK .

6.1 Future work
The authors of this paper would like to see an extension of this tool, to allow
it to display games with multiple players better. As discussed in section 5.2,
we lose the information regarding how some knowledge states are connected
with each other. Our tool could be expanded so that it creates graphs featur-
ing dashed lines or something similar to mark which nodes in the e-tree are
connected with each other.

Another extension would be to connect our tool for applying MKBSC to
a tool for strategy synthesis. Having done this, one could examine whether
there is a clear connection between a game’s e-tree and the game’s strategy.

Acknowledgements
Wewould like to thank our supervisor Dilian Gurov, who has guided us in this
project.

28

Bibliography

[1] Helmer Nylén and August Jacobsson. MKBSC. https://github.
com/helmernylen/mkbsc. 2018.

[2] HelmerNylén andAugust Jacobsson. Investigation of a Knowledge-Based
Subset Construction for Multi-Player Games of Imperfect Information.
B.S. Thesis. 2018.

[3] Edvin Lundberg. “Collaboration inMulti-agent Games”.MA thesis. KTH,
School of Computer Science and Communication (CSC), 2017.

[4] Laurent Doyen, Jean-Francois Raskin, and ENS Cachan. “Games with
Imperfect Information: Theory and Algorithms”. In: Lectures in Game
Theory for Computer Scientists (Jan. 2011), pp. 185–196.doi:10.1017/
CBO9780511973468.007.

[5] Ron Van Der Meyden. “Common knowledge and update in finite envi-
ronments”. In: Information and Computation 140.2 (1998), pp. 115–157.

[6] Erik Handberg and Lara Rostami.MKBSC. https://github.com/
larasik/mkbsc. 2019.

29

30

APPENDIX A. EXAMPLE IMAGES FROM THE MKBSC-TOOL 31

Appendix A

Example images from theMKBSC-
tool

{start-start}

{start-start}

{no holehole-hole, no holehole-no hole}

{no holehole-hole}

(G, G)
{no holehole-hole, no holehole-no hole}

{no holehole-no hole}

(G, G)

{lose-lose}

{lose-lose}

(P, P), (D, P), (P, D)

{win-win}

{win-win}

(P, P)
{hole-hole}

{hole-hole}

(D, D)

~0

(D, P), (P, D)

(D, D)

(P, P), (D, P), (P, D)(P, P)

(D, D)

Figure A.1: The graphG2K , whereG is the same graph as in figure 2.7. This output
is created with the original MKBSC-tool.

32 APPENDIX A. EXAMPLE IMAGES FROM THE MKBSC-TOOL

(G, G)

(G, G)

(P, P), (D, P), (P, D)(P, P)

(D, D)

~0

(D, P), (P, D)

(D, D)

(P, P), (D, P), (P, D)(P, P)

(D, D)

Figure A.2: The graphG2K , whereG is the same graph as in figure 2.7. This output
is created with the new e-tree formulation within the MKBSC-tool. Compare this
output with the output from figure A.1.

APPENDIX A. EXAMPLE IMAGES FROM THE MKBSC-TOOL 33

{
(s

ta
rt

-s
ta

rt
)-

(s
ta

rt
-s

ta
rt

)}

{
(s

ta
rt

-s
ta

rt
)-

(s
ta

rt
-s

ta
rt

)}

{
(n

o
 h

o
le

h
o
le

-h
o
le

)(
n
o
 h

o
le

h
o
le

-n
o
 h

o
le

)-
(n

o
 h

o
le

h
o
le

-n
o
 h

o
le

),
 (

n
o
 h

o
le

h
o
le

-h
o
le

)(
n
o
 h

o
le

h
o
le

-n
o
 h

o
le

)-
(n

o
 h

o
le

h
o
le

-h
o
le

)}

{
(n

o
 h

o
le

h
o
le

-h
o
le

)(
n
o
 h

o
le

h
o
le

-n
o
 h

o
le

)-
(n

o
 h

o
le

h
o
le

-h
o
le

)}

(G
,

G
)

{
(n

o
 h

o
le

h
o
le

-h
o
le

)(
n
o
 h

o
le

h
o
le

-n
o
 h

o
le

)-
(n

o
 h

o
le

h
o
le

-n
o
 h

o
le

),
 (

n
o
 h

o
le

h
o
le

-h
o
le

)(
n
o
 h

o
le

h
o
le

-n
o
 h

o
le

)-
(n

o
 h

o
le

h
o
le

-h
o
le

)}

{
(n

o
 h

o
le

h
o
le

-h
o
le

)(
n
o
 h

o
le

h
o
le

-n
o
 h

o
le

)-
(n

o
 h

o
le

h
o
le

-n
o
 h

o
le

)}

(G
,

G
)

{
(l

o
se

-l
o
se

)-
(l

o
se

-l
o
se

)}

{
(l

o
se

-l
o
se

)-
(l

o
se

-l
o
se

)}

(P
,

P
),

 (
D

,
P

),
 (

P
,

D
)

{
(w

in
-w

in
)-

(w
in

-w
in

)}

{
(w

in
-w

in
)-

(w
in

-w
in

)}

(P
,

P
)

{
(h

o
le

-h
o
le

)-
(h

o
le

-h
o
le

)}

{
(h

o
le

-h
o
le

)-
(h

o
le

-h
o
le

)}

(D
,

D
)

~
0

(D
,

P
),

 (
P

,
D

)

(D
,

D
)

(P
,

P
),

 (
D

,
P

),
 (

P
,

D
)

(P
,

P
)

(D
,

D
)

Figure A.3: The graphG3K , whereG is the same graph as in figure 2.7. This output
is created with the original MKBSC-tool.

34 APPENDIX A. EXAMPLE IMAGES FROM THE MKBSC-TOOL

(G, G)

(G, G)

(P, P), (D, P), (P, D)(P, P)

(D, D)

~0

(D, P), (P, D)

(D, D)

(P, P), (D, P), (P, D)(P, P)

(D, D)

Figure A.4: The graphG3K , whereG is the same graph as in figure 2.7. This output
is created with the original MKBSC-tool.

www.kth.se

TRITA-EECS-EX-2019:325

