Insights into the Exfoliation Process of V$_2$O$_5$$\cdotnH_2$O Nanosheet Formation Using Real-Time 51V NMR

Ahmed S. Etman,$^{1,5,6,7,§,⊥}$ Andrew J. Pell,† Peter Svedlindh,‡ Niklas Hedin,† Xiaodong Zou,‡ Junliang Sun,$^*a,7,⊥$ and Diana Bernin$^a,6,⊥$

†Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
‡Department of Engineering Sciences, Uppsala University, 75121 Uppsala, Sweden
§Department of Chemistry, Faculty of Science, Alexandria University, Ibrahima, 21321 Alexandria, Egypt
$^⊥$College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China

Supporting Information

ABSTRACT: Nanostructured hydrated vanadium oxides (V$_2$O$_5$$\cdotnH_2$O) are actively being researched for applications in energy storage, catalysis, and gas sensors. Recently, a one-step exfoliation technique for fabricating V$_2$O$_5$$\cdotnH_2$O nanosheets in aqueous media was reported; however, the underlying mechanism of exfoliation has been challenging to study. Herein, we followed the synthesis of V$_2$O$_5$$\cdotnH_2$O nanosheets from the V$_2O_5$ and VO$_2$ precursors in real time using solution- and solid-state 51V NMR. Solution-state 51V NMR showed that the aqueous solution contained mostly the decavanadate anion [H$_2$V$_{10}$O$_{28}$]$^-$ and the hydrated dioxovanadate cation [VO$_2$$\cdot$4H$_2$O]$^-$, and during the exfoliation process, decavanadate was formed, while the amount of [VO$_2$$\cdot$4H$_2$O]$^-$ remained constant. The conversion of the solid precursor V$_2$O$_5$, which was monitored with solid-state 51V NMR, was initiated when VO$_2$ was in its monoclinic forms. The dried V$_2$O$_5$$\cdotnH_2$O nanosheets were weakly paramagnetic because of a minor content of isolated V$^{4+}$. Its solid-state 51V signal was less than 20% of V$_2$O$_5$ and arose from diamagnetic V$^{4+}$ or V$^{5+}$. This study demonstrates the use of real-time NMR techniques as a powerful analysis tool for the exfoliation of bulk materials into nanosheets. A deeper understanding of this process will pave the way to tailor these important materials.

1. INTRODUCTION

In the last few years, the synthesis of two-dimensional (2D) materials based on transition metal chalcogenides and oxides with thicknesses of a few layers has attracted renewed attention because of the different chemical, physical, and semiconducting properties of these materials compared to their bulk (three-dimensional, 3D) counterparts.$^{1−3}$ Vanadium oxides are earth-abundant compounds, which have important applications in catalysis,4 batteries,$^5−10$ supercapacitors,$^5−10$ and sensors.11 Thus, many research groups have focused on the synthesis of 2D vanadium oxides from their bulk precursors.$^{12−14}$ Of particular interest among these 2D materials are those based on the hydrated vanadium pentoxides (V$_2$O$_5$$\cdotnH_2$O), which have been shown to exhibit improved electrochemical behavior and semiconducting properties compared to anhydrous V$_2$O$_5$.15 The improvements are typically ascribed to the presence of H$_2$O or H$^+$ ions between the V$_2$O$_5$ layers in V$_2$O$_5$$\cdotnH_2$O, which can be synthesized in the form of hydrogels,16 xerogels,17,18 nanobelts,19 and nanosheets.$^{1−7}$ Nanostructured V$_2$O$_5$$\cdotnH_2$O has attracted research interest as it can be easily fabricated into a freestanding film,5 which is easier to handle than, and is thus advantageous compared to, an amorphous or crystalline powder or gel.

V$_2$O$_5$$\cdotnH_2$O is commonly synthesized either by an ion-exchange route using sodium metavanadate solution or via a sol−gel route using a mixture of hydrogen peroxide (H$_2$O$_2$) and V$_2$O$_5$. In both cases, a dark red compound is formed with thicknesses of a few layers has attracted renewed attention because of the different chemical, physical, and semiconducting properties of these materials compared to their bulk (three-dimensional, 3D) counterparts.$^{1−3}$ Vanadium oxides are earth-abundant compounds, which have important applications in catalysis,4 batteries,$^5−10$ supercapacitors,$^5−10$ and sensors.11 Thus, many research groups have focused on the synthesis of 2D vanadium oxides from their bulk precursors.$^{12−14}$ Of particular interest among these 2D materials are those based on the hydrated vanadium pentoxides (V$_2$O$_5$$\cdotnH_2$O), which have been shown to exhibit improved electrochemical behavior and semiconducting properties compared to anhydrous V$_2$O$_5$.15 The improvements are typically ascribed to the presence of H$_2$O or H$^+$ ions between the V$_2$O$_5$ layers in V$_2$O$_5$$\cdotnH_2$O, which can be synthesized in the form of hydrogels,16 xerogels,17,18 nanobelts,19 and nanosheets.$^{1−7}$ Nanostructured V$_2$O$_5$$\cdotnH_2$O has attracted research interest as it can be easily fabricated into a freestanding film,5 which is easier to handle...
compounds, other techniques are important to assess developments in noncrystalline materials or at the solid–liquid interface during the reaction.

Nuclear magnetic resonance (NMR) is a characterization technique complementary to XRD and has been used to study the ion-exchange or sol–gel synthesis routes of $V_2O_5\cdot nH_2O$. It can provide information about the local order, coordination states, and protonated or deprotonated oxygen atoms. Typically, solid compounds are monitored by magic-angle spinning (MAS) solid-state (ss-)NMR, whereas solution-state NMR is used to observe dissolved compounds. However, both solid- and solution-state ^{51}V NMR are complicated by localized unpaired electrons in paramagnetic V^{4+} ions, which may bleach out the signal arising from the NMR detectable (diamagnetic) $^{51}\text{V}^{5+}$ ions in various ways. 27 MAS ss-NMR is able to distinguish between delocalized (metallic) and localized (paramagnetic) electronic states via Knight shifts and paramagnetic shifts. 28 Paramagnetic, which refers here to Curie or Curie–Weiss paramagnetism, V^{4+} ions with localized unpaired electrons cannot be directly studied with NMR, but their presence has the effect of bleaching the ^{51}V signal of nearby V^{5+} ions, allowing the presence of ^{51}V to be probed indirectly. However, V^{4+} ions with localized unpaired electrons can be studied by other techniques, for example, electron spin resonance (ESR). When the V^{4+} ions are less than 2.7 Å apart, their unpaired electrons may pair and turn the corresponding materials from paramagnetic to diamagnetic, which does give a detectable $^{51}\text{V}^{4+}$ NMR signal. 27,29,30

In this paper, we report on real-time solid- and solution-state ^{51}V NMR studies performed during the synthesis of $V_2O_5\cdot nH_2O$ nanosheets from a 1:4 mixture by weight of commercial monoclinic VO$_2$(M) and V$_2$O$_5$. The interpretation of the ^{51}V NMR results was linked with those from ESR and 1H NMR and used to elucidate the mechanism of the aqueous exfoliation process and formation of $V_2O_5\cdot nH_2O$ nanosheets.

2. RESULTS AND DISCUSSION

2.1. Morphology and Structure of $V_2O_5\cdot nH_2O$ Nanosheets. The $V_2O_5\cdot nH_2O$ nanosheets were synthesized in water from a 1:4 mixture by weight of monoclinic VO$_2$(M) and commercial V$_2$O$_5$, and the chemical and thermal analyses are described elsewhere. 7 The XRD pattern (Figure 1a, gray) of the as-prepared $V_2O_5\cdot nH_2O$ nanosheets displayed broad peaks, which were indexed as 001, reflecting the preferred orientation of the layered structure of the nanosheets. This pattern was recorded in a reflection configuration using an in-house diffractometer ($\lambda = 1.5406 \text{ Å}$). One possible solution to overcome the preferred orientation was to perform XRD in transmission mode with, for example, a high-energy X-ray source (synchrotron radiation, $\lambda = 0.7766 \text{ Å}$). Notably, the XRD pattern (see Figure 1a, black) recorded in this way was very similar to that collected in the reflection mode using an in-house diffractometer, suggesting a disordered stacking between $V_2O_5\cdot nH_2O$ layers over the $a-b$ plane. Interestingly, the transmission electron microscopy (TEM) images showed that $V_2O_5\cdot nH_2O$ had a typical nanosheet morphology with a different lateral size thickness ranging from 30 to 220 nm (see Figure 1b). In addition, the selected area electron diffraction (SAED) pattern of $V_2O_5\cdot nH_2O$ had powder rings (see Figure 1c), which provided additional support for disordered stacking between the layers over the $a-b$ plane.

2.1.1. Local Structure of $V_2O_5\cdot nH_2O$ Nanosheets. MAS ss-NMR can provide fruitful information about the local structure and oxidation states of metal ions. The commercial V$_2$O$_5$ precursor possessed a layered anisotropic structure of distorted VO$_6$ octahedral building units, 13,31 and its ^{51}V isotropic shift was -611 ppm (see Figure 2, black). 27 The isotropic shift of the largely disordered nanosheets of $V_2O_5\cdot nH_2O$ was slightly lower in magnitude, -596 ppm, and the spinning side band manifold was broader, having nearly double the number of spinning side bands (see Figure 2, red).

In previous NMR studies of $V_2O_5\cdot nH_2O$ gels, synthesized using H$_2$O$_2$-based or ion-exchange methods, up to five different ^{51}V NMR peaks have been observed and attributed to various vanadium sites. 32,33 The corresponding ^{51}V isotropic shifts have been in the interval of -572 to -663 ppm. However, in this study, the intrinsic and symmetric ^{51}V line width of the ^{51}V NMR peaks of the nanosheets of $V_2O_5\cdot nH_2O$ exceeded 80 ppm and thus prevented potential multiple vanadium sites from being resolved. On the basis of previous studies, 32 the ^{51}V isotropic shift of the nanosheets of $V_2O_5\cdot nH_2O$ suggested octahedral vanadium sites with one water
molecule bonded to the vanadyl oxygen or vanadium pentoxide with shifted subunits. Notably, the integral intensity of the total 51V signal including the spinning side band manifold of the $\text{V}_2\text{O}_5\cdot n\text{H}_2\text{O}$ nanosheets was less than 20% of the V_2O_5 precursor. The broad line width of the side bands means that the second-order quadrupolar broadening cannot be measured from the line shape, and the contributions of the first-order quadrupolar interaction and shift anisotropy to the spinning side band manifold cannot be easily separated; consequently, the quadrupolar couplings were not measured. One possible reason for the signal loss relative to the precursor would be a phase transition similar to that of $\text{V}_2\text{O}_5(\text{M})$—metallic-$\text{VO}_2(\text{R})$ because of frictional heating from MAS. In relation to the positioning of H_2O, Pozarnsky and al., which was in agreement with the observed weakly paramagnetic behavior. The presence of V^{4+} was here confirmed by ESR (see Figure S2). The corresponding spectra each had a broad peak with an isotropic g-value of 1.95 at room temperature. This value matched well with those reported for other V^{4+}-containing materials.

The magnetic susceptibility data (see Figure S1) indicated a weak paramagnetic behavior of the nanosheets with no observable magnetic phase transition. A fit of these data returned a Weiss constant of zero, pure Curie paramagnetism which we ascribe to isolated (noninteracting) V^{4+} ions that were incorporated between the V_2O_5 nanosheets during the course of the reaction. In turn, we ascribe the large reduction in the observable signal from V_2O_5 to a paramagnetic bleaching effect, where the nuclear relaxation of V^{5+} is enhanced by the proximity of the paramagnetic V^{4+} ions. As the synthesis was performed in an aqueous mixture of $\text{V}_2\text{O}_5(\text{M})$ and V_2O_5, the former provided a possible source of paramagnetic V^{4+}. In an earlier study, H2O and 50 μL of D2O were mixed with 550 μL of 10 M vanadium aqueous solution. The observed ^2H chemical shifts at 3.3 and 1 ppm were attributed to D_2O and $\sim\text{OD}$ on the surface of the nanosheets, respectively. The chemical shift at 7 ppm may have been due to $\sim\text{OD}$ groups, in which the O atom bridges between two V atoms.

2.2. Probing Nanosheet Formation by Real-Time 51V NMR. To elucidate the formation of nanosheets, we applied real-time solid- and solution-state 51V NMR to follow the reaction of the solid phases and the dissolved species separately.

2.2.1. Dissolved Species. V_2O_5 and V_2O_3 with a mass ratio of 1:4 were blended with 550 μL of H_2O and 50 μL of D2O in an NMR tube, and solution-state 51V NMR spectra were recorded in real time during the reaction. The observed vanadium species and their 51V shift are summarized in Table 1. It was evident that the 51V signals of the decavanadate anion $[\text{H}_2\text{V}_{10}\text{O}_{28}]^{5-}$, resonating at -419, -503, and -522 ppm, exhibited increasing integral intensities for up to 2 h after mixing, whereas the 51V signal of the hydrated dioxovanadate cation $[\text{VO}_2\text{·4H}_2\text{O}]^{+}$ at -549 ppm retained a constant integral (see Figure 4). The decavanadate anion is believed to be produced from 10 dioxovanadate cations under acidic conditions in aqueous solutions. However, if this reaction had occurred here, there must also have been an additional process where dioxovanadate cations were produced. Further studies are required to confirm the formation of dioxovanadate cations. The observed ^2H chemical shifts at 3.3 and 1 ppm were attributed to D_2O and $\sim\text{OD}$ on the surface of the nanosheets, respectively. The chemical shift at 7 ppm may have been due to $\sim\text{OD}$ groups, in which the O atom bridges between two V atoms.

Table 1. Dissolved Vanadium Species Observed with Solution-State NMR

<table>
<thead>
<tr>
<th>dissolved vanadium species</th>
<th>51V shift (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[\text{H}2\text{V}{10}\text{O}_{28}]^{5-}$</td>
<td>-419, -503, -522</td>
</tr>
<tr>
<td>$[\text{VO}_2\text{·4H}_2\text{O}]^{+}$</td>
<td>-549</td>
</tr>
</tbody>
</table>

Figure 3. Static ^2H NMR of $\text{V}_2\text{O}_5\cdot n\text{D}_2\text{O}$ nanosheets. The ^2H NMR spectrum was recorded using a quadrupolar echo sequence.

Figure 4. Stacked real-time solution-state NMR spectra as a function of time. "x" marks an unassigned peak. The inset shows the normalized 51V signal integral as a function of time for $[\text{H}_2\text{V}_{10}\text{O}_{28}]^{5-}$ (black) and $[\text{VO}_2\text{·4H}_2\text{O}]^{+}$ (red).

DOI: 10.1021/acsomega.9b00727
ACS Omega 2015, 4, 10899--10905
thermore, the rate of its formation has to be equal to the rate of consumption, so as to keep the overall dioxovanadate concentration unaltered throughout the entire reaction. It has furthermore been discussed that the decavanadate anion is not responsible for the formation of the nanosheets because it is highly acidic and hence would prevent further condensation reactions. Notably, a broad feature at a shift of about -297 ppm was observed (see Figure 4), which Rehder has suggested to be related to a VO_2^+ derivative. The broadening of this ^{51}V signal might also be attributed to polymeric vanadium species or species that contain V^{IV} in close vicinity.

The dioxovanadate cation was exchanged with H_2VO_4^-, which has a pK_a of 3.8. It is, hence, highly likely that the observed chemical shift of $[\text{VO}_2\cdot\text{H}_2\text{O}]^+$ was due to an average of both the cationic and anionic forms and is highly pH-dependent. The observed chemical shift agreed well with the reported one at a pH of 3.8. The formation of the decavanadate anion produces H^+, which lowered the pH to 2.6 at the end of the reaction, which in turn shifted the ^{51}V signal of the dioxovanadate cation from -550 ppm to less negative chemical shift values.

An aqueous suspension of VO_2 did not produce any ^{51}V NMR peaks at room temperature or 80 °C. Hence, we assumed that all of the ^{51}V signals (in Figure 4) including the broad peak at -297 ppm resulted from VO_2 and its reaction products despite its low solubility (0.7 g/L = 3.8 mmol/L at room temperature). It is worth mentioning that VO_2 is, however, slightly water-soluble particularly under acidic conditions, and the following V^{IV} species, which are NMR silent, might be present: $[\text{VO}_2\cdot\text{H}_2\text{O}]^+$, VOOH^+, and a dimer $\text{VO}_2(\text{OH}_2)^{2+}$; the latter most likely formed from the coupling of two VOOH^+ species. V^{IV} species in an aqueous $\text{VO}_2/\text{V}_2\text{O}_5$ mixture at 80 °C was confirmed by the hyperfine coupling between an electron and ^{51}V in the ESR spectrum showing eight peaks (see Figure S2). These features of the ESR spectrum suggested isolated V^{IV} species in solution, most likely $[\text{VO}_2\cdot\text{H}_2\text{O}]^+$. Furthermore, the ESR spectrum had a broad feature, which was attributed to solid VO_2 and an aqueous mixture of solely VO_2 did not give any ESR signal.

The same vanadium species have been observed in preparations from other approaches using ion-exchange and sol–gel methods. Our observations were consistent with findings from other synthetic methods taking into account the acidic conditions with $\text{pH} = 3.8$. Furthermore, the observed ^{51}V NMR signals agreed well with earlier findings on the concentration and pH dependence for vanadium species formed in aqueous solutions.

Etman et al. have reported on an onset of the $\text{V}_2\text{O}_5\cdot\text{nH}_2\text{O}$ formation after 90 min using real-time XRD, while the formation of decavanadate leveled out after 2.5 h. By comparing those findings with those of this study, the question arose if the dissolved species were responsible for the formation of nanosheets or if the observations of the decavanadate anion and the dioxovanadate cation were solely due to various side reactions of the aqueous vanadium chemistry. Many mechanisms have been proposed for the formation of nanostructured gels, and in our view, the most relevant are those that have dealt with ion exchange. However, notably, all of them have derived these compounds from vanadium-based species in solution, whereas here we instead started from two commercial solid compounds (V_2O_5 and VO_2).

2.2.2. Solid Species

To access information on the solid phases during the reaction, we performed real-time MAS ss-NMR experiments on the reaction mixture (0.3 mg of VO_2, 1.2 mg of V_2O_5, and 20μL of H_2O) at 7 kHz MAS. Analyses of the ^{51}V NMR spectra in Figure 5a,b showed a reduction of the integral of the whole ^{51}V signal spinning side band manifold due to the V_2O_5 phase, which has an isotropic chemical shift of -611 ppm. The reduction was observed both for low-flip-angle direct excitation (Figure 5c, gray) and in a Hahn echo experiment (Figure 5c, red). The normalized ^{51}V NMR integrals of a repeated Hahn echo experiment (Figure 5c, black) coincided well with the first reaction. Vanadium-containing compounds have a very large ^{51}V NMR shift range, which in turn required that we moved the observation window by changing the carrier frequency and retuning the probe to observe various species. By comparing weight-normalized ^{51}V MAS ss-NMR spectra of fresh commercial VO_2(M) and V_2O_5, the observed broad ^{51}V signal of VO_2(M) at approximately 2100 ppm was consistent with <1% of the V_2O_5 signal in the solid phase (see Figure S3). This intensity was lower than expected and was ascribed to the broad ^{51}V resonance of VO_2 being harder to excite and having a shorter relaxation time than those of V_2O_5. The other ^{51}V signal resonating at negative shift is most likely the impurity V_2O_3 (see Figure S3). Consequently, an amount of approximately 0.3 mg of VO_2(M) was undetectable in the real-time MAS ss-NMR experiments. The lab-scale synthesis was prepared under similar conditions as in real-time MAS ss-NMR experiment and revealed traces of unexfoliated V_2O_5 at the end of the synthesis, which agreed with the remaining signal in the ^{51}V NMR spectra detected after 38 h (see Figure S5c, red and gray), and was therefore attributed to this unexfoliated V_2O_5 precursor. Despite attempts to observe other ^{51}V signals, for...
example, from VO\textsubscript{2}, none were detected. One reason might have been the small rotor volume of 20 \mu L, which required a V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O ratio that is 17 times larger to assure a good signal-to-noise ratio and to minimize the uncertainty of the weighed amount of solids, as compared to the lab-scale synthesis. In total, approximately 1.5 mg of V\textsubscript{2}O\textsubscript{5} was present.

Interestingly, the synthesis of the V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O nanosheets failed when V\textsubscript{2}O\textsubscript{5} was used solely as the precursor (data not shown), suggesting that VO\textsubscript{2}(M) or dissolved species formed from VO\textsubscript{2}(M) initiated the formation of the V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O nanosheets. A requirement of VO\textsubscript{2}(M) for this synthesis was proposed by Pozarnsky and McCormick who reported on the formation of V4+ species by ion exchange and the consumption of those during the reaction.23,41 They suggested that [V4+O\textsubscript{2}·SH\textsubscript{2}O\textsubscript{2}]2+ reacted with [V3+O\textsubscript{4}·4H\textsubscript{2}O\textsubscript{2}]3+ and formed oligomeric species, which polymerized further. Hence, our observations of a reduction of the V\textsubscript{2}O\textsubscript{5} signal during the course of the reaction might be explained by a homogeneous distribution of V4+ in close vicinity of V5+ formed via polymerization rather than the consumption of V\textsubscript{2}O\textsubscript{5} into other species. Our proposed reaction pathway, which is in agreement with Pozarnsky and McCormick,23,41 is illustrated in Figure 6. Alternatively, as proposed by Pozarnsky and McCormick,23,41 is illustrated in Figure 6. Alternatively, as

![Figure 6. Proposed reaction pathways occurring during the synthesis of V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O nanosheets.](image)

Livage discussed, [V4+O·SH\textsubscript{2}O\textsubscript{2}]2+ could intercalate between the V\textsubscript{2}O\textsubscript{5} layers.21 This alternative hypothesis would be possible if [V4+O·SH\textsubscript{2}O\textsubscript{2}]2+ would be homogeneously distributed.

It should also be noted that the synthesis reaction failed when aged VO\textsubscript{2}(M) was used (Figure S6, blue). This aged compound had been stored under ambient conditions and was consequently altered after being in contact with air. To understand the reason behind this phenomenon, we compared the 1H, 51V NMR, ESR spectra, and XRD patterns of the fresh and aged VO\textsubscript{2}(M).

The XRD pattern of the fresh sample agreed well with the standard pattern of monoclinic VO\textsubscript{2}(M). By contrast, the XRD pattern of the aged sample had fewer peaks, which complicated the assignment of the formed VO\textsubscript{2} phase (Figure S4). Interestingly, the semilogarithmic plot revealed 001 and 003 reflections of the V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O phase in the pattern of the aged VO\textsubscript{2}(M), which matched well with previous reports on the instability of VO\textsubscript{2}(M) under ambient conditions.23 In comparison with the 51V MAS ss-NMR spectrum of fresh VO\textsubscript{2}(M) (see Figure S3, red) in which broad peaks resonating between 1800 and 3000 ppm were attributed to VO\textsubscript{2}(M), the aged VO\textsubscript{2} showed no such peaks (see Figure S5, black), presumably due to oxidation of the vanadium species to VO\textsubscript{2}. On the other hand, the ESR spectrum (see Figure S2) indicated that the aged VO\textsubscript{2} still possessed a reasonable measurable quantity of V4+. Furthermore, the 1H NMR (data not shown) displayed a broad 1H NMR peak for the aged VO\textsubscript{2}(M) as compared to the fresh one. The increased 1H NMR signal intensity suggested strongly that concurrent H\textsubscript{2}O uptake had occurred. Hence, as was reported by Etman et al.,7 the relative fraction of VO\textsubscript{2}(M)·V\textsubscript{2}O\textsubscript{5} used in the synthesis was crucial for successful exfoliation.

3. CONCLUSIONS

To summarize, real-time solid-state and solution-state 51V NMR studies were performed to follow the transformation of VO\textsubscript{2} and V\textsubscript{2}O\textsubscript{5} in aqueous dispersion into nanosheets of V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O. During exfoliation, a loss of the 51V NMR signal of V\textsubscript{2}O\textsubscript{5} was observed, which was attributed to a homogeneous distribution of V4+ that is in close contact with V5+ bleaching their signals. Taken together, our findings were consistent with a hypothesis that both V\textsubscript{2}O\textsubscript{5} and VO\textsubscript{2} had been dissolved and VO\textsubscript{2} formed as [V4+O·SH\textsubscript{2}O\textsubscript{2}]2+ cations, which were oligomerized with [V3+O·4H\textsubscript{2}O\textsubscript{2}]3+ species from V\textsubscript{2}O\textsubscript{5} and then polymerized further. Another explanation could have been intercalation of [V4+O·SH\textsubscript{2}O\textsubscript{2}]2+ between the layers of V\textsubscript{2}O\textsubscript{5}.

Additional future studies could include real-time ESR experiments with stirring; however, such were out of the scope of this current study.

4. MATERIALS AND METHODS

4.1. Materials. The V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O or V\textsubscript{2}O\textsubscript{5}·nD\textsubscript{2}O nanosheets were synthesized as described in ref 7. In a typical synthesis, a mixture of 1:4 (weight ratio) of V\textsubscript{2}O\textsubscript{4} (Fisher Scientific, UK) and V\textsubscript{2}O\textsubscript{4} (Sigma-Aldrich, Germany, purity 99.9%), denoted by VO\textsubscript{2}(M), was used as the precursors. The mixture of oxides was dispersed in water or D\textsubscript{2}O (CortecNet, 99.8%) by sonication for 10 min and then heated under reflux at 80–90 °C for 8–24 h. At the end of heating process, a greenish black suspension of V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O nanosheets was formed, which was then dried in air at 80 °C for 5 h to obtain the V\textsubscript{2}O\textsubscript{5}·nH\textsubscript{2}O nanosheets.

For the real-time ss-NMR experiments, 0.3 mg of VO\textsubscript{2}, 1.2 mg of V\textsubscript{2}O\textsubscript{5}, and 20 \mu L of H\textsubscript{2}O were placed in a Kel-F insert, which can be sealed with screws. After sealing, the mixture was sonicated for a minute. The insert was then placed in a 4 mm rotor, which was inserted into the spectrometer.

For the real-time solution-state NMR experiments, VO\textsubscript{2} and V\textsubscript{2}O\textsubscript{5} with a mass ratio of 1:4 were blended with 550 \mu L of H\textsubscript{2}O and 50 \mu L of D\textsubscript{2}O. The synthesis was performed at 80 °C, and the sample tube was spun at 20 Hz.

4.2. Methods. 51V MAS NMR data were acquired on 14.1 T (51V Larmor frequency of ~157.9 MHz) and 9.4 T (Larmor frequency of ~105.2 MHz) Bruker AVANCE-III spectrometers equipped with a 4 mm or 3.2 mm triple-resonance MAS probe. Real-time MAS 51V NMR spectra were recorded at a MAS rate of 7 kHz, while rotors containing solely solid compounds were spun at the rate of 14 or 24 kHz. The isotropic chemical shift was determined by comparing 51V NMR spectra recorded at two different spinning frequencies. An aqueous solution of sodium metavanadate (1 mol/L) was used to externally calibrate the 51V NMR chemical shift to −574.38 ppm.45 For solid samples, the length and strength of the radio frequency (rf) pulse were estimated using the reference solution, and a rf pulse and a nominal flip angle of 10° were used for single pulse acquisition. For real-time MAS experiments on the reaction mixture, the rf pulse was calibrated
on the sample itself and a 45° nominal flip angle was used. Applied rf fields between 80 and 95 kHz and spectral widths between 2500 and 5000 kHz were used. The carrier frequency was placed on resonance at the isotropic shift for V_2O_5 as well as VO_2(M) and others. The ^{51}V longitudinal relaxation time constants T_1 for the solid compounds were estimated to be less than a second at room temperature and at 85 °C. Nevertheless, a repetition delay of 5 s was used for the real-time MAS NMR measurements on the reaction mixture at 85 °C. Static ^{2}H NMR was carried out on V_2O_5·nD_2O nanosheets prepared in D_2O instead of H_2O. A small piece of the V_2O_5·nD_2O nanosheets was glued in place in a glass insert, which was inserted into the rotor. The ^{2}H NMR spectra were recorded without spinning, and a quadrupolar echo pulse sequence was used. For real-time solution-state NMR measurements, V_2O_5 was inserted into the rotor. The 2H NMR spectra were recorded without spinning, and a quadrupolar echo pulse sequence was used. Used in recording the XRD pattern at the synchrotron facility.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.9b00727.

Variation of magnetic susceptibility with temperature, ESR spectra, weight-normalized ^{51}V MAS ss-NMR spectra of V_2O_5 and VO_2, XRD patterns of VO_2 fresh and aged, and ^{51}V MAS ss-NMR spectra of the aged VO_2 (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: junliang.sun@pku.edu.cn (J.S.).
E-mail: diana.bernin@chalmers.se (D.B.).

ORCID

Ahmed S. Etman: 0000-0003-0358-2379
Andrew J. Pell: 0000-0002-2542-8113
Niklas Hedén: 0000-0002-7284-2974
Xiaodong Zou: 0000-0001-6748-6656
Junliang Sun: 0000-0003-4074-0962
Diana Bernin: 0000-0002-9611-2263

Present Address

*Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The Swedish NMR Centre is acknowledged for access to the facility and spectrometer time. T. Astlind is thanked for ESR support, Prof Astrid Gräsland for ESR time, Prof Mattias Edén for NMR spectrometer time, and Prof Lynne McCusker for her help in recording the XRD pattern at the synchrotron facility.

REFERENCES

