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Abstract
Metamers of the ventral stream is a model which tries to describe what information we gather from our visual field. It
have previously only been tested on static images. This thesis have continued the research and applied it to dynamic
images in order to investigate if the model can be seen as a functional representation of our visual field. The results
show that the model, at this stage, can not be seen as a fully functional representation of the visual field, but it can be
used to determine the detectability of objects in the periphery. It also shows that what we humans perceive as motion
is, at least to some extent, merely a change of the statistics in our visual field.
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Glossary

� Eccentricity - The angle in degrees between the focus point and a stimuli.

� FOV - Field of view.

� Metameric images - Two images that are different but yields the same response in the brain leading to them being
perceived as identical.

� Mongrel - An image on which the Metamers of the ventral stream model have been applied. Also, mongrelled
image and mongrelling an image.

� Ventral stream - The pathway in which information travels from the visual cortex to the temporal lobe.

� Visual cortex - The part of the brain which processes visual information.

� VTI - Swedish National Road and Transport Research Institute.

� PSG - Perceptual Science Group, a research group at Massachusetts Institute of Technology.
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1 Introduction

Sight is essential to how we perceive the world. Most people have probably played blind man's buff or other blind-
folded games as a child. By blindfolding yourself you can easily understand that we gather a lot of information from
our vision and how essential it is when we move around. But how much information do we actually gather and process?
What do we actually see and how do we make use of our visual �eld? Scientist at Schepens Eye Research Institute
in Boston have studied the effect of central �eld loss of drivers in a simulator [9]. They concluded that drivers who
suffers from conditions which effects the central �eld of view do not detect pedestrian who are about the enter the
road as easily as drivers with no such conditions. The participants with central �eld loss in their study did not detect
the pedestrians in 2.8 % of the cases while the result for the control group was 0.3 % . So peripheral vision can be
used to detect objects, but to what extent? How much and what kind of information does healthy drivers sample and
process from their visual �eld? Is it possible to use a mathematical model which can be applied to sequential images
in order to replicate how much and what kind of information our visual �eld samples and processes, and what object
can be detected in the periphery? Some research has been conducted regarding what color is easiest to detect in our
periphery. A study from Loughborough University in 2000 showed that blue light was the easiest color to detect, hence
why �retrucks and other emergency vehicles use it as warning beacons [1]. To get a driver's license in Sweden, you
have to test your peripheral vision. In order to be approved you have to have a visual �eld of at least 160 degrees in
the horizontal direction. The test is performed by turning on lights at different degrees out in the periphery and the
test subject will say if they see it and on which side the lamp is lit[19]. So research has been conducted on light in the
periphery and we can say if there is a loss in the peripheral vision or not as well as what colors are the easiest to detect.
Research has also shown the effect of central �eld loss. But what can be said about the detectability of objects in the
periphery?

1.1 The Swedish National Road and Transport Research Institute's interests

The Swedish National Road and Transport Research Institute, abbreviated henceforth as VTI, has an interest in un-
derstanding our peripheral vision to carry the research about perception and attention forward. With the use of eye
trackers it is possible to make a human look at a video and afterwards study where he or she was foveating. However,
vision is far more than just the foveal information sampling. The use of eye tracking devices may seem intuitive and
the results could be rather conspicuous. This person was looking at that object at that time. But since vision is much
more that just foveal vision, it is harder to determine what the actual information from the entire �eld of view was. The
information we gather from our peripheral vision is not merely a low resolution version of the foveal vision, as it was
previously thought to be, but something much more complex. One way of trying to understand our peripheral vision
is to use models of our visual �eld which tries to describe the information we gather from our peripheral vision. The
idea of the models is that the eyes and brain process information contents of an image by using summary statistics over
pooling regions in the visual �eld rather than sampling a photography-like image of the visual �eld[22][12].

1.1.1 Models of peripheral vision

So far, two general models have been developed. One by the Perceptual Science Group at Massachusetts Institute of
Technology called the Texture Tiling Model of Early Visual Representation and the other by Jeremy Freeman and Eero
P. Simoncelli at New York University called Metamers of the ventral stream [22][12]. The models have been developed
for and tested on 2D static images displayed on a screen. The models are a simpli�cation of the actual visual �eld since
the images have been captured by a monocular camera, and thus lacking the depth perception humans have due to us
having two eyes, and dynamics. To make the research �eld progress, the most important step for VTI is to be able
to use models which can handle dynamics. There are two types of dynamics in this case. One is where the agent, or
camera, is moving. However VTI are interested in traf�c situations and in such situations there are often other moving
objects such as cars or pedestrian that are of interest. It could be too far of a stretch to take the current models directly
from static situations to a dynamic situation where both the agent and objects in the agent's �eld of view are moving.
It would be easier for a start to just test the models on the second type of dynamic situations, where the agent is static
while there are moving objects in the agents �eld of view. In this thesis, the model developed by Jeremy Freeman and
Eero Simoncelli at New York University called Metamers of the ventral stream was used on dynamic images captured
by a static camera[12]. The goal of this thesis was to examine if the model is suited to be applied to sequential frames
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in a video. By applying the model to individual frames and the putting the frames back together to make a mongrelled
video, it should be possible to determine the discoverability of objects in the periphery. Since VTI is focused on road
and transportation research, they are mainly interested in the discoverability of objects in traf�c situations, e.g. if it
is easier to detect a car than a pedestrian in the periphery. A study have shown that so-called vulnerable road users
such as pedestrian and cyclists do not draw the driver's gaze as much as other cars. The authors of that study argues
that pedestrians and cyclist are not consciously detected as easily as other cars due to the crowded, complex scenes
experienced in traf�c. This is especially true for the very complex traf�c scenes experienced in today's growing urban
areas. Cyclists, for example, were often not detected even though the were present in the designated bike lanes[23].

1.2 Aim of the thesis

The aim of this thesis was to implement and evaluate Freeman and Simoncelli's model Metamers of the ventral stream
on dynamic images and, by doing so, determine if the model can be seen as a functional representation of our �eld of
view, if what we perceive as motion is merely a statistical change of our visual �eld or if it is something else and, as a
�rst applied test, investigate whether there are any differences in detectability between cars, pedestrians or cyclists.

1.3 Research questions

This thesis uses the research conducted in peripheral vision and models of peripheral vision, which have been validated
on static images, as a starting point and tries to carry the research forward by testing the model on dynamic scenes.
The following questions therefore arises:

� Can a model that is validated as a functional representation of peripheral vision for static scenes also represent
dynamic scenes?

� Can movement detection be explained by changes in the summary statistics, or is there some additional form of
“motion invariant”, which is not captured by the model?

If the answer to the questions above is yes, a naïve observer should not be able to distinguish a mongrelled dynamic
scene, when focusing on a predetermined spot which the model have set to be the location of the fovea, from the same
natural dynamic scene. Also, the identi�cation of mongrelled moving objects should be as correct and as fast as the
detection of natural objects viewed peripherally. From that, the following question appears:

� Can the model be used to determine how fast different types of road users are recognized with peripheral vision
in a dynamic scene?

1.4 Delimitations

Both the Texture Tiling Model of Early Visual Representation as well as the Metamers of the ventral stream model
have, to this date, only been tested on 2D static grayscale images, i.e. static images shown on an LCD screen which
have been captured by a single camera and thus making the image monocular. The best way to test if the Metamers
of the ventral stream model is a true representation of our visual �eld would be to test it in a virtual reality setup with
actual 3D setup, and thus capturing depth that is missing when images are captured by a monocular camera, where the
observer could move around in a color-environment. But, since the model has only been tested on 2D static images,
too many variables changes when going from that setup directly a virtual reality. The changing variables were tried to
be kept at a reasonable level while still carrying the research forward. Given those circumstances and a positive result,
it could be assumed that the model works even for dynamic situations. Therefore the changing parameters were to go
from static images to dynamic, from grayscale images to color and also using a larger screen.
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2 Theory

The fovea, where your eyes are focusing, is merely 0.01 % of the visual �eld. Despite that, it is possible to interpret
the gist of an image by looking at it for a very short amount of time. That means that we do not scan through the image
with the fovea and that peripheral vision play a large role in in how we view the world[22]. In general, peripheral vision
has a worse reputation than it deserves. Yes, it is nowhere near as good as the foveal vision, neither in acuity nor color
perception. Although the acuity and color perception declines in the periphery it is not the most important difference
between periphery and fovea, crowding is. Visual crowding is a phenomenon where an object in the periphery can
not be distinguished due to �ankers. Flankers here means that objects are in close vicinity to each other. An example
of crowding of letters can be seen in Figure 1. The ability to distinguish an object with close �ankers deteriorates
substantially faster than acuity or color perception. As can be seen in Figure 1, there is a substantial difference between
the single and isolated V compared to when it is closely �anked by other letters. We see the letter V as not just two
lines at different angles, but rather as an object represented as its summary statistics. Since the ability to distinguish
letters at the same place in the periphery depends on whether there are other letters close by, the suggestion is that the
brain uses some kinds of pooling regions in the periphery where it computes the summary statistics. There are different
models which tries to �nd which summary statistics the brain uses. There are some differences between them but they
all seem to contain luminance and correlations between �lter responses, which have been constructed to try and mimic
the processing in the brain, across different orientations, scale and positions[22][12].

Figure 1: Example of crowding effects. When focusing on the cross, the letter V can easily be distinguished in the top
case. It is a little bit harder in the bottom case while it is nearly impossible when all three letters are close together in
the middle case despite the V being at the same eccentricity in all three cases[15].

2.1 Crowding in natural scenes

The example in Figure 1 shows the crowding phenomena in a simple way with just letter. The interesting effects on
crowding for this thesis, as well as for VTI, is not just simply the phenomena but rather how it effects perception in natu-
ral scenes such as traf�c. In article published in Nature [15], the authors have done experiments of the crowding effects
of natural scenes such as highways, buildings or forests which are all things that can be seen in traf�c situations. The
participants in the experiment were shown an image of one of the above described types with four other images of the
same type as �ankers to the left, right, above or below the target image. The images were displayed at a distance of 57
cm and the visual angle of all the images were 4� � 4� :Theeccentricity; thedistancefromthefocuspointtothecenterof thetargetimage; variedbetween 9� ; 11� and13� :Theexperimentstartedwiththeparticipantsviewingimagesfromallfourcategoriesinordertogetfamiliarwiththem:Af terthat; thetestwouldstartandtheparticipantswereaskedtoidentifyif theimagesthatweretobeshownwerepartofoneof theimagecategories:Theauthorscouldforinstancestartbytellingtheparticipanttoindicateif thetargetwereanimageofamountainornot:Targetscouldappearonboththerightandlef tsideof thef ieldofviewanditcouldbeastandaloneimageoranimagef lankedbyfourdif ferentimagesfromthesamecategory:Theprocedurewouldtheberepeatedfortheremainingimagecategories:Allparticipantsconductedtheexperimentforthethreedif ferenteccentricitylevels:Theamountofcorrectindicationsdif feredsignif icantlybetweencrowdedanuncrowdedstimuli:Uncrowdedstimulihad 82%correctindicationswhilethecrowdedstimulihadmerely 71%[15]:

8



2.2 Peripheral vision in traf�c situations

Crowding in traf�c situations could often be severe, especially in urban areas. Cars, pedestrians and cyclists have to
coexist in a crowded area, referring to the size of streets and not crowding in vision, where they often have to cross each
others paths. As described in Section 1.1.1, pedestrians and cyclists are often not detected in complex traf�c situations.
Not detecting those vulnerable road users could lead to accidents which in turn could lead to severe consequences.
Both at the time of the incident where a pedestrian could be seriously injured, but also in a long term effect where
frequent incidents could lead to a change of transportation from walking or biking to traveling by car[23].

2.3 Models for peripheral vision

Starting in the year 2000, Javier Portilla and Eero Simoncelli published the �rst article about how our we perceive
texture[20]. They developed a method to alter texture from its original state to a way in which they believe humans
perceive it. The research �eld is quite small and not much happened in the progress of making a model which tries
to explain how our visual �eld looks like until 2011. That year both the Perceptual Science Group at Massachusetts
Institute of Technology, MIT, presented their Texture Tiling Model of Early Visual Representation while Jeremy Free-
man and Eero Simoncelli at New York University presented their model called Metamers of the ventral stream. The
models are quite similar, but Simoncelli and Freeman's model focuses more on mimicking the brain's processing in
the neurons while the Perceptual Science Group's focus was to make a model which can construct images that looks
the same as what we see in our visual �eld.

2.3.1 General information about the models

Both the Perceptual Science Group at MIT, henceforth abbreviated as PSG, as well as Freeman and Simoncelli talks
about how the brain discards information in the visual �eld. The PSG have a frequently asked questions section about
the texture tiling model on their website where they give brief information about the model and how it relates to
other work. They say that the summary statistics computed in both the texture tiling model and the Metamers of the
ventral stream model are the same even though Freeman and Simoncelli focuses on mimicking the brain process[4].
Information sampled from our visual �eld travels from our eyes to the visual cortex in the primary cortical region of the
brain where the processing occurs. The visual cortex consists of �ve areas called V1, V2, V3, V4 and V5[17]. The V1,
V2 and V3 area of the brain can be seen in Figure 2. Freeman and Simoncelli's model tries to mimic the processing
done in the V1 and V2 regions[12]. The visual cortex consist of simple and complex cells. Recognition of orientations
of lines and edges comes from responses by simple cells in the V1 area. The complex cells uses the responses from
numerous simple cells corresponding to different receptive �elds (parts of the visual �eld) and responds to edges and
orientations as simple cells, but also motion[17]. It is these cell responses from the V1 and V2 area that Freeman and
Simoncelli tries to mimic. They use different �lters to replicate the responses from the cells[12]. The local phase of a
�lter response indicates structure such as lines and edges[16] which is what the simple cell responses do. The complex
cells are modelled by responses from �lters with the same position and orientation but different phases[12]. The
responses from both simple and complex cells are then pair wise multiplicated and averaged over local regions, regions
much smaller than the pooling regions, which leads to the autocorrelations. The model continues with joint statistics
to get intermediate level image structures[8]. Intermediate level means that the image has both low level information
in the form of feature detection, which have been produced by cell responses, and the grouping of features[14]. The
joint statistics consists of phase correlations over different scales, the correlation of the magnitude of the cell responses
across different scales and nearby positions, marginal distribution of luminance as well as the autocorrelation of the
luminance. The statistics are a further development of the statistics used by Portilla and Simoncelli in their model from
2000 mentioned in the start of this section[8]. It is after this stage that the models start to differ. The description of the
texture tiling model does not specify the details of the cell responses as mush as the description of the metamers model
does. They both do however start from the research on texture by Portilla and Simoncelli and uses it to compute the
�rst statistics. The next stage, where both model tries to match the statistics inside the pooling regions, is where they
have a different view on how the processing works. Freeman and Simoncelli tried to make a model which doesthe
same processingas the brain[12] while the PSG tried to make a model which yieldsthe same resultas the processing
in the brain.
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Figure 2: The brain with the V1 area of the visual cortex in yellow, the V2 in orange and V3 in blue[3].

2.3.2 Statistics and steerable pyramid

The statistics starts with decompositioning of the image. They, Portilla and Simoncelli[20], have chosen to do so with
what is called a steerable pyramid. It is a basis function which splits the image into four different subbands where
each subband are about one octave in bandwidth without aliasing. It includes both real and complex �lters to extract
both the local phase and the energy in the image. They use the relative intensity of the texture to get the kurtosis,
variance and skew of the texture for each level of the decomposed image. For the coef�cient-correlation part, they
get the oriented structures from the local autocorrelation at each level of the decomposed image. The next step is to
upsample the coarsest decomposed part of the image to the size of the �nest decomposed part. That is used in order to
calculate the correlations between the complex magnitude at adjacent scales, positions and orientations. The last part
is to extract the local phase from the textures to distinguish lines from edges[20]. The local phase in this case works in
the same way as the usual case for the decomposed layers of the image. A white line on a black background or a black
line on a white background will yield either a response of� or 0 while a black or white edge will yield a response of�

2
or � �

2 [20][16].

However, one of the problems with this statistics is that a small change in the �nest layer of the pyramid, like from
one frame to the next in a video, yields quite substantial differences in the resulting image. This will cause what is
experienced as vibrations when a sequence of images are played. This will be further described in Section 3.1.

2.3.3 Metamers of the ventral stream model

The V2 area of the visual cortex is where the brain uses the information from the cell responses and extract more
complex features, more complex than the intermediate level structures, and the orientation between features. It is also
at this stage that color starts to differentiate between objects. Likewise, it is at this stage that the cell responses can
differ between different spatial frequencies[17]. The spatial frequency of an image or a part of an image tells how �ne
the details of the structure there are[11]. The difference between high and low spatial frequency can be seen in Figure
3. The model ends the processing at this part in the brain. However, the information does continue through the V3
through V5 areas in the ventral and dorsal stream[17].
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Figure 3: Visualization of low (left)[6] and high spatial frequency (right)[5].

Research have shown that the receptive �eld sizes are very small in the fovea and grow linearly with increasing
distance from the fovea, known as eccentricity[13]. As a �rst way of trying to understand the receptive �eld, it could
be thought of as the resolution of the eye. The resolution is �ne in the fovea and gets linearly coarser with increased
eccentricity[7]. However, as stated previously, the peripheral vision is not just a low resolution version of the fovea
since vision is more than just the receptive �eld size. But this way of thinking could be a good starting point to get
an idea of how our vision deteriorates with increased eccentricity. Freeman and Simoncelli models this decrease in
receptive �eld size by performing weighted averaging in their overlapping pooling regions. The pooling regions can
be seen in Figure 4. The white parts of the image are a single pooling regions while the black are where two regions
overlap.

Figure 4: Image that depicts the pooling regions used in the article by Freeman and Simoncelli. Generated by the
author from code provided by Freeman on an image of size512� 512pixels.

The idea of Freeman and Simoncelli's model is that an images can be generated by iteratively adjusting a white
gaussian noise image with gradient descent until the summary statistics of the pooling regions are the same as another
image. These two images will then yield the same cell responses in the brain leading to humans not being able to
distinguish them from each other. The generated image would then be what they call a metameric image. The size
of the pooling regions are essential to this model. If the pooling regions are not the same as the pooling regions used
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by the brain, the generated images would not be metameric[12]. If the pooling regions are way to �ne, the image
would like almost identical to the untouched image. Too coarse pooling regions would yield the opposite result, the
generated image would discard too much information. Freeman and Simoncelli found the appropriate size of the
pooling regions by generating lots of images with varying pooling region sizes. They then performed an experiment
where the participants would see an image for 200 ms, a generated image for an equally long period and then one of
them once again. The object was for the participants to determine if the third image was mongrelled or not. They
started with the images with coarsest pooling region and shown smaller and smaller image as long as the amount of
correct guesses were above chance. This was done since too coarse pooling region discards too much information,
meaning it is possible to distinguish between the original and the generated one. The appropriate scaling is the one
where an observer can not distinguish between the two images since an even smaller scaling would discard too little
information[12].

2.3.4 Model walkthrough

The model starts with parameters that de�ne both the steerable pyramid as well as the settings for the mask/pooling
regions. The amount of layers in the pyramid, apart from the original image, is set to four by default with each layer
being a quarter the size of the previous. The number of orientations in which the image is �ltered is also set to four
by default. Freeman and Simoncelli used images of size512� 512 in their article[12]. The layers of the pyramid
are in that case the original image of512� 512pixels and downsampled versions of the original image to256� 256,
128� 128, 64� 64and32� 32pixels. During this explanation, it will be assumed that the image on which the model is
applied is512� 512pixels. The windows/pooling region parameters used in the article isaspect= 2 which means that
the circumferential aspect ratio is 2 andscale= 0 :5 meaning that the radial pooling region have an eccentricity of 0.5.
These two parameter values means that the pooling regions are somewhat more stretched in the horizontal direction.
For the model to be able to create an image with statistics that matches the original image, the statistics of the original
image has to be computed �rst. The model �rst creates a steerable pyramid with �ve layers as described above. The
de�ned mask is then applied to all layers of the pyramid and the weighted mean, variance, skew and kurtosis of the
pixels in each region are calculated. The next thing that is calculated is the autocorrelation of the32 � 32 pixel layer
followed by the central autocorrelation for each layer. After that, the cross-correlation between neighbouring layers in
the same orientation and neighbouring orientations in the same layer is computed. Lastly, the mean, range and variance
is computed on the original image and the32� 32pixel layer.

The model now starts the process of creating an image with statistics that matches the above calculated statistics
on the original image. It starts with an image of pure white Gaussian noise of the same size as the original image and
creates a steerable pyramid in the same way as for the original image, with layers from512� 512to 32 � 32 pixels.
The mean and variance of the pixels in each pooling region of the32� 32 layer is the adjusted by gradient descent to
try and match the statistics of the same regions in the original image. After that, interpolation between each layer and
its parent, the next larger layer in size, is performed starting with the32� 32 pixel layer. Then the autocorrelation for
each orientation in each layer is computed as well as the skew, kurtosis, mean and variance in each pooling region in
each layer of the image. The cross-correlation between different orientation in the same layer and different layers in the
same orientation is adjusted, by gradient descent, to better match the statistics in the original image. Lastly, the mean,
variance, skew and kurtosis in each region in each layer is adjusted by gradient descent to better match the mean,
variance, skew and kurtosis in the original image. This process of matching the statistics is repeated 49 additional
times.

2.3.5 Pooling regions

The idea of using the pooling regions in which the summary statistics match the one in the original image might seem
strange at �rst glance. There is a quite famous statement that circulates the internet that says "Aoccdrnig to a rscheearch
at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the
frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is
bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe" [2]. The statement that this was
discovered at Cambridge University is completely false, but research has been conducted on this topic after this claim
became famous. An article published in Psychological Science in 2006 showed that this statement is partly true[21].
It was concluded that if the �rst and last letter of a word is are correct while the letters in the middle of the word are
transposed the reading speed in words per minute decreased by 12 % while there were signi�cantly greater decrements
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in reading speed when the �rst, last or both �rst and last letters were also transposed[21]. When trying to justify the
use of the pooling regions in both the Texture Tiling Model and the Metamers of the ventral stream model, it could
be a good idea to keep the statements about the jumbled letters above in mind when reading what Rosenholtz says
about how they model the effects of crowding; "[The crowded letter] only seems to have a `statistical' existence.. . . The
texture of an isolated N speci�es an N; the texture of an imbedded N speci�es much less about the N as a form.”[22]
That could mean that words where the letters have been jumbled in the middle have similar enough statistics as the
word that we actually interpret when reading it. This work thinks that by reading the quote in the start of this section
could give readers with little to no knowledge about vision an idea about how the brain processes information from
the visual �eld. We humans simply do not scan through every detail or letter, but rather get a gist of some letters at
each focus point and then draw conclusions from it by processing the statistics of the scene. Freeman and Simoncelli
discusses that their model could be used to create better fonts or optimizing the letters or word spacings in text by
examining how much the letters get distorted in the periphery[12]. That indicates that we might be using the summary
statistics of the text to draw conclusions of what word we are reading rather than putting the word together by actually
reading every word.
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3 Approach

The part of trying to determine how to mongrel the videos in this thesis took up a substantial part of the start up process.
This is due to the extremely long computation time the software needed in order to create a mongrelled image. The
computer which was used during this part was a HP Z600 with 6 GB RAM and 2,3 GHz Intel Xeon processor which
required 5-6 hours of computations in order to create a single mongrelled image. That meant that one attempt to make
a mongrelled image could take a day. For the option with mongrelling one color channel at a time, described in the
sections to follow, it could take a day and a night. Not much information about the actual mongrelling process was
described by Freeman and Simoncelli. A lot of testing had to be done in the beginning such as trying to understand and
solve the problem with both the perceived non-deterministic nature of the code as well as how color images could be
produced. It turned out that the model was not non-deterministic, but rather that a small change from frame to frame
would yield a noticeable difference that was perceived as vibrations when a sequence of images would be played as
mentioned in Section 2.3.2.

The results from the above mentioned test lead to the decision to make script which split a video to individual frames,
turned them into grayscale, mongrelled them and �nally saved them as grayscale .png �les. There were two reason for
mongrelling the frames in grayscale. One was that it was not possible to mongrel color images. Another was that an
algorithm similar to the BT.601 standard[24] could be used in order to re-colorize the images after mongrelling. This
made it possible to do pilot testing on whether this model works on dynamic color images. If it did not, tests could be
performed on dynamic grayscale image without mongrelling the images once again.

3.1 Mongrelling process

The software needed for mongrelling images with the Metamers of the ventral stream model is provided by Jeremy
Freeman on his GitHub repository under the MIT license1. The repository contains Matlab �les, an example image to
test the software and text �les which described the contents of the repository as well as the location of the matlabPyr-
Tools toolbox2 which is required in order to run the software. Freeman have created a script called metamerTest.m
which can be used to test the model. The script takes an image as input and uses some set parameters, pre-de�ned by
Freeman in the code and was said to be the same as they used in their article, to make a so-called mask which is the
pooling regions described in chapter 2.3.3 and 2.3.5. The parameters default value, used in their article isscale = 0 :5
andaspect= 2 . An image is then created by trying to match the summary statistics in the pooling regions described
by the mask to the summary statistics of the pooling regions in the example image. The example image provided in the
GitHub repository and the image mask corresponding to the image size,512� 512, pixels are shown in Figure 5.

1https://github.com/freeman-lab/metamers
2http://www.cns.nyu.edu/lcv/software.php
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Figure 5: The example image provided by Freeman in the GitHub repository (left). The windows mask with the default
parameter values corresponding to a512� 512pixels image (right).

The mask in Figure 5 shows the radially elongated pooling regions in which the summary statistics described
in Section 2.3.2 are computed. The software starts by checking if any parameters such as number of orientations,
iterations or window type have been speci�cally set to a certain value. At this stage no alterations to the code had been
made and therefore the default values were used. One of the parameters that could bee changed was the one called
printing. It determines if the software should "print", i.e. save, the image produced at the end of every iteration. The
default number of iterations were 50. The next step of the software is to create the image mask as described above
and can be seen in Figure 5. There are some quite hefty restrictions about which image sizes the software can create
masks on, but that was not an issue at this stage since the image provided by Freeman was one they had used in the
article and they chose it to be an example image. The software continues by calculating the summary statistics of the
input image in the pooling regions described by the mask. The �nal stage of the script is to try and create an image
which matches the summary statistics of the input image in the regions described by the mask. To start the process of
matching the statistics, the software needs a seed image. By default, the seed is a noise image determined by the clock
of the computer. The iterations of the image to match the summary statistics is started right after the seed image is
generated. The �rst thing it does is to create a steerable pyramid by the help of the matlabPyrTools toolbox. Then it
proceeds to adjust the skew, mean, kurtosis and variance of the seed image inside the pooling regions. It then takes the
different scaled images, from �nest to coarsest, computes the summary statistics along the different orientations and
tries to adjust the cross-correlations of both the real and imaginary parts to the ones at adjacent scales and orientations.
The last thing in the iterations loop is for the software to match the pixel statistics of the seed image to the example
image. Once that is done, the software used the image created from the seed image as a start in the next iteration of
matching statistics. This continues for the set amount of the iterations, which was 50 in both the article by Freeman
and Simoncelli as well as in this thesis. A more thorough explanation of the statistics can be found in Sections 2.3.2
and 2.3.4. The evolution of the image from seed to �nal mongrelled image can be seen in Figure 6
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Figure 6: The evolution of the images from seed (top left) through iteration 1 (top right), iteration 5 (middle left),
iteration 25 (middle right), iteration 50 (bottom left). The example image which was mongrelled (bottom right).
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The images changes quite substantially in the beginning, see iterations zero to �ve, while there are much smaller
difference between iteration 25 and 50.

3.2 Color

There were two readily available ways to mongrel images in color. One was to use Freeman and Simoncelli's scripts
metamerAnalysisColor.m and metamerSynthesisColor.m. Those scripts claim to be able to mongrel color images. The
other readily option was to mongrel each of the color channels in the images individually. This could be done since
a color image in computer graphic consists of three different channels corresponding to the amount of red, green and
blue in the image. With red, green and blue color channels it is possible to create any type of color. The script for mon-
grelling grayscale images provided by Freeman can only take a single color channel as input. In the case of grayscale
images, they only have one channel where the intensity in each pixel corresponds to the intensity. A third option, which
was not ready to use, was to create an algorithm according to the BT.601 encoding[24].

There is a color folder containing two �led called metamerAnalysisColor.m and metamerSynthesis.m in Freeman's
GitHub repository. They are used in the exact same way as the previously described mematerAnalysis.m and metamer-
Synthesis.m scripts (scripts that are used in Freeman's test script for grayscale images) with the difference that they
can be used on images with multiple channels. The mongrellation time took a little bit longer, about 6-7 hour, but
nowhere near as long as the option of mongrelling each color channel individually. Unfortunately though, strange
artifacts appeared that made the image look nowhere near as good as the grayscaled mongrelled frames. The result of
this mongrelling method can be seen in Figure 7. There is no way of knowing if this is an accurate representation of our
visual �eld before validating it by having some participants do some tests. However, the artifacts in the corners of the
images are not oriented around the visual �eld, but rather the corners of the image. Therefore, it can be assumed that
this is not a good representation of our visual �eld. The image was also very blurry. The script was run several times
with the same output. The strange artifacts is probably caused by computation errors related to inverse of matrices.
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Figure 7: Mongrelled grayscale image (top). Image mongrelled using the scipts for mongrelling color images provided
by Freeman (bottom).

For the option of mongrelling each color channel individually, a script was written which would take a frame from
one of the chosen videos, extract the red channel from it, mongrel the red channel via the grayscale test script provided
by Freeman. The same would then be done for the green and blue channels. The mongrelled version of the red, green
and blue channels would then be concatenated again to make a color image. This option was not chosen since the color
were not well enough reproduced. The colors are in general well reproduced, but the bottom right image in Figure 8
shows rainbow colored patterns, or artifacts, which were deemed not satisfactory. They were very obvious when an
sequence of images mongrelled in this way was displayed. The rainbow colored patterns were very disturbing and
were �ickering over the entire image. Another reason for not using this method was that this would make the already
long mongrelling time three times as long since the mongrelling had to be done three times for each frame.
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