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Isomorphic Structure of Cesàro and
Tandori Spaces

Sergey V. Astashkin, Karol Lesnik, and Lech Maligranda

Abstract. We investigate the isomorphic structure of the Cesàro spaces and their duals, the Tandori
spaces. _e main result states that the Cesàro function space Ces∞ and its sequence counterpart
ces∞ are isomorphic. _is is rather surprising since Ces∞ (like Talagrand’s example) has no natural
lattice predual. We prove that ces∞ is not isomorphic to ℓ∞ nor is Ces∞ isomorphic to the Tandori
space L̃1 with the norm ∥ f ∥L̃1

= ∥
̃f ∥L1 , where ̃f (t) ∶= ess sups≥t ∣ f (s)∣. Our investigation also

involves an examination of the Schur and Dunford–Pettis properties of Cesàro and Tandori spaces.
In particular, using results of Bourgain we show that a wide class of Cesàro–Marcinkiewicz and
Cesàro–Lorentz spaces have the latter property.

1 Introduction and Contents

_e classicalCesàro spaces most commonly appear as optimal domains of the Cesàro
(Hardy) operator or some of its versions (see [DS07,NP10,LM15b]; see also [ORSP08,
CR16, CR17], where the vector measures’ point of view is presented). Moreover, they
can coincidewith the so-called down spaces,whichwere introduced and investigated
by Sinnamon [KMS07,MS06, Si94, Si01, Si07], but have their roots in the papers of
Halperin and Lorentz. In comparison to the function case, there is a much richer
literature devoted to Cesàro sequence spaces and their duals (see the classical paper
of Bennett [Be96] and also [CH01, CMP00, Ja74, KK12,MPS07]). Development of
this topic related to the weighted case, including the so-called blocking technique,
can be found in [GE98]. In this paper we investigate the isomorphic structure of ab-
stract Cesàro spaces CX and their duals, Tandori spaces X̃, on three separable mea-
sure spaces N, [0,∞) and [0, 1]. For a Banach ideal space X ofmeasurable functions
on I = [0,∞) or I = [0, 1], CX is deûned as the space of all measurable functions
f on I such that C∣ f ∣ ∈ X, equipped with the norm ∥ f ∥CX ∶= ∥C∣ f ∣∥X , where C de-
notes the Cesàro operator, i.e., (C f )(x) ∶= 1

x ∫
x
0 f (t) dt for 0 < x ∈ I. For a Ba-

nach ideal sequence space X, one uses the corresponding discrete Cesàro operator
(Cdx)n ∶=

1
n ∑

n
k=1 xk , n ∈ N in the deûnition of the Cesàro space .

_e study of abstractCesàro function spaces, under this name, started in [LM15a],
where a description of their Köthe duals by the so-called Tandori spaces can be
found. It is worth noting here that the results obtained diòer substantially in the
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cases I = [0,∞) and I = [0, 1]. Continuing the same direction of research, the au-
thors examined interpolation properties of these spaces [LM16]. Investigation of the
isomorphic structure of classical Cesàro function spaces Cesp ∶= CLp was initiated
in [AM09] (see also [AM14]); however, studying classical Cesàro sequence spaces
cesp ∶= Cℓp started much earlier (see [MPS07] and the references therein). Among
other things, the existence of an isomorphism between the spaces Cesp[0,∞) and
Cesp[0, 1] for all 1 < p ≤ ∞ has been proved [AM09]. On the other hand, Cesp(I)
and cesp for any 1 < p <∞ are clearly not isomorphic because, in contrast to cesp , the
space Cesp(I) is not re�exive.

_erefore, the only remaining question (already formulated in [AM09, AM14])
was whether or not Ces∞ is isomorphic to ces∞. _eorem 5.1, one of the main re-
sults of the present paper, answers this problem in the aõrmative. It is instructive
to compare this result with the well-known Pełczyński theorem on the existence of
an isomorphism between the spaces L∞ and ℓ∞ [Pe58] and also with Leung’s re-
sult that showed, using Pełczyński decomposition method, that the weak Lp-spaces:
Lp,∞[0, 1], Lp,∞[0,∞), and ℓp,∞ for every 1 < p <∞ are all isomorphic [Le93].

On the other hand, we prove that ces∞ and Ces∞(I) are not isomorphic to ℓ∞ or
to the Tandori space L̃1(I) with the norm ∥ f ∥L̃1

= ∥ f̃ ∥L1 , where

f̃ (t) ∶= ess sup
s∈I , s≥t

∣ f (s)∣.

Moreover, if X is a re�exive symmetric space on [0, 1] and the Cesàro operator C is
bounded on X, thenCX is not isomorphic to any symmetric space on [0, 1]. _emain
tool in proving these results comes from the fact that an arbitrary Cesàro space CX
(and, in particular, ces∞ andCes∞(I)) contains a complemented copy of L1[0, 1], pro-
vided the Cesàro operator C is bounded in X (see Proposition 2.2), but the other ones
do not. We also make use of a characterization due to Hagler–Stegall [HS73] of dual
Banach spaces containing complemented copies of L1[0, 1]; theCembranos–Mendoza
result [CM08], stated that the mixed-norm space ℓ∞(ℓ1) contains a complemented
copy of L1[0, 1], while the space ℓ1(ℓ∞) does not.

In this paper, along with the isomorphic structure of abstract Cesàro and Tandori
spaces we also study their Schur and Dunford–Pettis properties (being isomorphic
invariants). In particular, we are able to ûnd a new rather natural Banach space non-
isomorphic to ℓ1 with the Schur property, namely, the sequence Tandori space ℓ̃1 with
the norm ∥(ak)∥ℓ̃1 = ∥(ãk)∥ℓ1 ,where ãk ∶= supi≥k ∣a i ∣. Regarding the Dunford–Pettis
property,we note that, generally, it is not easy to determinewhether a given space has
this property. We apply here a deep result of Bourgain [Bo81] that shows that ev-
ery ℓ∞-sum of L1-spaces has the Dunford–Pettis property. Using this, Bourgain also
deduced that the spaces of vector-valued functions L1(µ,C(K)) and C(K , L1(µ))
and their duals, where µ and K are a σ-ûnite measure and any compact Hausdorò
set, respectively, have the Dunford–Pettis property. Using these facts and a suit-
able description of Cesàro and Tandori spaces obtained in this paper, we will prove
that Ces∞(I), L̃1(I) and, under some conditions on dilation indices of a function φ,
Cesàro–Marcinkiewicz spacesCMφ[0,∞), their separable partsC(M0

φ)(I), Cesàro–
Lorentz spaces CΛφ(I) as well as Tandori–Lorentz spaces Λ̃φ(I) (in both cases I =
[0,∞) and I = [0, 1]) all enjoy theDunford–Pettis property. Recall thatKamińska and
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Mastyło [KM00] proved that ℓ1 , c0 and ℓ∞ are the only symmetric sequence spaces
with the Dunford–Pettis property and there exist exactly six non-isomorphic sym-
metric spaces on [0,∞) enjoying the latter property: L1 , L∞ , L1 ∩ L∞ , L1 + L∞, and
the closures of L1 ∩ L∞ in both L∞ and L1 + L∞. _e paper is organized as follows.
Following this Introduction, Section 2 collects some necessary preliminaries, ûrst, on
Banach ideal and symmetric spaces and then, on Cesàro and Tandori spaces. Here,
we recall also _eorem 2.1 related to the duality from [LM15a] and prove Proposition
2.2 on the existence of a complemented copy of L1[0, 1] in an arbitrary Cesàro space
CX provided the Cesàro operator C is bounded in X. _ese results are frequently
used throughout the paper.

Section 3 contains results related to studying the Schur and Dunford–Pettis prop-
erties of Tandori and Cesàro sequence spaces. We prove that ℓ̃1 has the Schur prop-
erty (_eorem 3.1) and ces∞ contains a complemented copy of L1[0, 1] (_eorem 3.7).
Moreover, we investigate the conditions under which both Cesàro–Marcinkiewicz
and Cesàro–Lorentz sequence spaces as well as their duals have the Dunford–Pettis
property (see _eorems 3.8 and 3.9). Finally, we show that the spaces CX and X̃
fail to have the Dunford–Pettis property whenever a symmetric sequence space X
is re�exive and the discrete Cesàro operator is bounded in X or in X′, respectively
(_eorem 3.11).

Section 4 deals with the Dunford–Pettis property of Cesàro and Tandori func-
tion spaces. It is proved that, under the assumption qφ < 1, both Tandori–Lorentz
space Λ̃φ[0,∞) and Cesàro–Marcinkiewicz space CMφ[0,∞) have the Dunford-
Pettis property (_eorem 4.1). In particular, two non-isomorphic spaces Ces∞(I)
and L̃1(I) have the latter property (see _eorem 4.3). A similar result also holds for
the separable parts of the Cesàro–Marcinkiewicz spaces CMφ[0,∞) and CMφ[0, 1]
provided limt→0+ φ(t) = 0 and qφ < 1 or q0φ < 1, respectively (_eorems 4.6 and 4.8).
Moreover, if X is a re�exive symmetric function space satisfying some conditions,
then CX and X̃ fail to have the Dunford–Pettis property (_eorem 4.9).

Section 5, contains one of the main results of the paper, showing that the spaces
Ces∞ and ces∞ are isomorphic (_eorem 5.1). _is gives a positive answer to the
question posed in [AM09, Problem 1] and repeated in [AM14, Problem 4]. An in-
teresting consequence of this result is the fact that the space Ces∞ is isomorphic to
a dual space, although [(Ces∞)′]0 = (L̃1)

0 = {0} (Corollary 5.2) and so there is
no natural candidate for its predual. For ces∞, however, the predual is ℓ̃1, because
(ℓ̃1)∗ = (ℓ̃1)′ = ces∞. Observing that this phenomenon has its counterpart in the
general theory of Banach lattices, we discuss its relation to Lotz’s result [Lo75] and to
Talagrand’s example of a separable Banach lattice being a dual space (and hence hav-
ing the Radon–Nikodym property) such that for each x∗ ∈ E∗, the interval [0, ∣x∗∣]
is not weakly compact [Ta81] (see Proposition 5.4). Finally, we prove that Ces∞(I)
is isomorphic to the space (⊕

∞
k=1 M[0, 1])ℓ∞ , where M[0, 1] is the space of regular

Borel measures on [0, 1] of ûnite variation (_eorem 5.5).
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2 Definitions and Basic Facts

2.1 Banach Ideal Spaces and Symmetric Spaces

By L0 = L0(I) we denote the set of all equivalence classes of real-valued Lebesgue
measurable functions deûned on I = [0, 1] or I = [0,∞). A Banach ideal space X =

(X , ∥ ⋅ ∥) on I is understood as a Banach space contained in L0(I) that satisûes the
so-called ideal property: if f , g ∈ L0(I), ∣ f ∣ ≤ ∣g∣ almost everywhere with respect to
the Lebesguemeasure on I and g ∈ X, then f ∈ X and ∥ f ∥ ≤ ∥g∥. Sometimeswewrite
∥ ⋅ ∥X to be sure which norm in the space is considered. If not stated otherwise, we
suppose that a Banach ideal space X contains a function f ∈ X with f (x) > 0 almost
everywhere on I (such a function is called the weak unit in X), which implies that
suppX = I. Similarly we deûne a Banach ideal sequence space, i.e., on I = N with the
counting measure.

Since an inclusion of two Banach ideal spaces is continuous, we prefer to write in
this case X ↪ Y rather than X ⊂ Y . Moreover, the symbol X A

↪ Y indicates that
X ↪ Y with the norm of the inclusion operator not bigger than A, i.e., ∥ f ∥Y ≤ A∥ f ∥X
for all f ∈ X. Also, X = Y (resp. X ≡ Y) means that the spaces X and Y have the same
elements with equivalent (resp. equal) norms. By X ≃ Y we denote the fact that the
Banach spaces X and Y are isomorphic.
For a Banach ideal space X = (X , ∥ ⋅ ∥) on I, the Köthe dual space (or associated

space) X′ is the space of all f ∈ L0(I) such that the associated norm

∥ f ∥′ = sup
g∈X

∥g∥X≤1

∫
I
∣ f (x)g(x)∣ dx

is ûnite. _e Köthe dual X′ = (X′ , ∥ ⋅ ∥′) is a Banach ideal space. Moreover, X 1
↪ X′′

and we have equality X = X′′ with ∥ f ∥ = ∥ f ∥′′ if and only if the norm in X has the
Fatou property,meaning that the conditions 0 ≤ fn ↗ f almost everywhere on I and
supn∈N ∥ fn∥ <∞ imply that f ∈ X and ∥ fn∥↗ ∥ f ∥.
For a Banach ideal space X = (X , ∥ ⋅ ∥) on I with the Köthe dual X′, the following

generalized Hölder–Rogers inequality holds: if f ∈ X and g ∈ X′, then f g is integrable
and

(2.1) ∫
I
∣ f (x)g(x)∣ dx ≤ ∥ f ∥X ∥g∥X′ .

A function f in a Banach ideal space X on I is said to have an order continuous
norm in X if for any decreasing sequence of Lebesgue measurable sets An ⊂ I with
m(⋂

∞
n=1 An) = 0, where m is the Lebesguemeasure, we have ∥ f χAn∥ → 0 as n →∞.

_e set of all functions in X with order continuous norm is denoted by X0. If X0 = X,
then the space X is said to be order continuous. For an order continuous Banach ideal
space X, theKöthe dual X′, and the dual space X∗ coincide. Moreover, a Banach ideal
space X with the Fatou property is re�exive if and only if both X and its Köthe dual
X′ are order continuous.
For a weight w(x), i.e., a measurable function on I with 0 < w(x) < ∞ almost

everywhere and for a Banach ideal space X on I, theweighted Banach ideal space X(w)
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is deûned as the set X(w) = { f ∈ L0 ∶ fw ∈ X} with the norm ∥ f ∥X(w) = ∥ fw∥X . Of
course, X(w) is also a Banach ideal space and [X(w)]′ ≡ X′(1/w).
A Banach ideal space X = (X , ∥ ⋅ ∥X) is said to be a symmetric (or rearrangement

invariant) space on I if, from the conditions f ∈ X, g ∈ L0(I), and the equality d f (λ) =
dg(λ) for all λ > 0,where d f (λ) ∶= m({x ∈ I∶ ∣ f (x)∣ > λ}), λ ≥ 0, it follows that g ∈ X
and ∥ f ∥X = ∥g∥X . In particular, ∥ f ∥X = ∥ f ∗∥X , where

f ∗(t) = inf{λ > 0∶ d f (λ) < t}, t ≥ 0.

For a symmetric function space X on I, its fundamental function φX is deûned as

φX(t) = ∥χ[0,t]∥X , t > 0,

where χE , throughout, will denote the characteristic function of a set E .
Let us recall some classical examples of symmetric spaces. Each increasing concave

function φ on I, φ(0) = 0, generates the Lorentz space Λφ (resp. Marcinkiewicz space
Mφ) on I endowed with the norm ∥ f ∥Λφ = ∫I f

∗(s) dφ(s), respectively,

(2.2) ∥ f ∥Mφ = sup
t∈I

φ(t)
t ∫

t

0
f ∗(s) ds.

In the case when φ(t) = t1/p , 1 < p < ∞, the Marcinkiewicz space is also called
the weak-Lp space (brie�y denoted by Lp,∞) and the norm (2.2) is equivalent to the
quasi-norm ∥ f ∥Lp,∞ = supt∈I t1/p f ∗(t). In general, a space Mφ is not separable (for
example, when limt→0+

t
φ(t) = limt→∞

φ(t)
t = 0), but the spaces

{ f ∈ Mφ ∶ lim
t→0+ ,∞

φ(t)
t ∫

t

0
f ∗(s) ds = 0} in the case when I = [0,∞)

and

{ f ∈ Mφ ∶ lim
t→0+

φ(t)
t ∫

t

0
f ∗(s) ds = 0} in the case when I = [0, 1]

with the norm (2.2) are the separable symmetric spaces which, in fact, coincide with
the space M0

φ on I = [0,∞) or I = [0, 1], respectively, provided limt→0+ φ(t) = 0
[KPS82, pp. 115–116].

Let Φ be an increasing convex function on [0,∞) such that Φ(0) = 0. Denote by
LΦ the Orlicz space on I [KR61,Ma89] endowed with the Luxemburg–Nakano norm
∥ f ∥LΦ = inf{λ > 0∶ ∫I Φ(∣ f (x)∣/λ) dx ≤ 1}.
For a given symmetric space X with the fundamental function φ (recall that every

such a function is equivalent to a concave function), we have Λφ
2
↪ X 1

↪ Mφ and
(Mφ)

′ = Λψ with ψ(t) = t
φ(t) , t > 0.

Similarly one can deûne Banach ideal and symmetric sequence spaces and all the
abovenotions. In particular, the fundamental function of a symmetric sequence space
X is the function φX(n) = ∥∑

n
k=1 ek∥X , n ∈ N, where {en}∞n=1 is the canonical basic

sequence of X. Moreover, theLorentz sequence space λφ (resp. Marcinkiewicz sequence
spacemφ) is deûned as the space of all sequences x = (xn)

∞
n=1 , forwhich the following

norm is ûnite ∥x∥λφ = ∑
∞
k=1 x∗k (φ(k + 1) − φ(k)), respectively,

(2.3) ∥x∥mφ = sup
n∈N

φ(n)
n

n

∑
k=1

x∗k ,
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where φ is an increasing concave function on [0,∞) and (x∗k ) is the decreasing re-
arrangement of the sequence (∣xk ∣)

∞
k=1. In the case when φ(n) = n1/p for 1 < p < ∞,

the Marcinkiewicz space mφ is also called the weak-ℓp space (denoted by ℓp,∞ for
short) and the norm (2.3) is equivalent to the quasi-norm ∥x∥ℓp,∞ = supk∈N k1/px∗k .

_e dilation operators σs (s > 0) deûned on L0(I) by σs f (x) = f (x/s) if I = [0,∞)

and σs f (x) = f (x/s)χ[0,min(1,s)](x) if I = [0, 1] are bounded in any symmetric space
X on I and ∥σs∥X→X ≤ max(1, s) [BS88, p. 148] and [KPS82, pp. 96–98]. _ese
operators are also bounded in some Banach ideal spaces that are not symmetric. For
example, if X = Lp(xα), then ∥σs∥X→X = s1/p+α (see [Ru80] for more examples). _e
Boyd indices of a symmetric space X are deûned by

αX = lim
s→0+

ln ∥σs∥X→X

ln s
, βX = lim

s→∞
ln ∥σs∥X→X

ln s
,

and we have 0 ≤ αX ≤ βX ≤ 1 [KPS82, pp. 96–98], [LT79, p. 139].
For every m ∈ N, let σm and σ1/m be the dilation operators deûned in spaces of

sequences a = (an) by

σma = ((σma)n)
∞
n=1 = (a[ m−1+n

m ])
∞
n=1 = (

m
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
a1 , a1 , . . . , a1 ,

m
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
a2 , a2 , . . . , a2 , . . . ) ,

σ1/ma = ((σ1/ma)n)
∞
n=1 = (

1
m

nm

∑
k=(n−1)m+1

ak)
∞

n=1

= (
1
m

m

∑
k=1
ak ,

1
m

2m

∑
k=m+1

ak , . . . ,
1
m

nm

∑
k=(n−1)m+1

ak , . . .) ,

[LT79, p. 131], [KPS82, p. 165]. _ey are bounded in any symmetric sequence space
and also in some non-symmetric Banach ideal sequence spaces. For example,

∥σm∥ℓp(nα)→ℓp(nα) ≤ m1/p max(1,mα
), ∥σ1/m∥ℓp(nα)→ℓp(nα) ≤ m−1/p max(1,m−α

).

_e lower index pφ andupper index qφ of an arbitrarypositive function φ on [0,∞)

are deûned as

(2.4) pφ = lim
s→0+

lnφ(s)
ln s

, qφ = lim
s→∞

lnφ(s)
ln s

, where φ(s) = sup
t>0

φ(st)
φ(t)

.

It is known [KPS82,Ma85,Ma89] that for a concave function φ on [0,∞), we have
0 ≤ pφ ≤ qφ ≤ 1. Moreover, the estimate

(2.5) ∫

t

0

1
φ(s)

ds ≤ C t
φ(t)

for all t > 0

is equivalent to the condition qφ < 1 [KPS82, Lemma 1.4], [Ma85, _eorem 11.8],
[Ma89, _eorem 6.4(a)]. If an increasing concave function φ is deûned on [0, 1]
(resp. on [1,∞)), then the corresponding indices p0φ , q0φ (resp. p∞φ , q∞φ ) are the num-
bers deûned as the limits in (2.4), where instead of φ we take the function φ0

(s) =

sup0<t≤min(1,1/s) φ(st)/φ(t) (resp. φ∞(s) = supt≥max(1,1/s) φ(st)/φ(t)). Of course,
0 ≤ p0φ ≤ q0φ ≤ 1 (resp. 0 ≤ p∞φ ≤ q∞φ ≤ 1), and the estimate (2.5) for all 0 < t ≤ 1 are
equivalent to the condition q0φ < 1.
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If Xn , n = 1, 2, . . . , are Banach spaces and 1 ≤ p ≤ ∞, then (⊕
∞
n=1 Xn)ℓp is the

Banach space of all sequences {xn}, xn ∈ Xn , n = 1, 2, . . . , such that

∥{xn}∥ ∶= (
∞
∑
n=1

∥xn∥
p
)

1/p
<∞,

with natural modiûcation in the case when p is inûnite.
For general properties of Banach ideal and symmetric spaces we refer to [BS88,

KA77,KPS82,LT79,Ma89].

2.2 Cesàro and Tandori Spaces

_e Cesàro and Copson operators C and C∗ are deûned, respectively, as

C f (x) = 1
x ∫

x

0
f (t) dt, 0 < x ∈ I,

C∗ f (x) = ∫
I∩[x ,∞)

f (t)
t
dt, x ∈ I.

By f̃ we will understand the decreasing majorant of a given function f , i.e., f̃ (x) =
ess supt∈I , t≥x ∣ f (t)∣. For a Banach ideal space X on I we deûne the abstract Cesàro
space CX = CX(I) as

(2.6) CX = { f ∈ L0
(I)∶C∣ f ∣ ∈ X} with the norm ∥ f ∥CX = ∥C∣ f ∣∥X ,

and the abstract Tandori space X̃ = X̃(I) as

(2.7) X̃ = { f ∈ L0
(I)∶ f̃ ∈ X} with the norm ∥ f ∥X̃ = ∥ f̃ ∥X .

In particular, if X = Lp , 1 < p ≤ ∞, we come to classical Cesàro spaces Cesp = CLp ,
which were investigated in [AM08, AM09, AM13, AM14]. Note that the case when
p = 1 is not interesting here because it is easy to see that Ces1[0,∞) = {0} and
Ces1[0, 1] = L1(ln 1

t ). _e space Ces∞[0, 1] appeared already in 1948 and is known as
the Korenblyum–Krein–Levin space [KKL48,LZ66,Wn99].

It is clear that X̃ 1
↪ X and X A

↪ CX, providedC is bounded on X withA = ∥C∥X→X .
Moreover, if X is a symmetric space on I, then for every 0 < a < b, b ∈ I we have

(2.8) ∥χ[a ,b]∥X̃ = ∥ χ̃[a ,b]∥X = ∥χ[0,b]∥X = φX(b).

In the sequence case, the discrete Cesàro and Copson operators Cd and C∗d are de-
ûned by (Cda)n =

1
n ∑

n
k=1 ak and (C∗d a)n = ∑

∞
k=n

ak
k , n ∈ N, and also the decreasing

majorant ã = (ãn) of a given sequence a = (an) is deûned by ãn = supk∈N,k≥n ∣ak ∣.
_en the corresponding abstract Cesàro sequence space CX and abstract Tandori se-
quence space X̃ are deûned as in (2.6) and (2.7). Again a lot of information is known
about classical Cesàro sequence spaces cesp ∶= Cℓp , 1 < p ≤ ∞ ([AM08, AM13,
MPS07] and references given therein).
Abstract Cesàro and Copson spaces were investigated in [LM15a, LM15b], where

the following results on their Köthe duality were proved [LM15a,_eorems 3, 5, 6].
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_eorem 2.1 (i) If X is a Banach ideal space on I = [0,∞) such that the Cesàro
operatorC and the dilation operator στ for some τ ∈ (0, 1) are bounded on X, then
(CX)′ = X̃′.

(ii) If X is a symmetric space on [0, 1] with the Fatou property such that the operators
C ,C∗∶X → X are bounded, then (CX)′ = X̃′(w1),wherew1(x) = 1

1−x , x ∈ [0, 1).
(iii) If X is a Banach ideal sequence space such that the dilation operator σ3 is bounded

on X′, then (CX)′ = X̃′. Moreover, in the extreme case when X = L∞(I), the
above duality results hold with the equality of norms.

_e corresponding results on the Köthe duality of the classical spaces Cesp(I) for
1 < p <∞ were proved in [AM09] (see also [KK12]) showing a surprising diòerence
among them in the cases I = [0,∞) and I = [0, 1]. Much earlier, the identiûcations
(Ces∞[0, 1])′ ≡ L̃1[0, 1] and (Ces0∞[0, 1])∗ ≡ L̃1[0, 1] were obtained by Luxemburg
and Zaanen [LZ66] and by Tandori [Ta55], respectively. A simple proof of the latter
results both for I = [0, 1] and I = [0,∞) was given in [LM15a]. Moreover, according
to _eorem 7 from [LM15a], if w is a weight on I such that W(x) = ∫

x
0 w(t) dt <∞

for any x ∈ I, then setting v(x) = x/W(x) we obtain

(Ces∞(v))′ ∶= [C(L∞(v))]′ ≡ L̃1(w).

A close identiûcation for weighted Cesàro sequence spaces follows from a result by
Alexiewicz [Al57], who showed that for a weight w = (wn) with wn ≥ 0,w1 > 0, we
have

(2.9) ( l̃1(w))
′
≡ ces∞(v) ∶= C(ℓ∞(v)), where v(n) = n

∑
n
k=1 wk

.

In particular, using the Fatou property of the space ℓ̃1(w), from (2.9) we infer

(2.10) (ces∞(v))′ ≡ (ℓ̃1(w))
′′
≡ ℓ̃1(w).

In [LM15a, _eorem 1(d)], it was shown that if a Banach ideal space X has the
Fatou property, then the Cesàro and Tandori function spaces CX and X̃ also have
it. Moreover, if a space X is order continuous, then the Cesàro function space CX is
order continuous aswell [LM16, Lemma 1]. However, the Tandori function space X̃ is
never order continuous [LM15a,_eorem 1(e)], which implies immediately that this
space contains an isomorphic copy of ℓ∞.

Next, we repeatedly make use of the following fact.

Proposition 2.2 If X is a Banach ideal function space on I = [0, 1] or I = [0,∞) such
that the operatorC is bounded on X, thenCX contains a complemented copy of L1[0, 1].
Moreover, if χ[0,a] ∈ X for 0 < a < 1, then X̃ /= {0} and X̃ contains a complemented
copy of L∞[0, 1].

Proof Suppose that I = [0, 1]. Since suppX = I and the operator C is bounded on X,
then χ[a ,1] ∈ X for any 0 < a < 1. In fact, let f0 ∈ X with f0(x) > 0 almost everywhere
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on I. _en f0 χ[0,a] ∈ X and ∫
a
0 f0(t) dt = c > 0. _erefore, from the estimate

C( f0 χ[0,a])(x) ≥
1
x ∫

x

0
f0(t)χ[0,a](t) dt ≥

1
x ∫

x

0
f0(t)χ[0,a](t) dt ⋅ χ[a ,1](x),

=
1
x ∫

a

0
f0(t) dt ⋅ χ[a ,1](x) ≥ cχ[a ,1](x), 0 < x ≤ 1,

and from the boundedness of C on X it follows that χ[a ,1] ∈ X. Now for 0 < a < b < 1,
one has

C( f χ[a ,b])(x) =
1
x ∫

x

a
∣ f (t)∣ dt χ[a ,b](x) +

1
x ∫

b

a
∣ f (t)∣ dtχ[b ,1](x)

≤
1
a ∫

b

a
∣ f (t)∣ dt[χ[a ,b](x) + χ[b ,1](x)] =

1
a
∥ f ∥L1[a ,b] ⋅ χ[a ,1](x),

C( f χ[a ,b])(x) =
1
x ∫

x

a
∣ f (t)∣χ[a ,b](t) dt ≥

1
x ∫

x

a
∣ f (t)∣χ[a ,b](t) dt ⋅ χ[b ,1](x)

≥
1
x ∫

b

a
∣ f (t)∣ dt ⋅ χ[b ,1](x) = ∥ f ∥L1[a ,b] ⋅ χ[b ,1](x).

_us,

d∥ f ∥L1[a ,b] ≤ ∥ f χ[a ,b]∥CX ≤
D
a
∥ f ∥L1[a ,b] ,

where d = ∥χ[b ,1]∥X and D = ∥χ[a ,1]∥X are ûnite. _erefore, CX∣[a ,b] = L1[a, b] with
equivalence of norms and, since L1[a, b] ≃ L1[0, 1] and the projection P∶ f ↦ f χ[a ,b]
is bounded in CX, the ûrst claim of the proposition is proved if I = [0, 1]. _e case
when I = [0,∞) can be treated in the same way, only the norm ∥χ[b ,1]∥X should be
replaced with ∥ 1

x χ[b ,∞)(x)∥X .
Regarding the space X̃, we note that under the conditions imposed on X by (2.8),

we have f̃ χ[a ,b] ≤ ∥ f ∥L∞[a ,b] ⋅ χ̃[a ,b] = ∥ f ∥L∞[a ,b] ⋅ χ[0,b] and conversely

f̃ χ[a ,b] ≥ f̃ χ[a ,b] ⋅ χ[0,a] = ∥ f ∥L∞[a ,b] ⋅ χ[0,a] ,

whence ∥χ[0,a]∥X ∥ f ∥L∞[a ,b] ≤ ∥ f χ[a ,b]∥X̃ ≤ ∥χ[0,b]∥X ∥ f ∥L∞[a ,b]. _us, the image of
the same projection P f = f χ[a ,b] is isomorphic to L∞[0, 1]. Since P is bounded, the
proof is complete.

3 On the Schur and Dunford–Pettis Properties of Cesàro and
Tandori Sequence Spaces

A Banach space X is said to have the Dunford–Pettis property if, for all sequences
xn

w
→ 0 in X and x∗n

w
→ 0 in X∗, we have ⟨x∗n , xn⟩ → 0 as n → ∞ or, equiva-

lently, if any weakly compact operator T ∶X → Y , where Y is an arbitrary Banach
space, is completely continuous, i.e., from xn

w
→ 0, it follows that T(xn) converges

to 0 in the norm of Y . Examples of spaces satisfying the Dunford–Pettis property
are ℓ1 , c0 , ℓ∞ , L1(µ), L∞(µ) for every σ-ûnitemeasure µ and C(K),C(K)∗ =M(K)

for an arbitrary compact Hausdorò space K [AK06, pp. 116–117], [Li04, pp. 57–67]).
It is well known that inûnite-dimensional re�exive spaces fail to have the Dunford–
Pettis property. Moreover, if a dual space X∗ has the Dunford–Pettis property, then
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so does X (the reverse implication is not true) and complemented subspaces of spaces
with the Dunford–Pettis property also have it.

Recall that a Banach space X has the Schur property if for any sequence xn
w
→ 0 in X

we have ∥xn∥ → 0 as n →∞ or, equivalently, if every weakly compact operator from
X to arbitrary Banach space Y is compact. Of course, spaces with the Schur property
have also theDunford–Pettisproperty. Even though ithas beenknown [Ba32,pp. 137–
139] that the space ℓ1 has the Schur property, only a few natural inûnite-dimensional
spaces enjoying itwere found. See [Di80] and [Wn93] for a survey of results related to
the Dunford–Pettis property and the Schur property, respectively, (see also [CG94]).

We start with proving the Schur property of the space ℓ̃1. Note that ℓ̃1 is not iso-
morphic to ℓ1. In fact, { 1

n en} is a normalized, unconditional basis in ℓ̃1. On the other
hand, ℓ1 has a unique unconditional structure, i.e., each normalized unconditional
basis in ℓ1 is equivalent to {en} [LT77, _eorem 2.b.9]. _erefore, if we assume that
ℓ̃1 is isomorphic to ℓ1, then { 1

n en} would be equivalent to {en}. But it is not the case,
since we have both ∥∑

k
n=1

1
n en∥ℓ̃1 ≈ ln k and ∥∑

k
n=1 en∥ℓ1 = k, k ∈ N.

_eorem 3.1 _e space ℓ̃1 has the Schur property.

Proof First, using (2.9) and the fact that ℓ̃1 has an order continuous norm [LM16],
we obtain (ℓ̃1)∗ = (ℓ̃1)′ = ces∞. Now let ∥x(n)∥ℓ̃1 ≤ 1 with x(n) → 0 weakly in ℓ̃1 as
n →∞. By the Banach–Alaoglu theorem the closed unit ball B in ces∞ isw∗-compact
andmetrizable, so, in particular, it is aw∗-completemetric space. For any ε > 0we put
Bm = ⋂n≥m{ f ∈ B∶ ∣⟨ f , x(n)⟩∣ ≤ ε}. _en the sets Bm arew∗-closed, B1 ⊂ B2 ⊂ ⋅ ⋅ ⋅, and
B = ⋃

∞
m=1 Bm . _us, by the Baire theorem, there are N ,m1 ∈ N, g = (gk) ∈ Bm1 , and

δ > 0 such that U ∶= { f = ( fk) ∈ B ∶ ∣ fk − gk ∣ < δ, 1 ≤ k ≤ N} ⊂ Bm1 . Consequently,
U ⊂ Bm for each m ≥ m1. Fix N1 > N such that

(3.1) ∑
N
k=1 ∣gk ∣

N1
< ε.

Clearly, the weak convergence of {x(n)} implies the coordinate convergence, so that
there is m2 ∈ N such that for n ≥ m2

(3.2) ∥x(n)χ[1,N1)∥ℓ̃1 ≤ ε.

For every n ∈ N, there is f (n) ∈ B such that ∥x(n)χ[N1 ,∞)∥ℓ̃1 = ⟨ f (n) , x(n)χ[N1 ,∞)⟩.
Without loss of generality, wemay assume that supp f (n) ⊂ [N1 ,∞). Setting

g(n) = g χ[1,N) + (1 − ε) f (n) ,

we will show that g(n) ∈ U for all n ∈ N. Since g(n)k = gk for each 1 ≤ k ≤ N , it is
enough to check only that ∥g(n)∥ces∞ ≤ 1. We have

C∣g(n)∣( j) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

C∣g∣( j) if j < N ,
1
j ∑

N
k=1 ∣gk ∣ if N ≤ j < N1 ,

1
j (∑

N
k=1 ∣gk ∣ + (1 − ε)∑ j

k=N1
∣ f (n)k ∣) if j ≥ N1 .
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Consequently, from (3.1) it follows thatC∣g(n)∣( j) ≤ 1 for each j ∈ N, i.e., g(n) ∈ U and
therefore g(n) ∈ Bm if m > m1. Finally, applying (3.2), for n ≥ m0 ∶= max{m1 ,m2},
we get

∥x(n)∥ℓ̃1 ≤ ∥x(n)χ[1,N1)∥ℓ̃1 + ∥x(n)χ[N1 ,∞)∥ℓ̃1 ≤ ε + ∣
∞
∑
k=N1

x(n)k f (n)k ∣

= ε + ∣
1

1 − ε
((1 − ε)

∞
∑
k=N1

x(n)k f (n)k +
N

∑
k=1

x(n)k gk) −
1

1 − ε

N

∑
k=1

x(n)k gk ∣

≤ ε + 1
1 − ε

∣
∞
∑
k=1

x(n)k g(n)k ∣ +
1

1 − ε
∥x(n)χ[1,N)∥ℓ̃1∥g∥ces∞

= ε + 1
1 − ε

∣⟨gn , xn
⟩∣ +

1
1 − ε

∥x(n)χ[1,N)∥ℓ̃1∥g∥ces∞ ≤ ε + 2ε
1 − ε

,

which shows that limn→∞ ∥x(n)∥ℓ̃1 = 0, as desired.

Corollary 3.2 _e space ces0∞ has the Dunford–Pettis property.

Proof From (2.10) we have (ces0∞)∗ = (ces0∞)′ = ℓ̃1 and by the fact that a Banach
space has the Dunford–Pettis property whenever its dual space has it, the result fol-
lows from _eorem 3.1.

Although the spaces ℓ̃1 and ℓ1 are not isomorphic, ℓ1 is isomorphic to a subspace
of ℓ̃1 and so ℓ̃1 can be treated as an extension of ℓ1 preserving the Schur property.

_eorem 3.3 _e basic sequence {2−i e2i}∞i=0 is equivalent in the space ℓ̃1 to the canon-
ical ℓ1-basis.

Proof We prove that for all n ∈ N and c i ≥ 0, i = 0, 1, . . . , n,
1
2

n

∑
i=0
c i ≤ ∥

n

∑
i=0
c i2−i e2i∥ ℓ̃1

≤
n

∑
i=0
c i .

Since ∥em∥ℓ̃1 = m, for every m ∈ N, the right-hand side inequality is obvious. _us, it
is enough to check only the opposite inequality. If c i ≥ 0, then

(
n

∑
i=0
c i2−i e2i)

∼
= ( c0 ,

c1
2
, 0,

c2
4
, 0, 0, 0,

c3
8
, . . . ,

cn−1

2n−1 , 0, . . . ,
cn
2n , 0 ⋅ ⋅ ⋅)

∼

= ( c0 ,
c1
2
,
c2
4
,
c2
4
,
c3
8
,
c3
8
,
c3
8
,
c3
8
, . . . ,

cn−1

2n−1 ,
cn
2n , . . . ,

cn
2n ,

cn
2n , 0 ⋅ ⋅ ⋅)

∼

≥ ( c0 ,
c1
2
,
c2
4
,
c2
4
,
c3
8
,
c3
8
,
c3
8
,
c3
8
, . . . ,

cn−1

2n−1 ,
cn
2n , . . . ,

cn
2n ,

cn
2n , 0 ⋅ ⋅ ⋅)

so

∥
n

∑
i=0
c i2−i e2i∥ ℓ̃1

= ∥(
n

∑
i=0
c i2−i e2i)

∼
∥
ℓ1
≥ c0 +

1
2

n

∑
i=1
c i ≥

1
2

n

∑
i=0
c i .

Since the space ℓ̃1 is order continuous, then from (2.9) it follows that (ℓ̃1)∗ =

(ℓ̃1)′ = ces∞. _erefore, taking into account that the space ces∞ has the Fatou prop-
erty, we obtain the following.
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Corollary 3.4 _e basic sequence {2i e2i}∞i=0 is equivalent in the space ces∞ to the
canonical c0-basis and ℓ∞ is embedded into ces∞.

Corollary 3.5 _e space ℓ̃1 is isomorphic to the space (⊕∞
n=0 ℓ2

n

∞)ℓ1 . _erefore, the
space ces∞ is isomorphic to the space (⊕∞

n=0 ℓ2
n

1 )ℓ∞ and contains a complemented sub-
space isomorphic to L1[0, 1].

Proof Let us deûne the linear operator T from ℓ̃1 to (⊕
∞
n=0 ℓ2

n

∞)ℓ1 as follows: if c =
(ck)∞k=1 ∈ ℓ̃1, then Tc = (d(n))∞n=0, where

d(n) = (d(n)j )
2n
j=1 , d

(n)
j ∶= ( j − 1 + 2n

) ⋅ c j−1+2n , j = 1, 2, . . . , 2n .

Assuming that ck ≥ 0, k = 1, 2, . . . , by _eorem 3.3, we obtain

∥c∥ℓ̃1 = ∥
∞
∑
k=0
ck ek∥

ℓ̃1
= ∥

∞
∑
n=0

2n

∑
j=1

d(n)j

j − 1 + 2n e2n+ j−1∥
ℓ̃1

≤ ∥
∞
∑
n=0

max
j=1, . . . ,2n

d(n)j ⋅ 2−n e2n+1∥
ℓ̃1
≤ 2

∞
∑
n=0

max
j=1, . . . ,2n

d(n)j = 2∥Tc∥(⊕∞
n=0 ℓ2

n
∞)ℓ1 .

On the other hand, by the deûnition of the norm in ℓ̃1 and_eorem 3.3, we have

∥c∥ℓ̃1 = ∥
∞
∑
n=0

2n

∑
j=1

d(n)j

j − 1 + 2n e2n+ j−1∥
ℓ̃1
≥

1
2
∥
∞
∑
n=0

max
j=1, . . . ,2n

d(n)j ⋅ 2−n e2n∥
ℓ̃1

≥
1
72

∞
∑
n=0

max
j=1, . . . ,2n

d(n)j =
1
72

∥Tc∥(⊕∞
n=0 l 2n∞ )l1 ,

and therefore T is an isomorphism from ℓ̃1 onto (⊕
∞
n=0 ℓ2

n

∞)ℓ1 . Since (ℓ̃1)′ = ces∞, by
duality, we deduce that ces∞ is isomorphic to the space (⊕∞

n=0 ℓ2
n

1 )ℓ∞ .
To get the last result of the corollary, we note that (⊕∞

n=0 ℓn∞)ℓ1 is a complemented
subspace of (⊕∞

n=0 ℓ2
n

∞)ℓ1 and hence of l̃1. _us, applying theHagler–Stegall theorem
[HS73, _eorem 1], we conclude that the dual space, i.e., ces∞, contains a comple-
mented subspace isomorphic to L1[0, 1].

Remark 1 Bourgain [B81, p. 19] proved that an arbitrary ℓ1-sum of ûnite-dimen-
sional Banach spaces has the Schur property (see also [CI90, pp. 60–61] for a simpler
proof). Hence, from Corollary 3.5 we can infer that ℓ̃1 has the Schur property and
thereby we get another proof of_eorem 3.1.

From Corollary 3.5 and the fact that ℓ∞ is a prime space [AK06, _eorem 5.6.5]
and [LT77,_eorem 2.a.7]) we have the following.

Corollary 3.6 _e spaces ces∞ and ℓ∞ are not isomorphic.

_e fact that the space ces∞ contains a complemented subspace isomorphic to
L1[0, 1] will be a crucial tool in proving the existence of an isomorphism between
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Ces∞ spaces of functions and sequences. So, it is worth giving its direct proof with-
out referring to the general theorem of Hagler-Stegall [HS73,_eorem 1], especially,
because the following proof is interesting on its own.

_eorem 3.7 _e space ces∞ contains a complemented subspace isomorphic to
L1[0, 1].

Proof _anks toCorollary 3.5, it is suõcient to prove that in the space (⊕∞
n=0 ℓ2

n

1 )ℓ∞
there is a complemented subspace isomorphic to L1[0, 1]. Denote the collection of
dyadic intervals of [0, 1] by Bn

k = [ k−1
2n ,

k
2n ) ,where k = 1, . . . , 2n and n = 0, 1, 2, ⋅ ⋅ ⋅ and

deûne a sequence of operators Hn ∶ L1 → ℓ2
n

1 by

Hn ∶ f ↦ {∫
Bk
n

f (t) dt}
2n

k=1
.

_en ∥Hn∥ = 1 for each n. Moreover, putH∶ f ↦ ⊕∞n=0Hn f . _enH maps L1[0, 1] into
the space (⊕

∞
n=0 ℓ2

n

1 )ℓ∞ with ∥H∥ = 1. Moreover, let us show that H is an isometry
between the spaces L1[0, 1] andH(L1[0, 1]). In fact, denoting by {hk}, theHaar basis,
for a given f ∈ L1[0, 1] and any ε > 0, one can ûnd a function g = ∑

N
k=1 akhk such

that ∥g − f ∥ ≤ ε. _en, for n large enough, there holds ∥Hn g∥ = ∥g∥, which, in
consequence, gives ∥Hn f ∥ ≥ ∥Hn g∥ − ε ≥ ∥ f ∥ − 2ε and proves our claim.

To see that H(L1[0, 1]) is complemented in (⊕
∞
n=0 ℓ2

n

1 )ℓ∞ a little more work is
required. For a given n we set Tn ∶ (⊕

∞
n=0 ℓ2

n

1 )ℓ∞ → L1[0, 1] by

Tn ∶ x ↦
2n

∑
k=1

2nxk
n χBk

n
,

where xn = (xk
n)

2n
k=1 and x = ⊕

∞
n=0 xn . Of course, ∥Tn∥ = 1 for each n. Let η be a free

ultraûlter. _en for a given x ∈ (⊕
∞
n=0 ℓ2

n

1 )ℓ∞ we deûne the functional Rx on C[0, 1]
by the formula Rx(g) = limη⟨Tnx , g⟩ for g ∈ C[0, 1]. Since ∥Tn∥ = 1, n ∈ N, we get
∥Rx∥ = 1.

Recalling that the space C[0, 1]∗ consists of all regular Borel measures on [0, 1]
withûnite variation, denote byQ theLebesgue projection thatmaps any suchmeasure
into its absolutely continuous part. Now one can verify that P∶ x ↦ H(Q(Rx)) is the
required projection from (⊕

∞
n=0 ℓ2

n

1 )ℓ∞ ontoH(L1[0, 1]). In fact, since {Tn(H f )}∞n=0
is a uniformly integrable martingale associated with a function f ∈ L1[0, 1], there
holds Tn(H f )→ f in L1[0, 1]-norm. In consequence,

RH f (g) = lim
η

⟨TnH f , g⟩ = lim
n→∞

⟨TnH f , g⟩ = ⟨ f , g⟩ for g ∈ C[0, 1].

_erefore, Q(RH f ) = f , which proves our claim.

_e second named author learned yet another original proof of the above theorem
from Professor Yves Raynaud. Namely, it is possible to construct a projection from
(⊕

∞
n=0 ℓ2

n

1 )ℓ∞ onto the space, say M, of all bounded dyadic martingales in L1 and
then, in the second step, from M onto L1.

Nowwe investigate the conditions underwhichCesàro andTandori sequence spa-
ces have or do not have the Dunford–Pettis property.
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Observe that under the assumption of nontriviality of indices of a function φ, that
is, when 0 < pφ ≤ qφ < 1, in the case when I = [0,∞), we have CΛφ = L1(φ(t)/t)
with equivalent norms [DS07, _eorem 4.4] and [LM15a, _eorem 8]). And hence,
by_eorem 2.1 (i), the corresponding Tandori space M̃φ = L∞(φ), so they both have
the Dunford–Pettis property. An inspection of the proof of [LM15a,_eorem 8] com-
binedwith duality (see_eorem 2.1 (iii)) shows that for the respective sequence spaces
the following result holds.

_eorem 3.8 Let φ be an increasing concave function on [0,∞).
(i) If p∞φ > 0, thenCλφ = ℓ1(φ(n)/n) and therefore has the Dunford–Pettis property.
(ii) If q∞φ < 1, then m̃φ = ℓ∞(φ(n)) and therefore has the Dunford–Pettis property.

In the proof of a similar result related to the spaces λ̃φ and Cmφ we will make
use of a suitable isomorphic description of these spaces and thewell-known results of
Bourgain mentioned in the introduction [Bo81].

_eorem 3.9 For an arbitrary increasing concave function φ on [0,∞) the spaces λ̃φ
and Cmφ have the Dunford-Pettis property.

Proof At ûrst, in the case when limt→∞ φ(t) < ∞ we have λφ = ℓ∞, whence λ̃φ =

ℓ∞ , and the result follows. So, let limt→∞ φ(t) = ∞. Moreover, the function φ(t) is
strictly increasing and, without loss of generality, we can assume that φ(1) = 1. Let us
deûne the increasing sequence {nk}

∞
k=1, where n1 = 1, as follows

nk+1 ∶= sup{i > nk ∶ φ(i) − φ(nk) ≤ 2k
}, k = 1, 2, . . . .

_en, since φ(nk+1 + 1) − φ(nk) > 2k and, by subadditivity of φ,

φ(nk+1 + 1) − φ(nk+1) ≤ φ(1) = 1,

we have

(3.3) 2k−1
≤ φ(nk+1) − φ(nk) ≤ 2k , k = 1, 2, . . .

_erefore, by (3.3) and [GHS96, Proposition 2.1] (see also [GP03, Lemma 3.2]), for
every x = (xn)

∞
n=1 ∈ λ̃φ we have

∥x∥λ̃φ
=

∞
∑
n=1

x̃n(φ(n + 1) − φ(n)) =
∞
∑
k=1

nk+1−1

∑
n=nk

x̃n(φ(n + 1) − φ(n))

≤
∞
∑
k=1

x̃nk(φ(nk+1) − φ(nk)) ≤
∞
∑
k=1

2k sup
j≥k

max
n j≤i≤n j+1

∣x i ∣

≤
∞
∑
k=1

2k
∞
∑
j=k

max
n j≤i≤n j+1

∣x i ∣ =
∞
∑
j=1

max
n j≤i≤n j+1

∣x i ∣

j

∑
k=1

2k

≤ 2
∞
∑
j=1

2 j max
n j≤i≤n j+1

∣x i ∣ = 2∥x∥⊕ ,

where ∥x∥⊕ ∶= ∑∞
j=1 2

j maxn j≤i≤n j+1 ∣x i ∣.
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Conversely, again, by (3.3),

∥x∥⊕ = 2 max
1≤i≤n2

∣x i ∣ +
∞
∑
j=2

2 j max
n j≤i≤n j+1

∣x i ∣ ≤ 2∥x∥ℓ∞ + 4
∞
∑
j=2

x̃n j[φ(n j) − φ(n j−1)]

≤ 2∥x∥ℓ∞ + 4
∞
∑
j=2

n j−1

∑
n=n j−1

x̃n[φ(n + 1) − φ(n)] ≤ (
2

φ(2) − 1
+ 4)∥x∥λ̃φ

.

_ese inequalities show that λ̃φ is isomorphic to the space (⊕k∈N ℓmk∞ )ℓ1 , wheremk =

nk+1−nk , k ∈ N. Hence, applying [Bo81, Corollary 7],we obtain that the space λ̃φ has
the Dunford–Pettis property.

Regarding Cmφ we ûrst note that in the case when limt→∞ φ(t)/t > 0, the latter
space coincides with ℓ1 and hence has the Dunford–Pettis property. If

lim
t→∞

φ(t)/t = 0,

then from _eorem 2.1 (iii) and the ûrst part of the proof it follows that

(Cmφ)
′
= λ̃ψ ≃ (⊕

k∈N
ℓmk
∞ )ℓ1 ,

where ψ(t) = t/φ(t). Combining this with the fact that Cmφ has the Fatou property,
we infer Cmφ ≃ [(⊕k∈N ℓmk∞ )ℓ1]

′ = (⊕k∈N ℓmk
1 )ℓ∞ , Hence, from Bourgain’s result

[Bo81,_eorem 1] it follows that Cmφ has the Dunford–Pettis property.

Corollary 3.10 For any increasing concave function φ on [0,∞) the space C(m0
φ)

has the Dunford–Pettis property.

Proof Since the space C(m0
φ) is order continuous, by _eorem 2.1 (iii), we have

[C(m0
φ)]

∗
= [C(m0

φ)]
′
= λ̃ψ ,

whereψ(t) = t/φ(t). Now the desired result follows from the preceding theorem.

Now we show that in the case of re�exive spaces the situation is completely diòer-
ent.

_eorem 3.11 Let X be a re�exive symmetric sequence space.
(i) If the operator Cd is bounded on X, then CX does not have the Dunford–Pettis

property.
(ii) If the operator Cd is bounded on X′, then X̃ does not have the Dunford–Pettis

property.

Proof (i) Since X is re�exive, it follows that Cd ∶CX → X is a weakly compact oper-
ator. _erefore, it is suõcient to show that Cd is not a Dunford–Pettis operator.
Consider the sequence xn = φX′(n)en , where {en} is the canonical basis in X and

φX′ is the fundamental function of X′. Let us show that xn → 0 weakly in CX .
Since the space X has an order continuous norm, CX also has order continuous

norm and, by _eorem 2.1 (iii), we obtain (CX)∗ = (CX)′ = X̃′. _erefore, by the
deûnition of X̃′, it is suõcient to prove that

(3.4) ⟨y, xn⟩ = φX′(n) yn → 0 as n →∞
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for each non-increasing positive sequence y = (yn) ∈ X′. Observe that X′ ⊂ mφX′ ,
wheremφX′ is theMarcinkiewicz spacewith the fundamental function φX′ . Moreover,
by re�exivity of X, X′ = (X′)0 , and thus

X′
⊂ m0

φX′ = {(zn) ∶ lim
n→∞

φX′(n) z∗n = 0}.

Clearly, this embedding implies (3.4) and hence xn → 0 weakly in CX.
On the other hand, Cd en = ∑

∞
k=n ek/k for every n ∈ N. Since X is a symmetric

space, we have

∥Cd en∥X = ∥
∞
∑
k=1

ek
n + k − 1

∥
X
≥ ∥

n

∑
k=1

ek
n + k − 1

∥
X

≥
1
2n

∥
n

∑
k=1
ek∥

X
=

φX(n)
2n

=
1

2φX′(n)
.

Hence, ∥Cdxn∥X ≥ 1/2 for all n, and the proof is completed
(ii) Since X′ is re�exive and Cd is bounded on X′, from _eorem 3.11 (i) it follows

that C(X′) does not have the Dunford–Pettis property. By duality, _eorem 2.1 (iii)
and the fact that C(X′) is order continuous, we obtain X̃ = (CX′)′ = (CX′)∗. _us,
X̃ is the dual space to a space without the Dunford–Pettis property. So, X̃ also fails to
have it.

4 On the Dunford–Pettis Property of Cesàro and Tandori Function
Spaces

As mentioned above, under the assumption of nontriviality of indices of a function
φ, the spaces CΛφ and M̃φ are someweighted L1-spaces and L∞-spaces, respectively,
and so they bothhave theDunford–Pettisproperty (see [DS07,_eorem4.4], [LM15a,
_eorem 8]). Similarly, as in_eorem 3.8,we are able to prove the latter property also
for their counterparts, Λ̃φ and CMφ .

_eorem 4.1 Let φ be an increasing concave function on [0,∞).
(i) _e space Λ̃φ[0,∞) is isomorphic to the space (⊕n∈N L∞[0, 1])ℓ1 and has the

Dunford–Pettis property.
(ii) If qφ < 1, then the space CMφ[0,∞) is isomorphic to the space (⊕n∈N L1[0, 1])ℓ∞

and has the Dunford–Pettis property.

First, we prove the following auxiliary result.

Proposition 4.2 Let w be a locally integrable function on [0,∞),w(t) > 0 almost
everywhere, such that ∫

∞
0 w(t) dt = ∞. For 1 ≤ p < ∞, we consider the weighted

Lp-space with the norm ∥ f ∥Lp(w) ∶= (∫
∞
0 ∣ f (t)∣pw(t) dt)1/p . _en the space L̃p(w) is

isomorphic to the space (⊕n∈Z L∞[0, 1])ℓp , and the constant of isomorphism depends
only on w.

Proof Without loss of generality, we can assume that ∫
1
0 w(t) dt = 1

a−1 , where a > 1.
_anks to the assumptions, there is an increasing sequence {tk}k∈Z such that t0 =
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1, tn → 0 as n → −∞, tn → +∞ as n → +∞ and

∫

tn+1

tn
w(t) dt = an for all n ∈ Z.

_en, applying once more [GHS96, Proposition 2.1] (see also [GP03, Lemma 3.2]),
for every f ∈ L̃p(w) we have

∥ f ∥p
L̃p(w)

= ∫

∞

0
f̃ (t)

p
w(t) dt = ∑

n∈Z
∫

tn+1

tn
ess sup

s≥t
∣ f (s)∣pw(t) dt

≤ ∑
n∈Z

ess sup
s≥tn

∣ f (s)∣pan
= ∑

n∈Z
sup
k≥n

ess sup
tk≤s≤tk+1

∣ f (s)∣pan

≤ C(a) ∑
n∈Z

∥ f χ[tn ,tn+1]∥
p
L∞a

n
= C(a) ∥ f ∥p

⊕ ,

where

∥ f ∥⊕ ∶= (∑
n∈Z
an

∥ f χ[tn ,tn+1]∥
p
L∞)

1/p

and C(a) is some constant depending only on a (and hence on w). On the other
hand,

∥ f ∥p
⊕ = a∑

n∈Z
an−1

∥ f χ[tn ,tn+1]∥
p
L∞ = a∑

n∈Z
∫

tn

tn−1

ess sup
tn≤s≤tn+1

∣ f (s)∣pw(t) dt

≤ a∑
n∈Z
∫

tn

tn−1

ess sup
s≥t

∣ f (s)∣pw(t) dt = a∥ f ∥p
L̃p(w)

.

Since the space L∞[a, b] is isomorphic to the space L∞[0, 1] for every 0 < a < b <∞,
the result follows.

Proof of_eorem 4.1 (i) It is clear that Λ̃φ = L̃1(φ′). _erefore, from Proposi-
tion 4.2 it follows that Λ̃φ ≃ (⊕n∈N L∞[0, 1])ℓ1 and, by Bourgain’s result [Bo81, Corol-
lary 7], Λ̃φ has the Dunford–Pettis property.

(ii) Since qφ < 1, then the operator C is bounded in Mφ[0,∞) [KPS82, _eorem
6.6, p. 138] and hence, by_eorem 2.1 (i), the Köthe dual of the space CMφ coincides
with the space Λ̃ψ , where ψ(t) = t/φ(t), t > 0. _erefore, applying Proposition 4.2,
we are able to get the result, arguing in the same way as in the concluding part of the
proof of_eorem 3.8.

_eorem 4.3 _e spaces Ces∞(I) and L̃1(I), where I = [0,∞) or [0, 1], have the
Dunford–Pettis property and they are not isomorphic.

Proof At ûrst, let I = [0,∞). Since L̃1 = Λ̃φ1 , where φ1(t) = t, and Ces∞ = CL∞ =

CMφ0 , where φ0(t) = 1, by _eorem 4.1, the spaces L̃1 and Ces∞ have the Dunford–
Pettis property.

Let us show that L̃1 and Ces∞ are not isomorphic. By _eorem 4.1, the space L̃1
is isomorphic to the space (⊕n∈N L∞[0, 1])ℓ1 and therefore, according to Pełczyński’s
result on isomorphism between L∞ and ℓ∞ ([Pe58]; see also [AK06,_eorem4.3.10]),
L̃1 is isomorphic also to (⊕n∈N ℓ∞)ℓ1 . Since the latter space fails to contain a com-
plemented subspace isomorphic to L1[0, 1] [CM08, Proposition 3], then L̃1 also does
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not. On the other hand, the space Ces∞ contains such a complemented subspace (see
Proposition 2.2), and the result follows.

It is easy to see that the assertion of Proposition 4.2 holds also for weighted
Lp-spaces on [0, 1] (with the same proof). _erefore, L̃1[0, 1] ≃ (⊕n∈N L∞[0, 1])ℓ1
and, since (Ces∞[0, 1])′ = L̃1[0, 1], then Ces∞[0, 1] ≃ (⊕n∈N L1[0, 1])ℓ∞ . _us, the
result can be proved in the same way as in the case of [0,∞).

A similar result can also be deduced from _eorem 4.1 for the separable part of a
Marcinkiewicz spaceM0

φ (see also Corollary 3.10). In fact, since the space C(M0
φ) on

[0,∞) is order continuous and the condition βM0
φ
= qφ < 1 implies the boundedness

of the operator C on M0
φ , by _eorem 2.1 (i), we have [C(M0

φ)]
∗ = [C(M0

φ)]
′ = Λ̃ψ .

As a result, applying _eorem 4.1 (i), we get that C(M0
φ) has the Dunford–Pettis

property. However, we prefer to give the more direct proof of the latter fact (with-
out exploiting Bourgain’s results [Bo81]) by using the following property of separable
Cesáro–Marcinkiewicz spaces.

Proposition 4.4 Suppose that φ is an increasing concave function on [0,∞) such that
limt→0+ φ(t) = 0 and qφ < 1. Let X = C(M0

φ) on [0,∞) and let In ∶= [an , bn] be a
sequence of intervals from [0,∞) such that either

b1 > a1 > b2 > a2 > ⋅ ⋅ ⋅ > 0 and bn → 0+ as n →∞(4.1)

or

a1 < b1 < a2 < b2 < ⋅ ⋅ ⋅ and an →∞ as n →∞.(4.2)

_en there are a subsequence of positive integers {nk}
∞
k=1 , n1 < n2 < ⋅ ⋅ ⋅ and a constant

C > 0 such that for every sequence {xn} ⊂ X satisfying the condition supp xn ⊂ In , n =

1, 2, . . . , we have

(4.3) max
k=1, . . . ,m

∥xnk∥X ≤ ∥
m

∑
k=1

xnk∥X ≤ C max
k=1, . . . ,m

∥xnk∥X , m = 1, 2, . . . .

Proof Since a given sequence {xn} under consideration consists of pairwise disjoint
functions, the le� inequality in (4.3) holds for an arbitrary subsequence {nk}

∞
k=1. So,

we need only to prove the reverse inequality. Obviously, wemay assume that xn ≥ 0
almost everywhere. Since qφ < 1, then limt→0+

t
φ(t) = 0. _erefore, in the case (4.1),

applying the diagonal procedure, from any given sequence {In}we can extract a sub-
sequence of intervals (which we will denote still by In = [an , bn]) such that

(4.4)
∞
∑

k=n+1
ψ(bk) ≤ ψ(an), where ψ(t) = t/φ(t).

We claim that the corresponding sequence of functions (still denoting them by {xn}

and assuming that supp xn ⊂ In) satisûes the right-hand inequality in (4.3). For any
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m ∈ N and t ∈ (0,∞), we have

1
t ∫

t

0
(

m

∑
k=1

xk(s)) ds =
1
t

m

∑
j=2

m

∑
i=m− j+2

∫

b i

a i
x i(s) dsχ[am− j+1 ,bm− j+1](t)

+
1
t

m

∑
j=1
∫

t

am− j+1

xm− j+1(s) dsχ[am− j+1 ,bm− j+1](t)

+
1
t

m

∑
j=1

m

∑
i=m− j+1

∫

b i

a i
x i(s) dsχ[bm− j+1 ,am− j](t)

= f1(t) + f2(t) + f3(t),

where a0 =∞, and

f1(t) ∶=
1
t

m

∑
j=2

m

∑
i=m− j+2

∫

b i

a i
x i(s) dsχ[am− j+1 ,am− j](t),

f2(t) ∶=
1
t

m

∑
j=1
∫

bm− j+1

am− j+1

xm− j+1(s) dsχ[bm− j+1 ,am− j](t),

f3(t) ∶=
1
t

m

∑
j=1
∫

t

am− j+1

xm− j+1(s) dsχ[am− j+1 ,bm− j+1](t).

Since βM0
φ
= qφ < 1, the operator C is bounded in M0

φ [KPS82, _eorem 6.6], and
hence, by _eorem 2.1 (i), (CX)∗ = (CX)′ = X̃′ = Λ̃ψ with equivalent norms. _us,
by (2.1) and (2.8), for arbitrary 0 < a < b <∞ and x ∈ X,

(4.5) ∫

b

a
∣x(s)∣ ds ≤ C1∥x∥X∥χ[a ,b]∥Λ̃ψ

= C1∥x∥Xψ(b).

Hence, by (4.4),

f1(t) ≤
C1

t

m

∑
j=2

m

∑
i=m− j+2

ψ(b i)∥x i∥X χ[am− j+1 ,am− j](t)

≤
C1

t

m

∑
j=2

ψ(am− j+1) χ[am− j+1 ,am− j](t) ⋅ max
i=1, . . . ,m

∥x i∥X

≤
C1

φ(t)

m

∑
j=2
χ[am− j+1 ,am− j](t) ⋅ max

i=1, . . . ,m
∥x i∥X ≤

C1

φ(t)
max

i=1, . . . ,m
∥x i∥X ,

whence, since qφ < 1, by (2.5), it follows that

(4.6) ∥ f1∥Mφ ≤ C1
φ(t)
t ∫

t

0

1
φ(s)

ds max
i=1, . . . ,m

∥x i∥X ≤ C1C2 max
i=1, . . . ,m

∥x i∥X .

Similarly, since ψ increases, we have

f2(t) ≤
C1

t

m

∑
j=1

ψ(bm− j+1)∥xm− j+1∥X ⋅ χ[bm− j+1 ,am− j](t)

≤
C1

φ(t)

m

∑
j=1
χ[bm− j+1 ,am− j](t) max

i=1, . . . ,m
∥x i∥X ≤

C1

φ(t)
max

i=1, . . . ,m
∥x i∥X ,
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and again

(4.7) ∥ f2∥Mφ ≤ C1C2 max
i=1, . . . ,m

∥x i∥X .

Finally, using (4.5) oncemore, we have

f3(t) ≤
C1

t

m

∑
j=1

ψ(t)∥xm− j+1∥X ⋅ χ[am− j+1 ,bm− j+1](t)

≤
C1

φ(t)

m

∑
j=1
χ[am− j+1 ,bm− j+1](t) max

i=1, . . . ,m
∥x i∥X ≤

C1

φ(t)
max

i=1, . . . ,m
∥x i∥X ,

whence again

(4.8) ∥ f3∥Mφ ≤ C1C2 max
i=1, . . . ,m

∥x i∥X .

_us, from (4.5)–(4.8) it follows that

∥
m

∑
k=1

xk∥
X
≤ ∥ f1∥Mφ + ∥ f2∥Mφ + ∥ f3∥Mφ ≤ C max

i=1, . . . ,m
∥x i∥X ,

where the constant C ∶= 3C1C2 depends only on the function φ.
Regarding the case (4.2), we note that condition qφ < 1 implies limt→∞

t
φ(t) =∞.

Hence, from any given sequence of intervals we can select a subsequence of intervals
(denoted still by In = [an , bn]) such that

(4.9)
k−1

∑
i=1

ψ(b i) ≤ ψ(ak), k = 2, 3, . . . .

For arbitrary m ∈ N and t > 0, we have

1
t ∫

t

0
(

m

∑
k=1

xk(s)) ds =
1
t

m

∑
k=1

(
k−1

∑
i=1
∫

b i

a i
x i(s) ds + ∫

t

ak
xk(s) ds) χ[ak ,bk](t)

+
1
t

m

∑
k=1

k

∑
i=1
∫

b i

a i
x i(s) ds ⋅ χ[bk ,ak+1](t)

= g1(t) + g2(t) + g3(t),

where am+1 =∞, and

g1(t) ∶=
1
t

m

∑
k=2

k−1

∑
i=1
∫

b i

a i
x i(s) ds ⋅ χ[ak ,ak+1](t),

g2(t) ∶=
1
t

m

∑
k=1
∫

bk

ak
x i(s) ds ⋅ χ[bk ,ak+1](t),

g3(t) ∶=
m

∑
k=1
∫

t

ak
xk(s) ds ⋅ χ[ak ,bk](t).
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First, applying (4.5) and (4.9) we obtain

g1(t) ≤
C1

t

m

∑
k=2

k−1

∑
i=1

ψ(b i)∥x i∥X ⋅ χ[ak ,ak+1](t)

≤
C1

t

m

∑
k=2

ψ(ak) ⋅ χ[ak ,ak+1](t) ⋅ max
i=1, . . . ,m

∥x i∥X

≤
C1

φ(t)

m

∑
k=2
χ[ak ,ak+1](t) ⋅ max

i=1, . . . ,m
∥x i∥X ≤

C1

φ(t)
max

i=1, . . . ,m
∥x i∥X .

Next, similarly,

g2(t) ≤
C1

t

m

∑
k=1

ψ(bk)∥xk∥X ⋅ χ[bk ,ak+1](t) ≤
C1

φ(t)
max

i=1, . . . ,m
∥x i∥X ,

g3(t) ≤
C1

t

m

∑
k=1

ψ(t)∥xk∥X ⋅ χ[ak ,bk](t) ≤
C1

φ(t)
max

i=1, . . . ,m
∥x i∥X .

As a result, using (2.5), we have

∥
m

∑
k=1

xk∥
X
≤ ∥g1∥Mφ + ∥g2∥Mφ + ∥g3∥Mφ ≤ C max

i=1, . . . ,m
∥x i∥X ,

where the constant C ∶= 3C1C2 depends only on the function φ.

Corollary 4.5 Let φ satisfy all the conditions of Proposition 4.4 and let X = C(M0
φ)

on [0,∞). Suppose that In ∶= [an , bn], n = 1, 2, . . . , be a sequence of intervals from
[0,∞) such that either b1 > a1 > b2 > a2 > ⋅ ⋅ ⋅ > 0 and bn → 0+ as n → ∞ or
a1 < b1 < a2 < b2 < ⋅ ⋅ ⋅ and an →∞ as n →∞. _en every semi-normalized sequence
{ fn} ⊂ X such that supp fn ⊂ In , n = 1, 2, . . . contains a subsequence { fnk} that is
equivalent in X to the canonical basis in c0.

Proof At ûrst, applying Proposition 4.4, we ûnd a subsequence of positive integers
{nk}

∞
k=1 , n1 < n2 < ⋅ ⋅ ⋅ and a constant C > 0 such that for every sequence {xn} ⊂ X

with supp xn ⊂ In , n = 1, 2, . . . , we have

max
k=1, . . . ,m

∥xnk∥X ≤ ∥
m

∑
k=1

xnk∥ X
≤ C max

k=1, . . . ,m
∥xnk∥X , m = 1, 2, . . . .

In particular, setting xn = ck fn if nk ≤ n < nk+1 , k = 1, 2, . . . ,where (ck) is an arbitrary
sequence from c0, and assuming that D−1 ≤ ∥ fn∥X ≤ D, n = 1, 2, . . . for all m ∈ N, we
obtain

D−1 max
k=1, . . . ,m

∣ck ∣ ≤ ∥
m

∑
k=1
ck fnk∥ X

≤ CD max
k=1, . . . ,m

∣ck ∣.

Since (ck) ∈ c0, then the series∑∞
k=1 ck fnk converges in X and we have

D−1
∥(ck)∥c0 ≤ ∥

∞
∑
k=1
ck fnk∥ X

≤ C D∥(ck)∥c0 .

_eorem 4.6 Let φ be an increasing concave function on [0,∞) such that
lim
t→0+

φ(t) = 0 and qφ < 1.
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_en the space X = C(M0
φ) on [0,∞) has the Dunford–Pettis property.

Proof Assuming to the contrary that X does not have the Dunford–Pettis property,
we can ûnd sequences {un} ⊂ X such that ∥un∥X = 1, un → 0 weakly in X, and
{vn} ⊂ X∗ = X′ = Λ̃ψ such that ∥vn∥X′ = 1, vn → 0 weakly in X′ satisfying the
condition

(4.10) ⟨un , vn⟩ ∶= ∫

∞

0
un(t)vn(t) dt ≥ δ,

for some δ > 0 and all n ∈ N. It is easy to see that un χ[a ,b] → 0 weakly in X for every
0 < a < b < ∞. In fact, if v ∈ X′, then ⟨un χ[a ,b] , v⟩ = ⟨un , vχ[a ,b]⟩ → 0 as n → ∞,
because of vχ[a ,b] ∈ X′. Moreover (see Proposition 2.2),

X∣[a ,b] ∶= {u ∈ X ∶ suppu ⊂ [a, b]} = L1[a, b]

with equivalence of norms, and therefore un χ[a ,b] → 0 weakly in L1[a, b]. Setting
αn(u) ∶= ∫

b
a u(t)vn(t) dt, n ∈ N, we see that αn ∈ (L1[a, b])∗ = L∞[a, b] = X′/M,

where M = {v ∈ X′ ∶ ⟨u, v⟩ = 0 for all u ∈ L1[a, b]}. _en

(L∞[a, b])∗ = (X′
/M)

∗
= {F ∈ (X′

)
∗
∶ F(v) = 0 for all v ∈ M},

and therefore (L∞[a, b])∗ ⊂ (X′)∗. Hence, from the fact that vn → 0 weakly in X′,
it follows that αn → 0 weakly in L∞[a, b]. Since L1[a, b] has the Dunford–Pettis
property, as a result we have

αn(un ⋅ χ[a ,b]) = ∫
b

a
un(t)vn(t) dt → 0 as n →∞,

for every 0 < a < b <∞. _us, taking into account (4.10), we can select subsequences
of {un} and {vn} (we will denote them still by {un} and {vn}) such that at least one
of the following conditions holds
● there exists a sequence {bn}

∞
n=1 with b1 > b2 > ⋅ ⋅ ⋅ , limn→∞ bn = 0 and

∫

bn

0
un(t)vn(t) dt ≥

3δ
4
, n ∈ N;

● there exists a sequence {an}
∞
n=1 with a1 < a2 < ⋅ ⋅ ⋅ , limn→∞ an =∞ and

∫

∞

an
un(t)vn(t) dt ≥

3δ
4
, n ∈ N.

Since ∫
∞
0 ∣un(t)vn(t)∣ dt < ∞ for every n ∈ N, passing to further subsequences, we

can ûnd a sequence of intervals In = [an , bn], n = 1, 2, . . . such that either b1 > a1 >
b2 > a2 > ⋅ ⋅ ⋅ , limn→∞ bn = 0, or a1 < b1 < a2 < b2 < ⋅ ⋅ ⋅ , limn→∞ an =∞, for which

(4.11) ∫
In

un(t)vn(t) dt ≥
δ
2
, n ∈ N.

Now we set fn ∶= un ⋅ χIn , n = 1, 2, . . . . From (4.11) it follows that { fn} is a semi-
normalized sequence in X. So applying Corollary 4.5, we can extract a subsequence
(denoted still by { fn}), which is equivalent in X to the canonical basis in c0. _ere-
fore, fn → 0 weakly in the closed linear span [ fn] (and in X). Clearly, θn( f ) ∶=

∫
∞
0 f (t)vn(t) dt is a bounded linear functional on [ fn]. As above, [ fn]∗∗ ⊂ (X′)∗.
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_erefore, since vn → 0weakly in X′,we have θn → 0weakly in [ fn]∗. Noting that the
subspace [ fn] is isomorphic to c0, which has the Dunford–Pettis property, we obtain

∫
In

un(t)vn(t) dt = θn( fn)→ 0 as n →∞,

which contradicts (4.11). _us, the proof is complete.

As we know, the condition 0 < pφ ≤ qφ < 1 guarantees that CΛφ on [0,∞) is a
weighted L1-space up to equivalence of norms (see [DS07, _eorem 4.4], [LM15a]).
It turns out that a similar result holds also for the Cesàro–Lorentz spaces on [0, 1].

_eorem 4.7 Let φ be an increasing concave function on [0, 1] such that 0 < p0φ ≤

q0φ < 1. _en CΛφ[0, 1] = L1(w), with w(t) = ∫
1−t
0

φ′(s)
t+s ds.

Proof By duality and Fubini’s theorem, we have

∥ f ∥CΛφ = sup
∥g∥Λ′φ≤1

∫

1

0
C∣ f ∣(x)∣g(x)∣ dx = sup

∥g∥Λ′φ≤1

∫

1

0
∣g(x)∣( 1

x ∫
x

0
∣ f (t)∣ dt)dx

= sup
∥g∥Λ′φ≤1

∫

1

0
∣ f (t)∣(∫

1

t

∣g(x)∣
x

dx) dt ≤ ∫
1

0
∣ f (t)∣ ∥ht∥Λφ dt,

where ht(x) = 1
x χ[t ,1](x). _en

∥ht∥Λφ = ∫

1

0
(ht)

∗
(s)φ′(s) ds = ∫

1−t

0

φ′(s)
s + t

ds = w(t)

and consequently the above inequality means that L1(w)
1
↪ CΛφ . In view of the

conditions imposed on the indices p0φ and q0φ , the operators C and C∗ are bounded in
Λφ (see [KPS82, Chapter II, §8.6]). _erefore, the reverse inclusion is equivalent by
duality (see_eorem 2.1 (ii)) to the following one: L∞(1/w)↪M̃ψ(v), where ψ(t) =

t
φ(t) and v(t) =

1
1−t . _us, it is enough to check that w ∈ M̃ψ(v), i.e.,

∥w∥M̃ψ(v) = sup
0<t≤1

1
φ(t) ∫

t

0
(vw̃)

∗
(x) dx <∞.

First notice that w is decreasing, so we have w̃ = w. We divide the function v ⋅w into
two parts, namely,

v(t)w(t) = w(t)
1 − t

χ[0,1/2](t) +
w(t)
1 − t

χ[1/2,1](t) = w0(t) +w1(t).

_us, we need only to check that w0 and w1 belong to the space Mψ .
By Fubini’s theorem, we have

∫

x

0
w∗

(t) dt = ∫
x

0
(∫

1−t

0

φ′(s)
t + s

dt) ds

= ∫

1−x

0
(∫

x

0

φ′(s)
t + s

dt) ds + ∫
1

1−x
(∫

1−s

0

φ′(s)
t + s

dt) ds

= ∫

1−x

0
φ′(s) ln x + s

s
ds + ∫

1

1−x
φ′(s) ln 1

s
ds.
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_en, since 0 < x < 1/2, the second summand can be estimated thanks tomonotonic-
ity and subadditivity of the concave function φ as follows:

∫

1

1−x
φ′(s) ln 1

s
ds ≤ ln 2∫

1

1−x
φ′(s) ds = ln 2[φ(1) − φ(1 − x)] ≤ ln 2φ(x).

While for the ûrst one, integrating by parts we get

∫

1−x

0
φ′(s) ln x + s

s
ds = φ(1 − x) ln 1

1 − x
− lim

s→0+
φ(s) ln x + s

s

+ x ∫
1−x

0

φ(s)
(s + x)s

ds

≤ φ(1) x
1 − x

+ x ∫
1−x

0

φ(s)
(s + x)s

ds.

Since 0 < x < 1/2, then by concavity of φ, we get φ(1) x
1−x ≤ 2φ(1)x ≤ 2φ(x). More-

over, for some 0 < a < 1,A ≥ 1, and all 0 < x < 1, t > 0 we have φ(tx) ≤ Ataφ(x) and
consequently, putting s = tx, we obtain

∫

1−x

0

φ(s)
(s + x)s

ds = 1
x ∫

1−x
x

0

φ(tx)
(1 + t)t

dt ≤ A
x ∫

1−x
x

0

taφ(x)
(1 + t)t

dt

≤ Aφ(x)
x ∫

∞

0

ta−1

1 + t
dt = Bφ(x)

x
.

_us, for 0 < x < 1/2,

∫

x

0
(w0)

∗
(t) dt ≤ 2∫

x

0
(wχ(0,1/2])∗(t) dt ≤ 2∫

x

0
w∗

(t) dt

≤ 2(2 + B + ln 2) φ(x),

whence w0 ∈ Mψ .
Let us consider now w1. For 1/2 < t ≤ 1 we have

w1(t) =
1

1 − t ∫
1−t

0

φ′(s)
t + s

ds ≤ 2
1 − t ∫

1−t

0
φ′(s) ds = 2

φ(1 − t)
1 − t

.

Since the function φ(1−t)
1−t is increasing, we conclude that w∗

1 (t) ≤ 2 φ(t)
t , 0 < t ≤ 1. In

consequence, from (2.5) and the condition q0ψ = 1 − p0φ < 1, it follows that

∫

x

0
w∗

1 (t) dt ≤ 2∫
x

0

φ(t)
t
dt = 2∫

x

0

1
ψ(t)

dt ≤ 2C x
ψ(x)

= 2Cφ(x),

which ûnishes the proof.

Of course, from _eorem 4.7 it follows that the space CΛφ[0, 1] has the Dunford–
Pettis property whenever 0 < p0φ ≤ q0φ < 1. Let us prove an analogous result for
separable Cesàro–Marcinkiewicz spaces.

_eorem 4.8 Let φ be an increasing concave function on [0, 1] such that

lim
t→0+

φ(t) = 0 and q0φ < 1.

_en the space C(M0
φ)[0, 1] has the Dunford–Pettis property.
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Proof For every k = 2, 3, . . . , we set

Xk ∶= CM0
φ ∣[0,1−1/k] = { f ∈ CM0

φ ∶ supp f ⊂ [0, 1 −
1
k
]} .

Since CM0
φ is an order continuous space, the union⋃∞k=2 Xk is dense in it. Moreover,

from the deûnition of Cesàro spaces, it follows that, for every k = 2, 3, . . . , Xk can be
regarded as a complemented subspace of the space CM0

φ1
[0,∞), where φ1 is a con-

cave extension of the function φ to the semi-axis [0,∞) such that qφ1 < 1. (Notice that
CX[0, 1] is not a restriction of CX[0,∞) to the interval [0, 1]. More precisely, simi-
larly to [AM09, Remark 5], one can check that CX[0,∞)∣[0,1] = CX[0, 1] ∩ L1[0, 1]).
_erefore, an inspection of the proof of_eorem 4.1 shows that

Xk ≃ (⊕
n∈N

L1[0, 1])ℓ∞ ,

whence the space (⊕
∞
k=2 Xk)ℓ∞ is isomorphic to the latter ℓ∞–sum as well. _us,

(⊕
∞
k=2 Xk)ℓ∞ has the Dunford–Pettis property. Finally, applying [Bo81, Proposi-

tion 2], we conclude that CM0
φ also possesses the latter property, and the proof is

complete.

Remark 2 _e assertion of_eorem 4.8 cannot be deduced from _eorem 4.1 (i),
using Bourgain’s results as above, because of the diòerence in the duality results for
Cesàro spaces for the cases of [0, 1] and [0,∞) (see _eorem 2.1). We would like
to mention here also that we could not identify conditions under which the space
CMφ[0, 1] has the Dunford–Pettis property.

Now we present some negative results related to the Dunford–Pettis property of
Cesàro and Tandori function spaces.

_eorem 4.9 Let X be a re�exive symmetric function space on I such that the operator
C is bounded on X.
(i) If I = [0,∞), then the spaces CX and X̃′ do not have the Dunford–Pettis property.
(ii) If I = [0, 1], X has the Fatou property, and the operator C∗ is bounded on X, then

the spaces CX and X̃′ do not have the Dunford–Pettis property.

Proof (i)_e proof is rather similar to the proof in the sequence case (_eorem 3.7).
Again it is suõcient to prove that the operator C∶CX → X is not a Dunford–Pettis
operator. Let us show that xn =

1
φX(1/n) χ[0,1/n], n = 1, 2, . . . , is a weakly null sequence

in CX . Since X is order continuous, it follows that CX is also order continuous and
by _eorem 2.1 (i) we obtain (CX)∗ = (CX)′ = X̃′. _us, we need only to check that

(4.12) ⟨y, xn⟩ =
1

φX(1/n) ∫
1/n

0
y(t) dt → 0 as n →∞,

for every decreasing positive function y ∈ X′. Again X′ ⊂ MφX′ , where MφX′ is the
Marcinkiewicz function spacewith the fundamental function φX′ . By re�exivity of X
we have X′ = (X′)0 , and thus

X′
⊂ M0

φX′ ⊂ { z = z(t) ∶ lim
t→0

φX′(t)
t ∫

t

0
z∗(s) ds = 0} .
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But φX(t) = t/φX′(t) and (4.12) follows from the above embedding. On the other
hand, Cxn ≥ xn and so ∥Cxn∥X ≥ ∥xn∥X = 1. _is means that CX does not have the
Dunford–Pettis property. Moreover, since X̃′ = (CX)′ = (CX)∗, X̃′ fails to have the
latter property as well.

(ii) _e only diòerence of this case from the case of [0,∞) is the fact that now
(CX)∗ = (CX)′ = ̃X′(1/(1 − t)). However, “near zero”, the latter space coincides
with the space X̃′ without a weight. _us, we can repeat the same proof as in (i).

As we know [DS07, _eorem 4.4] and _eorem 4.7, the Cesàro–Lorentz spaces
may coincide with weighted L1-spaces and thereforemay be isomorphic to the sym-
metric space L1 . At the same time, this is not the case for Cesàro spaces CX when X
is re�exive.

Corollary 4.10 If X is a re�exive symmetric function space on [0, 1] such that the
operator C is bounded on X, then CX is not isomorphic to any symmetric space on
[0, 1].

Proof Suppose CX is isomorphic to some symmetric space Y on [0, 1]. Hence, by
Proposition 2.2, Y contains a complemented copy of L1[0, 1]. On the other hand, as
Kalton proved [Ka93, _eorem 7.4], every separable symmetric space on [0, 1] that
contains a complemented subspace isomorphic to L1[0, 1] is isomorphic to L1[0, 1]
itself. _erefore, we conclude that Y is isomorphic to L1[0, 1]. On the other hand,
CX ≃ Y cannot be isomorphic to L1[0, 1], because by _eorem 4.9 that space fails to
have the Dunford–Pettis property.

5 Isomorphism Between Ces∞ and ces∞

In [AM09, _eorem 9] (see also [AM14, _eorem 7.2]) it was proved that the spaces
Ces∞[0, 1] and Ces∞[0,∞) are isomorphic and there the question was raised if the
spaces Ces∞ and ces∞ are isomorphic [AM09, Problem 1], [AM14, Problem 4]. _e
following theorem answers this question in the aõrmative.

_eorem 5.1 _e spaces Ces∞ and ces∞ are isomorphic.

Proof At ûrst, we recall that, by Corollary 3.5, ces∞ ≃ (⊕
∞
n=0 ℓ2

n

1 )ℓ∞ and, by _e-
orem 4.1, Ces∞ ≃ (⊕n∈N L1[0, 1])ℓ∞ . _erefore, ces∞ ≃ ces∞⊕ ces∞ and Ces∞ ≃

Ces∞⊕Ces∞, which shows that we can apply Pełczyński decomposition argument,
see [Pe60, Proposition 4] or [AK06, _eorem 2.2.3]. In other words, the proof will
be completed once we check that ces∞ is isomorphic to a complemented subspace of
Ces∞ and vice versa.
Clearly, for every n = 0, 1, 2, . . . the space ℓ2

n

1 can be complementedly embedded
into the space L1[0, 1]. _erefore, the fact that ces∞ is isomorphic to a complemented
subspace of Ces∞ follows at once from the above isomorphic representations of these
spaces.

Just a little more eòort is required for the proof of the reverse statement. Let us
represent the setN∪ {0} as a union of inûnite increasing pairwise disjoint sequences
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(ak
n)
∞
n=0, k = 1, 2, . . . . _en we can write

(5.1) ces∞ ≃ (
∞
⊕
k=1

(
∞
⊕
n=0

ℓ2
akn

1 )ℓ∞)
l∞

.

Since n ≤ ak
n , where k = 1, 2, . . . and n = 0, 1, 2, . . . are arbitrary, the space ℓ2

n

1 can

be considered as a complemented subspace of the space ℓ2
akn

1 . Let Pk
n be a respective

projection and Pk = ⊕
∞
n=0 Pk

n . Noting that Pk((⊕
∞
n=0 ℓ2

akn
1 )ℓ∞) = (⊕

∞
n=0 ℓ2

n

1 )ℓ∞ , we

see that by_eorem 3.7, L1[0, 1] is complemented in Pk((⊕
∞
n=0 ℓ2

akn
1 )ℓ∞) andhence in

the space (⊕∞
n=0 ℓ2

akn
1 )ℓ∞ . Finally, from (5.1) it follows that Ces∞ ≃ (⊕n∈N L1[0, 1])ℓ∞

is isomorphic to a complemented subspace of ces∞ and the proof is complete.

Corollary 5.2 _e spaceCes∞(I), where I = [0,∞) or [0, 1], is isomorphic to a dual
space.

Proof By (2.9) and_eorem 5.1 we have (ℓ̃1)∗ = (ℓ̃1)′ = ces∞ ≃ Ces∞.

In contrast to the latter result, order continuousCesàro spaces fail to be isomorphic
to the dual ones.

Proposition 5.3 If X is a symmetric function space on I = [0, 1] or I = [0,∞) such
that X is order continuous and C is bounded on X, then CX is not isomorphic to a dual
space.

Proof Suppose that CX is isomorphic to a dual space. By Proposition 2.2, CX con-
tains a complemented subspace isomorphic to L1[0, 1]. _erefore, applying the Hag-
ler–Stegall theorem [HS73,_eorem 1], we see that CX also contains a subspace iso-
morphic to C[0, 1]∗. However, it is impossible, since, by [LM15b, Lemma 1], CX is
separable.

Let us comment on the latter results. Suppose that X is an ideal Banach function
spacewith the Fatou property such that the separable part of its Köthe dual (X′)0 has
the same support as X itself. _en an easy argument shows that

[(X′
)
0
]
∗
= [(X′

)
0
]
′
= X′′

= X ,
i.e., X is a dual space. So the space (X′)0 is a natural candidate for being the predual
of a dual ideal Banach space X. Moreover, as we have seen, separable CX spaces are
not isomorphic to dual ones similarly to L1 and both of them have Köthe dual with-
out nontrivial absolutely continuous elements. Hence, the following conjecture may
arise: an ideal Banach space whose Köthe dual has trivial subspace of order contin-
uous elements is not isomorphic to a dual space. _is statement, however, is false;
by Corollary 5.2, the Cesàro space Ces∞, satisfying [(Ces∞)′]0 = (L̃1)

0 = {0}, is
a dual space. In contrast to that, the symmetric space X = L1 + L∞ on [0,∞), for
which we also have (X′)0 = (L1 ∩ L∞)0 = {0}, is not isomorphic to a dual space
[AM17,_eorem 4].

It is interesting to observe that the above phenomenon has its counterpart in the
general theory of Banach lattices. Let E be a separable Banach lattice satisfying the
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Radon–Nikodym property (RNP). _en the set F of all x∗ ∈ E∗, such that the inter-
val [0, ∣x∗∣] is weakly compact, is a Banach lattice. Lotz showed (in an unpublished
preprint [Lo75]) that if F is big enough, i.e., the topology σ(E , F) is Hausdorò, then
E = F∗. Hence, F is a natural candidate as the predual of E. Talagrand, however,
motivated by above results, constructed a separable Banach lattice being a dual space
(and hence with RNP) such that for each x∗ ∈ E∗, x∗ ≥ 0, the interval [0, x∗] is not
weakly compact [Ta81].

To see that the space Ces∞ may be regarded as a natural “function” counterpart
of Talagrand’s example (which seems to be rather artiûcial) we present the following
simple assertion.

Proposition 5.4 Let X be an ideal Banach space on [0, 1], x0 ∈ X , x0 ≥ 0. _en the
interval [0, x0] is weakly compact in X if and only if x0 ∈ X0.

Proof First let [0, x0] be weakly compact in X. On the contrary, assume that x0 ∉
X0. _en there is a sequence of sets {An}

∞
n=1 ,A1 ⊃ A2 ⊃ A3 ⊃ ⋅ ⋅ ⋅ ,⋂∞n=1 An = ∅, and

ε > 0 such that

(5.2) ∥x0 χAn∥X ≥ ε.
Since, by hypothesis, x0 χAn ∈ [0, x0], we can ûnd a subsequence {x0 χAnk

}∞k=1 such
that x0 χAnk

→ y weakly in X. _en, by [KA77, Lemma 10.4.1], we get that

∥x0 χAnk
∥X → 0 as k →∞.

_is contradicts (5.2).
Conversely, let x0 ∈ X0. Clearly, we have [0, x0] ⊂ X0. _erefore, by [KA77,

Lemma 10.4.2], the interval [0, x0] is weakly compact in X0, i.e., with respect to the
topology generated in X0 by the space (X0)∗ = X′. Since X∗ = X′

⊕X′
s , where X′

s
consists of all singular functionals f such that f ∣ X0 = 0 [KA77, _eorem 10.3.6], we
get that [0, x0] is weakly compact in X as well.

Remark 3 In particular, from Proposition 5.4, it follows that Lotz’s result cannot
be applied to Ces∞. In fact, (Ces∞)∗ = L̃1 ⊕ S, where S is the space of singular func-
tionals, and, since singular functionals are not comparable with regular ones, each
interval [0, ∣x∗∣] ⊂ Ces∗∞ is either non-weakly compact or is of the form [0, ∣s∣] with
s ∈ S. _erefore, the set F of all x∗ ∈ (Ces∞)∗ with the weakly compact interval
[0, ∣x∗∣] is contained in S and the topology σ(Ces∞ , F) fails to beHausdorò, because
singular functionals vanish on absolutely continuous elements.

Onemore interesting observation comes from the above considerations.

Remark 4 _e space (⊕
∞
k=1 L1[0, 1])ℓ∞ is isomorphic to a dual space, but its unit

sphere does not contain extreme points.

Since Ces∞(I) ≃ X∗, where X is a Banach space, and it contains a complemented
subspace isomorphic to L1[0, 1], then, according to the above-mentioned Hagler–
Stegall result, Ces∞(I) contains a complemented subspace isomorphic to C[0, 1]∗,
i.e., to the spaceM[0, 1] of all regular Borel measures on [0, 1] of ûnite variation. We
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would like to conclude this paper by presenting the following stronger result, which
was noticed byMichałWojciechowski and is included here with his kind permission.

_eorem 5.5 _e spaces Ces∞(I), where I = [0, 1] or [0,∞), is isomorphic to the
space (⊕∞

k=1 M[0, 1])ℓ∞ .

Proof At ûrst, by Miljutin’s theorem [AK06, p. 94], we know that C[0, 1] ≃ C(T),
where T is the unit circle. Since also M[0, 1] ≃ M(T) and L1[0, 1] ≃ L1(T), we can
regard all spaces on T instead of [0, 1].
By _eorem 4.1, it is suõcient to prove that the spaces

(
∞
⊕
k=1

L1(T)) ℓ∞
and (

∞
⊕
k=1

M(T)) ℓ∞

are isomorphic. Since both spaces are isomorphic to their squares, wemay again ap-
ply the Pełczyński decomposition argument. Clearly, (⊕∞

k=1 L1(T))ℓ∞ is isomorphic
to a complemented subspace of (⊕∞

k=1 M(T))ℓ∞ . Sowe only need to check that, con-
versely, (⊕∞

k=1 M(T))ℓ∞ is isomorphic to a complemented subspace of

(
∞
⊕
k=1

L1(T)) ℓ∞
.

Let {Kn}
∞
n=1 be the Fejer kernel and let {N i}

∞
i=1 be a sequence of pairwise disjoint

inûnite subsets of positive integers such that ∑∞
i=1 N i = N. For every i = 1, 2, . . . ,

deûne the operator K i ∶M(T)→ (⊕
∞
k=1 L1(T))ℓ∞ as follows:

K i
(µ) ∶= (Kn ∗ µ)n∈N i for every µ ∈M(T).

_en ∥K i∥ = 1, and if N i = {n i
j}
∞
j=1, n i

1 < n i
2 < ⋅ ⋅ ⋅, then Kn i

j
∗ µ → µ as j → ∞

weakly* in M(T) for each i = 1, 2, . . . . Hence, K ∶= ⊕
∞
i=1 K i is an injective operator

from (⊕
∞
i=1 M(T))ℓ∞ into the space

(
∞
⊕
k=1

L1(T)) ℓ∞
≃ (

∞
⊕
i=1

( ⊕
n∈N i

L1(T))ℓ∞)
ℓ∞

.

Denoting by Y the image of K, we prove that it is complemented in the latter space.
Let U be a free ultraûlter. For a given { fk} ∈ (⊕

∞
k=1 L1(T))ℓ∞ and any i = 1, 2, . . .

deûne the functional g∗i ∈ C(T)∗ by ⟨g∗i , g⟩ ∶= limU⟨ fn i
j
, g⟩, g ∈ C(T). Since ∥{ fk}∥ =

supk∈N ∥ fk∥L1 < ∞, then g∗i is a well-deûned linear and bounded functional. _ere-
fore, by the Riesz representation theorem, for every i = 1, 2, . . . , there is a measure
µ i ∈M(T) such that ⟨g∗i , g⟩ = ⟨µ i , g⟩ for each g ∈ C(T). Setting P({ fk}) ∶= {µ i},we
see that P is a linear bounded operator from (⊕

∞
k=1 L1(T))ℓ∞ into (⊕

∞
k=1 M(T))ℓ∞ . It

remains only to show that the composition KP is a projection from (⊕
∞
k=1 L1(T))ℓ∞

onto Y . In fact, suppose that { fk} ⊂ Y . _en fn i
j
= Kn i

j
∗ µ i , i , j = 1, 2, . . . , where

{µ i} ∈ (⊕
∞
i=1 M(T))l∞ , and we have

lim
U

⟨ fn i
j
, g⟩ = lim

U
⟨Kn i

j
∗ µ i , g⟩ = lim

U
⟨µ i ,Kn i

j
∗ g⟩ = lim

j→∞
⟨µ i ,Kn i

j
∗ g⟩ = ⟨µ i , g⟩,

for every g ∈ C(T). _us, KP{ fk} = { fk} if { fk} ∈ Y , and the proof is complete.
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