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Abstract 

 Purpose – This study aims to propose an efficient optimization algorithm to solve the 
assembly line balancing problem (ALBP). The ALBP arises in high-volume, lean 
production systems when decision makers aim to design an efficient assembly line 
while satisfying a set of constraints.

 Design/methodology/approach – An improved genetic algorithm (IGA) is proposed 
in this study to deal with ALBP in order to optimize the number of stations and the 
workload smoothness. 

 Findings – To evaluate the performance of the IGA, it is used to solve a set of well-
known benchmark problems and a real-life problem faced by an automobile 
manufacturer. The solutions obtained are compared against two existing algorithms in 
the literature and the basic genetic algorithm. The comparisons show the high efficiency 
and effectiveness of the IGA in dealing with ALBPs. 

 Originality/value – The proposed IGA benefits from a novel generation transfer 
mechanism that improves the diversification capability of the algorithm by allowing 
population transfer between different generations. In addition, an effective variable 
neighborhood search is employed in the IGA to enhance its local search capability.

Keywords: assembly line balancing, genetic algorithm, variable neighborhood search, 
generation transfer.

1. Introduction

The task of balancing assembly lines is a key issue for manufacturing companies committed to 
high-volume mass production in a highly competitive business environment. Identifying the 
most efficient balance of assembly lines has therefore attracted considerable attention in recent 
decades. Attempts to solve this problem have resulted in the introduction of what is known as 
the assembly line balancing problem (ALBP).

The ALBP deals with the assignment of assembly tasks to assembly stations in the presence 
of certain constraints, with the goal of improving some performance measures. According to 
the literature (e.g., Nourmohammadi and Eskandari, 2017; Pereira and Álvarez-Miranda, 
2018), ALBPs are generally classified into two groups on the basis of their assumptions, 
constraints and objectives. The two groups are (1) the simple assembly line balancing problem 
(SALBP) where a single model of a product is produced, task times are deterministic and the 
assembly line is straight and (2) the general assembly line balancing problem (GALBP) which 
covers all problems that do not fall within SALBP. GALBPs have more restrictions or factors 
such as parallel stations, stochastic task times and zoning constraint (Fathi et al., 2019).

The SALBP is the most commonly studied problem in the assembly line balancing context 
and the majority of research on ALBPs has concentrated on solving it (Fathi et al., 2018). SALB 
problems are divided into four groups based on their objectives (Zhang, 2017). The groups are 
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(1) SALBP-1 to minimize the number of stations (NS) while cycle time (CT) is fixed, (2) 
SALBP-2 to minimize the CT while NS is fixed, (3) SALBP-E to minimize the CT and the NS 
simultaneously and (4) SALBP-F, which is a feasibility problem where all parameters are fixed. 

SALBP-1 has received the most attention from researchers and industrial practitioners ( 
Fathi, et al., 2016a; Nourmohammadi et al., 2019). Over the past decade, researchers have 
proposed several exact solution methods to tackle SALBP-1. However, for real-world/large-
scale problems, these exact methods are not efficient enough in terms of computational time 
and computational cost due to the complex nature of the problem, which has been proven to be 
NP-hard (Zacharia and Nearchou, 2016). Thus, there has been a growing trend toward using 
metaheuristic algorithms to overcome the computational complexity while still providing 
quality solutions. 

The literature agrees that metaheuristic algorithms provide good results by intelligent 
exploration of the fitness landscape that is defined by the objective function (Aledo et al., 
2017). Therefore, choosing the right objective function can guide the algorithm toward 
promising search space that may lead to high-quality solutions. According to Chutima and 
Chimklai (2012), two groups of objectives can be defined for SALBs, namely workload 
smoothness-related objectives and efficiency-related objectives. Although the conventional 
SALBP-1 is a single objective problem and aims to minimize the NS, the literature has shown 
that this efficiency-related objective cannot be an operational measure for guiding a 
metaheuristic to find a good solution. The reason is that the objective function contains large 
plateaus and it is very common to find solutions with different levels of stations’ workload 
smoothness but the same NS (Azizoğlu and İmat, 2018). In such circumstances, it is desirable 
to use a secondary objective to evaluate different solutions with the same NS but different 
workloads.  

In line with research trends and to treat the shortcomings of the classic SALBP-1 in terms 
of objectives, this study proposes an improved genetic algorithm (IGA) where a secondary 
objective, namely workload smoothness, is to be optimized beside the prime objective of 
SALBP-1 (i.e., minimizing the NS). The distinctive features of the proposed algorithm are the 
incorporation of an effective variable neighborhood search (VNS) to improve the 
intensification of the algorithm and a novel generation transfer (GT) strategy that allows the 
transfer of the best individuals between different generations to improve the diversification 
capability of the algorithm as the evolution progresses.

The remainder of the paper is organized as follows. Section 2 provides a literature review 
of the multi-objective SALBP. A description of the problem is provided in Section 3. The 
proposed IGA is presented in Section 4. The computational study is presented in Section 5. 
Concluding remarks are made in Section 6. 

2. Literature review

This section reviews the studies most relevant to this research, that is, studies on the multi-
objective SALBP in which heuristic/metaheuristic algorithm has been applied. The focus of 
the review is on the algorithms employed and the optimization objectives considered. Readers 
interested in knowing more about the history of other types of ALBPs are referred to the 
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comprehensive reviews of Battaïa and Dolgui (2013), Sivasankaran and Shahabudeen (2014), 
Li et al. (2017) and Razali et al. (2019).

Ponnambalam et al. (2000) suggested a genetic algorithm (GA) and incorporated a trade and 
transfer mechanism to improve the quality of solutions. The performance of the algorithm was 
compared against some heuristics such as ranked positional weight, Kilbridge and Wester, 
Moodie and Young and etc. The optimization criteria considered were the  and the 𝑁𝑆
smoothness index ( ). Liu et al. (2003) proposed two heuristic algorithms based on a bi-𝑆𝐼
directional assignment procedure. The objectives considered were to minimize the deviation 
from the optimal or lower bound of  and the mean absolute deviation ( ) of the stations’ 𝐶𝑇 𝑀𝐴𝐷
workload (i.e., a measure of the stations’ workload smoothness). Baykasoǧlu (2006) developed 
a simulated annealing (SA) method combined with several priority heuristic rules to balance 
straight and U-shaped lines. Following the goal programing approach, this study aimed to 
minimize the NS and the  as a measure of workload smoothness between the stations. 𝑆𝐼
Nearchou (2008) suggested a population-based metaheuristic, adapting the differential 
evolution (DE) algorithm to cope with the problem. Two variants of objective functions were 
considered in the study: (1) minimizing the CT and the balance delay  (which amounts to (𝐵𝐷)
the total idle time of the stations) and (2) minimizing CT and SI. Özcan and Toklu (2009) 
proposed a hybrid improvement heuristic (HIH) based on adaptive learning and SA to balance 
straight and U-shaped lines. They considered minimization of the NS, the variations of 
workload ( ) among stations and  as the optimization criteria. 𝑉𝑊 𝑆𝐼

Yu and Yin (2010) tackled the problem by developing an adaptive genetic algorithm (AGA) 
in which the crossover and mutation rates were dynamically adjusted based on the fitness value 
of each individual. The objectives considered in this study were to minimize the NS and . 𝑆𝐼
Petropoulos and Nearchou (2011) proposed a particle swarm optimization (PSO) algorithm in 
which two variants of the objectives, (1)  and  and (2) ,  and , were to be 𝐶𝑇 𝑀𝐴𝐷 𝐶𝑇 𝑀𝐴𝐷 𝐵𝐷
optimized. The authors proposed a new representation scheme tailored to the algorithm to 
generate feasible solutions for the problem. Nearchou (2011) proposed a PSO algorithm by 
considering the minimization of  and  of workloads as the optimization objectives. The 𝐶𝑇 𝑀𝐴𝐷
author improved the algorithm by introducing a new elitism strategy and applying a novel 
dynamic weighting method. Nourmohammadi and Zandieh (2011) suggested a DE algorithm 
where the technique for order preference by similarity to the ideal solution was applied to rank 
the solutions in each population in terms of the  and . The authors also took advantage of 𝐶𝑇 𝑆𝐼
a new procedure for solution acceptance to build a good pool of candidate solutions. De 
Albuquerque et al. (2016) proposed a fish school search (FSS) algorithm and incorporated 
some improvement guidelines to ameliorate the search process and avoid trapping in local 
optima. The authors considered a combination of  and smoothness of line ( ) as the 𝑁𝑆 𝑆𝑂𝐿
objective function. The performance of the algorithm was tested against an exact solution 
method and PSO algorithm by solving a set of test problems taken from the literature. Dou et 
al. (2017) proposed a modified PSO algorithm featuring a new mechanism for particles to 
enhance the algorithm search ability. The optimization objectives considered in this study were 
the  and . The authors benchmarked their PSO algorithm against other existing variants 𝑁𝑆 𝑆𝐼
of the same algorithm. Zhang (2017) addressed the problem by proposing an improved immune 
algorithm (IA) based on a new procedure that enables the algorithm to escape from local 
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optima. The objectives considered in this study were to minimize the NS and . The author 𝑆𝐼
proposed a new formula to simplify the calculation of similarity between the antibodies. Zhong 
and Ai (2017) proposed a modified ant colony optimization (ACO) algorithm to minimize NS, 

 and variation of workload . They embedded a new task assignment procedure guided 𝐶𝑇 (𝑉𝑊)
by heuristic information to improve the efficiency of the ant colony search for the optimal 
solution. Lalaoui and Afia (2018) proposed an SA algorithm embedded with the fuzzy 
inference system. The objectives considered were to minimize the  and . The 𝑁𝑆 𝑆𝑂𝐿
performance of the algorithm was tested by solving a set of test problems and comparing the 
results with an exact solution method. Zhang (2019) applied a hybrid GA (HGA) by combining 
the IA and GA to avoid the stagnation of the search in local optima. The NS and  were used 𝑆𝐼
as the optimization objectives.        

Table 1 summarizes the above reviewed literature and shows the optimization algorithm 
used and the objectives considered in each study.

Table 1. Summary of the reviewed studies

Objective function Optimization algorithmStudy NS CT SI VW SOL BD MAD GA ACO PSO HIH SA DE IA HGA OHA FSS
Ponnambalam et al. (2000)  ** 
Liu et al. (2003)   
Baykasoǧlu (2006)   
Nearchou (2008)    
Özcan and Toklu (2009)    
Yu and Yin (2010)  * 
Petropoulos and Nearchou (2011)    
Nearchou (2011)   
Nourmohammadi and Zandieh (2011)   
De Albuquerque et al., (2016)   
Dou et al. (2017)  * 
Zhang (2017)  * 
Zhong and Ai (2017)    
Lalaoui and Afia, (2018)   
Zhang (2019)  ** 
*Only a case study or an example is considered; **The detailed results for  are not reported. 𝑆𝐼

Both the literature review and the information in Table 1 indicate that either NS or CT has 
always been the primary objective in SALBP studies. It is safe to conclude that maximizing 
the workload smoothness of the stations has been the secondary optimization criterion in all 
the reviewed studies, although this objective was achieved in different ways and through 
different objective functions. Table 1 also suggests that  is the most popular and frequently 𝑆𝐼
used objective to improve workload smoothness in SALBP. Thus the current study also aims 
to optimize the NS and , as they are the most popular SALBPs objectives. 𝑆𝐼

The literature review shows that the main research focus has been on improving and 
tailoring metaheuristic algorithms to solve SALBP. The algorithms have been improved to 
cope with problem complexity more efficiently and provide quality solutions while shortening 
the computational time. Table 1 also shows that, although some algorithms are already exist 
for solving the SALBP with the objective of minimizing the NS and , their performance and 𝑆𝐼
efficiency are not properly tested through solving standard test problems and benchmarking 
against other existing algorithms. Moreover, the detailed results including the obtained value 
for each objective, the used computational time for each problem and the statistical details of 
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the proposed algorithms are not reported in many of the previous studies. All of these, hindered 
industrial practitioners and researchers to wisely choose the most competent algorithm among 
the existing ones in terms of quality of solutions and computational time. In these 
circumstances, the main aim of this study is to propose a trustworthy algorithm that can be used 
to efficiently solve the SALBPs. Given the promising performance of GAs in dealing with a 
variety of combinatorial optimization problems (Baniamerian et al., 2018), an improved GA 
(IGA) is proposed in this study. The IGA benefits from a GT mechanism improving its 
diversification and a VNS enhancing its intensification. 

The performance of the IGA is evaluated by solving existing standard benchmark problems 
and comparing the solutions to the basic GA (without VNS and GT) as well as to the two most 
relevant and comparable algorithms proposed by Özcan and Toklu (2009) and Baykasoǧlu 
(2006). Although more studies, shown in Table 1, have been performed with the same overall 
objectives as the current study, it is difficult to perform a direct comparison due to these other 
studies not having solved the standard benchmark problems or reporting detailed results. 

3. Problem description 

The SALBP-1 considered in this study can be described as follows. A single-model of a specific 
product is assembled in a set of stations sequentially ordered on a straight line represented as 𝑘

. The total work to be performed to assemble a product is divided into smaller = {1, 2,…, 𝑁𝑆}
operations known as tasks, which are represented as , where  is the number of 𝑖 = {1, 2,…, 𝑁} 𝑁
tasks. Performing each task requires a certain time known as the task-processing time, . Due 𝑡𝑖

to the existing organizational, operational and technological requirements, some restricting 
relationships between tasks, known as precedence relationships, are defined. Based on the 
precedence relationships, each task i can only be assigned to station k if and only if all of its 
predecessors are assigned to the same or prior stations. 

A task cannot be assigned to more than one station, but each station can take up more than 
one task, depending on its available time capacity. The sum of tasks’ times assigned to each 
station is known as the station time. The station time must not exceed a fixed time known as 
CT (i.e., the time required to deliver one complete product). At the end of the CT, each 
assembly object is transferred to the next station. At that time a new object enters the first 
station and a completed object leaves the last station. Considering the problem description 
above, the considered SALBP-1 aims to find a feasible combination of tasks to be performed 
at each station with the primary goal of minimizing the total number of required stations and 
secondarily of maximizing the workload smoothness at the stations. To better understand the 
problem, including its constraints and objectives, the mathematical model of the considered 
SALBP-1 is presented in the supplementary document.  

4. The proposed improved genetic algorithm

GAs are versatile search algorithms inspired by the natural selection mechanism and are used 
to address combinatorial optimization problems. A GA relies on a set of individuals or solutions 
known as chromosomes, which undergo a set of operations, namely selection, mutation and 
crossover, to generate the next population members (Rezaie et al., 2019). Throughout the 
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generations, a GA searches different areas of the search space to find high-quality solutions 
while avoiding local optima. To improve the search capability of a GA, it has to be 
appropriately tailored to the characteristics of the considered problem. This can be done by 
embedding proper search mechanisms to enhance the efficiency of the GA search process.  

This study proposes an improved GA (IGA) that incorporates novel search mechanisms 
tailored to the characteristics of the SALBP-1. It has three main features (1) specific encoding 
and decoding procedures that prevent the generation of infeasible solutions, (2) hybridization 
using VNS that improves the GA’s intensification (local search) capability within each 
generation and (3) introduction and application of a GT mechanism that allows the transfer of 
a portion of the best individuals from future generations back to previous generations so as to 
improve the diversification of the GA throughout the evolution progress. The general 
framework for the IGA is presented in Figure 1. The following sections provide a detailed 
description of the proposed IGA.
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Figure 1. The flow diagram of IGA for SALBP-1 

Page 7 of 30

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Engineering Com
putations

4.1 Chromosome representation 

A vector of integer numbers is assumed for representation, in which positions  (  is  1,2,…, 𝑁 𝑁
the number of tasks) are associated with a permutation of numbers between [1, ] as the tasks’ 𝑁
relative priority ( ). This vector known as task priority vector is randomly generated at the 𝜓𝑖

initial generation. According to this representation shown in Figure 2, each task is given a 
priority and the tasks are assigned to the stations based on their priority. A task with a higher 
priority number must be assigned to the station before the tasks with lower priority number. 
However, the precedence and  constraints also have to be considered for the assignment of 𝐶𝑇
tasks. To satisfy these constraints, an encoding and decoding scheme is used as presented in 
the next section.     

118 2 9 123 1 64 5 10 7

73 4 5 86 9 101 2 11 12

Task priorities

Task number

Figure 2. The representation scheme 

4.2 Encoding and decoding procedures

To satisfy the SALBP-1 precedence relationships, an encoding procedure is needed to map 
each task priority vector (presented in Figure 2) to a feasible solution. Following the general 
encoding procedure used in the literature (e.g., Hwang and Katayama, 2010) and assuming an 

-task problem with known precedence relationships between tasks, a graph  can be 𝑁 𝐺 = (𝑉,𝐸)
defined in which  denotes the set of vertices representing the tasks(i.e., ={ |  = 1,…, }) 𝑉 𝑉  𝑖  𝑖 𝑁
and  shows the set of edges denoting the precedence relationships between tasks. The 𝐸
encoding procedure aims to generate a topological sort of  shown by a vector of tasks’ 𝐺
sequence ( ) with length  from each vector of task priorities . In other words,  shows a 𝑇𝑆 𝑁  𝜓 𝑇𝑆
ranking of all tasks according to the priorities given by  so that the precedence constraints 𝜓
among tasks are satisfied. The encoding procedure is presented in pseudo-code 1.

Pseudo-code 1. Encoding procedure 
1 input: task priority vector ( )𝜓
2 set 𝑉′ = ∅ (𝑉′ ⊆ 𝑉)
3 set 𝑉′′ = 𝑉
4 set 𝑇𝑆 = ∅
5 repeat
6 for task  to  (  number of tasks)𝑖 = 1 𝑁 𝑁 =
7        if  and all its predecessors are included in  𝑖 ∈ 𝑉′′ 𝑇𝑆
8                           , i.e., insert task  into set𝑉′ = 𝑉′ ∪ {𝑖} 𝑖  𝑉′

9                   end
10          end
11 select the task in  with the maximum priority according to 𝑉′ 𝜓
12 insert the task obtained in line 11 into next empty position in  and remove it from and 𝑇𝑆 𝑉′ 𝑉′′

13 until  is complete𝑇𝑆
14 report . 𝑇𝑆
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Additionally, a decoding procedure is required to assign the available tasks in the  vector 𝑇𝑆
to the stations so that the resulting SALBP-1 solutions are feasible considering the maximum 
allowed station time ( . The decoding procedure ensures that tasks are assigned to stations, 𝐶𝑇)
if and only if for the set of tasks assigned to station , shown by , the cumulative sum of task 𝑘 𝑆𝑘

times assigned to station , shown by , does not exceed the  When the 𝑘 𝑡(𝑆𝑘) = ∑
𝑖𝜖𝑆𝑘

𝑡𝑖 𝐶𝑇.

station’s time limit is reached, a new station will be opened. The assignment procedure is 
continued until all tasks in the  vector are assigned to stations. The decoding procedure is 𝑇𝑆
outlined in pseudo-code 2.  

Pseudo-code 2. Decoding procedure 
1 Input: , , task times 𝐶𝑇 𝑇𝑆
2 ; (the first station is opened)𝑘 = 1
3 repeat
4        for  to  𝜗 = 1 𝑁
5         pick the task positioned in the th element of  vector ( )  𝜗 𝑇𝑆 𝑇𝑆𝜗

6                      if  and  and all the predecessors of task positioned in  are 𝑇𝑆𝜗 ≠ 0 𝑡(𝑆𝑘) + 𝑡(𝑇𝑆𝜗) ≤ 𝐶𝑇 𝑇𝑆𝜗

already assigned; ( time of task positioned in th element of  vector)  𝑡(𝑇𝑆𝜗) = 𝜗 𝑇𝑆
7                                    assign the relating task to station  and remove it from  by putting 𝑘 𝑇𝑆 𝑇𝑆𝜗 = 0
8                                    𝑡(𝑆𝑘) =  𝑡(𝑆𝑘) + 𝑡(𝑇𝑆𝜗)
9                     end
10      end
11      𝑘 = 𝑘 +1
12 until all the elements of  are zero.𝑇𝑆

4.3 Fitness function evaluation

To guide the algorithm toward the optimal solution, a mechanism is needed to evaluate the 
fitness of each individual in the current population. Considering the targeted problem in this 
study (i.e., SALBP-1), the fitness of each individual in the current population has to be 
evaluated as regards (1) the number of station ( ) as the primary objective and (2) the 𝑁𝑆
smoothness index ( ) as the secondary objective. The  is calculated as 𝑆𝐼 𝑆𝐼

. As presented in Equation (1), the minimum deviation ∑𝑁𝑆
𝑘 = 1(𝑡(𝑆𝑘) ― max (𝑡(𝑆𝑘)))2 (𝑁𝑆)

method is used to combine the two mentioned objectives (Fathi et al., 2016b).

                     (1) 
   

 
   

min min
max min max min

NS NS SI SI
f

NS NS SI SI
 

    
           

where min( ) and min( ) are the minimum of  and  found so far, respectively and max(𝑁𝑆 𝑆𝐼 𝑁𝑆 𝑆𝐼
) and max( ) are the maximum of  and  obtained to this point, respectively. The 𝑁𝑆 𝑆𝐼 𝑁𝑆 𝑆𝐼

coefficients  and  show the relative importance of  and , respectively. As  is 𝛼 𝛽 𝑁𝑆 𝑆𝐼 𝑁𝑆
considered more important than , . As it is explained in the introduction section, the 𝑆𝐼 𝛼 ≫ 𝛽
primary objective of SALBP-1 is to minimize the number of stations. The secondary objective 
is mainly used in order to distinguish the difference between solutions that are the same in 
terms of the number of stations but different in terms of workloads. Therefore, the secondary 
objective should be optimized in a hierarchy order and after the first (top priority) objective is 
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achieved. Thus, the coefficients 𝛼 and 𝛽 are chosen in a meaningful manner to give a very 
strong priority to the first objective. In such circumstances, the relative importance of  and 𝑁𝑆

 were chosen as 𝛼 =0.9 and 𝛽=0.1, respectively. 𝑆𝐼
As it is known, GAs are traditionally used for solving maximization problems where high 
fitness value indicates a better solution. Therefore the ALBP, which is a minimization problem, 
needs to be transformed into maximization problem. To do so, the transformation proposed by 
Deb (1995) is used as .𝐹 = 1/(1 + 𝑓)

4.4 Elitism mechanism

To preserve the individuals with the best fitness function over the population evolution, an 
elitism mechanism is applied in the IGA. Using this mechanism, a portion of the best 
individuals in each generation is reproduced in the next population as determined by 
reproduction rate ( ).𝑃𝑟𝑟𝑒

4.5 Crossover

Based on the chromosome representation in section 4.1, a two-point based weight mapping 
crossover is used in the proposed IGA. This type of crossover has proven its efficiency when 
the representation type of the algorithm is a permutation vector of integer numbers (Hwang 
and Katayama, 2010). To make sure that parents with the best fitness function will be likely to 
get more copies, the roulette wheel selection is applied. For further information about roulette 
wheel, interested readers are referred to Man et al. (1999).

The applied crossover has four main steps: (1) selecting a random sub-vector on two 
randomly chosen parents, (2) ranking the tasks based on their given priority in an ascending 
order with a lower number denoting a task with higher priority, (3) exchanging the ranks 
between the chosen sub-vectors and rearranging the priorities based on the new ranks, (4) 
generating the offspring based on the newly mapped task priorities in step (3). The crossover 
is performed using the crossover rate . To better understand the crossover operator applied 𝑃𝑟𝑐𝑟

here, an illustrative example is presented in Figure 3. 
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1 11 9 7 2 4 10 8 3 5 6

2 8 3 9 11 10 5 1 7 4 6

1 11 9 7 10 8 3 2 4 5 6

2 8 3 9 1 7 11 10 5 4 6

Parent 1:

Parent 2:

Offspring 1:

Offspring 2:

selected sub-vectors

12

12

12

12

Step1: Select the sub-vectors randomly

Step2: Rank the tasks priorities in ascending order 

7 2 4 10 8 3

3 1 2 5 6 4

3 6 4 1 2 5

9 11 10 5 1 7

Task priorities 
ranks in 

ascending order

7 10 8 3 2 4

3 6 4 1 2 5

3 1 2 5 6 4

9 1 7 11 10 5

Step3: Exchange the ranks and rearrange 
priorities based on new ranks 

Step4: Generate offspring according to the newly mapped task priorities

1 2 3 4 5 6 7 8 9 10 11 12
Task priority

Task number

4 5 6 7 8 9 4 5 6 7 8 9Task number

Task priority Ex
ch

an
gi

ng
 ra

nk
s

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3. Crossover operator for IGA  

4.6 Mutation 

A swap operator is used in the proposed IGA for direct exchange of genes between two 
different points on a randomly chosen individual. The swap operation is performed in two 
steps: (1) a parent and two mutation points are selected randomly, (2) the task priority of the 
chosen genes are exchanged. The mutation operator is limited by a specific rate known as the 
mutation rate ( ). An illustrative example of the applied mutation operator is presented in 𝑃𝑟𝑚𝑢

Figure 4. 

Exchange points

9 1 7 2 11 3 8 4 10 6 5

9 1 7 10 11 3 8 4 2 6 5

Parent:

Offspring:

12

12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Task number
Task priority

Step1: Select a parent and two 
exchange points at random

Step2: Swap the task priorities 
between the two exchange points

Figure 4. Mutation operator for IGA

4.7 Variable neighborhood search 
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VNS is usually employed in evolutionary algorithms to improve the possibility of finding better 
solutions and avoid getting trapped in local optima by systematically using different search 
structures (Zhang et al., 2018). In this study, two VNS operators, namely 3-opt and 4-opt, are 
adopted from the literature (e.g., Zhao et al., 2017) and used to enhance the local search 
(intensification) capability of the proposed algorithm. The chosen VNS operators are applied 
in the IGA in three main steps: (1) using the VNS rate ( ), a limited number of the best 𝑃𝑟𝑣𝑛𝑠

solutions in each population are chosen, (2) the 3-opt operation is performed by selecting three 
random genes of each chosen chromosome and swapping their task priorities, (3) the 4-opt 
operator is applied in the same way, but by selecting four random genes only if the 3-opt was 
not effective and has not resulted in a better solution. The VNS procedure is shown in pseudo-
code 3.

Pseudo-code 3. VNS procedure
1 counter=1 
2 select a set of the best solutions (i.e., set A) from the current population according to A=𝑃𝑟𝑣𝑛𝑠; 

 {𝑥𝛿|𝛿 = 1,…,‖population size × 𝑃𝑟𝑣𝑛𝑠‖}
3 for 𝛿 = 1 to ‖population size × 𝑃𝑟𝑣𝑛𝑠‖
4        find a new solution ( ) using 3-opt operator 𝑥′

5        if the new solution is better than the current one
6                𝑥𝛿←𝑥′

7        else 
8                find a new solution using 4-opt operator ( )𝑥′′

9                if the new solution is better than the current one
10                      𝑥𝛿←𝑥′′

11              else
12                     counter=counter+1
13                     if counter maximum number of local search iterations≤
14                             go to line 4
15                     end 
16              end
17      end
18 end. 

4.8 Generation transfer

The GT mechanism is inspired by the possibility of the human time travel theorem in the 
universe. Using the GT mechanism, some of the best individuals in future generations are 
allowed to transfer to previous generations. This way, the characteristics of the best individuals 
in later generations can be inherited by former generations. The proposed GT is a recursive 
procedure in which starting from the first generation (as the first origin), using a fixed interval, 
a future generation is chosen. Then, a portion of the best individuals of the chosen future 
generation are transferred to the origin generation to substitute for the worst individuals. 
Following the fixed interval in the proposed GT procedure, the chosen future generation for 
the current origin will be the next origin for the upcoming transfer.

In this study, based on some careful pilot experiments, the fixed interval ( ) for GT is set 𝐹𝐼
to 10 ( =10) and the portion of worst individuals in the origin to be replaced by the best 𝐹𝐼
individuals from the future generation is set by a generation transfer rate ( ). Like any 𝑃𝑟𝑔𝑒𝑛 𝑡𝑟
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other GA parameters,  is determined through parameter tuning (see section 5). The GT 𝑃𝑟𝑔𝑒𝑛 𝑡𝑟

procedure is presented in pseudo-code 4 for better illustration.

Pseudo-code 4. GT procedure
1  Initialize generation transfer counter     (𝐺𝑇𝐶);𝐺𝑇𝐶 = 0
2     𝐺𝑇𝐶 = 𝐺𝑇𝐶 + 1
3  if 𝐺𝑇𝐶 = 1
4         save the current generation as the origin generation  
5  else if 𝐺𝑇𝐶 = 𝐹𝐼
6         perform GT considering  by transferring the best individuals in the current𝑃𝑟𝑔𝑒𝑛 𝑡𝑟

7         generation as a substitute for the worst individuals in the origin generation
8         set  𝐺𝑇𝐶 = 0
9   else
10       go to line 2   
11 end.

To better understand the proposed algorithm and all of it features, the complete pseudo-code 
of the IGA is provided in supplementary document.

5. Computational study

The performance of the proposed IGA in dealing with the SALBP-1 was assessed by solving 
some well-known SALBP-1 test problems from the literature (Scholl et al., 1995). These 
problems were chosen from different scales (i.e., small, medium and large problem sizes) with 
a wide range of CTs. A case study was also performed based on one of the assembly lines of a 
major Swedish automotive manufacturing company. In the studied assembly line, a specific 
part of a certain model of car engine is assembled. The decision makers at the company are 
interested in finding the optimum NS and, secondly, in maximizing the SI of the stations. 
Allowing for some degrees of freedom in defining the CT, four different CTs were proposed 
(i.e., 60, 65, 70 and 75 seconds) as the decision makers were interested in knowing the effect 
of CT on NS and SI. The data for the case study are given in Table A.1 in the appendix. 

The performance of the proposed IGA for SALBP-1 was compared against two existing 
algorithms proposed by Baykasoǧlu (2006) and Özcan and Toklu (2009), respectively. To be 
able to show the effect of VNS and the GT mechanism on IGA, the results are also compared 
with the pure GA. For this reason, both the pure GA and the proposed IGA were coded in 
MATLAB and run on a PC with a Core i7 2.4 GHz processor and 8 GB of RAM. 

Parameter setting is an important part of using a GA and has a significant impact on algorithm 
performance. Therefore, Taguchi method was applied in this study to determine the best levels 
of the parameters for IGA. The Taguchi method attempts to find the best combination of IGA 
parameters so that the algorithm will perform efficiently while being insensitive to variations 
in the noise factors. Thus, by applying the Taguchi experiments over all the test problems while 
considering their related  as the noise factor, the best parameter levels can be chosen. To 𝐶𝑇
learn more about the Taguchi method, interested readers may refer to Taguchi et al. (2005). 
Based on the Taguchi experiments, the IGA parameter levels were set to 0.8, 0.1, 0.2 and 0.1 
for , ,  and , respectively. For , it is assumed that . 𝑃𝑟𝑐𝑟  𝑃𝑟𝑚𝑢 𝑃𝑟𝑣𝑛𝑠  𝑃𝑟𝑔𝑒𝑛 𝑡𝑟 𝑃𝑟𝑟𝑒 𝑃𝑟𝑟𝑒 = 1 ― 𝑃𝑟𝑐𝑟

The population size of both GA and IGA were chosen as 100 based on some pilot studies. The 
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stopping condition was set to 100 repetitions of the best found solution without any 
improvement in the fitness function, or when IGA had reached 1000 generations. To be able to 
show the influence of the VNS and GT mechanisms, the parameters of the GA and its stopping 
condition were chosen to be equal to the IGA settings.

To take into account the stochastic nature of the algorithms and test their performance, all 
the benchmark problems and the case study were solved ten times by both IGA and GA. As 
the optimal NS for the solved test problems exist in the literature, only the best found NS (

) is reported for each problem. However, since the optimal value of  is not known for 𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼
any of the problems, the best, average and standard deviation of values obtained for SI (i.e., 

) are reported in Table 2 where 𝑆𝐼𝐵𝑒𝑠𝑡, 𝑆𝐼𝐴𝑣𝑔 and 𝑆𝐼𝑆𝑡𝑑 𝑆𝐼𝑆𝑡𝑑 = 𝑠𝑞𝑟𝑡(

 and  is the  value obtained at th replication of IGA (∑10
𝑅𝑒𝑝 = 1(𝑆𝐼𝑅𝑒𝑝 ― 𝑆𝐼𝐴𝑣𝑔)2/10 𝑆𝐼𝑅𝑒𝑝 𝑆𝐼 𝑅𝑒𝑝

=1,…,10). In this table, the first four columns show the problems’ characteristics including 𝑅𝑒𝑝
the size, problem name, number of tasks (N) and CT. Column  represents the optimal NS 𝑁𝑆𝑂𝑝𝑡

for each problem available in the literature. Table 2 shows the performance of the IGA 
compared to basic GA (without VNS and GT) as well as two efficient algorithms available in 
the literature, namely the “multi-objective multi-rule simulated annealing algorithm” (MRSA) 
and, “multi-objective hybrid improvement heuristic” (HIH) proposed by Baykasoǧlu (2006) 
and Özcan and Toklu (2009), respectively. These two studies are the only ones dealing with 
exactly the same problem and objectives and solving the standard test problems. However, only 
the best results (  are reported in these two previous studies and not the average (  𝑆𝐼𝐵𝑒𝑠𝑡) 𝑆𝐼𝐴𝑣𝑔)
and the standard deviation ( . 𝑆𝐼𝑆𝑡𝑑)

The CPU time is not reported in the two previous similar studies. However, the CPU time for 
each solved problem by GA and IGA are reported in Table 2. According to Table 2, the 
difference on run time between two algorithms is not constant for different problems. However 
it is evident that, there is no significant difference between GA and IGA in terms of CPU time 
for small- and medium- sized problems. As for large size problems, IGA consumed more time 
than the GA, ranging from about 30 to 150 seconds depending on the problem. For the case 
study, IGA also showed a slightly higher CPU time compared to GA.

 This higher CPU time can be explained by the additional improvement mechanisms 
implemented in IGA, namely VNS and GT. Considering that the highest CPU time for the 
large-sized problems is only 210 seconds, a solution with higher quality is undoubtedly 
preferable and the time difference is negligible.
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Table 2. Comparison of IGA with other metaheuristics in terms of , ,  and   𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑
MRSA  HIH  GA  IGASize Problem 𝑁 𝐶𝑇 𝑁𝑆𝑂𝑝𝑡𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑 CPU time§  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑 CPU time

Case study 41 60 NA* NA NA NA NA 6 5.43 6.29 0.68 3.24 6 2.02 2.56 0.38 32.39
65 NA NA NA NA NA 5 0.14 0.26 0.09 5.28 5 0.04 0.12 0.05 23.90
70 NA NA NA NA NA 5 3.43 4.44 1.02 2.75 5 1.14 2.42 0.48 28.41
75 NA NA NA NA NA 5 13.42 15.06 0.98 1.90 5 7.98 9.83 1.06 56.74

Small Mertens 7 6 6 6 1.35 6 1.35 6 1.35 1.35 0.00 <1 6 1.35 1.35 0.00 <1
7 5 5 1.41 5 1.41 5 1.41 1.41 0.00 <1 5 1.41 1.41 0.00 <1
8 5 5 1.41 5 1.41 5 1.41 1.41 0.00 <1 5 1.41 1.41 0.00 <1
10 3 3 0.58 3 0.58 3 0.58 0.58 0.00 <1 3 0.58 0.58 0.00 <1
15 2 2 0.71 2 0.71 2 0.71 0.71 0.00 <1 2 0.71 0.71 0.00 <1
18 2 2 3.54 2 3.54 2 3.54 3.54 0.00 <1 2 3.54 3.54 0.00 <1

Jaeschke 9 6 8 8 1.70 8 1.70 8 1.70 1.70 0.00 <1 8 1.70 1.70 0.00 <1
7 7 7 2.00 7 2.00 7 2.00 2.00 0.00 <1 7 2.00 2.00 0.00 <1
8 6 6 2.35 6 2.35 6 2.35 2.35 0.00 <1 6 2.35 2.35 0.00 <1
10 4 4 0.87 4 0.87 4 0.87 0.87 0.00 <1 4 0.87 0.87 0.00 <1
18 3 3 7.51 3 7.51 3 7.51 7.51 0.00 <1 3 7.51 7.51 0.00 <1

Jackson 11 7 8 8 1.66 8 1.66 8 1.66 1.66 0.00 <1 8 1.66 1.66 0.00 <1
9 6 6 1.73 6 1.73 6 1.73 1.73 0.00 <1 6 1.73 1.73 0.00 <1
10 5 5 1.10 5 1.10 5 1.10 1.10 0.00 <1 5 1.10 1.10 0.00 <1
13 4 4 0.71 4 0.71 4 0.71 0.71 0.00 <1 4 0.71 0.71 0.00 <1
14 4 4 0.71 4 0.71 4 0.71 0.71 0.00 <1 4 0.71 0.71 0.00 <1
21 3 3 5.80 3 5.80 3 5.80 5.80 0.00 <1 3 5.80 5.80 0.00 <1

Medium Mitchell 21 14 8 8 1.06 8 1.06 8 1.06 1.06 0.00 <1 8 1.06 1.06 0.00 <1
15 8 8 2.32 8 2.32 8 2.32 2.32 0.00 <1 8 2.32 2.32 0.00 <1
21 5 5 0.00 5 0.00 5 0.00 0.00 0.00 <1 5 0.00 0.00 0.00 <1

Heskia 28 138 8 8 9.01 8 5.83 8 5.72 6.60 0.73 1.71 8 5.68 5.75 0.07 4.75
205 5 5 0.45 5 0.45 5 0.45 13.08 11.55 1.68 5 0.45 2.37 6.08 2.54
216 5 5 4.10 5 2.49 5 2.79 3.84 0.58 1.34 5 1.41 2.27 0.46 4.11
256 4 4 0.00 4 0.00 4 0.00 0.00 0.00 <1 4 0.00 0.00 0.00 1.06
324 4 4 73.88 4 62.95 4 64.49 65.37 0.80 <1 4 62.95 63.57 0.80 3.16
342 3 3 0.82 3 0.82 3 0.82 0.82 0.00 <1 3 0.82 0.82 0.00 <1

Sawyer 30 25 14 14 2.36 14 2.20 14 2.20 2.36 0.15 1.99 14 2.20 2.23 0.03 4.71
27 13 13 1.71 13 1.36 13 1.80 2.21 0.34 2.03 13 1.36 1.41 0.05 8.83
30 12 12 2.42 12 2.42 12 2.61 3.01 0.48 2.90 12 2.35 2.40 0.04 13.14
36 10 10 2.05 10 1.84 10 2.93 3.00 0.05 2.79 10 1.84 1.93 0.07 9.63
41 8 8 0.71 8 0.71 8 0.71 2.45 2.01 <1 8 0.71 0.71 0.00 <1
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Table 2. Comparison of IGA with other metaheuristics in terms of , ,  and   𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑
MRSA  HIH  GA  IGASize Problem 𝑁 𝐶𝑇 𝑁𝑆𝑂𝑝𝑡𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑 CPU time§  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑 CPU time

54 7 7 2.65 7 2.39 7 2.39 4.57 1.33 1.87 7 2.27 2.37 0.05 1.88
75 5 5 9.32 5 3.95 5 4.05 4.41 0.50 1.02 5 3.74 3.91 0.09 1.49

Killbridge 45 57 10 10 1.00 10 0.89 10 1.10 1.31 0.39 2.82 10 0.89 0.99 0.03 12.16
79 7 7 0.38 7 0.38 7 0.38 5.11 2.93 7.62 7 0.38 0.38 0.00 16.10
92 6 6 0.00 6 0.00 6 0.00 10.18 5.78 4.57 6 0.00 2.41 3.95 9.50
110 6 6 25.05 6 18.88 6 18.88 22.84 3.28 2.53 6 9.15 15.83 3.17 23.96
138 4 4 0.00 4 0.00 4 0.00 0.00 0.00 <1 4 0.00 0.00 0.00 1.70
184 3 3 0.00 3 0.00 3 0.00 0.00 0.00 3.05 3 0.00 0.00 0.00 12.00

Large Tonge 70 176 21 21 8.42 21 8.70 21 12.04 17.21 2.90 17.32 21 7.89 8.92 0.65 152.65
364 10 10 4.80 10 5.75 10 6.84 8.83 2.31 8.04 10 3.69 4.41 0.68 45.04
410 9 9 6.90 9 6.20 9 9.73 11.18 1.37 12.34 9 3.82 4.51 0.40 44.64
468 8 8 15.05 8 9.30 8 16.03 21.73 4.03 6.46 8 8.50 10.02 1.47 92.19
527 7 7 14.54 7 9.85 7 12.12 14.93 2.12 6.50 7 5.73 7.15 0.95 47.73

Arcus1 83 5048 16 16 284.79 16 260.25 16 294.22 298.27 3.76 15.67 16 249.19 251.91 3.49 165.71
5853 14 14 293.29 14 225.64 14 290.47 335.51 32.67 28.39 14 97.39 206.60 42.83 177.06
6842 12 12 522.81 12 387.14 12 431.96 506.88 44.15 15.43 12 325.61 362.01 39.43 155.28
7571 11 11 650.62 11 557.36 11 570.33 627.44 54.21 27.89 11 303.52 412.33 102.30 108.38
8412 10 10 1102.57 10 610.88 10 620.61 809.14 198.94 21.76 10 491.49 567.58 64.31 93.60
8898 9 9 149.37 9 128.59 9 145.41 177.24 19.80 16.15 9 127.61 133.83 4.19 170.66
10816 8 8 2387.01 8 1941.41 8 1934.73 2047.64 101.11 21.22 8 1869.45 1894.33 14.13 81.48

Arcus2 111 5755 27 27 312.59 27 300.55 27 320.62 457.98 68.11 61.00 27 298.99 304.58 4.35 210.35
8847 18 18 650.65 18 460.05 18 444.33 524.01 46.31 44.56 18 284.15 337.05 46.65 153.64
10027 16 16 923.23 16 538.89 16 566.00 604.21 63.30 67.98 16 381.15 444.75 35.91 196.29
10743 15 15 1138.43 15 690.81 15 759.36 822.21 54.34 83.47 15 394.24 474.27 52.89 210.08
11378 14 14 988.74 14 395.41 14 546.86 600.73 51.74 86.42 14 286.60 323.97 16.54 166.81

   17067 9 9 492.40  9 186.28  9 220.71 287.40 35.69 30.25  9 89.88 157.24 60.98 166.21
* Not available (NA) in the literature; § The CPU time is in seconds.
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According to Table 2, all the algorithms achieved the optimal NS (  for all the solved 𝑁𝑆𝑜𝑝𝑡)
benchmark problems. Thus, in terms of NS the performance of the considered algorithms is 
similar and accordingly no further analysis in this regard is performed. As for the case study, 
both IGA and GA found the same number of stations over all the considered CTs. Therefore, 
none of the considered CTs provide an advantage over the others in terms of NS. Comparing 
the results obtained for the case study in terms of , it can be seen that the CT of 65 seconds 𝑆𝐼
has resulted in the lowest  value (SI = 0.04) compared to other  scenarios. 𝑆𝐼 𝐶𝑇

To better compare the performance of the IGA with the other algorithms considered in terms 
of , the outperforming percent ( ) of IGA over other algorithms is presented in Table 3  𝑆𝐼 𝑂𝑃
under column . The  is calculated by dividing the number of times IGA outperformed 𝑂𝑃 𝑂𝑃
the other algorithms in terms of  by the total number of test problems. 𝑆𝐼𝐵𝑒𝑠𝑡

To further quantify the amount of improvement obtained by IGA compared to other 
considered algorithms in terms of , a new measure called relative percent improvement (𝑆𝐼𝐵𝑒𝑠𝑡

) is calculated using Equation (2). The average  obtained by IGA compared to the other 𝑅𝑃𝐼 𝑅𝑃𝐼
algorithms in terms of  for each set of the problems solved is also reported in Table 3. 𝑆𝐼𝐵𝑒𝑠𝑡

                           (2)
lg

lg 100; Alg MRSA,HIH, GA}
A IGA
Best Best

A
Best

SI SIRPI
SI


     {

Table 3. Comparison of IGA with other algorithms in terms of  and average  for  𝑂𝑃 𝑅𝑃𝐼 𝑆𝐼𝐵𝑒𝑠𝑡
IGA vs. MRSA  IGA vs. HIH  IGA vs. GAProblem # of 

problems 𝑂𝑃 𝑅𝑃𝐼  𝑂𝑃 𝑅𝑃𝐼  𝑂𝑃 𝑅𝑃𝐼
Case study 4 NA* NA NA NA 100% 60%

Small 17 0% 0% 0% 0% 0% 0%
Medium 22 50% 14% 27% 5% 45% 9%

Large 18 100% 43% 100% 26% 100% 37%
Total 61 51% 19%  42% 10%  52% 18%

* Not available

Table 3 shows that the IGA improved on the GA with  of 100% and average  of 60% 𝑂𝑃 𝑃𝑅𝐼
for the case study. As for the small-sized problems, the results obtained by IGA and other 
algorithms are similar and thus the value of  and average  is equal to zero. This situation 𝑂𝑃 𝑅𝑃𝐼
may be the result of limited solution space in small-sized problems that do not contain many 
hills and valleys. The analysis of results for medium-sized test problems showed that the IGA 
provided better solutions compared to MRSA, HIH and GA by 50%, 27% and 45%, 
respectively, in terms of . It also showed that IGA outperformed those three algorithms in 𝑂𝑃
terms of average  by 14%, 5% and 9%, respectively. These values of  and  over the 𝑅𝑃𝐼 𝑂𝑃 𝑅𝑃𝐼
medium-sized problems show that the performance of the existing algorithms and pure GA in 
finding good solutions was not efficient enough. The results for larger test problems are even 
more interesting. The comparison of the performance of IGA with other algorithms for large-
sized test problems showed a noticeable outperforming percent ( ) of 100%. Moreover, the 𝑂𝑃
IGA was superior to the other three algorithms in terms of  by 43%, 26% and 37%, 𝑅𝑃𝐼
respectively. Overall, Table 3 shows that, moving from small- to large-sized problems, IGA 
provides significantly better solutions in terms of  as evidenced by considerable 𝑆𝐼𝐵𝑒𝑠𝑡

improvements in both  and average .𝑂𝑃  𝑅𝑃𝐼
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The last row of Table 3 summarizes the performance of IGA over all the solved problems 
compared to the other three algorithms. The results show that in terms of  the IGA 𝑂𝑃
outperformed the other algorithms by a minimum of 42% and a maximum of 52%. In terms of 
average , the IGA was shown to be superior to the other compared algorithms by a  𝑅𝑃𝐼
minimum of 10% and a maximum of 19%. Considering all the above comparisons, it is safe to 
conclude that IGA can result in a smoother workload for the stations, particularly for medium- 
and large-sized problems, while also being able to find the minimum NS. 

The analysis revealed that all the algorithms considered in this study are similarly efficient in 
finding the optimal NS. The results reported in Table 3 and their analysis showed that the 
proposed IGA outperforms all the other algorithms considered in terms of . However, the 𝑆𝐼𝐵𝑒𝑠𝑡

superiority of IGA cannot be judged only by analyzing . Therefore, statistical analysis of 𝑆𝐼𝐵𝑒𝑠𝑡

the results in terms of  and  (as reported in Table 2) was done to reach a firm 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑

conclusion. The analysis is performed only based on the obtained results by IGA and GA 
because the value of  and  are not available for the other two algorithms (i.e., MRSA 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑

and HIH). 

The Wilcoxon signed rank test is applied as a nonparametric test to evaluate whether there 
is a significant difference between the performance of the GA and IGA in terms of  and 𝑆𝐼𝐴𝑣𝑔  

 at the 0.05 significance level. According to the results of the Wilcoxon test, both the  𝑆𝐼𝑆𝑡𝑑 𝑆𝐼𝐴𝑣𝑔

and the  obtained by IGA are significantly lower than GA. Thus, the superiority of IGA 𝑆𝐼𝑠𝑡𝑑

over GA is statistically proven. A detailed explanation about the performed statistical analysis 
can be found in the supplementary document.   

6. Conclusion

This study dealt with a specific type of assembly line balancing problem, where the number of 
stations (NS) has to be minimized for given a cycle time (CT). To maximize the workload 
smoothness at the stations, a secondary objective known as the smoothness index ( ) also 𝑆𝐼
needed to be optimized. To address the problem, an improved genetic algorithm (IGA) was 
proposed in which the local search ability of the algorithm has been improved by including a 
variable neighborhood search (VNS) in the genetic algorithm (GA). In addition, a new 
mechanism named generation transfer (GT) was introduced and implemented in the body of 
the GA to improve its diversification capability as the evolution progresses. 

The computational results were tested on a real case taken from an automobile 
manufacturing company and against a wide range of known standard test problems from the 
literature. The performance of IGA was benchmarked against the basic GA (without VNS and 
GT) and against two existing algorithms in the literature. The results show that the proposed 
IGA is promisingly efficient in finding the optimum NS for all the solved problems within a 
reasonable computational time. The IGA results showed that the decision makers in the real 
case considered should choose the CT of 65 seconds, which yields the lowest NS (5 stations) 
and provides a very smooth workload at stations ( = 0.04). The results show that IGA 𝑆𝐼 
outperforms the other algorithms and the basic GA in optimizing the , particularly for  𝑆𝐼
medium- and large-sized problems. Finally, the superiority of IGA was further tested and 
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proved through statistical analysis, confirming its effectiveness in dealing with a wide range of 
test problems.  

As for future research, the performance of the proposed IGA can be tested on other assembly 
line configurations such as U-shaped lines. The same algorithm can also be used for solving 
other types of assembly line balancing problems with the same or different optimization 
objectives. Given the promising effect of the proposed generation transfer mechanism, it can 
be employed in other population-based algorithms. Finally, the influence of VNS and GT on 
the quality of GA solutions can be further investigated. This can be done by separately 
incorporating VNS and GT within GA and comparing their results with IGA.     

Appendix

Table A.1. The data for the case study
Task No. Predecessor Task time (Sec.) Task No. Predecessor Task time (Sec.)

1 - 5.3 22 21, 26 11
2 1 3.1 23 - 4.9
3 2 6 24 23 4.5
4 3 7.1 25 19, 14, 22 7.2
5 2 6.5 26 - 10.3
6 5 7.1 27 25 2.4
7 4 11.1 28 26, 27 5.1
8 6 11.1 29 28 8.8
9 - 11.2 30 20, 26 15.7
10 - 3.3 31 30 11.9
11 10 12.6 32 31 5.3
12 11 15.5 33 31 4.9
13 - 3.6 34 32, 33 18.1
14 10 2.7 35 34 13.5
15 10 16.5 36 35 3.2
16 9 9.9 37 32, 33 2.7
17 10 8.5 38 37 4.5
18 17 4.4 39 - 3.3
19 10 2.7 40 38 4.7
20 14, 19 9.4 41 40 8.4
21 17 8.9
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Supplementary document

1. Mathematical formulation

In this section, the mathematical formulation of the considered SALBP-1 is presented. The main 
objective of SALBP-1 is to minimize the NS. The smoothness index ( ), which measures the 𝑆𝐼
level of workload equalization among the stations, is also to be minimized as the secondary 
objective. The lower the value of , the smoother is the distribution of workload among the 𝑆𝐼
stations. Table 1 presents the notations used in the mathematical model.

Table 1. List of notations
 𝑖,𝑗:  Task index ; 𝑖,𝑗 = 1, 2,…, 𝑁

:𝑘  Station index ;𝑘 = 1, 2,…, 𝐾
:𝑁 Number of tasks;
:𝐶𝑇 Given cycle time; 
:𝑡𝑖 Processing time of task ;𝑖

𝑆𝑘: Set of tasks assigned to station ;𝑘
:𝑡(𝑆𝑘) Time of station ; 𝑘

:𝑃𝑟𝑖𝑗 ;Precedence matrix: {1;   if task 𝑖 is the predecessor of task 𝑗
0;                                              otherwise 

:𝑁𝑆𝑚𝑎𝑥 Maximum number of stations; 1
max max  

N

i
i

i
i

t
NS

t




 
 
 
 
  



:𝑥𝑖𝑘 ;{1;  If task 𝑖 is assigned to station 𝑘 
0;                                   otherwise  

:𝑦𝑘 ;{1;    If station 𝑘 is established
0;                          otherwise  

𝑁𝑆: Number of stations;
:𝑆𝐼 Smoothness index;

The considered SALBP-1 is modeled as follows.
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  max1, ,k NS   (5)

  0,1ikx   max1, ,         1, ,i N k NS    (6)
 0,1ky  max1, ,k NS  (7)

Equation (1) represents the two considered objective functions, NS and SI, to be minimized. 
Constraint (2) ensures that each task is assigned to only one station. Constraint (3) ensures that 
the station workload in terms of time does not exceed the given . Constraint (4) guarantees  𝐶𝑇
that the precedence relations between tasks are satisfied. Constraint (5) calculates the time at 
each station. Finally, constraints (6) and (7) restrict the decision variables domain to binary 
numbers.

2. The proposed IGA 

A summary of the proposed IGA is presented in pseudo code 1, below. All the notations 
used in the pseudo code can be found in the manuscript.

    

Pseudo-code 1. The proposed IGA 
Pre-processing step

Read input parameters: precedence relationships, task times  ( ), ;𝑡𝑖 𝑖 = 1,…, 𝑁 𝐶𝑇
Initialization step

Set values for the IGA control parameters: including reproduction rate ( , crossover rate ( ), 𝑃𝑟𝑟𝑒) 𝑃𝑟𝑐𝑟
mutation rate ( ), VNS rate ( , GT rate ( ) and population size ( );𝑃𝑟𝑚𝑢 𝑃𝑟𝑣𝑛𝑠) 𝑃𝑟𝑔𝑒𝑛 𝑡𝑟 𝑃𝑆
Initialize the generation counter ( ); 𝐺𝐶 = 0
Generate a population of integer vectors with length , in which each vector is a permutation of integer  𝑁
numbers from [1,𝑁];

Repeat
For  to  do;𝑞 = 1 𝑃𝑆
Begin

Crossover step
Considering the , apply the crossover scheme in section 4.5 (in manuscript) on the two 𝑃𝑟𝑐𝑟
selected individuals;

Mutation step
Considering the , apply the mutation scheme in section 4.6 on a randomly selected 𝑃𝑟𝑚𝑢
individual;

Encoding and decoding schemes
Use the encoding procedure in section 4.2 to map each vector of task priorities to a feasible 
task sequence (TS). Then, apply the decoding procedure in section 4.2 to assign the tasks in 
TS to the stations;  

Evaluation step
Using Equation (1) in the manuscript, calculate the fitness function for each solution in the 
current population;

Elitist preserving mechanism
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Rank the solutions in the current population according to their fitness function and select the 
best found solutions as the next population members considering the  (if  select 𝑃𝑟𝑟𝑒 𝐺𝐶 = 0
them randomly); 

End;
VNS procedure 

Considering the , perform the VNS operator in section 4.7;𝑃𝑟𝑣𝑛𝑠
Generation transfer procedure 

Considering the , perform the GT procedure in section 4.8;𝑃𝑟𝑔𝑒𝑛 𝑡𝑟
Update the best found solution 

Update the best found solution till now;
;           𝐺𝐶 = 𝐺𝐶 + 1

Until the stopping condition in section 5 is met; 
Return the best found solution

3. Statistical analysis 

The statistical analysis performed to compare the performance of GA and IGA in terms of 
 are presented in this section. The two statistical hypotheses relating to  and  are 𝑆𝐼  𝑆𝐼𝐴𝑣𝑔  𝑆𝐼𝑆𝑡𝑑

presented in Equations (8) and (9), respectively. 

              (8)0

1

: There is  a significant difference beween GA and IGA in terms of  

: There is a significant difference beween GA and IGA in terms of 
Avg

Avg

H SI
H SI





not

              (9)0

1

: There is  a significant difference beween GA and IGA in terms of  
: There is a significant difference beween GA and IGA in terms of 

Std

Std

H SI
H SI





not

The hypotheses were tested using SPSS statistics software, and the -value for both 𝑝
hypotheses was found to be 0.000. Since the obtained -values are less than 0.05, the null 𝑝 𝛼 =  
hypothesis of both statistical tests is rejected. Therefore, it is statistically proved that there is a 
significant difference between the performance of GA and IGA in terms of both  and . 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑

Next, it should be decided which algorithm offers better results. Remembering that the preferred 
algorithm should provide lower  and , Table 2 shows the ranks obtained by the  𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑

Wilcoxon test.

Considering , Table 2 shows that in none of the solved problems did GA obtain a lower  𝑆𝐼𝐴𝑣𝑔

value than IGA. Setting aside the 24 problems for which  for GA and IGA are identical, 𝑆𝐼𝐴𝑣𝑔

this table shows that for 37 of the solved problems the  provided by IGA is lower than that 𝑆𝐼𝐴𝑣𝑔

provided by GA. On average, the mean rank of  obtained by IGA is 19 units better than 𝑆𝐼𝐴𝑣𝑔

the mean rank of  obtained by GA. 𝑆𝐼𝐴𝑣𝑔

Table 2 indicates that the value provided by IGA is lower than GA for 30 of the solved 
problems for . GA only found a lower value in six problems compared to IGA, and both 𝑆𝐼𝑆𝑡𝑑

algorithms found the same value in 25 problems. On average, the mean rank of   obtained 𝑆𝐼𝑆𝑡𝑑

by IGA is 18.70 units better than the mean rank of   obtained by GA.𝑆𝐼𝑆𝑡𝑑
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According to the results of the Wilcoxon test, it can be concluded that both the  and the 𝑆𝐼𝐴𝑣𝑔

 obtained by IGA are significantly lower than GA. Thus, the superiority of IGA over GA 𝑆𝐼𝑠𝑡𝑑

is statistically proven.

Table 2. Results obtained by Wilcoxon signed rank tests for  and 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑
𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑GA - IGA

Sample size Mean Rank Sum of Ranks Sample size Mean Rank Sum of Ranks
Negative Ranks 0a 0.00 0.00 6 17.50 105.00
Positive Ranks 37b 19.00 703.00 30 18.70 561.00

Ties 24c 25
Total 61 61

aGA < IGA, bGA > IGA, cGA = IGA
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Table 1. Summary of the reviewed studies

Objective function Optimization algorithmStudy NS CT SI VW SOL BD MAD GA ACO PSO HIH SA DE IA HGA OHA FSS
Ponnambalam et al. (2000)  ** 
Liu et al. (2003)   
Baykasoǧlu (2006)   
Nearchou (2008)    
Özcan and Toklu (2009)    
Yu and Yin (2010)  * 
Petropoulos and Nearchou (2011)    
Nearchou (2011)   
Nourmohammadi and Zandieh (2011)   
De Albuquerque et al., (2016)   
Dou et al. (2017)  * 
Zhang (2017)  * 
Zhong and Ai (2017)    
Lalaoui and Afia, (2018)   
Zhang (2019)  ** 
*Only a case study or an example is considered; **The detailed results for  are not reported. 𝑆𝐼
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Table 2. Comparison of IGA with other metaheuristics in terms of , ,  and   𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑
MRSA  HIH  GA  IGASize Problem 𝑁 𝐶𝑇 𝑁𝑆𝑂𝑝𝑡𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑 CPU time§  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑 CPU time

Case study 41 60 NA* NA NA NA NA 6 5.43 6.29 0.68 3.24 6 2.02 2.56 0.38 32.39
65 NA NA NA NA NA 5 0.14 0.26 0.09 5.28 5 0.04 0.12 0.05 23.90
70 NA NA NA NA NA 5 3.43 4.44 1.02 2.75 5 1.14 2.42 0.48 28.41
75 NA NA NA NA NA 5 13.42 15.06 0.98 1.90 5 7.98 9.83 1.06 56.74

Small Mertens 7 6 6 6 1.35 6 1.35 6 1.35 1.35 0.00 <1 6 1.35 1.35 0.00 <1
7 5 5 1.41 5 1.41 5 1.41 1.41 0.00 <1 5 1.41 1.41 0.00 <1
8 5 5 1.41 5 1.41 5 1.41 1.41 0.00 <1 5 1.41 1.41 0.00 <1
10 3 3 0.58 3 0.58 3 0.58 0.58 0.00 <1 3 0.58 0.58 0.00 <1
15 2 2 0.71 2 0.71 2 0.71 0.71 0.00 <1 2 0.71 0.71 0.00 <1
18 2 2 3.54 2 3.54 2 3.54 3.54 0.00 <1 2 3.54 3.54 0.00 <1

Jaeschke 9 6 8 8 1.70 8 1.70 8 1.70 1.70 0.00 <1 8 1.70 1.70 0.00 <1
7 7 7 2.00 7 2.00 7 2.00 2.00 0.00 <1 7 2.00 2.00 0.00 <1
8 6 6 2.35 6 2.35 6 2.35 2.35 0.00 <1 6 2.35 2.35 0.00 <1
10 4 4 0.87 4 0.87 4 0.87 0.87 0.00 <1 4 0.87 0.87 0.00 <1
18 3 3 7.51 3 7.51 3 7.51 7.51 0.00 <1 3 7.51 7.51 0.00 <1

Jackson 11 7 8 8 1.66 8 1.66 8 1.66 1.66 0.00 <1 8 1.66 1.66 0.00 <1
9 6 6 1.73 6 1.73 6 1.73 1.73 0.00 <1 6 1.73 1.73 0.00 <1
10 5 5 1.10 5 1.10 5 1.10 1.10 0.00 <1 5 1.10 1.10 0.00 <1
13 4 4 0.71 4 0.71 4 0.71 0.71 0.00 <1 4 0.71 0.71 0.00 <1
14 4 4 0.71 4 0.71 4 0.71 0.71 0.00 <1 4 0.71 0.71 0.00 <1
21 3 3 5.80 3 5.80 3 5.80 5.80 0.00 <1 3 5.80 5.80 0.00 <1

Medium Mitchell 21 14 8 8 1.06 8 1.06 8 1.06 1.06 0.00 <1 8 1.06 1.06 0.00 <1
15 8 8 2.32 8 2.32 8 2.32 2.32 0.00 <1 8 2.32 2.32 0.00 <1
21 5 5 0.00 5 0.00 5 0.00 0.00 0.00 <1 5 0.00 0.00 0.00 <1

Heskia 28 138 8 8 9.01 8 5.83 8 5.72 6.60 0.73 1.71 8 5.68 5.75 0.07 4.75
205 5 5 0.45 5 0.45 5 0.45 13.08 11.55 1.68 5 0.45 2.37 6.08 2.54
216 5 5 4.10 5 2.49 5 2.79 3.84 0.58 1.34 5 1.41 2.27 0.46 4.11
256 4 4 0.00 4 0.00 4 0.00 0.00 0.00 <1 4 0.00 0.00 0.00 1.06
324 4 4 73.88 4 62.95 4 64.49 65.37 0.80 <1 4 62.95 63.57 0.80 3.16
342 3 3 0.82 3 0.82 3 0.82 0.82 0.00 <1 3 0.82 0.82 0.00 <1

Sawyer 30 25 14 14 2.36 14 2.20 14 2.20 2.36 0.15 1.99 14 2.20 2.23 0.03 4.71
27 13 13 1.71 13 1.36 13 1.80 2.21 0.34 2.03 13 1.36 1.41 0.05 8.83
30 12 12 2.42 12 2.42 12 2.61 3.01 0.48 2.90 12 2.35 2.40 0.04 13.14
36 10 10 2.05 10 1.84 10 2.93 3.00 0.05 2.79 10 1.84 1.93 0.07 9.63
41 8 8 0.71 8 0.71 8 0.71 2.45 2.01 <1 8 0.71 0.71 0.00 <1
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Table 2. Comparison of IGA with other metaheuristics in terms of , ,  and   𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑
MRSA  HIH  GA  IGASize Problem 𝑁 𝐶𝑇 𝑁𝑆𝑂𝑝𝑡𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑 CPU time§  𝑁𝑆𝐵𝑒𝑠𝑡 𝑆𝐼𝐵𝑒𝑠𝑡 𝑆𝐼𝐴𝑣𝑔 𝑆𝐼𝑆𝑡𝑑 CPU time

54 7 7 2.65 7 2.39 7 2.39 4.57 1.33 1.87 7 2.27 2.37 0.05 1.88
75 5 5 9.32 5 3.95 5 4.05 4.41 0.50 1.02 5 3.74 3.91 0.09 1.49

Killbridge 45 57 10 10 1.00 10 0.89 10 1.10 1.31 0.39 2.82 10 0.89 0.99 0.03 12.16
79 7 7 0.38 7 0.38 7 0.38 5.11 2.93 7.62 7 0.38 0.38 0.00 16.10
92 6 6 0.00 6 0.00 6 0.00 10.18 5.78 4.57 6 0.00 2.41 3.95 9.50
110 6 6 25.05 6 18.88 6 18.88 22.84 3.28 2.53 6 9.15 15.83 3.17 23.96
138 4 4 0.00 4 0.00 4 0.00 0.00 0.00 <1 4 0.00 0.00 0.00 1.70
184 3 3 0.00 3 0.00 3 0.00 0.00 0.00 3.05 3 0.00 0.00 0.00 12.00

Large Tonge 70 176 21 21 8.42 21 8.70 21 12.04 17.21 2.90 17.32 21 7.89 8.92 0.65 152.65
364 10 10 4.80 10 5.75 10 6.84 8.83 2.31 8.04 10 3.69 4.41 0.68 45.04
410 9 9 6.90 9 6.20 9 9.73 11.18 1.37 12.34 9 3.82 4.51 0.40 44.64
468 8 8 15.05 8 9.30 8 16.03 21.73 4.03 6.46 8 8.50 10.02 1.47 92.19
527 7 7 14.54 7 9.85 7 12.12 14.93 2.12 6.50 7 5.73 7.15 0.95 47.73

Arcus1 83 5048 16 16 284.79 16 260.25 16 294.22 298.27 3.76 15.67 16 249.19 251.91 3.49 165.71
5853 14 14 293.29 14 225.64 14 290.47 335.51 32.67 28.39 14 97.39 206.60 42.83 177.06
6842 12 12 522.81 12 387.14 12 431.96 506.88 44.15 15.43 12 325.61 362.01 39.43 155.28
7571 11 11 650.62 11 557.36 11 570.33 627.44 54.21 27.89 11 303.52 412.33 102.30 108.38
8412 10 10 1102.57 10 610.88 10 620.61 809.14 198.94 21.76 10 491.49 567.58 64.31 93.60
8898 9 9 149.37 9 128.59 9 145.41 177.24 19.80 16.15 9 127.61 133.83 4.19 170.66
10816 8 8 2387.01 8 1941.41 8 1934.73 2047.64 101.11 21.22 8 1869.45 1894.33 14.13 81.48

Arcus2 111 5755 27 27 312.59 27 300.55 27 320.62 457.98 68.11 61.00 27 298.99 304.58 4.35 210.35
8847 18 18 650.65 18 460.05 18 444.33 524.01 46.31 44.56 18 284.15 337.05 46.65 153.64
10027 16 16 923.23 16 538.89 16 566.00 604.21 63.30 67.98 16 381.15 444.75 35.91 196.29
10743 15 15 1138.43 15 690.81 15 759.36 822.21 54.34 83.47 15 394.24 474.27 52.89 210.08
11378 14 14 988.74 14 395.41 14 546.86 600.73 51.74 86.42 14 286.60 323.97 16.54 166.81

   17067 9 9 492.40  9 186.28  9 220.71 287.40 35.69 30.25  9 89.88 157.24 60.98 166.21
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Table 3. Comparison of IGA with other algorithms in terms of  and average  for  𝑂𝑃 𝑅𝑃𝐼 𝑆𝐼𝐵𝑒𝑠𝑡
IGA vs. MRSA  IGA vs. HIH  IGA vs. GAProblem # of 

problems 𝑂𝑃 𝑅𝑃𝐼  𝑂𝑃 𝑅𝑃𝐼  𝑂𝑃 𝑅𝑃𝐼
Case study 4 NA* NA NA NA 100% 60%

Small 17 0% 0% 0% 0% 0% 0%
Medium 22 50% 14% 27% 5% 45% 9%

Large 18 100% 43% 100% 26% 100% 37%
Total 61 51% 19%  42% 10%  52% 18%

* Not available

Table A.1. The data for the case study
Task No. Predecessor Task time (Sec.) Task No. Predecessor Task time (Sec.)

1 - 5.3 22 21, 26 11
2 1 3.1 23 - 4.9
3 2 6 24 23 4.5
4 3 7.1 25 19, 14, 22 7.2
5 2 6.5 26 - 10.3
6 5 7.1 27 25 2.4
7 4 11.1 28 26, 27 5.1
8 6 11.1 29 28 8.8
9 - 11.2 30 20, 26 15.7
10 - 3.3 31 30 11.9
11 10 12.6 32 31 5.3
12 11 15.5 33 31 4.9
13 - 3.6 34 32, 33 18.1
14 10 2.7 35 34 13.5
15 10 16.5 36 35 3.2
16 9 9.9 37 32, 33 2.7
17 10 8.5 38 37 4.5
18 17 4.4 39 - 3.3
19 10 2.7 40 38 4.7
20 14, 19 9.4 41 40 8.4
21 17 8.9
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Figure 1. The flow diagram of IGA for SALBP-1 
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