
Bachelor Thesis in Electrical Engineering
Department of Electrical Engineering, Linköping University, 2019

GPS-Tracking Device with Long Range and

Bluetooth Low Energy Communication

Rasmus Oliv

2

Bachelor Thesis in Electrical Engineering
GPS-Tracking Device with Long Range and Bluetooth Low Energy

Communication
Rasmus Oliv

 LiTH-ISY-EX-ET--19/0487—SE

 Supervisor:
Yonatan Kifle

ISY, Linköping University

Examiner:
J Jacob Wikner

ISY, Linköping University

Department of Electrical Engineering
Linköping University

SE-581 83 Linköping, Sweden

Copyright 2019 Rasmus Oliv

3

Abstract
The thesis is about the construction of a GPS-tracker that can read NFC (Near Field

Communication)-tags and communicate with LoRa (Long Range) and BLE (Bluetooth low energy)

and investigate which of the components in the GPS-tracker that consumes most power. The

usage area for the GPS-tracker is to make the work on disaster affected sites more efficient and

secure by having an operation leader that can organizing the operation with help of the

information provided by the GPS-trackers that are placed on the injured people and recuing

personnel. The GPS-tracker is built around the sensor development kit Thingy:52 from Nordic

Semiconductor. The Firmware (FW) for the Thingy:52 is developed by modifying the provided

factory FW by Nordic Semiconductor. The GPS-module and the NFC-reader showed to be the

most power consuming parts of the GPS-tracker. An energy optimization proposal for these

parts are given in the report. A proposal to a circuit diagram for the GPS-tracker is also given in

the report, that can be used for future miniaturization of the GPS-tracker.

Sammanfattning
Projektet har innefattat att ta fram en GPS-spårsändare som kan läsa NFC (Near Field

Communication)-taggar, kommunicera med LoRa (Long Range) och BLE (Bluetooth low energy)

samt undersöka vilka av GPS-spårsändarens olika delar som konsumerar mest energi.

Användningsområdet för GPS-spårsändaren är att effektivisera räddningsinsatser på

skadeplatser där det finns skadade människor exempelvis efter en översvämning eller

terroristattack. Effektiviseringen är tänkt ska ske genom att en operationsledare styr

räddningsinsatsen med hjälp av informationen som skickas från GPS-spårsändarna som kommer

att bäras av skadade personer och räddningspersonalen på skadeplatsen. GPS-spårsändaren är

utvecklad kring sensorutvecklings kittet Thingy:52 från Nordic Semiconductor och dess mjukvara

har utvecklats genom att modifiera den mjukvara som Nordic Semiconductor har utvecklat för

Thingy:52. De delar av GPS-spårsändaren som visade sig konsumera mest energi var GPS-

modulen och NFC-läsaren. I rapporten finns energioptimerings förslag för dessa delar.

Rapporten innehåller även ett förslag till ett kretsschema för GPS-spårsändaren som kan

användas vid framtida miniatyrisering av GPS-spårsändaren.

4

Acknowledgments
I would like to thank my examiner J Jacob Wikner and supervisor Yonatan Kifle for helping me

during the project by discussing problems and giving helpful advice.

I also want to thank Mangus Bång for making the thesis possible by ordering this project.

5

Definitions

Abbreviation Meaning Explanation

BLE Bluetooth low energy Low energy version of Bluetooth
communication.

LPWAN Low power wide area network Type of wireless network that is built for long
distances communication with low power
consumption.

LoRa Long Range Communication technology that works in
LPWAN.

LoRaWAN Long Range Wide Area Network The protocol LoRa-devices uses for
communication.

CSS Chirp Spread Spectrum A type of radio modulation technique which
is for example used by LoRa-devices.

ISM band Industrial, Scientific and Medical band Unlicensed frequency bands.

PHY Physical layer A layer that consists of electronic circuits.

OTAA Over the air activation Activation method for LoRa communication.

RETTS Rapid Emergency Triage and Treatment
System

A system that is used for doing assessment of
how fast a person needs medical care.

NFC Near Field Communication Over the air communication technology with
a range up to ten centimeters.

SoC System-on-a-chip A chip that consists of different functional
blocks that together build up a system.

DK Development Kit A set of tools that can be used for facilitating
the development process.

IDE Integrated Development Environment A program that normally consists of text
editor, debugger and a compiler.

FW Firmware Software for some hardware.

SDK Software development kit A set of tools that can be used for facilitating
the software development.

TTN The Things Network A LoRa community which is working with
building a decentralized data network that
can connect to internet by using LoRaWAN.

UUID Universally Unique IDentifier A number that is used for identifying
information in a computer system.

LMIC LoraMAC-in-C A library built for handling LoRa
communication.

GATT Generic Attribute Profile Defines how the data exchange between BLE
devices will work.

NDEF NFC Data Exchange Format Format of the data which NFC-devices uses
when exchanging information between
devices.

MSB Myndigheten för samhällsskydd och
beredskap

Swedish authority which is working with
development and handling of protection and
preparedness for crises and accidents in the
society.

AppSKey Application Session Key A key which is used for LoRa communication.

NwkSKey Network Session Key A key which is used for LoRa communication.

6

Content

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Purpose ... 1

1.3 Delimitations ... 2

1.4 Research question .. 2

2 Theory ... 3

2.1 Bluetooth low energy ... 3

2.1.1 Bluetooth low energy mesh network .. 4

2.2 Long range ... 5

2.2.1 Over the air activation .. 6

2.2.2 The things network ... 7

2.3 Triage ... 7

2.4 Near field communication .. 8

2.5 Hardware .. 9

2.6 Software .. 10

3 Method .. 12

3.1 Preparation phase .. 12

3.2 Initially programming of Thingy:52 .. 13

3.3 Long range and Bluetooth low energy implementation ... 14

3.4 GPS-module implementation ... 15

3.5 Long range-module implementation ... 15

3.6 Near field communication-reader implementation .. 15

3.7 Sound detection .. 16

3.8 Power consumption measurement .. 16

3.9 Functionality test .. 17

3.10 Adjustment macros .. 17

3.11 Circuit Diagram for GPS-tracker ... 18

4 Results ... 19

4.1 GPS-tracker construction and data format .. 19

4.2 Power consumption .. 21

5 Discussion.. 24

5.1 Results ... 24

5.2 Method .. 24

5.2.1 Preparation phase and initially programming of Thingy:52 24

5.2.2 Near field communication-reader implementation .. 25

5.2.3 Time optimization ... 25

5.2.4 Long range ... 25

5.2.5 Power consumption measurement .. 26

7

5.2.6 Source criticism ... 26

5.3 Ethical aspects ... 26

5.4 Technology at a future disaster site ... 28

5.5 Future work ... 29

5.5.1 Energy optimization .. 29

5.5.2 Bluetooth low energy mesh ... 30

5.5.3 Miniaturizing ... 30

6 Conclusions ... 31

7 References... 32

8 Appendix 1 .. 34

9 Appendix 2 .. 53

8

Table of figures
Figure 1 A table that is showing the main differences between Bluetooth low energy and

Bluetooth [1]. .. 3

Figure 2 Topology illustration over a Bluetooth low energy mesh network where one of the

nodes in the mesh has connection to internet. .. 4

Figure 3 Star topology illustration of a Bluetooth low energy network with six peripheral

devices connected to a central device with internet connection. .. 4

Figure 4 Topology illustration of a long range network consisting of four long range modules

that are connected to a long range gateway which is connected to a networks sever which is

communicating with a PC. ... 5

Figure 5 An illustration over the process of activating the long range communication for a long

range device by using the activation method over the air activation [7]. 6

Figure 6 Explanation of what the different color codes means in the rapid emergency triage

and treatment system [9]. ... 7

Figure 7 An illustration over the NFC data exchange format-message and what information the

NFC-tags used during the project contained... 8

Figure 8 Table over the capacity and format differences between NFC-tag types [11]. 8

Figure 9 Illustration over the programming setup for Thingy:52 where the nRF DK and

Thingy:52 is connected with a 10-pin SWD cable and the computer and Thingy:52 is connect

with a USB cable. ... 9

Figure 10 All hardware that the GPS-tracker is constructed of hooked up on a bread board.... 10

Figure 11 Illustration of all necessary steps for compiling and uploading firmware to Thingy:52.

 ... 13

Figure 12 Illustration of how the BLE implementation works for the GPS-tracker where a

cellphone/PC has a central role and the GPS-tracker has a peripheral role. 14

Figure 13 Illustration of how an Arduino performing voltage measurements over resistors that

are connected in series with the different modules of the GPS-tracker. 16

Figure 14 Illustration of how Simulink calculate the power consumption for the different

modules of the GPS-tracker. ... 17

Figure 15 Format of the data package being sent over long range and Bluetooth low energy

when a sensor triggers the data transfer. ... 19

Figure 16 Block diagram of how the GPS-tracker is connected to the long range-module and

the NFC-reader with an I2C connection and with the GPS-module with a UART connection. ... 19

Figure 17 Circuit diagram proposal for the GPS-tracker. .. 20

Figure 18 Illustration of how messages looks like when it is received by The Things Network

from the long range-module. .. 21

Figure 19 Illustration of how the data package received in the Bluetooth low energy service

looks like. ... 21

Figure 20 Graph over the power consumption for the long range-module. 22

Figure 21 Graph over the power consumption for the NFC-reader. ... 22

Figure 22 Graph over the power consumption for the GPS-module. ... 22

Figure 23 Graph over the power consumption for the whole GPS-tracker device. 23

Figure 24 Illustration of how the power consumption is distribution between the different

modules of the GPS-tracker. ... 23

Figure 25 Comparison image between a correct and faulty programming cable for Thingy:52. 25

9

Figure 26 Illustration over a possible future situation on a disaster site with injured people and

an operation leader giving orders to the rescue personnel and a firetruck with a long range-

gateway placed on it. .. 28

Figure 27 Illustration of how the long range communication range is extended by using

Bluetooth low energy mesh to transfer message through other devices in the network. 30

1

1 Introduction
The thesis is about building a GPS-tracker that can communicate with internet through LoRa and

Bluetooth low energy (BLE) and the usage area for the tracker is to improve the way of working

on disaster sites.

The GPS-tracker is planned to be used by fireman, paramedics and injured people at disaster

sites. The device will be equipped with a NFC-reader for assigning the need for care levels to the

injured people.

For example, a disaster has just occurred and there are dead and injured people at the disaster

site. When the rescuing personnel arrives to the disaster site, they can put on their own GPS-

trackers and bring a bunch of other GPS-trackers to place on injured people on the site. When

the rescuing personnel finds people at the site, they can do an assessment of the need of care

of the injured by doing a NFC-scan on the injured persons GPS-tracker. The GPS-tracker will send

information (ex: GPS-coordinates, condition status and sensor values) to the internet when the

device is triggered by some sensor.

An operation leader can monitor the whole situation from a computer and see where the

personnel and the injured people are and hopefully make efficient decisions on where the

personnel should go. Doctors and nurses in hospitals can also do NFC-scans on injured peoples

GPS-trackers when they arrive to the hospital. To inform the rescue personnel at the disaster

site that the injured people have arrived at the hospital.

This project is funded by JPI Climate and co-funded by the European Union

Particular research funding agencies: FORMAS (Sweden), RCN

(Norway), NWO (The Netherlands), and FCT (Portugal)

2019 Team of the CitizenSensing Project

1.1 Motivation
The Swedish authority myndigheten för samhällsskydd och beredskap (MSB) is working on a

project to develop new methods and technique to handle future disaster sites better. The

motivation for this thesis is to contribute to MSB project by developing a GPS-tracker that can

make the rescue operations on disaster sites more efficient and secure.

1.2 Purpose
The purpose of this thesis is to make the work at disaster sites more efficient and secure. If GPS-

trackers are placed on fireman, paramedics and injured people on disaster sites will possibly

make it easier for a rescue operation leader to get a good overview of the situation and hopefully

make more efficient and better decisions with help of the information provided by the GPS-

trackers.

All information provided by the GPS-trackers during a disaster scenario will be saved. The

collected information can then be studied afterwards. By studying the information after the

2

disaster scenario, makes it possible to correct the errors that occurred and strengthen the things

that were handled well for the next disaster situation.

1.3 Delimitations
The GPS-tracker will be based on the sensor development kit Nordic Thingy:52 from Nordic

semiconductor. The usage area for the GPS-tracker will be focused on disaster affected sites.

The project will be limited to build a prototype of a GPS-tracker as a proof of concept for the

usage of GPS-tracker on disaster sites.

1.4 Research question
How will the power consumption be distributed between the different components in a GPS-

tracker with the capability of reading NFC-tags and communicate with LoRa and BLE?

What effects can the usage of GPS-trackers with the following features: LoRa communication,

BLE communication and NFC-reading have on a rescue operation on a disaster site?

3

2 Theory
The theory chapter will contain the theoretic background to the different techniques used in the

project and a description of the triage system that rescue personnel uses for doing assessments

of injured people. At the end of the theory chapter is a description about the hardware and

software that has been used during the project.

The theory chapter will also include information about BLE and the main difference between

BLE and Bluetooth are shown in Figure 1.

Type BLE Bluetooth

Channels 40, 2 MHZ bandwidth per channel 79, 1 MHZ bandwidth per channel

Data rate 125 Kb/s – 2 Mb/s 1 Mb/s – 3 Mb/s

Power
consumption

~0.01x – 0.5x of reference 1 (reference value)

Network
topologies

Point to Point
Mesh
Broadcast

Point to Point

Figure 1 A table that is showing the main differences between Bluetooth low energy and Bluetooth [1].

2.1 Bluetooth low energy
BLE operating in the unlicensed 2.4 GHZ industrial, scientific and medical (ISM) band and it is

communicating through 40 channels where three channels are advertising channels which are

used for establishing connections between devices and for broadcasting purpose and 37

channels are used as data channels [1] [2]. The data rates be adjusted from 125 kb/s to 2 Mb/s

and the power levels can be adjusted from 1 mW to 100 mW and this is possible because of BLE

usage of multiple physical layer (PHY) [1]. BLE 5.0 has a maximum range of 400 m and 1000 m

outdoor in an open field [3].

In the BLE topology exists four roles:

• Broadcaster: advertising packets (transmitting data), cannot connect to other BLE

devices, the purpose is to announce it presence for other devices [2].

• Observer: receives advertised packets from other units, do not connect to other BLE

units [2].

• Peripheral: connects to central devices in a slave role [2].

• Central: can have multiple connection and can act as a central and peripheral device at

the same time [2].

The GPS-tracker developed in this project has the role of a peripheral device in the BLE

implementation.

4

2.1.1 Bluetooth low energy mesh network
BLE mesh networks makes it possible to send messages between and via other BLE units and in

that way increases the networks connectivity and the communication range [4]. By comparing

the star topology in Figure 3 and the BLE mesh network topology in Figure 2 it is not hard to see

that the BLE mesh network has much larger communication range than the star topology.

Figure 2 Topology illustration over a Bluetooth low energy mesh network where one of the nodes in the mesh has
connection to internet.

Figure 3 Star topology illustration of a Bluetooth low energy network with six peripheral devices connected to a
central device with internet connection.

5

2.2 Long range
Long range (LoRa) is a low power wide area network (LPWAN) that uses the protocol long range

wide area network (LoRaWAN) to communicate and the radio modulation technique chirp

spread spectrum (CSS) [5]. Maximum data rate for LoRa is 50 kb/s downlink and 250 b/s uplink

and the communications range is around five km in urban environment and 15 km in rural

environment [5]. LoRa uses the unlicensed ISM bands on frequency 869 MHz in Europe and 915

MHz in North America [6]. Figure 4 down below illustrates the topology over a LoRa network,

where it shown how the communication between LoRa-modules and a PC is built up.

Figure 4 Topology illustration of a long range network consisting of four long range modules that are connected to a
long range gateway which is connected to a networks sever which is communicating with a PC.

6

2.2.1 Over the air activation
To start sending information with the LoRaWAN protocol an activation of the LoRa device is

required. The activation can be performed by activation by personalization (ABP) or over the air

activation (OTAA) [7]. The way of doing the activation in this project has been OTAA and

therefore is the theoretical background only given for OTAA and not the ABP. How the OTAA

works is illustrated in Figure 5.

Figure 5 An illustration over the process of activating the long range communication for a long range device by using
the activation method over the air activation [7].

The reason for choosing OTAA instead of ABP is because it is more secure since the network

session key (NwkSKey) and the application session key (AppSKey) are generated during the

network joining procedure and therefore the keys cannot get into the wrong hands before the

activation is performed [7]. If the ABP is used, the NwkSKey and the AppSKey are statically stored

in the LoRa-device and the risk of the keys getting into the wrong hands before activation exists

[7].

7

2.2.2 The things network
The things network (TTN) is a community which is working with building a decentralized data

network that can connect to internet by using LoRaWAN [8]. On TTN website is it possible to

register a LoRa-devices and receive the necessary keys to be able to communicate with a LoRa-

device through TTN. On the TTN website is it also possible to open a console and monitor all

received messages from the LoRa-device.

2.3 Triage
Triage systems are used to do assessment on patients and to sort them into different levels

based on the need of care [9]. Triage is the first step in the process of taking care of injured

people and the most common triage system in Swedish emergency departments is the rapid

emergency triage and treatment system (RETTS) [9].

RETTS consists of a combinational assessment which consists of the reason for seeking care and

the assessment of the critical physiological functions [9]. The reason for searching care can

change the priority to a higher priority level but not to a lower level [9]. The combined

assessment can be divided into five priority levels that defines the need for care [9]. Each one

of the priority levels are represented with a unique color code [9]. The priority levels define how

fast the patient needs care [9]. A description for each of the five color are shown in Figure 6.

Figure 6 Explanation of what the different color codes means in the rapid emergency triage and treatment system
[9].

8

2.4 Near field communication
The NFC technology communicates over the air and it is based on a radio frequency field that

uses the base frequency 13.56 MHz [10]. The communication range for NFC is up to ten

centimeters [10]. The NFC data exchange format (NDEF) is used when sending data between

two NFC devices.

A NDEF-message consists of one or several records [10]. A record contains an identifier for the

record, the length of the record, what kind of information the records payload contains e.g. URL

and the payload itself [10]. See Figure 7 for an illustration of the structure of a NDEF-message

with one record and how the record format for the NFC-tags used during the project looks.

Figure 7 An illustration over the NFC data exchange format-message and what information the NFC-tags used during
the project contained.

It exists serval different NFC-tag types e.g. type 1, type 2, type 3 and type 4 [11]. The tag types

distinguish from each other by having different formats and capacities [11], the differences are

illustrated in Figure 8. The tag type 2 is used in this project which got a communication speed of

106 kb/s and a basic memory size of 48 B which can be expanded to 2 kB [11].

The reason for choosing tag type 2 was because it existed an example program for NFC-reading

of tag type 2 provided by Nordic Semiconductor. Which was used to speed up the

implementation of the NFC functionality in the project.

NFC-tag type Type 1 Type 2 Type 3 Type 4

Communication
speed

106 kb/s 106 kb/s 212 kb/s 106 kb/s –
424 kb/s

Memory size 96 B – 2 kB 48 B – 2 kB 2 kB 32 kB

Format ISO14443A ISO14443A ISO18092 ISO14443A and
ISO14443B

Figure 8 Table over the capacity and format differences between NFC-tag types [11].

9

2.5 Hardware
The hardware chapter will present a description about all the hardware that has been used

during the project.

The whole project is built around the sensor development board Nordic Thingy:52 from Nordic

semiconductor [12]. Thingy:52 is constructed around the nRF52832 Bluetooth 5 system-on-a-

chip (SoC) and the SoC is connected to several different sensors e.g. accelerometer, temperature

and humidity. Thingy:52 it also equipped with a microphone and a speaker [12].

The programming of the Thingy:52 was done through a nRF52 Development Kit (DK) board from

Nordic semiconductor which was connected to a computer with USB cable. A 10-pin SWD cable

was connected between the Thingy:52 and the nRF52 DK [13]. The programming setup is

illustrated in Figure 9.

Figure 9 Illustration over the programming setup for Thingy:52 where the nRF DK and Thingy:52 is connected with a
10-pin SWD cable and the computer and Thingy:52 is connect with a USB cable.

The PN532 NFC-reader from Adafruit was used to handle reading of NFC-tag with information

of rescue personnel id and triage assessments [14]. To receive GPS-coordinates and the current

time was the L80 GPS component on the LoRa/GPS HAT from Dragino used [15].

10

For handling the LoRa communication was the LoRa Mini module from Dragino used, which is

an Arduino compatible board that is based on the microcontroller ATmega328P [16]. For

programming the LoRa-module a USB to UART cable called TTL-235R-3V3 was connected

between the computer and the LoRa-module. The cable was also used for trying different

settings on GPS-module from the computer.

An Arduino UNO was used for measuring the voltage on the GPS-tracker circuit and those

voltage measurements were then used for calculating the power consumption for the different

modules on the GPS-tracker.

Figure 10 illustrates all coherent hardware to the GPS-tracker hooked up on a breadboard.

Figure 10 All hardware that the GPS-tracker is constructed of hooked up on a bread board.

2.6 Software
The software chapter contains descriptions of all the software that has been used during the

work of the project.

The J-Link RTT Client V6.40 program was used to display the debug printouts from the Thingy:52

in a terminal window on a computer. The J-Link Commander v6.40 program was used to

establish a connection between the computer and the nRF DK for making it possible for the nRF

DK to send the received debug printouts from the Thingy:52 into the computer.

11

The Nordic Thingy app for android has been used for trying out the different features of the

Thingy:52 such as monitoring sensor values, controlling the LED and playing sound from the

speaker, etc.

The editor Atom was used for writing Firmware (FW) for the Thingy:52 and the GNU Tools ARM

Embedded 4.9 2015q3 was used to compile FW for the Thingy:52. The code used for the

Thingy:52 during the project is initially based on Thingy FW version 2.2.0 provided by Nordic

semiconductor [17]. The nRF Connect v2.6.2 program was used on a computer for uploading

code from the computer into the Thingy:52 via the nRF DK. The nRF Connect program was also

used to verify the BLE communication of the GPS-tracker.

The Arduino integrated development environment (IDE) was used on the computer for writing

and compiling code for the LoRa-module and for uploading code into the LoRa-module. The

program KiCad was used for drawing the proposal circuit diagram for the GPS-tracker, the drawn

circuit diagram can be seen in Figure 17. The NFC Tools app for android was used to writing

information about triage assessments and rescue personnel id into NFC-tags.

The program ScriptCommunicator V5.09 was used on the computer to send UART commands to

the GPS-module. The use of ScriptCommunicator made the processes of trying out different

settings for the GPS-module faster than it would have been if the settings were tested by

establishing the UART communication between the Thingy:52 and GPS-module right away.

Simulink was used for doing the power measurement on the different modules on the GPS-

tracker, see Figure 14 for an illustration of the power measurement.

12

3 Method
The method chapter will include information of the literature studying of the different

technologies and hardware. The chapter will also contain information about how the GPS-

tracker FW was developed, how the different modules were implemented, how the power

measurement was performed, how the functionality was verified, how the drawing of the

proposal circuit diagram was performed and information about the possibility to adjust the

system by using macros.

3.1 Preparation phase
The project started with studying the datasheets and other available documents for the

Thingy:52 and a research about these different technologies: BLE, BLE mesh networks, NFC and

LoRa.

The Nordic Thingy app for android from Nordic semiconductor was downloaded and the app

was used for establishing a BLE connecting between the cellphone and the Thingy:52. After

establishing a connection the app was used to get to explore the features of Thingy:52 by

reading sensor values, controlling LED light, playing sound from the speaker through the app.

Necessary preparations for writing firmware for the Thingy:52 were performed:

• The software development kit (SDK) for Thingy:52 was downloaded, it is like a big library

provided by Nordic Semiconductor which for instance consisted of an example program

which has been used as the base for the Thingy:52 FW during this project.

• To make the compiling of FW possible by running a makefile, the Make program was

installed on the computer, see an illustration of the compiling procedure in Figure 11.

• The compiler GNU Tools ARM Embedded 4.9 2015q3 was downloaded and installed on

the computer for compiling FW for the Thingy:52.

• For loading compiled code from the computer into the Thingy:52 the nRF Connect v2.6.2

program was installed on a computer.

13

Figure 11 Illustration of all necessary steps for compiling and uploading firmware to Thingy:52.

It occurred several problems during the preparation phase that were very time consuming and

more about those problems can be read under the discussion chapter.

3.2 Initially programming of Thingy:52
After the preparation phase some small adjustments were performed in the given example

program and uploaded to Thingy:52 just to verify that the programming of Thingy:52 worked

properly.

The following functionality in the FW for Thingy:52 were added: reaction after a certain number

of steps taken, reaction by changes in orientations, reaction when a timer triggered. The step

detections functionality was already implemented in the original FW but for having the Thingy

to react on a certain number of steps a counter was added into the FW. The counter was

increased each time a step was detected and when the counter reached a certain value the

Thingy:52 could react on the detection. Step detection was not enabled automatically in the

origin FW and therefore an automatically enabling of the step detection was also added to the

Thingy:52 FW.

Change in orientation detection was also implemented in the original FW but the functionality

for orientations detection was not enabled automatically and therefore an automatically

enabling of the orientation detection was added into the initiation part of the Thingy:52 FW. For

the timer triggering a timer was created to trigger periodically.

14

3.3 Long range and Bluetooth low energy implementation
A device was registered on TTN website and the necessary keys for OTAA for LoRa

communication i.e. device EUI, application EUI and app key were received from TTN website.

The format of the data package that the LoRa communication and BLE communication uses was

defined, the format of the data package is illustrated in Figure 15.

The necessary modification in the Thingy:52 FW for sending data packages over BLE when some

sensor triggers the data transfer were made, see an illustration of the BLE communication

implementation in Figure 12. The modifications were done by first creating copy of the already

existing BLE service for orientations detection in the Thingy:52 FW. When the copying was

performed some additional modification had to be done such as:

• Assigning a new universally unique identifier (UUID) to the new BLE service.

• Add read property to the service characteristic to make it possible to send more than 20

bytes data at a time since the orientation service only got the notification property

which only allow a maximum of 20 bytes to be transmitted at a time and the data

package that the GPS-tracker send exceeds 20 bytes.

• Changed the of the provided value in the service characteristic from orientation data to

the define data package for the GPS-tracker.

• At first the Thingy:52 was not able to run the FW with the newly added BLE service but

it was solved by changing the location where the generic attribute profile (GATT)

attributes for the new BLE service was stored from BLE_GATTS_VLOC_STACK to

BLE_GATTS_VLOC_USER. The BLE_GATTS_VLOC_STACK location ran probably out of

memory when the new service was added.

The initial idea of the BLE implementation was to implement BLE mesh functionality but due to

time limitation that idea was set as a future work instead and more information of what effects

a BLE mesh can have is described under the future work chapter.

Figure 12 Illustration of how the BLE implementation works for the GPS-tracker where a cellphone/PC has a central
role and the GPS-tracker has a peripheral role.

15

3.4 GPS-module implementation
The GPS-module and a computer were connected with a USB to UART cable called TTL-235R-

3V3 between each other. Since the GPS-module uses UART to communicate the

ScriptCommunicator V5.09 program was used on the computer to send UART commands to the

GPS-module for testing the different commands on the GPS-module before implementing the

GPS-module together with Thingy:52.

After finishing the testing of the commands on the GPS-module, the GPS-module was

implemented together with the Thingy:52. Based on the previous testing of commands some

commands were chosen to be used on the GPS-module together with the Thingy:52. The

PMTK314 command was used for excluding all information sent from the GPS-module except

the information about longitude, latitude, and current time. The PMTK220 command was used

to change the positioning fix interval from one second (default) to ten second for optimizing the

power consumption.

3.5 Long range-module implementation
For the implementation of the LoRa-module, Arduino IDE was installed on the computer to be

able to program the LoRa-module since it is an Arduino compatible board. For handling the LoRa

communication the LoraMAC-in-C (LMIC) library was downloaded. In the LMIC library existed an

example program for LoRa communication with OTAA and that program was used as the starting

point for the LoRa-module program.

The modifications that needed to be made in the provided LMIC example was to add device EUI,

application EUI and app key from the registered device on the TTN website and the setup of a

I2C communication to be able to receive data packages from the Thingy:52. Each time a data

package is received from the Thingy:52, the LoRa-module sends that data package further to a

LoRa-gateway that can send the package up to the internet.

3.6 Near field communication-reader implementation
For the implementation of the NFC-reader it already existed an example program for the PN532

NFC-reader, but the program was written for the nRF DK. For making it possible to use the NFC-

reader together with the Thingy:52 the pin mapping had to be changed and some files and paths

had to be added in the makefile of the project. Some definitions were also added into the

projects sdk_config.h file (this file consists of many different macros that can be used for

enabling debug messages, UART, etc. for the Thingy:52).

After implementing the NFC-reader unused code was removed and the existing reading function

was modified to just read the 16 bytes where the triage assessment and rescue personnel id

were stored instead of reading all bytes of the NFC-tag to optimizing the power consumption.

The original example for the NFC-reader was continuously checking the presence for NFC-tags,

to save energy the code for the NFC-reader was modified to just check presence for NFC-tags

every twice second. Some code for sending a data packed with BLE and LoRa when a NFC-reading

occurs were also added.

The NFC-reader implementation in this project can only read NFC-tags of type 2. The NFC-reader

functionally was tested by reading the payload from four NFC-tags of type 2 that contained

records with different payloads of the type text that contained IDs (identifications for e.g.

fireman or paramedic staff) and triage assessments. The record was written to the NFC-tags by

using the NFC Tools app for android. To indicate that a NFC-tag has been successfully read the

Thingy:52 plays a tone from the speaker and emits green light from the LED.

16

3.7 Sound detection
Thingy:52 has a built-in microphone and for the sound detection implementation a timer was

set to trigger once in a minute and when it times out the microphone is turned on for two

seconds. When the microphone is turned on the Thingy:52 is continuously checking if value of

the sound level is over a specific threshold and if it exceeds the threshold the Thingy:52 can

react and transfer a data package with BLE and LoRa. If the threshold is not exceeded the

microphone is turned off and the microphone will be turned on again after one minute.

3.8 Power consumption measurement
The power measurement on the GPS-tracker was performed by using Simulink with an Arduino

plugin and an Arduino UNO. The Arduino UNO measured the voltage over resistors that were

connected in series with the different modules as shown in Figure 24.

Figure 13 Illustration of how an Arduino performing voltage measurements over resistors that are connected in
series with the different modules of the GPS-tracker.

17

In Simulink the power consumption was calculated by doing the following calculation for the

different modules:

1.
Voltage over resistor

1.5Ω
= 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑒

2. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑒 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑜𝑑𝑢𝑙𝑒 = 𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙

How the program was setup in Simulink is illustrated in Figure 14.

Figure 14 Illustration of how Simulink calculate the power consumption for the different modules of the GPS-tracker.

3.9 Functionality test
To verify the functionality of the whole system, the GPS-tracker was carried around in the area

of Linköping university and different sensors were triggered and it was controlled if data

packages with correct data was sent up to the TTN. Some of the received data packages from

the test run is illustrated in Figure 18.

3.10 Adjustment macros
When the GPS-trackers functionalities worked as it should some macros for adjustments

purpose were added into the Thingy:52 FW.

Adjustments macros located in the main.c file in Thingy:52 FW and can be seen in Appendix 1:

TIMER_INTERVAL_VALUE_MS: defines how often the GPS-tracker should send data packages via

LoRa and BLE depending on a timer interval set by this macro.

TIME_OUT_NFC_SCAN_MS: defines how long time after a NFC-scan the NFC-reader should be

blocked for new NFC-scans.

NFC_SCAN_INTERVAL_MS: defines how often the NFC-reader should check for the present of

NFC-tags.

SOUND_STARTING_INTERVAL_MS: defines how often the GPS-tracker should turn on the

microphone and listen if a specific threshold is exceeded.

18

SOUND_LISTNING_TIME_MS: defines how long time the microphone should be on when it is

checking if the sound level threshold is exceeded.

Adjustments macros located in the sdk_config.c file in Thingy:52 FW and can be seen in Appendix

2:

SOUND_THRESHOLD: defines the threshold for sound detection.

NUMBER_OF_STEP_DETECTION: defines how many steps it needs to be taken before the GPS-

tracker sends a data package through LoRa and BLE.

UART_ON_OFF: This macro can be used for disabling/enabling the UART communication with

the GPS-module.

TAG_ON_OFF: This macro can be used for disabling/enabling the I2C communication with the

NFC-reader.

LORA_I2C_ON_OFF: This macro can be used for disabling/enabling the I2C communication with

the LoRa-module.

3.11 Circuit Diagram for GPS-tracker
For the drawing of a proposal circuit diagram for the GPS-tracker the program KiCad was used.

The manufactures of the coherent hardware to the GPS-module, LoRa-module and the NFC-

reader had available circuit diagrams that were drawn in the circuit design program Eagle. A new

circuit diagram was created in KiCad and the circuit diagrams for the GPS-module, the LoRa-

module and the NFC-reader were imported into the created circuit diagram in KiCad. The pins

strip on the Thingy:52 where all the wires from the other modules are connected to was also

added into the circuit diagram. After all components were placed in the circuit diagram all wires

between the components were drawn out. The proposal for the circuit diagram can be seen in

Figure 17.

19

4 Results
The result chapter will present the different features of the constructed GPS-tracker, format of

the used data package, energy consumption and a proposal circuit diagram for the GPS-tracker.

4.1 GPS-tracker construction and data format
The project has resulted in a GPS-tracker device with the following features:

• LoRa communication that can transfer data packages up to the internet see Figure 18

for an illustration of how the data from the LoRa-module looks like when it is received

by TTN.

• Point to point BLE communication which can transfer data packages to Nordic

Semiconductors BLE apps, see Figure 19 for an illustration of how a received data

package looks in the BLE service on Nordic Semiconductors nRF connect BLE app.

• Reading triage assessments and ID-numbers from NFC-tags of type 2.

• Data package transfer via LoRa and BLE is triggered when the follow things are detected

by the GPS-tracker: x number of steps have been taken, the device has been rotated

90°, a certain sound level is exceeded, timer triggering in a defined time interval and

when a NFC-reading occurs.

The format of the data package being sent through LoRa and BLE is illustrated in Figure 15 and

a block diagram over the GPS-tracker can be seen in Figure 16.

A proposal circuit diagram for the GPS-tracker can be seen in Figure 17

Figure 15 Format of the data package being sent over long range and Bluetooth low energy when a sensor triggers
the data transfer.

Figure 16 Block diagram of how the GPS-tracker is connected to the long range-module and the NFC-reader with an
I2C connection and with the GPS-module with a UART connection.

20

Figure 17 Circuit diagram proposal for the GPS-tracker.

21

Figure 18 Illustration of how messages looks like when it is received by The Things Network from the long range-
module.

Figure 19 Illustration of how the data package received in the Bluetooth low energy service looks like.

4.2 Power consumption
The power consumption chapter will present the power consumption of the different modules

and the distribution of the power consumption between the modules.

The power consumption for the different modules and the whole GPS-tracker is shown in Figure

20, Figure 21, Figure 22 and Figure 23.

22

Figure 20 Graph over the power consumption for the long range-module.

Figure 21 Graph over the power consumption for the NFC-reader.

Figure 22 Graph over the power consumption for the GPS-module.

23

Figure 23 Graph over the power consumption for the whole GPS-tracker device.

The power consumption of the Thingy:52 could not be measured directly since the other

modules gets their power supply from the Thingy:52. To calculate the power consumption for

the Thingy:52 the following calculation was performed:
𝑊ℎ𝑜𝑙𝑒 𝐺𝑃𝑆 𝑑𝑒𝑣𝑖𝑐𝑒 𝑝𝑜𝑤𝑒𝑟 − 𝐿𝑜𝑅𝑎 𝑚𝑜𝑑𝑢𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 − 𝐺𝑃𝑆 𝑚𝑜𝑑𝑢𝑙𝑒 𝑝𝑜𝑤𝑒𝑟 − 𝑁𝐹𝐶 𝑟𝑒𝑎𝑑𝑒𝑟 𝑝𝑜𝑤𝑒𝑟

= 𝑇ℎ𝑖𝑛𝑔𝑦: 52 𝑝𝑜𝑤𝑒𝑟

An illustration of the power consumption distribution between the modules can be seen in

Figure 24.

Figure 24 Illustration of how the power consumption is distribution between the different modules of the GPS-
tracker.

24

5 Discussion
The discussion chapter includes discussions about the results of the project, future work for the

GPS-tracker, methods used during the project, ethical aspects and a discussion about how a

rescue operation in a future disaster can look like if GPS-trackers like the one constructed in this

project are used on disaster sites.

5.1 Results
A GPS-tracker with LoRa, BLE capability has successfully been built. As the Figure 24 illustrate is

the biggest part of the power consumed by the NFC-reader and the GPS-module. Therefore, it

is probably a good idea to start looking for power optimizations for the NFC-reader and the GPS-

module if attempting to optimize the power consumption of the GPS-tracker in the future.

A proposal for power optimization of the GPS-module and NFC-reader is described in the chapter

future work.

The initial idea for the BLE communication was to add BLE mesh functionality to the GPS-tracker

also but due to the time limitations it was decided to aim for creating a point to point BLE

communication instead which has been accomplished.

5.2 Method
The method chapter will discuss issues and solutions for issues during the work of the project

and source criticism will also be discussed.

5.2.1 Preparation phase and initially programming of Thingy:52
During the preparation of the project it was quite a struggle to get FW to compile and upload to

the Thingy:52. The struggling with compiling FW to Thingy:52 depended on that it was three

ways to compile the code and only one worked. The three ways for compiling FW for Thingy:52

are:

1. Compiling FW with the Kiel program did not work because there was a limitation of how

big the FW could be in the free version of Kiel.

2. Compiling FW with SEGGER studio, the FW made for SEGGER studio that was provided

by Nordic Semiconductor did not work and it seems like they by mistake released a

broken FW for SEGGER studio, at least according to information from Nordic

Semiconductor forum Devzone [18].

3. Compiling FW with a GNU compiler and makefile was finally the way for compiling that

worked but initially that did not work either. The reason was because git bash terminal

did not work to compiling the project with, but the project complied successfully when

the standard Windows terminal was used instead.

Problems with uploading code into Thingy:52 dependent on a cable with the wrong pinout was

used. The cables were very similar and therefore it took a while to realize that it was the cable

that caused the problem, see Figure 25 for a comparison between the cables.

25

Figure 25 Comparison image between a correct and faulty programming cable for Thingy:52.

5.2.2 Near field communication-reader implementation
Initially it was assumed that Thingy:52 had capability to read passive NFC-tags but after asking

Nordic Semiconductor forum Devzone an engineer from Nordic Semiconductor replied and

informed that Thingy:52 cannot read other passive NFC-tags. This new insight lead to an external

NFC-reader had to be ordered.

5.2.3 Time optimization
In the middle of the project it was realized to try some new changes in the code on the Thingy:52

was quite time consuming since the process for compiling and uploading code to Thingy:52 looks

like this: do the five compiling steps illustrated in Figure 11 -> start the programs J-Link client

and J-Link commander to be able to see the debug printouts. Often it was some functionality

that did not need Thingy:52 hardware to be tested. A faster way to try it was to write the

functionality in a separate program and just compile it with a GNU compiler and run the program

in the windows terminal.

5.2.4 Long range
The reason for choosing LoRa as communication for this project was because the LoRa technique

can transfer data long distance with a low energy consumption. It is important to have a low

energy consumption since it will extend the battery time and minimizing the risk of having the

GPS-trackers discharged during a rescue operation.

On the TTN website there is a map over LoRa-gateways in the world and initially it was assumed

if the LoRa-module is nearby a gateway on that map the LoRa-module will be able to send data

to it. That was not true all the times and the reason for that could possibly be that all the

gateways on that map might not be turned on around the clock.

26

During the project a colleague at Linköping university helped to set up a LoRa-gateway at

Linköping university and after that the LoRa-module always had a gateway to test the

functionality against.

5.2.5 Power consumption measurement
The power measurement was performed by having an Arduino measuring the voltage over 1.5

Ω resistors that were connected in series with the different modules as illustrated in Figure 13.

The voltage measurements from the Arduino were then used by Simulink and calculate the

power consumption for the different modules.

The initial idea was to use a very small resistor around 0.02 Ω to make sure the resistor would

affect the power consumption measurement as little as possible but the voltage over the resistor

would have been in size order that the Arduino would only had been able to show a few different

voltage levels then. During the voltage measurement the Arduinos internal voltage level on 1.1

V was used as voltage reference and the resolution for voltage measurements in the Arduino is

ten-bits (1024 different levels can be represented). The step size between the voltage level in

the Arduino measurement is
1.1

1024
≈ 0.001 𝑉. The GPS-tracker was power by an external power

source that showed that the power source consumed around 0.1 A which would have given a

voltage over the resistor around 𝑅 ∗ 𝐼 = 𝑈 = 0.02 ∗ 0.1 𝑉 = 0.002 𝑉and since the step size is

0.001 V for the Arduino, the voltage measurement would not have given enough voltage levels

to get a reliable calculation for the power consumption. Therefor a resistor of 1.5 Ω was chosen

instead which gave a voltage drop around 1.5 ∗ 0.1 𝑉 = 0.15 𝑉.

In Figure 20, Figure 23, Figure 21 and Figure 22 it is possible to see that the power consumption

graphs are not smooth clean graphs and an average function could have made the graph looked

more smooth and clean. But the purpose with the measurement was to give an approximate

picture over how the power consumption is distributed between the different modules and for

that purpose the measurement is good enough.

5.2.6 Source criticism
The sources used in the project have mostly been from published articles, published conference

proceedings and websites from technology companies.

Sources taken from websites of technology companies were used with caution since there is a

risk that the companies exaggerating the performance of their own technology. The sources

taken from companies have therefore tried to be kept as sources of information for how the

technology works and not for how well technology performs.

5.3 Ethical aspects
A GPS-tracker that sends information about condition and position of an injured person to the

internet as the GPS-tracker in this report can be useful on disaster sites for making it easier and

more efficient to organize the paramedics and fireman at the site. An operation leader could

monitor the status from all GPS-trackers on the site and with the information the operation

leader can organize the rescue operation based on the injured persons conditions and which of

the rescue personnel that are closest to the injured people.

By utilizing the provided information about positions and conditions from a GPS-tracker on a

disaster site could contribute to that the most injured people get help faster and the average

time to get help could potentially be reduced. All data sent from the GPS-tracker to the internet

will be saved and the data can be studied afterwards. By studying the data from a disaster

27

scenario can possibly contribute to that injured people gets helps faster since it makes it possible

to investigate what went wrong to avoid it in the future and see what went well and keep doing

it in the future.

It is also important that information from the GPS-trackers do not gets in the wrong hands since

false GPS coordinates can be sent by unauthorized data which exposes the system for potential

danger.

A GPS-tracker that sends information via LoRa will probably be more troublesome to use for

people that are planning to use the GPS-tracker for illegal surveillance compared with GPS-

trackers that is sending information via the GSM net as many GPS-trackers on the market do

currently. This is because the GPS-tracker with LoRa communication requires to be within a

radius of 5 – 15 km from a LoRa-gateway to be able to send information to the internet [6].

28

5.4 Technology at a future disaster site
If paramedics, fireman and injured people carry GPS-trackers like the one built in this project a

possible scenario when a disaster has occurred e.g. earthquake or avalanche that has buried

people in snow is illustrated in Figure 26. As illustrated in Figure 26 a firetruck has a LoRa-

gateway placed on it for giving the disaster site LoRa coverage to make it possible for the GPS-

trackers to send information via LoRa. In Figure 26 there is also an operational leader that is

monitoring the whole situation from a computer where the operation leader can see all GPS-

position of people on site that carries a GPS-tracker and the injured peoples triage assessment

and can based on that information give order to the rescue personnel on where they should go

next.

Figure 26 illustrates that the paramedics have got orders from the operational leader to take

care of the people that have the most urgent need for help. Some of the firemen have got orders

to help the green marked injured people which do not have such urgent need for help as the

orange and red marked injured people. The fireman F3 has got order to search for other injured

people on the site.

Figure 26 Illustration over a possible future situation on a disaster site with injured people and an operation leader
giving orders to the rescue personnel and a firetruck with a long range-gateway placed on it.

29

5.5 Future work
The future work chapter will discuss future work for the GPS-tracker.

5.5.1 Energy optimization
Figure 24 illustrate that the NFC-reader stands for 43% of the GPS-trackers power consumption.

The current implementation of the NFC-reader is checking for nearing NFC-tags every twice

second when the Thingy:52 tells the NFC-reader to do that. Since the GPS-tracker would not be

receiving NFC-scans several times in a minute, a more realist NFC-scan frequency is probably

around a couple of scans per hour. A way of reducing the energy consumption of the NFC-reader

could be to have the power supply to the NFC-reader to be normally switch off and adding a

resilient switch to the GPS-tracker. By pressing a NFC-tag against the button it could generates

an interrupt signal to the Thingy:52 and in the interrupt handler could then turn on the power

supply for the NFC-reader and perform a reading of the NFC-tag and then turn off the power

supply until the bottom is pressed again. This solution will also reduce the power consumption

for the Thingy:52 since it would not be needed to command the NFC-reader to check after

nearby tags every twice second.

The GPS-module stand for 29% of the total power consumption which is a big part of the total

consumption. A way to reduce the power consumption of the GPS-module could be to add a

dead reckoning device (uses accelerometer and gyroscope to navigate instead of using satellites

as a GPS) to complement the GPS-module with. An alternative to a dead reckoning device could

be the BHI160BP from Bosch which according to Bosch them self says that it could reduce the

power consumption up to 80% [19]. If a dead reckoning device is added to the system it does

not only gives the opportunity to minimize power consumption, it will also make positioning

possible when there is no GPS-coverage since it only uses accelerometer and gyroscope for

navigation.

30

5.5.2 Bluetooth low energy mesh
An implementation of a BLE mesh network to the system will increase the connectivity between

device which could be good in a situation like this: a paramedic has not received any orders from

the operation leader and cannot find any injured people, a nearby injured GPS-tracker broadcast

the position of itself and the paramedic staff then receives the position and can go and help the

injured.

Additional hardware will not be necessary if BLE mesh functionality is implemented to the

system since the nRF52832 chip on the Thnigy:52 already has the capability to use BLE mesh.

A BLE mesh could also help a LoRa message to be transmitted to a LoRa-gateway from a GPS-

tracker that do not has LoRa coverage by passing the message through other nodes in the mesh.

See Figure 27 for an illustration of this situation.

Figure 27 Illustration of how the long range communication range is extended by using Bluetooth low energy mesh
to transfer message through other devices in the network.

5.5.3 Miniaturizing
A future work on the GPS-tracker is to miniaturize the current hardware layout. Something that

will save time during the miniaturizing work is that the footprints for the coherent hardware to

the LoRa-module, NFC-reader and the GPS-module is provided by the manufactures in the circuit

design program Eagle.

31

6 Conclusions
A GPS-tracker with BLE communication, LoRa communications, and NFC-reading capability has

been built during this project. This device needs to be miniaturized before a realistic test on a

disaster site is performed for avoiding that the size of the device being an obstacle when moving

around with it attached to the body.

How much of a help the GPS-tracker will have on a disaster site can only be speculated in right

now. The GPS-tracker will have to be put to a realistic test in some kind of disaster situation

before it is possible to say what effects the GPS-tracker has on a rescue operation. In the purpose

chapter it is described what the project wants to contribute with on a rescue operation on a

disaster site.

The largest power consumption on the GPS-tracker comes from the GPS-module and the NFC-

read. Power optimization proposals are presented in the future work chapter.

In the chapter technology at a future disaster site is it presented how the work at a future

disaster site can look like if a GPS-tracker like the one built in this project is used in the rescuing

operation at a future disaster site.

32

7 References

[1] Bluetooth SIG, Bluetooth technology radio versions, [Online]. Available:

https://www.bluetooth.com/bluetooth-technology/radio-versions. [Accessed 04 04 2019].

[2] M. Marawaha, P. Jha, R. Razdan, J. Dukes, S. Sheehan, E. O. Nuallain. (2018), Performance

Evaluation of Bluetooth Low Energy Communication, in Journal of Information Sciences and

Computing Technologies [Online]. 7(2), pp. 718-725, Available:

http://www.scitecresearch.com/journals/index.php/jisct/article/view/1416.

[3] Nordic Semiconductor, Things you should know about bluetooth range, [Online]. Available:

https://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range.

[Accessed 04 04 2019].

[4] Bluetooth SIG, Mesh Profile Specification 1.0.1, [Online]. Available:

https://www.bluetooth.com/specifications/mesh-specifications. [Accessed 04 04 2019].

[5] J. de Carvalho Silva, J.J.P.C. Rodrigues, A.M. Alberti, P. Solic, A.L.L. Aquino, "LoRaWAN - A Low

Power WAN Protocol for Internet of Things: a Review and Opportunities", presented at the

2017 2nd International Multidisciplinary Conference on Computer and Energy Science

(SpliTech), Split, Croatia.

[6] I. Kuzminykh, A. Carlsson, R Franksson, A. Liljegren, "Measuring a LoRa Network: Performance,

Possibilities and Limitations," in Proceedings of the 18th International Conference, NEW2AN

2018, and 11th Conference (ruSMART'18), St. Petersburg, Russia, pp. 116-128.

[7] Ambiductor, OTAA, [Online]. Available: https://www.ambiductor.se/blog/lora-skola-hur-

aktivera-otaa-respektive-abp. [Accessed 12 05 2019].

[8] TTN, [Online]. Available: https://www.thethingsnetwork.org/. [Accessed 13 05 2019].

[9] L. Sandman, N. Ekerstad, K. Lindroth, "Triage som prioriteringsinstrument på akutmottagning,"

Linköping University Electronic Press, Linköping, 2012.

[10] D. Nordström, D. Nyqvist, "Near Field Communication: En studie av säkerhetsaspekternas

påverkan för mobila betalningar," Uppsala universitet, Uppsala, 2012.

[11] Electronics-notes, NFC-tag types, [Online]. Available: https://www.electronics-

notes.com/articles/connectivity/nfc-near-field-communication/tags-types.php. [Accessed 12 05

2019].

[12] Nordic Semiconductor, Thingy:52, [Online]. Available:

https://www.nordicsemi.com/?sc_itemid=%7B3C201A33-5CA5-457B-87E4-

A7B04C19EE71%7D. [Accessed 07 05 2019].

[13] Nordic Semiconductor, nRF DK, [Online]. Available:

https://www.nordicsemi.com/?sc_itemid=%7BF2C2DBF4-4D5C-4EAD-9F3D-

CFD0276B300B%7D. [Accessed 08 05 2019].

33

[14] Elfa, PN532 NFC/RFID controller, Adafruit, [Online]. Available: https://www.elfa.se/sv/pn532-

nfc-rfid-controller-adafruit-

364/p/30129234?pos=1&origPos=1&origPageSize=10&prodprice=401.625&q=PN532+&p=cat-

L1D_1859641~cat-DNAV_PL_1965016&isProductFamily=false&campaign=&track=true.

[Accessed 07 05 2019].

[15] Dragino, LoRa/GPS-HAT, [Online]. Available:

http://wiki.dragino.com/index.php?title=Lora/GPS_HAT. [Accessed 07 05 2019].

[16] Dragino, LoRa Mini, [Online]. Available: http://www.dragino.com/products/lora/item/125-lora-

mini.html). [Accessed 07 05 2019].

[17] GitHub, Nordic-Thingy52-FW, [Online]. Available:

https://github.com/NordicSemiconductor/Nordic-Thingy52-FW. [Accessed 08 05 2019].

[18] Devzone, segger studio, [Online]. Available: https://devzone.nordicsemi.com/f/nordic-q-

a/27311/thingy-sdk-compile-error-using-segger-embedded-studio-within-windows-10.

[Accessed 13 05 2019].

[19] Bosch BHI160BP, [Online]. Available: https://www.bosch-presse.de/pressportal/de/en/bosch-

announces-industrys-first-position-tracking-smart-sensor-bhi160bp-for-wearables-

175104.html. [Accessed 13 05 2019].

34

8 Appendix 1
Code from the main.c file in the Thingy:52 FW.

1. /*
2. Copyright (c) 2010 - 2017, Nordic Semiconductor ASA
3. All rights reserved.
4.
5. Redistribution and use in source and binary forms, with or without modification,
6. are permitted provided that the following conditions are met:
7.
8. 1. Redistributions of source code must retain the above copyright notice, this
9. list of conditions and the following disclaimer.
10.
11. 2. Redistributions in binary form, except as embedded into a Nordic
12. Semiconductor ASA integrated circuit in a product or a software update for
13. such product, must reproduce the above copyright notice, this list of
14. conditions and the following disclaimer in the documentation and/or other
15. materials provided with the distribution.
16.
17. 3. Neither the name of Nordic Semiconductor ASA nor the names of its
18. contributors may be used to endorse or promote products derived from this
19. software without specific prior written permission.
20.
21. 4. This software, with or without modification, must only be used with a
22. Nordic Semiconductor ASA integrated circuit.
23.
24. 5. Any software provided in binary form under this license must not be reverse
25. engineered, decompiled, modified and/or disassembled.
26.
27. THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
28. OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
29. OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
30. DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
31. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32. CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
33. GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34. HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35. LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
36. OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37. */
38.
39. /** @file
40. *
41. * @brief Thingy application main file.
42. *
43. * This file contains the source code for the Thingy application that uses the Weath

er Station service.
44. */
45.
46. #include <stdint.h>
47. #include <float.h>
48. #include <string.h>
49. #include "nordic_common.h"
50. #include "nrf.h"
51. #include "ble_hci.h"
52. #include "ble_advdata.h"
53. #include "ble_advertising.h"
54. #include "ble_conn_params.h"
55. #include "softdevice_handler.h"
56. #include "app_scheduler.h"
57. #include "app_button.h"
58. #include "app_util_platform.h"
59. #include "m_ble.h"
60. #include "m_environment.h"

35

61. #include "m_sound.h"
62. #include "m_motion.h"
63. #include "m_ui.h"
64. #include "m_batt_meas.h"
65. #include "drv_ext_light.h"
66. #include "drv_ext_gpio.h"
67. #include "nrf_delay.h"
68. #include "twi_manager.h"
69. #include "support_func.h"
70. #include "pca20020.h"
71. #include "app_error.h"
72.
73. #define NRF_LOG_MODULE_NAME "main "
74. #include "nrf_log.h"
75. #include "nrf_log_ctrl.h"
76. #include "drv_motion.h"
77. #include "drv_nfc.h"
78. #include "app_uart.h"
79. #include <stdio.h>
80. #include <stdbool.h>
81. #include "hardfault.h"
82. #include "sdk_macros.h"
83. #include "sdk_config.h"
84. #include "adafruit_pn532.h"
85. #include "nfc_ndef_msg_parser.h"
86. #include "nfc_t2t_parser.h"
87. #include "nrf_drv_twi.h"
88. #include "macros_common.h"
89. #include "drv_mic.h"
90. #include "drv_speaker.h"
91.
92. #define TIMER_INTERVAL_VALUE_MS 120000
93. #define TIME_OUT_NFC_SCAN_MS 15000
94. #define NFC_SCAN_INTERVAL_MS 2000
95. #define SOUND_LISTNING_TIME_MS 2000
96. #define SOUND_STARTING_INTERVAL_MS 60000
97.
98. bool sound_dectected = false;
99. uint8_t sound_state = 0;
100.
101. APP_TIMER_DEF(mic_time_out);
102.
103. APP_TIMER_DEF(reading_nfc_timer);
104.
105. //GPS formate N 58° 24.7035', E 15° 38.2040'
106. ble_gps_data gps_datax = { .triad_colour = 'F',
107. .sensor_type = 'F',
108. .gps_coordinatN = {'N','F','F','F','F','F'

,'F','F','F',' '},
109. .gps_coordinatE = {'E','F','F','F','F','F'

,'F','F','F','F'},
110. .nfc_scan_id = {'F','F'},
111. .current_time = {'F','F',':','F','F',':','

F','F'},
112. .device_id = {'F','F',':','F','F',':','F',

'F',':','F','F',':','F','F',':','F','F'}
113. };
114.
115. #if LORA_I2C_ON_OFF
116.
117. static const nrf_drv_twi_config_t twi_config_lora =
118. {
119. .scl = TWI_SCL_EXT,
120. .sda = TWI_SDA_EXT,
121. .frequency = NRF_TWI_FREQ_400K,
122. .interrupt_priority = APP_IRQ_PRIORITY_HIGH,

36

123. .clear_bus_init = false
124. };
125.
126. /* Common addresses definition for LoRa unit */
127. #define LORA_ADDR 0x08U
128.
129. static const nrf_drv_twi_t m_twi_lora = NRF_DRV_TWI_INSTANCE(0);
130.
131. uint32_t write_data_to_lora(void);
132.
133. #endif
134.
135. #if TAG_ON_OFF
136.
137. #define START_BYTE_ID_TRIAGE 7
138.
139. #define SEL_RES_CASCADE_BIT_NUM 3

 /// Number of Cascade bit within SEL_RES byte.
140. #define SEL_RES_TAG_PLATFORM_MASK 0x60

 /// Mask of Tag Platform bit group within SEL_RES byte.
141. #define SEL_RES_TAG_PLATFORM_BIT_OFFSET 5

 /// Offset of the Tag Platform bit group within SEL_RES byte.
142.
143. #define TAG_TYPE_2_UID_LENGTH 7

 /// Length of the Tag's UID.
144. #define TAG_TYPE_2_DATA_AREA_SIZE_OFFSET (T2T_CC_BLOCK_OFFSET + 2)

 /// Offset of the byte with Tag's Data size.
145. #define TAG_TYPE_2_DATA_AREA_MULTIPLICATOR 8

 /// Multiplicator for a value stored in the Tag's Data size byte.
146. #define TAG_TYPE_2_FIRST_DATA_BLOCK_NUM (T2T_FIRST_DATA_BLOCK_OFFSET / T2T

_BLOCK_SIZE) /// First block number with Tag's Data.
147. #define TAG_TYPE_2_BLOCKS_PER_EXCHANGE (T2T_MAX_DATA_EXCHANGE / T2T_BLOCK

_SIZE) /// Number of blocks fetched in single Tag's Read command.
148.
149. static uint8_t tag_id_triage[16];
150. static bool confirmed_nfc_scan = false;
151.
152. /**
153. * @brief Possible Tag Types.
154. */
155. typedef enum
156. {
157. NFC_T2T = 0x00, ///< Type 2 Tag Platform.
158. NFC_TT_NOT_SUPPORTED ///< Tag Type not supported.
159. } nfc_tag_type_t;
160.
161. #endif
162.
163. #if UART_ON_OFF
164.
165. #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size

. */
166. #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size

. */
167.
168. static uint8_t rx_buffer[UART_RX_BUF_SIZE];
169.
170. static int uart_counter = 0;
171.
172. #endif
173.
174. APP_TIMER_DEF(sending_interval_timer);
175.
176. #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stac

k dump, can be used to identify stack location on stack unwind. */

37

177. #define SCHED_MAX_EVENT_DATA_SIZE MAX(APP_TIMER_SCHED_EVENT_DATA_SIZE, BLE_
STACK_HANDLER_SCHED_EVT_SIZE) /**< Maximum size of scheduler events. */

178. #define SCHED_QUEUE_SIZE 60 /**< Maximum number of events in the
scheduler queue. */

179.
180. static const nrf_drv_twi_t m_twi_sensors = NRF_DRV_TWI_INSTANCE(TWI_SENSO

R_INSTANCE);
181. static m_ble_service_handle_t m_ble_service_handles[THINGY_SERVICES_MAX];
182.
183.
184. void app_error_fault_handler(uint32_t id, uint32_t pc, uint32_t info)
185. {
186. #if NRF_LOG_ENABLED
187. error_info_t * err_info = (error_info_t*)info;
188. NRF_LOG_ERROR(" id = %d, pc = %d, file = %s, line number: %d, error c

ode = %d = %s \r\n", \
189. id, pc, nrf_log_push((char*)err_info->p_file_name), err_info-

>line_num, err_info->err_code, nrf_log_push((char*)nrf_strerror_find(err_info-
>err_code)));

190. #endif
191.
192. (void)m_ui_led_set_event(M_UI_ERROR);
193. NRF_LOG_FINAL_FLUSH();
194. nrf_delay_ms(5);
195.
196. // On assert, the system can only recover with a reset.
197. #ifndef DEBUG
198. NVIC_SystemReset();
199. #endif
200.
201. app_error_save_and_stop(id, pc, info);
202. }
203.
204.
205. /**@brief Function for assert macro callback.
206. *
207. * @details This function will be called in case of an assert in the SoftDevi

ce.
208. *
209. * @warning On assert from the SoftDevice, the system can only recover on res

et.
210. *
211. * @param[in] line_num Line number of the failing ASSERT call.
212. * @param[in] p_file_name File name of the failing ASSERT call.
213. */
214. void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
215. {
216. app_error_handler(DEAD_BEEF, line_num, p_file_name);
217. }
218.
219. /**@brief Function for putting Thingy into sleep mode.
220. *
221. * @note This function will not return.
222. */
223. //Turned off since the GPS-

tracker needs to always be active as the implementation looks now
224. /*static void sleep_mode_enter(void)
225. {
226. uint32_t err_code;
227.
228. NRF_LOG_INFO("Entering sleep mode \r\n");
229. err_code = m_motion_sleep_prepare(true);
230. APP_ERROR_CHECK(err_code);
231.
232. err_code = support_func_configure_io_shutdown();
233. APP_ERROR_CHECK(err_code);

38

234.
235. // Enable wake on button press.
236. nrf_gpio_cfg_sense_input(BUTTON, NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_

LOW);
237. // Enable wake on low power accelerometer.
238. nrf_gpio_cfg_sense_input(LIS_INT1, NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_SENS

E_HIGH);
239.
240. NRF_LOG_FLUSH();
241. nrf_delay_ms(5);
242. // Go to system-

off (sd_power_system_off() will not return; wakeup will cause a reset). When debuggi
ng, this function may return and code execution will continue.

243. err_code = sd_power_system_off();
244. NRF_LOG_WARNING("sd_power_system_off() returned. -

Probably due to debugger being used. Instructions will still run. \r\n");
245. NRF_LOG_FLUSH();
246.
247. #ifdef DEBUG
248. if(!support_func_sys_halt_debug_enabled())
249. {
250. APP_ERROR_CHECK(err_code); // If not in debug mode, return the er

ror and the system will reboot.
251. }
252. else
253. {
254. NRF_LOG_WARNING("Exec stopped, busy wait \r\n");
255. NRF_LOG_FLUSH();
256.
257. while(true) // Only reachable when entering emulated system off.
258. {
259. // Infinte loop to ensure that code stops in debug mode.
260. }
261. }
262. #else
263. APP_ERROR_CHECK(err_code);
264. #endif
265. }
266. */
267.
268. /**@brief Function for placing the application in low power state while waiti

ng for events.
269. */
270.
271. #define FPU_EXCEPTION_MASK 0x0000009F
272.
273. static void power_manage(void)
274. {
275. __set_FPSCR(__get_FPSCR() & ~(FPU_EXCEPTION_MASK));
276. (void) __get_FPSCR();
277. NVIC_ClearPendingIRQ(FPU_IRQn);
278.
279. uint32_t err_code = sd_app_evt_wait();
280. APP_ERROR_CHECK(err_code);
281. }
282.
283.
284. /**@brief Battery module data handler.
285. */
286. static void m_batt_meas_handler(m_batt_meas_event_t const * p_batt_meas_event

)
287. {
288. NRF_LOG_INFO("Voltage: %d V, Charge: %d %%, Event type: %d \r\n",
289. p_batt_meas_event->voltage_mv, p_batt_meas_event-

>level_percent, p_batt_meas_event->type);
290.

39

291. if (p_batt_meas_event != NULL)
292. {
293. if(p_batt_meas_event->type == M_BATT_MEAS_EVENT_LOW)
294. {
295. uint32_t err_code;
296.
297. err_code = support_func_configure_io_shutdown();
298. APP_ERROR_CHECK(err_code);
299.
300. // Enable wake on USB detect only.
301. nrf_gpio_cfg_sense_input(USB_DETECT, NRF_GPIO_PIN_NOPULL, NRF_GPI

O_PIN_SENSE_HIGH);
302.
303. NRF_LOG_WARNING("Battery voltage low, shutting down Thingy. Conne

ct USB to charge \r\n");
304. NRF_LOG_FINAL_FLUSH();
305. // Go to system-

off mode (This function will not return; wakeup will cause a reset).
306. err_code = sd_power_system_off();
307.
308. #ifdef DEBUG
309. if(!support_func_sys_halt_debug_enabled())
310. {
311. APP_ERROR_CHECK(err_code); // If not in debug mode, retur

n the error and the system will reboot.
312. }
313. else
314. {
315. NRF_LOG_WARNING("Exec stopped, busy wait \r\n");
316. NRF_LOG_FLUSH();
317. while(true) // Only reachable when entering emulated syst

em off.
318. {
319. // Infinte loop to ensure that code stops in debug mo

de.
320. }
321. }
322. #else
323. APP_ERROR_CHECK(err_code);
324. #endif
325. }
326. }
327. }
328.
329.
330. /**@brief Function for handling BLE events.
331. */
332. static void thingy_ble_evt_handler(m_ble_evt_t * p_evt)
333. {
334. switch (p_evt->evt_type)
335. {
336. case thingy_ble_evt_connected:
337. NRF_LOG_INFO(NRF_LOG_COLOR_CODE_GREEN "Thingy_ble_evt_connected \

r\n");
338. break;
339.
340. case thingy_ble_evt_disconnected:
341. NRF_LOG_INFO(NRF_LOG_COLOR_CODE_YELLOW "Thingy_ble_evt_disconnect

ed \r\n");
342. NRF_LOG_FINAL_FLUSH();
343. nrf_delay_ms(5);
344. //NVIC_SystemReset(); //Turned off since the GPS-

tracker needs to always be active as the implementation looks now
345. break;
346.
347. case thingy_ble_evt_timeout:

40

348. NRF_LOG_INFO(NRF_LOG_COLOR_CODE_YELLOW "Thingy_ble_evt_timeout \r
\n");

349. //sleep_mode_enter();//Turned off since the GPS-
tracker needs to always be active as the implementation looks now

350. //NVIC_SystemReset();//Turned off since the GPS-
tracker needs to always be active as the implementation looks now

351. break;
352. }
353. }
354.
355.
356. /**@brief Function for initializing the Thingy.
357. */
358. static void thingy_init(void)
359. {
360. uint32_t err_code;
361. m_ui_init_t ui_params;
362. m_environment_init_t env_params;
363. m_motion_init_t motion_params;
364. m_ble_init_t ble_params;
365. batt_meas_init_t batt_meas_init = BATT_MEAS_PARAM_CFG;
366.
367. /**@brief Initialize the TWI manager. */
368. err_code = twi_manager_init(APP_IRQ_PRIORITY_THREAD);
369. APP_ERROR_CHECK(err_code);
370.
371. /**@brief Initialize LED and button UI module. */
372. ui_params.p_twi_instance = &m_twi_sensors;
373. err_code = m_ui_init(&m_ble_service_handles[THINGY_SERVICE_UI],
374. &ui_params);
375. APP_ERROR_CHECK(err_code);
376.
377. /**@brief Initialize environment module. */
378. env_params.p_twi_instance = &m_twi_sensors;
379. err_code = m_environment_init(&m_ble_service_handles[THINGY_SERVICE_ENVIR

ONMENT],
380. &env_params);
381. APP_ERROR_CHECK(err_code);
382.
383. /**@brief Initialize motion module. */
384. motion_params.p_twi_instance = &m_twi_sensors;
385.
386. err_code = m_motion_init(&m_ble_service_handles[THINGY_SERVICE_MOTION],
387. &motion_params);
388. APP_ERROR_CHECK(err_code);
389.
390. err_code = m_sound_init(&m_ble_service_handles[THINGY_SERVICE_SOUND]);
391. APP_ERROR_CHECK(err_code);
392.
393. /**@brief Initialize the battery measurement. */
394. batt_meas_init.evt_handler = m_batt_meas_handler;
395. err_code = m_batt_meas_init(&m_ble_service_handles[THINGY_SERVICE_BATTERY

], &batt_meas_init);
396. APP_ERROR_CHECK(err_code);
397.
398. err_code = m_batt_meas_enable(BATT_MEAS_INTERVAL_MS);
399. APP_ERROR_CHECK(err_code);
400.
401. /**@brief Initialize BLE handling module. */
402. ble_params.evt_handler = thingy_ble_evt_handler;
403. ble_params.p_service_handles = m_ble_service_handles;
404. ble_params.service_num = THINGY_SERVICES_MAX;
405.
406. err_code = m_ble_init(&ble_params);
407. APP_ERROR_CHECK(err_code);
408.

41

409. err_code = m_ui_led_set_event(M_UI_BLE_DISCONNECTED);
410. APP_ERROR_CHECK(err_code);
411.
412. }
413.
414.
415. static void board_init(void)
416. {
417. uint32_t err_code;
418. drv_ext_gpio_init_t ext_gpio_init;
419.
420. #if defined(THINGY_HW_v0_7_0)
421. #error "HW version v0.7.0 not supported."
422. #elif defined(THINGY_HW_v0_8_0)
423. NRF_LOG_WARNING("FW compiled for depricated Thingy HW v0.8.0 \r\n");

424. #elif defined(THINGY_HW_v0_9_0)
425. NRF_LOG_WARNING("FW compiled for depricated Thingy HW v0.9.0 \r\n");

426. #endif
427.
428. static const nrf_drv_twi_config_t twi_config =
429. {
430. .scl = TWI_SCL,
431. .sda = TWI_SDA,
432. .frequency = NRF_TWI_FREQ_400K,
433. .interrupt_priority = APP_IRQ_PRIORITY_LOW
434. };
435.
436. static const drv_sx1509_cfg_t sx1509_cfg =
437. {
438. .twi_addr = SX1509_ADDR,
439. .p_twi_instance = &m_twi_sensors,
440. .p_twi_cfg = &twi_config
441. };
442.
443. ext_gpio_init.p_cfg = &sx1509_cfg;
444.
445. err_code = support_func_configure_io_startup(&ext_gpio_init);
446. APP_ERROR_CHECK(err_code);
447.
448. nrf_delay_ms(100);
449. }
450.
451. #if LORA_I2C_ON_OFF
452.
453. /**@brief Open the TWI (I2C) bus for communication for LoRa.
454. */
455. static __inline ret_code_t twi_open(void)
456. {
457. ret_code_t err_code;
458. err_code = twi_manager_request(&m_twi_lora,
459. &twi_config_lora,
460. NULL,
461. NULL);
462. RETURN_IF_ERROR(err_code);
463. nrf_drv_twi_enable(&m_twi_lora);
464. return NRF_SUCCESS;
465. }
466.
467.
468. /**@brief Close the TWI (I2C) bus after LoRa communications are finished.
469. */
470. static __inline ret_code_t twi_close(void)
471. {
472. nrf_drv_twi_disable(&m_twi_lora);

42

473. nrf_drv_twi_uninit(&m_twi_lora);
474. return NRF_SUCCESS;
475. }
476.
477. uint32_t write_data_to_lora(void)
478. {
479. ret_code_t err_code;
480.
481. err_code = twi_open();
482. APP_ERROR_CHECK(err_code);
483.
484. //sending two packed of data to lora module,32 bytes = max tranfer per pa

ckage
485. err_code = nrf_drv_twi_tx(&m_twi_lora, LORA_ADDR, (uint8_t *)&gps_datax,

sizeof(ble_gps_data) - sizeof(gps_datax.device_id), false);
486. err_code = nrf_drv_twi_tx(&m_twi_lora, LORA_ADDR, (uint8_t *)&gps_datax.d

evice_id, sizeof(gps_datax.device_id), false);
487.
488. twi_close();
489. RETURN_IF_ERROR(err_code);
490.
491. NRF_LOG_DEBUG("%s\r\n\r\n",(uint32_t)((uint8_t*)&gps_datax));
492. return NRF_SUCCESS;
493. }
494.
495. #endif
496.
497. #if UART_ON_OFF
498.
499. void set_gps()
500. {
501. gps_datax.gps_coordinatN[0] = 'N';
502. for(int i = 7; i <= 15; i++)
503. {
504. if(i > 10)
505. {
506. gps_datax.gps_coordinatN[i-6] = rx_buffer[i+1];
507. }
508. else
509. {
510. gps_datax.gps_coordinatN[i-6] = rx_buffer[i];
511. }
512. }
513. gps_datax.gps_coordinatN[9] = ' ';
514.
515. gps_datax.gps_coordinatE[0] = 'E';
516.
517. for(int i = 19; i <= 28; i++)
518. {
519. if(i > 23)
520. {
521. gps_datax.gps_coordinatE[i-18] = rx_buffer[i+1];
522. }
523. else
524. {
525. gps_datax.gps_coordinatE[i-18] = rx_buffer[i];
526. }
527. }
528. }
529.
530. void set_time()
531. {
532. gps_datax.current_time[0] = rx_buffer[7];
533. gps_datax.current_time[1] = rx_buffer[8];
534. gps_datax.current_time[2] = ':';
535. gps_datax.current_time[3] = rx_buffer[9];

43

536. gps_datax.current_time[4] = rx_buffer[10];
537. gps_datax.current_time[5] = ':';
538. gps_datax.current_time[6] = rx_buffer[11];
539. gps_datax.current_time[7] = rx_buffer[12];
540. }
541.
542. uint8_t calc_check_byte(uint8_t * check_byte)
543. {
544. uint8_t res = 0;
545. for(int i = 0; check_byte[i] != '*' ;++i)
546. {
547. res ^= check_byte[i];
548. }
549. return res;
550. }
551.
552. static void uart_send(uint8_t * data_to_send)
553. {
554. app_uart_put('$');
555. for(int i = 0; data_to_send[i] != '*' ;++i)
556. {
557. app_uart_put(data_to_send[i]);
558. }
559. app_uart_put('*');
560.
561. //makes a ascii number from a uint_8
562. if(((calc_check_byte(data_to_send) >> 4) & 0x0F) < 10)
563. {
564. app_uart_put('0' + ((calc_check_byte(data_to_send) >> 4) & 0x0F));
565. }
566. else
567. {
568. app_uart_put('A' - 10 + ((calc_check_byte(data_to_send) >> 4) & 0x0F));
569. }
570.
571. if(((calc_check_byte(data_to_send)) & 0x0F) < 10)
572. {
573. app_uart_put('0' + ((calc_check_byte(data_to_send)) & 0x0F));
574. }
575. else
576. {
577. app_uart_put('A' - 10 + ((calc_check_byte(data_to_send)) & 0x0F));
578. }
579.
580. app_uart_put('\r');
581. app_uart_put('\n');
582. }
583.
584. void uart_event_handler(app_uart_evt_t * p_event)
585. {
586. if (p_event->evt_type == APP_UART_COMMUNICATION_ERROR)
587. {
588. APP_ERROR_HANDLER(p_event->data.error_communication);
589. }
590. else if (p_event->evt_type == APP_UART_FIFO_ERROR)
591. {
592. APP_ERROR_HANDLER(p_event->data.error_code);
593. }
594. else if (p_event-

>evt_type == APP_UART_TX_EMPTY) //TX has completed its sending
595. {
596.
597. }
598. else if (p_event-

>evt_type == APP_UART_DATA_READY) // Data is availible and can be fetch by app_uart_
get

44

599. {
600. uint8_t rx_data;
601. app_uart_get(&rx_data);
602. rx_buffer[uart_counter] = rx_data;
603. uart_counter++;
604.
605. if(rx_data == '\n') //a whole message is received
606. {
607. uart_counter = 0;
608.
609. if (rx_buffer[4] == 'L' && rx_buffer[43] == 'A')
610. {
611. set_gps();
612. }
613. else if(rx_buffer[3] == 'Z')
614. {
615. set_time();
616. }
617. else if(rx_buffer[4] == 'X')
618. {
619. //do nothing
620. }
621. else //not valid gps data write 'F' to coordinates and time
622. {
623. char gps_coordinatN_overwrite[10] = {'N','F','F','F','F','F','F','F',

'F',' '};
624. char gps_coordinatE_overwrite[10] = {'E','F','F','F','F','F','F','F',

'F','F'};
625. char current_time_overwrite[8] = {'F','F',':','F','F',':','F','F'};
626. memcpy(gps_datax.gps_coordinatN, gps_coordinatN_overwrite, sizeof(gps

_datax.gps_coordinatN));
627. memcpy(gps_datax.gps_coordinatE, gps_coordinatE_overwrite, sizeof(gps

_datax.gps_coordinatE));
628. memcpy(gps_datax.current_time, current_time_overwrite, sizeof(gps_dat

ax.current_time));
629. }
630. NRF_LOG_DEBUG("%s\r\n",(uint32_t)((uint8_t*)rx_buffer)); //print recive

d UART data
631. NRF_LOG_FLUSH();
632.
633. memset(rx_buffer, 0, sizeof(rx_buffer)); //resets the array only wors o

n (char, short, int, long, long long)
634. }
635. }
636. }
637.
638. #endif
639.
640. static void time_out_reaction(void * p_context)
641. {
642. ret_code_t err_code;
643.
644. #if LORA_I2C_ON_OFF
645.
646. gps_datax.sensor_type = TIME_OUT;
647.
648. write_data_to_lora();
649.
650. #endif
651.
652. send_gps_data_ble();
653.
654. err_code = app_timer_start(sending_interval_timer, APP_TIMER_TICKS(TIMER_IN

TERVAL_VALUE_MS), NULL);
655. APP_ERROR_CHECK(err_code);
656. }

45

657.
658. #if TAG_ON_OFF
659.
660. /**
661. * @brief Function for reading data from a Type 2 Tag Platform.
662. */
663. ret_code_t t2t_data_read(nfc_a_tag_info * p_tag_info, uint8_t * buffer, uint3

2_t buffer_size)
664. {
665. ret_code_t err_code;
666. uint8_t block_num = 0;
667.
668. // Not enough size in the buffer to read a tag header.
669. if (buffer_size < T2T_FIRST_DATA_BLOCK_OFFSET)
670. {
671. return NRF_ERROR_NO_MEM;
672. }
673.
674. if (p_tag_info->nfc_id_len != TAG_TYPE_2_UID_LENGTH)
675. {
676. return NRF_ERROR_NOT_SUPPORTED;
677. }
678.
679. // Read blocks 0 - 3 to get the header information.
680. err_code = adafruit_pn532_tag2_read(block_num, buffer);
681. if (err_code)
682. {
683. NRF_LOG_INFO("Failed to read blocks: %d-%d\r\n", block_num,
684. block_num + T2T_END_PAGE_OFFSET);
685. return NRF_ERROR_INTERNAL;
686. }
687.
688. uint16_t data_bytes_in_tag = TAG_TYPE_2_DATA_AREA_MULTIPLICATOR *
689. buffer[TAG_TYPE_2_DATA_AREA_SIZE_OFFSET];
690.
691. if (data_bytes_in_tag + T2T_FIRST_DATA_BLOCK_OFFSET > buffer_size)
692. {
693. return NRF_ERROR_NO_MEM;
694. }
695.
696. err_code = adafruit_pn532_tag2_read(START_BYTE_ID_TRIAGE, tag_id_triage);

697. if (err_code)
698. {
699. NRF_LOG_INFO("Failed to read blocks: %d-%d\r\n",
700. START_BYTE_ID_TRIAGE,
701. START_BYTE_ID_TRIAGE + 4);
702. return NRF_ERROR_INTERNAL;
703. }
704.
705. return NRF_SUCCESS;
706. }
707.
708.
709. /**
710. * @brief Function for reading and analyzing data from a Type 2 Tag Platform.

711. *
712. * This function reads content of a Type 2 Tag Platform, parses it and prints

 it out.
713. */
714. ret_code_t t2t_data_read_and_analyze(nfc_a_tag_info * p_tag_info)
715. {
716. ret_code_t err_code;
717. static uint8_t t2t_data[TAG_TYPE_2_DATA_BUFFER_SIZE]; // Buffer for tag d

ata.

46

718.
719. err_code = t2t_data_read(p_tag_info, t2t_data, TAG_TYPE_2_DATA_BUFFER_SIZ

E);
720. VERIFY_SUCCESS(err_code);
721.
722. //t2t_data_analyze(t2t_data);
723.
724. return NRF_SUCCESS;
725. }
726.
727.
728. /**
729. * @brief Function for identifying Tag Platform Type.
730. */
731. nfc_tag_type_t tag_type_identify(uint8_t sel_res)
732. {
733. uint8_t platform_config;
734.
735. // Check if Cascade bit in SEL_RES response is cleared. Cleared bit indic

ates that NFCID1 complete.
736. if (!IS_SET(sel_res, SEL_RES_CASCADE_BIT_NUM))
737. {
738. // Extract platform configuration from SEL_RES response.
739. platform_config = (sel_res & SEL_RES_TAG_PLATFORM_MASK) >> SEL_RES_TA

G_PLATFORM_BIT_OFFSET;
740. if (platform_config < NFC_TT_NOT_SUPPORTED)
741. {
742. return (nfc_tag_type_t) platform_config;
743. }
744. }
745.
746. return NFC_TT_NOT_SUPPORTED;
747. }
748.
749. /**
750. * @brief Function for detecting a Tag, identifying its Type and reading data

 from it.
751. *
752. * This function waits for a Tag to appear in the field. When a Tag is detect

ed, Tag Platform
753. * Type (2/4) is identified and appropriate read procedure is run.
754. */
755. ret_code_t tag_detect_and_read(void)
756. {
757. ret_code_t err_code;
758. nfc_a_tag_info tag_info;
759.
760. // Detect a NFC-

A Tag in the field and initiate a communication. This function activates
761. // the NFC RF field. If a Tag is present, basic information about detecte

d Tag is returned
762. // in tag info structure.
763. err_code = adafruit_pn532_nfc_a_target_init(&tag_info, TAG_DETECT_TIMEOUT

);
764.
765. if (err_code != NRF_SUCCESS)
766. {
767. return NRF_ERROR_NOT_FOUND;
768. }
769. //adafruit_pn532_tag_info_printout(&tag_info);
770.
771. nfc_tag_type_t tag_type = tag_type_identify(tag_info.sel_res);
772. switch (tag_type)
773. {
774. case NFC_T2T:
775. NRF_LOG_INFO("Type 2 Tag Platform detected. \r\n");

47

776. return t2t_data_read_and_analyze(&tag_info);
777.
778. default:
779. return NRF_ERROR_NOT_SUPPORTED;
780. }
781. }
782.
783.
784. /**
785. * @brief Function for waiting specified time after a Tag read operation.
786. */
787. void after_read_delay(void)
788. {
789. ret_code_t err_code;
790.
791. // Turn off the RF field.
792. err_code = adafruit_pn532_field_off();
793. APP_ERROR_CHECK(err_code);
794. nrf_delay_ms(TAG_AFTER_READ_DELAY);
795. }
796.
797.
798. static void time_out_nfc_reader(void * p_context)
799. {
800. ret_code_t err_code;
801. drv_ext_light_rgb_intensity_t rgb_color;
802.
803. err_code = twi_manager_request(ada_twi_instance(),
804. ada_twi_config(),
805. NULL,
806. NULL);
807.
808. if(err_code == NRF_SUCCESS)
809. {
810. //open twi communication
811. nrf_drv_twi_enable(ada_twi_instance());
812.
813. err_code = tag_detect_and_read();
814. switch (err_code)
815. {
816. case NRF_SUCCESS:
817. after_read_delay();
818. break;
819.
820. case NRF_ERROR_NO_MEM:
821. NRF_LOG_INFO("Declared buffer for T2T is to small to store tag da

ta.\r\n");
822. after_read_delay();
823. break;
824.
825. case NRF_ERROR_NOT_FOUND:
826. NRF_LOG_INFO("No Tag found.\r\n");
827. // No delay here as we want to search for another tag immediately

.
828. break;
829.
830. case NRF_ERROR_NOT_SUPPORTED:
831. NRF_LOG_INFO("Tag not supported.\r\n");
832. after_read_delay();
833. break;
834.
835. default:
836. NRF_LOG_INFO("Error during tag read.\r\n");
837. err_code = adafruit_pn532_field_off();
838. break;
839. }

48

840. NRF_LOG_FLUSH();
841. //cloes twi communication so other moduls can use it
842. nrf_drv_twi_disable(ada_twi_instance());
843. nrf_drv_twi_uninit(ada_twi_instance());
844.
845. }
846.
847. if(err_code == NRF_SUCCESS)//Add a extra long delay until next nfc-

read if nfc read success
848. {
849. gps_datax.nfc_scan_id[0] = tag_id_triage[5];
850. gps_datax.nfc_scan_id[1] = tag_id_triage[6];
851. gps_datax.triad_colour = tag_id_triage[12] - '0'; // convert from to in

t value from char value by subractiong '0'
852. gps_datax.sensor_type = NFC_SCAN;
853.
854. rgb_color.r = 0;
855. rgb_color.g = 50;
856. rgb_color.b = 0;
857.
858. set_led_for_event(rgb_color,BLE_UIS_LED_MODE_CONST);
859. confirmed_nfc_scan = true;
860.
861. err_code = drv_speaker_tone_start(1000,2000,50);
862. APP_ERROR_CHECK(err_code);
863.
864. send_gps_data_ble();
865.
866. #if LORA_I2C_ON_OFF
867.
868. write_data_to_lora();
869.
870. #endif
871.
872. err_code = app_timer_start(reading_nfc_timer, APP_TIMER_TICKS(TIME_OUT_NF

C_SCAN_MS), NULL);
873. APP_ERROR_CHECK(err_code);
874. }
875. else
876. {
877. err_code = app_timer_start(reading_nfc_timer, APP_TIMER_TICKS(NFC_SCAN_IN

TERVAL_MS), NULL);
878. APP_ERROR_CHECK(err_code);
879.
880. if(confirmed_nfc_scan)
881. {
882. rgb_color.r = 0;
883. rgb_color.g = 0;
884. rgb_color.b = 0;
885.
886. set_led_for_event(rgb_color,BLE_UIS_LED_MODE_CONST);
887. confirmed_nfc_scan = false;
888. }
889. }
890.
891. }
892.
893. #endif
894.
895. static void mic_in_handler(void * p_context)
896. {
897. int32_t err_code;
898.
899. switch (sound_state)
900. {
901. case 0:

49

902. err_code = drv_mic_start();
903. APP_ERROR_CHECK(err_code);
904.
905. err_code = app_timer_start(mic_time_out, APP_TIMER_TICKS(SOUND_LI

STNING_TIME_MS), NULL);
906. APP_ERROR_CHECK(err_code);
907.
908. sound_state++;
909.
910. break;
911.
912. case 1:
913. if (sound_dectected)
914. {
915. sound_dectected = false;
916. gps_datax.sensor_type = SOUND_DETECTION;
917.
918. #if LORA_I2C_ON_OFF
919.
920. write_data_to_lora();
921.
922. #endif
923.
924. send_gps_data_ble();
925. }
926. else
927. {
928. //do nothing sound not high enough for detection
929. }
930.
931. sound_state = 0;
932.
933. err_code = drv_mic_stop();
934. APP_ERROR_CHECK(err_code);
935.
936. err_code = app_timer_start(mic_time_out, APP_TIMER_TICKS(SOUND_ST

ARTING_INTERVAL_MS), NULL);
937. APP_ERROR_CHECK(err_code);
938.
939. break;
940.
941. }
942.
943. }
944.
945. static void gps_tracker_init(void)
946. {
947. uint32_t err_code;
948.
949. NRF_LOG_DEBUG("enable origentation detection\r\n\r\n");
950. err_code = drv_motion_enable(DRV_MOTION_FEATURE_MASK_ORIENTATION); //enable

 origentation detection
951. APP_ERROR_CHECK(err_code); //enable

 origentation detection
952.
953. NRF_LOG_DEBUG("enable step detection\r\n\r\n");
954. err_code = drv_motion_enable(DRV_MOTION_FEATURE_MASK_PEDOMETER); //enable

step detection
955. APP_ERROR_CHECK(err_code); //enable

step detection
956.
957. NRF_LOG_DEBUG("creating timer\r\n\r\n");
958. err_code = app_timer_create(&sending_interval_timer, APP_TIMER_MODE_SINGLE_

SHOT, time_out_reaction);
959. APP_ERROR_CHECK(err_code);
960.

50

961. NRF_LOG_DEBUG("starting timer\r\n\r\n");
962. err_code = app_timer_start(sending_interval_timer, APP_TIMER_TICKS(TIMER_IN

TERVAL_VALUE_MS), NULL);
963. APP_ERROR_CHECK(err_code);
964.
965. #if UART_ON_OFF
966.
967. NRF_LOG_DEBUG("setting UART params\r\n\r\n");
968. const app_uart_comm_params_t comm_params =
969. {
970. ANA_DIG1,
971. ANA_DIG2,
972. MOS_1,
973. MOS_2,
974. APP_UART_FLOW_CONTROL_DISABLED,
975. false,
976. UART_BAUDRATE_BAUDRATE_Baud9600
977. };
978.
979. NRF_LOG_DEBUG("INIT UART communication\r\n\r\n");
980. APP_UART_FIFO_INIT(&comm_params,
981. UART_RX_BUF_SIZE,
982. UART_TX_BUF_SIZE,
983. uart_event_handler,
984. APP_IRQ_PRIORITY_LOWEST,
985. err_code);
986.
987. NRF_LOG_DEBUG("Sending commands to GPS-module\r\n\r\n");
988. // Sending UART settings twice to be sure the command arrives
989. // setting the gps to only send information every Xms
990. uint8_t * send_via_uart_data = (uint8_t *)("PMTK220,10000*");
991. uart_send(send_via_uart_data);
992. nrf_delay_ms(75);
993. uart_send(send_via_uart_data);
994.
995. // setting the gps to only send time and N and E coordinates
996. send_via_uart_data = (uint8_t *)("PMTK314,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,1,0*");
997. uart_send(send_via_uart_data);
998. nrf_delay_ms(75);
999. uart_send(send_via_uart_data);
1000.
1001. #endif
1002.
1003. #if LORA_I2C_ON_OFF
1004.
1005. NRF_LOG_DEBUG("INIT TWI connection\r\n\r\n");
1006. err_code = nrf_drv_twi_init(&m_twi_lora, &twi_config_lora, NULL, NULL);
1007. APP_ERROR_CHECK(err_code);
1008.
1009. NRF_LOG_DEBUG("Enable TWI connection for LoRa\r\n\r\n");
1010. nrf_drv_twi_enable(&m_twi_lora);
1011.
1012. NRF_LOG_DEBUG("TWI connection LoRa closing to leave it for other modules\r\

n\r\n");
1013. twi_close();
1014.
1015. #endif
1016.
1017. #if TAG_ON_OFF
1018.
1019. NRF_LOG_DEBUG("Creating timer for NFC-reads\r\n\r\n");
1020. err_code = app_timer_create(&reading_nfc_timer, APP_TIMER_MODE_SINGLE_SHOT,

 time_out_nfc_reader);
1021. APP_ERROR_CHECK(err_code);
1022.

51

1023. NRF_LOG_DEBUG("Starting timer for NFC-reads\r\n\r\n");
1024. err_code = app_timer_start(reading_nfc_timer, APP_TIMER_TICKS(NFC_SCAN_INTE

RVAL_MS), NULL);
1025. APP_ERROR_CHECK(err_code);
1026.
1027. NRF_LOG_DEBUG("Starting init of NFC-reader\r\n\r\n");
1028. err_code = adafruit_pn532_init(false);
1029. APP_ERROR_CHECK(err_code);
1030.
1031. NRF_LOG_DEBUG("TWI connection NFC closing to leave it for other modules\r\n

\r\n");
1032. nrf_drv_twi_disable(ada_twi_instance());
1033. nrf_drv_twi_uninit(ada_twi_instance());
1034.
1035. #endif
1036.
1037. NRF_LOG_DEBUG("Creating timer for sound readings\r\n\r\n");
1038. err_code = app_timer_create(&mic_time_out, APP_TIMER_MODE_SINGLE_SHOT, mic_

in_handler);
1039. APP_ERROR_CHECK(err_code);
1040.
1041. NRF_LOG_DEBUG("Start timer for sound readings\r\n\r\n");
1042. err_code = app_timer_start(mic_time_out, APP_TIMER_TICKS(SOUND_STARTING_INT

ERVAL_MS), NULL);
1043. APP_ERROR_CHECK(err_code);
1044.
1045. //Gets the device mac address
1046. NRF_LOG_DEBUG("Getting Mac address\r\n\r\n");
1047. char m_mac_addr[SUPPORT_FUNC_MAC_ADDR_STR_LEN];
1048. err_code = support_func_ble_mac_address_get(m_mac_addr);
1049. APP_ERROR_CHECK(err_code);
1050. memcpy(gps_datax.device_id, m_mac_addr, sizeof(gps_datax.device_id));
1051.
1052. NRF_LOG_DEBUG("Turn of the LED\r\n\r\n");
1053. drv_ext_light_rgb_intensity_t rgb_color;
1054. rgb_color.r = 0;
1055. rgb_color.g = 0;
1056. rgb_color.b = 0;
1057. set_led_for_event(rgb_color,BLE_UIS_LED_MODE_CONST);
1058.
1059. NRF_LOG_DEBUG("GPS_tracker_INIT is finished\r\n\r\n");
1060. }
1061.
1062. /**@brief Application main function.
1063. */
1064. int main(void)
1065. {
1066. uint32_t err_code;
1067. err_code = NRF_LOG_INIT(NULL);
1068. APP_ERROR_CHECK(err_code);
1069.
1070. NRF_LOG_INFO(NRF_LOG_COLOR_CODE_GREEN"===== Thingy started! =====\r\n");

1071.
1072. // Initialize.
1073. APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE);
1074. err_code = app_timer_init();
1075. APP_ERROR_CHECK(err_code);
1076.
1077. board_init();
1078. thingy_init();
1079. gps_tracker_init();
1080.
1081. for (;;)
1082. {
1083. app_sched_execute();

52

1084. if (!NRF_LOG_PROCESS()) // Process logs
1085. {
1086. power_manage();
1087. }
1088. }
1089. }

53

9 Appendix 2
Code snippet from the sdk_config.h file in the Thingy:52 FW.

1. /**
2. * Copyright (c) 2017 - 2017, Nordic Semiconductor ASA
3. *
4. * All rights reserved.
5. *
6. * Redistribution and use in source and binary forms, with or without modification,
7. * are permitted provided that the following conditions are met:
8. *
9. * 1. Redistributions of source code must retain the above copyright notice, this
10. * list of conditions and the following disclaimer.
11. *
12. * 2. Redistributions in binary form, except as embedded into a Nordic
13. * Semiconductor ASA integrated circuit in a product or a software update for
14. * such product, must reproduce the above copyright notice, this list of
15. * conditions and the following disclaimer in the documentation and/or other
16. * materials provided with the distribution.
17. *
18. * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
19. * contributors may be used to endorse or promote products derived from this
20. * software without specific prior written permission.
21. *
22. * 4. This software, with or without modification, must only be used with a
23. * Nordic Semiconductor ASA integrated circuit.
24. *
25. * 5. Any software provided in binary form under this license must not be reverse
26. * engineered, decompiled, modified and/or disassembled.
27. *
28. * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
29. * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30. * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
31. * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
34. * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
37. * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38. *
39. */
40.
41. #ifndef SDK_CONFIG_H
42. #define SDK_CONFIG_H
43. // <<< Use Configuration Wizard in Context Menu >>>\n
44. #ifdef USE_APP_CONFIG
45. #include "app_config.h"
46. #endif
47.
48. #define SOUND_THRESHOLD 117
49.
50. #define NUMBER_OF_STEP_DETECTION 100
51.
52. #ifndef UART_ON_OFF
53. #define UART_ON_OFF 1
54. #endif
55.
56. #ifndef TAG_ON_OFF
57. #define TAG_ON_OFF 1
58. #endif
59.
60. #ifndef LORA_I2C_ON_OFF
61. #define LORA_I2C_ON_OFF 1

54

62. #endif
63.
64. #ifndef LIGHT_ON_SENSOR_REACTION
65. #define LIGHT_ON_SENSOR_REACTION 1
66. #endif
67.
68. //==
69. // <q> APP_FIFO_ENABLED - app_fifo - Software FIFO implementation
70.
71.
72. #ifndef APP_FIFO_ENABLED
73. #define APP_FIFO_ENABLED 1
74. #endif
75.
76. // <e> APP_UART_ENABLED - app_uart - UART driver
77. //==
78. #ifndef APP_UART_ENABLED
79. #define APP_UART_ENABLED 1
80. #endif
81. #if APP_UART_ENABLED
82. // <o> APP_UART_DRIVER_INSTANCE - UART instance used
83.
84. // <0=> 0
85.
86. #ifndef APP_UART_DRIVER_INSTANCE
87. #define APP_UART_DRIVER_INSTANCE 0
88. #endif
89.
90. #endif //APP_UART_ENABLED
91. // </e>
92.
93. // <q> RETARGET_ENABLED - retarget - Retargeting stdio functions
94.
95.
96. #ifndef RETARGET_ENABLED
97. #define RETARGET_ENABLED 1
98. #endif
99.
100.
101. //==
102. // <o> MAX_NDEF_RECORDS - Maximal number of NDEF records that can be stored i

n NDEF message descriptor.
103. #ifndef MAX_NDEF_RECORDS
104. #define MAX_NDEF_RECORDS 10
105. #endif
106.
107. // <o> MAX_TLV_BLOCKS - Maximal number of TLV blocks that can be stored in Ty

pe 2/4 Tag descriptor.
108. #ifndef MAX_TLV_BLOCKS
109. #define MAX_TLV_BLOCKS 10
110. #endif
111.
112. // <o> TAG_AFTER_READ_DELAY - Delay (in ms) after Tag read.
113. #ifndef TAG_AFTER_READ_DELAY
114. #define TAG_AFTER_READ_DELAY 2000
115. #endif
116.
117. // <o> TAG_DETECT_TIMEOUT - Timeout (in ms) for function which searches for a

 Tag.
118. #ifndef TAG_DETECT_TIMEOUT
119. #define TAG_DETECT_TIMEOUT 5000
120. #endif
121.
122. // <o> TAG_TYPE_2_DATA_BUFFER_SIZE - Buffer size for data from a Type 2 Tag P

latform.
123. #ifndef TAG_TYPE_2_DATA_BUFFER_SIZE

55

124. #define TAG_TYPE_2_DATA_BUFFER_SIZE 1024
125. #endif
126.
127. // </h>
128. //==
129.
130. // <h> Third Parties
131.
132. //==
133. // <e> ADAFRUIT_PN532_ENABLED - adafruit_pn532 - Adafruit PN532 implementatio

n for nRF5x
134. //==
135. #ifndef ADAFRUIT_PN532_ENABLED
136. #define ADAFRUIT_PN532_ENABLED 1
137. #endif
138. #if ADAFRUIT_PN532_ENABLED
139. // <o> PN532_IRQ - Pin number
140.
141. // <0=> 0 (P0.0)
142. // <1=> 1 (P0.1)
143. // <2=> 2 (P0.2)
144. // <3=> 3 (P0.3)
145. // <4=> 4 (P0.4)
146. // <5=> 5 (P0.5)
147. // <6=> 6 (P0.6)
148. // <7=> 7 (P0.7)
149. // <8=> 8 (P0.8)
150. // <9=> 9 (P0.9)
151. // <10=> 10 (P0.10)
152. // <11=> 11 (P0.11)
153. // <12=> 12 (P0.12)
154. // <13=> 13 (P0.13)
155. // <14=> 14 (P0.14)
156. // <15=> 15 (P0.15)
157. // <16=> 16 (P0.16)
158. // <17=> 17 (P0.17)
159. // <18=> 18 (P0.18)
160. // <19=> 19 (P0.19)
161. // <20=> 20 (P0.20)
162. // <21=> 21 (P0.21)
163. // <22=> 22 (P0.22)
164. // <23=> 23 (P0.23)
165. // <24=> 24 (P0.24)
166. // <25=> 25 (P0.25)
167. // <26=> 26 (P0.26)
168. // <27=> 27 (P0.27)
169. // <28=> 28 (P0.28)
170. // <29=> 29 (P0.29)
171. // <30=> 30 (P0.30)
172. // <31=> 31 (P0.31)
173. // <4294967295=> Not connected
174.
175. #ifndef PN532_IRQ
176. //#define PN532_IRQ 0 // SX_IOEXT_0
177. #define PN532_IRQ 2 //ANA_DIG0
178. #endif
179.
180. // <o> PN532_RESET - Pin number
181.
182. // <0=> 0 (P0.0)
183. // <1=> 1 (P0.1)
184. // <2=> 2 (P0.2)
185. // <3=> 3 (P0.3)
186. // <4=> 4 (P0.4)
187. // <5=> 5 (P0.5)
188. // <6=> 6 (P0.6)

56

189. // <7=> 7 (P0.7)
190. // <8=> 8 (P0.8)
191. // <9=> 9 (P0.9)
192. // <10=> 10 (P0.10)
193. // <11=> 11 (P0.11)
194. // <12=> 12 (P0.12)
195. // <13=> 13 (P0.13)
196. // <14=> 14 (P0.14)
197. // <15=> 15 (P0.15)
198. // <16=> 16 (P0.16)
199. // <17=> 17 (P0.17)
200. // <18=> 18 (P0.18)
201. // <19=> 19 (P0.19)
202. // <20=> 20 (P0.20)
203. // <21=> 21 (P0.21)
204. // <22=> 22 (P0.22)
205. // <23=> 23 (P0.23)
206. // <24=> 24 (P0.24)
207. // <25=> 25 (P0.25)
208. // <26=> 26 (P0.26)
209. // <27=> 27 (P0.27)
210. // <28=> 28 (P0.28)
211. // <29=> 29 (P0.29)
212. // <30=> 30 (P0.30)
213. // <31=> 31 (P0.31)
214. // <4294967295=> Not connected
215.
216. #ifndef PN532_RESET
217. #define PN532_RESET 1 // SX_IOEXT_1
218. //#define PN532_RESET 3 //ANA_DIG1
219. #endif
220.
221. // <o> PN532_CONFIG_SCL - Pin number
222.
223. // <0=> 0 (P0.0)
224. // <1=> 1 (P0.1)
225. // <2=> 2 (P0.2)
226. // <3=> 3 (P0.3)
227. // <4=> 4 (P0.4)
228. // <5=> 5 (P0.5)
229. // <6=> 6 (P0.6)
230. // <7=> 7 (P0.7)
231. // <8=> 8 (P0.8)
232. // <9=> 9 (P0.9)
233. // <10=> 10 (P0.10)
234. // <11=> 11 (P0.11)
235. // <12=> 12 (P0.12)
236. // <13=> 13 (P0.13)
237. // <14=> 14 (P0.14)
238. // <15=> 15 (P0.15)
239. // <16=> 16 (P0.16)
240. // <17=> 17 (P0.17)
241. // <18=> 18 (P0.18)
242. // <19=> 19 (P0.19)
243. // <20=> 20 (P0.20)
244. // <21=> 21 (P0.21)
245. // <22=> 22 (P0.22)
246. // <23=> 23 (P0.23)
247. // <24=> 24 (P0.24)
248. // <25=> 25 (P0.25)
249. // <26=> 26 (P0.26)
250. // <27=> 27 (P0.27)
251. // <28=> 28 (P0.28)
252. // <29=> 29 (P0.29)
253. // <30=> 30 (P0.30)
254. // <31=> 31 (P0.31)

57

255. // <4294967295=> Not connected
256.
257. #ifndef PN532_CONFIG_SCL
258. #define PN532_CONFIG_SCL 15 //thingy ext scl
259. #endif
260.
261. // <o> PN532_CONFIG_SDA - Pin number
262.
263. // <0=> 0 (P0.0)
264. // <1=> 1 (P0.1)
265. // <2=> 2 (P0.2)
266. // <3=> 3 (P0.3)
267. // <4=> 4 (P0.4)
268. // <5=> 5 (P0.5)
269. // <6=> 6 (P0.6)
270. // <7=> 7 (P0.7)
271. // <8=> 8 (P0.8)
272. // <9=> 9 (P0.9)
273. // <10=> 10 (P0.10)
274. // <11=> 11 (P0.11)
275. // <12=> 12 (P0.12)
276. // <13=> 13 (P0.13)
277. // <14=> 14 (P0.14)
278. // <15=> 15 (P0.15)
279. // <16=> 16 (P0.16)
280. // <17=> 17 (P0.17)
281. // <18=> 18 (P0.18)
282. // <19=> 19 (P0.19)
283. // <20=> 20 (P0.20)
284. // <21=> 21 (P0.21)
285. // <22=> 22 (P0.22)
286. // <23=> 23 (P0.23)
287. // <24=> 24 (P0.24)
288. // <25=> 25 (P0.25)
289. // <26=> 26 (P0.26)
290. // <27=> 27 (P0.27)
291. // <28=> 28 (P0.28)
292. // <29=> 29 (P0.29)
293. // <30=> 30 (P0.30)
294. // <31=> 31 (P0.31)
295. // <4294967295=> Not connected
296.
297. #ifndef PN532_CONFIG_SDA
298. #define PN532_CONFIG_SDA 14 //thingy ext sda
299. #endif
300.
301. // <o> PN532_CONFIG_TWI_INSTANCE - TWI instance to be used
302.
303. // <0=> 0
304. // <1=> 1
305. // <2=> 2
306.
307. #ifndef PN532_CONFIG_TWI_INSTANCE
308. #define PN532_CONFIG_TWI_INSTANCE 0
309. #endif
310.
311. // <e> ADAFRUIT_PN532_LOG_ENABLED - Enables logging in the module.
312. //==
313. #ifndef ADAFRUIT_PN532_LOG_ENABLED
314. #define ADAFRUIT_PN532_LOG_ENABLED 1
315. #endif
316. #if ADAFRUIT_PN532_LOG_ENABLED
317. // <o> ADAFRUIT_PN532_LOG_LEVEL - Default Severity level
318.
319. // <0=> Off
320. // <1=> Error

58

321. // <2=> Warning
322. // <3=> Info
323. // <4=> Debug
324.
325. #ifndef ADAFRUIT_PN532_LOG_LEVEL
326. #define ADAFRUIT_PN532_LOG_LEVEL 0
327. #endif
328.
329. // <o> ADAFRUIT_PN532_INFO_COLOR - ANSI escape code prefix.
330.
331. // <0=> Default
332. // <1=> Black
333. // <2=> Red
334. // <3=> Green
335. // <4=> Yellow
336. // <5=> Blue
337. // <6=> Magenta
338. // <7=> Cyan
339. // <8=> White
340.
341. #ifndef ADAFRUIT_PN532_INFO_COLOR
342. #define ADAFRUIT_PN532_INFO_COLOR 0
343. #endif
344.
345. #endif //ADAFRUIT_PN532_LOG_ENABLED
346. // </e>
347.
348. // <o> PN532_PACKBUFF_SIZE - Size of the buffer used for sending commands and

 storing responses.
349. #ifndef PN532_PACKBUFF_SIZE
350. #define PN532_PACKBUFF_SIZE 256
351. #endif
352.
353. #endif //ADAFRUIT_PN532_ENABLED
354. // </e>
355.

