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Abstract
In recent years, voxel-based modelling has seen a reintroduction to computer
game development through massive graphics hardware improvements. Never-
theless, polygons continue to be the default building block of 3D objects, intro-
ducing a need for the transformation of polygon meshes into voxel-based models;
this process is known as voxelization. Efficient voxelization algorithms take ad-
vantage of the flexibility and control offered by modern, programmable GPU
pipelines. However, the variability in possible approaches poses the question of
how different GPU-based implementations affect voxelization performance.

This thesis explores the impact of GPU-based improvements by comparing
four different implementations of a solid voxelization algorithm. The implemen-
tations include a naive transition from the CPU to the GPU, a non-branching
execution path approach, data pre-processing, and a combination of the two
previous approaches. Benchmarking experiments run on four, standard polygo-
nal models and three graphics cards (NVIDIA and AMD) provide runtime and
memory usage data for each implementation. A comparative analysis is per-
formed on the basis of this data to determine the performance impact of the
GPU-based adjustments to the voxelization algorithm implementation.

Results indicate that the non-branching execution path approach yields clear
improvements over the naive implementation, while data pre-processing has in-
consistent performance and a large initial performance cost; the combination of
the two improvements unsurprisingly leads to combined results. Therefore, the
conclusive recommendation is using the non-branching execution path technique
for GPU-based improvements.

Keywords
voxelization, GPU, GPGPU, SIMT, thread divergence, Vulkan API

2



Sammanfattning
Voxel-baserad modellering har på senare år blivit återintroducerat till datorspel-
sutveckling tack vare massiva förbättringar i grafikhårdvara. Trots detta fortsät-
ter polygoner att vara standarden för uppbyggnaden av 3D-objekt. Detta gör
det nödvändigt att kunna transformera polygonytor till voxel-baserade mod-
eller; denna process kallas för voxelisering. Effektiva voxeliseringsalgoritmer
tar vara på den flexibilitet och kontroll som ges av moderna, programmerbara
GPU-pipelines. Variationen i möjliga tillvägagångssätt gör det dock intressant
att veta hur olika GPU-baserade implementationer påverkar prestandan av vox-
eliseringen.

Denna avhandling undersöker påverkan av GPU-baserade förbättringar gen-
om att jämföra fyra olika implementationer av en solid-voxeliseringsalgoritm.
Implementationerna inkluderar en naiv övergång från CPU:n till GPU:n, en
metod med en non-branching exekveringsväg, förbehandling av data, och en
kombination av det två tidigare metoderna. Benchmarking-experiment görs på
fyra standardpolygonmodeller och tre grafikkort (NVIDIA och AMD) förser
data för exekveringstid och minnesåtgång för varje implementation. En jäm-
förande analys görs med detta data som grund för att bestämma den påverkan
som de GPU-baserade ändringarna har på prestandan av voxeliseringsalgorit-
mens implementation.

Resultaten indikerar att implementationen med en non-branching exekver-
ingsväg ger klara förbättringar över den naiva implementationen, medans förbe-
handlingen av data presterar inkonsekvent och har en stor initial prestandakost-
nad; kombinationen av dem båda ledde, inte överraskande, till blandade resul-
tat. Den slutgiltiga rekommendationen är således att använda tekniken med en
non-branching exekveringsväg för GPU-baserade förbättringar.

Nyckelord
voxelization, GPU, GPGPU, SIMT, tråd divergering, Vulkan API
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1 Introduction
For decades polygons have been the default building block of 3D models in
computer graphics. However, recent claims regarding "unlimited detail" [1],
improved scalability [2], and intuitive content manipulation [2] have reignited
interest in voxel representation of 3D data. Voxels are discrete cubes used to
construct volumetric objects; due to voxels’ comparability to real world atoms,
they offer a higher level of detail and greater freedom for manipulation of 3D
models. Voxel model representation has long been widely used in medical imag-
ing like CAT scans and MRIs [3, 4]; recently, its use in computer game develop-
ment has accelerated, with applications such as Global Illumination [5], terrain
representation [6], and pathfinding [7].

The process of transforming a polygon representation of a 3D model into
a voxel-based one is called voxelization. Several notable algorithms detailing
this process come from a 2010 report by Schwarz and Seidel [8]; their binary
voxelization methods are the current defining work in the field, having inspired
several papers proposing novel approaches to voxelization [9–13]. Schwarz and
Seidel utilize the programmability offered by modern GPUs through NVIDIA’s
CUDA parallel computing platform, which allows far more flexibility and control
over how data is computed and processed on the GPU. Breaking out of the
limitations of fixed-function rasterization leads to new approaches like direct
voxelization into Sparse Voxel Octrees [8, 14, 15].

Within Schwarz and Seidel’s tile-based solid voxelization algorithm there are
opportunities for varying GPU-based implementations, ranging from a simple,
naive approach to advanced, multiple-pass techniques with data pre-processing.
Therefore, this thesis proposes four different implementations in order to com-
pare the effects of individual, GPU-based refinements on the performance of
a solid voxelization algorithm with output to Sparse Voxel Octrees. Based on
start-to-end running time and memory usage, final conclusions will offer an
efficient GPU-implementation of a parallelized, direct voxelization algorithm.

1.1 Background
Spurred by consumer demand for increasingly realistic and immersive gaming
experiences, the development of GPUs has seen some of the greatest advance-
ments in computational technology of the past thirty years [16]. The uses for
modern GPUs extend far past 3D modelling and computer graphics, to tasks
that were traditionally performed by the CPU. The most powerful consumer-
grade CPU today has 28 cores [17], whereas any modern GPU is composed
of hundreds to thousands of cores; this allows handling of thousands of soft-
ware threads simultaneously [18]. Due to the highly-parallelized structure of
GPUs, their data-parallel computing power dwarfs that of traditional CPUs:
for algorithms well-suited to a GPU-based implementation, studies often find
speedups between 5 and 20 times the performance on even a state-of-the-art
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CPU1 [16]. GPUs are specialized to have far better performance for parallel
and floating-point computations.

There are two approaches to hardware-accelerated 3D data processing: fixed-
function and programmable pipelines. Both are exposed through APIs, however
fixed-function access is far more limited. Traditionally, GPU programmers were
provided functionality for configuring the rendering pipeline, but the way ver-
tices were transformed or lighting was calculated was fixed. More recently,
graphic cards have become better at handling general, parallel computations.
New APIs like Vulkan [19] provide the ability to submit custom instructions
(shaders) for handling vertex and fragment processing, allowing a more flexible
approach to rendering 3D geometry. Additional functionality for using GPUs
for general computation tasks (known as GPGPU) is exposed through compute
shaders [20] and such APIs as OpenCL [21] and CUDA [22].

The graphics pipeline consists of a sequence of steps that transform a math-
ematical model into an image on a screen (see Figure 1). These steps can be
divided into four sections: “vertex geometry processing and transformation, tri-
angle processing (through rasterization) and fragment generation, texturing and
lighting, and fragment-combination operations for assembling the final image”
[23]. Though the introduction of programmable pipelines means shaders are
replacing many stages of traditional fixed-functionality, the standard pipeline
model continues to be a good overview of the steps necessary for processing and
rendering 3D graphics [23].

Figure 1: Graphics pipeline (courtesy of Igor Glukhov).

Voxelization is a process whereby a polygonal mesh is transformed into a
voxel-based model (see Figure 2). A voxel (or “volumetric pixel”) is a cubic rep-
resentation of volume in a uniform grid [24], like a 3D pixel. Up until recently,
voxel use was by and large limited to medical imaging and other static mod-
els; however, their ‘stackability,’ simple storage of volumetric data, and clear
definition of the neighborhood surrounding each voxel [24] (as well as modern
hardware support for large computational requirements) allow for wider appli-
cability, especially in computer gaming. Voxels are advantageous for realistic
modeling of cellular automata (such as free-form materials like smoke or clay,

1See section 1.6.3 for a discussion of CPU to GPU comparisons.

9



which benefit from representation through atomically-analogous structures) [25]
and real-time interactivity and model manipulation [26] (meaning that, for ex-
ample, users can burrow into a game environment by removing voxels to reveal
others stacked below, whereas removal of surface polygons is not well-defined
by default).

Figure 2: Voxelization input polygon mesh (left) and voxelization result
(right). Input is the Stanford Bunny (courtesy of the Stanford Computer
Graphics Laboratory [27]).

Voxelization can be divided into two types: surface and solid. Surface vox-
elization concerns transforming a continuous polygonal surface. In recent years,
a range of voxelization approaches have been proposed, including tile-based
rasterization [8, 9], triangle stream processing [14, 28], and voxelization based
on inputted image data [29]. Solid voxelization is more involved than surface-
only, as it requires voxelizing the space contained within a model as well. A
straightforward approach simply sets the state of all voxels between two surface
boundaries as being ‘inside’, by flipping bits or flags [8], but another popular
method is employing slicing algorithms [30, 31], or some combination of the
two [32]. Common differences between modern voxelization algorithms involve
GPU- versus CPU-based implementation, fixed-function versus programmable
pipeline implementation, data structure output (generally, grid versus Sparse
Voxel Octree), and use of in-core versus out-of-core (extended memory) algo-
rithms; combinations of these attributes can have significant effects on perfor-
mance, and motivated our pursuit of a Schwarz and Seidel-based study.

Solid voxelization is more valuable as it provides results that contain volume
information- a big benefit of voxel-based 3D data representation. Additionally,
GPU-based approaches typically yield faster results and programmable pipelines
offer more flexibility in the results of voxelization. The combination of these
factors makes the Schwarz and Seidel tile-based, solid voxelization algorithm a
natural fit as the basis of our work. However GPU-based implementations are
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not straightforward and present many opportunities for improvement, which are
the focus of this study.

1.2 Problem definition
This study is performed for a host company with an existing CPU-based imple-
mentation of the Schwarz and Seidel algorithm. Considering GPU optimization
for data-parallel computing and the inherent parallelizability of the voxeliza-
tion process, we assume that translating the implementation to be GPU-based
would result in performance improvements. However, this is not a trivial task
and leaves space for evaluating various approaches. Therefore, this report aims
to compare different GPU-based implementations of one voxelization algorithm
in order to answer the question of how certain GPU hardware-aware approaches
affect memory requirements and execution time.

1.3 Purpose
The purpose of this degree project is to improve the performance of a tile-based,
solid voxelization algorithm by taking advantage of GPU-specific attributes for
increasing efficiency. This report explores four different GPU-based implemen-
tations of the same algorithm in order to compare their performance effects. It
aims to answer how naive, non-branching execution path, and pre-computational
approaches affect the runtime performance and memory usage of the voxeliza-
tion algorithm.

1.4 Goals
The goal of this project is to measure the effects of GPU-specific implementation
differences on a solid, tile-based voxelization algorithm. This has been divided
into the following sub-goals:

1. Measure the execution time in ms of the solid voxelization process from
beginning to end:

a. For a naive implementation
b. For a non-branching execution implementation
c. For a data pre-processing implementation
d. For an implementation combining the two previous approaches

2. Measure the maximal memory usage in bytes of the solid voxelization process
from beginning to end:

a. For a naive implementation
b. For a non-branching execution implementation
c. For a data pre-processing implementation
d. For an implementation combining the two previous approaches
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1.5 Research methodology
Evidence of the benefits of varying GPU-based implementations will be quanti-
tative (through benchmarking experiments), but rely on a qualitative analysis
of the relevance of chosen improvements. Our literature study and implemen-
tations are motivated by an analysis of academic research in the field of vox-
elization and GPU programmability. Our quantitative data collection method
is experimental [33], in order to determine algorithm performance and con-
clude the impact of the different implementations. Performance measurement
on multiple, voxelized models will result in data regarding time and memory
usage. Runtime directly impacts the usage of the algorithm, therefore reducing
it will improve workflow for the host company and possibly for future product
users. Increased memory usage imposes additional limitations for our voxeliza-
tions, such as the polygon count in input geometry or voxel count in the results,
so cutting it down is in the interest of performance as well.

1.6 Delimitations
1.6.1 Existing algorithm

The primary delimitation of this thesis involves its study of an existing al-
gorithm, rather than development of a novel voxelization approach. Though
various GPU implementations are applied, the abstract logic is based on the
work of Schwarz and Seidel in their tile-based, solid voxelization algorithm. We
do not intend to create our own algorithm and test it, as that would require
far more analysis than just GPU-based performance effects. We do, however,
choose the Schwarz and Seidel approach based off predetermined criteria for the
requirements demanded of the voxelization algorithm covered in this study, as
well as extend it with design decisions related to requirements from the host
company.

1.6.2 Single algorithm

Our secondary delimitation is keeping the scope within one algorithm, as op-
posed to comparing the performance of several voxelization algorithms. Our
initial objective was to qualitatively research and assess an algorithm with a
potentially improved performance compared to the host company’s implemen-
tation of the Schwarz and Seidel algorithm. However, after defining criteria for
the algorithm based off the attributes of the Schwarz and Seidel approach as
well as requirements put forth by the host company, we actually found the cur-
rent algorithmic approach to be preferable out of the ten others considered. All
other methods are also relatively modern (all proposed after 2000) and contain
a variety of interesting techniques, but do not fulfill the set criteria (see Table
1).

Our criteria, in order of importance, are listed and defined below:

• Volume voxelization - As voxelized models are to be used in the proce-
dural engine (meaning users interact with our results), we want volumetric
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data. Additionally, introducing underlying volumetric data can help com-
press resulting voxels.

• GPU-compatible - Must be implementable on the GPU using shaders
rather than the fixed-function pipeline.

• Attribute conserving - As the voxelization should be able to be volu-
metric, inferring voxel attributes (color, reflectivity, etc.) could prove a
large improvement to the result of the voxelization. This might cause an
overall slower voxelization, however it is necessary for the host company
results.

• Output to Sparse Voxel Octrees - The host company uses Sparse Voxel
Octrees for their voxel data, so algorithms that do not provide Sparse Voxel
Octree output will need another conversion step for the final result.

• In-core - Out-of-core algorithms are good for very large voxelizations,
either extremely large input meshes or large output grids. Our intended
use is limited in scope, so we relax this criterion and determine that an
in-core algorithm is sufficient for our use.

Algorithm Volume voxelization GPU-compatible Output to Sparse Voxel Octrees Attribute conserving Out-of-core

Our algorithm X X X X
Schwarz and Seidel [8] tile based X X
Schwarz and Seidel [8] sparse X X X

Pantaleoni [9] X X
Fang and Chen [30] X X

Liao [32] X X
Weng et al. [13] X X
Dong et al. [34] X X
Baert et al. [14] X X
Loop et al. [29] X X X

Pätzold and Kolb [28] X X X X

Table 1: Algorithm comparison on basis of criteria fulfillment

1.6.3 GPU-specific evaluation

Our tertiary delimitation regards restricting the comparative analysis to GPU-
based implementations, and disregarding CPU-based alternatives. Apart from
focusing on the GPU from an obvious performance improvement perspective,
studying CPU versus GPU performance can be tricky and require careful im-
plementation, experimentation, and evaluation [35], which are outside the scope
of this study. Comparisons between the two can skew favorably to GPUs when
studies do not consider that non-parallelizable tasks that are not offloaded to the
GPU must still be handled by the CPU, or that CPU implementation should be
optimized to a fair level through parallelization on multiple cores, cache-friendly
memory access, etc. [35]. Additionally, some algorithms are inherently less par-
allelizable and are thus better suited for general-purpose CPUs. However, when
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provided an initial implementation of the Schwarz and Seidel algorithm from
our host company, it was CPU-based; transferring it to the naive, GPU-based
implementation yielded significant performance improvements.

1.7 Structure of the thesis
Chapter 2 presents relevant background information about voxelization concepts
and GPU programmability, as well as related work regarding surface and solid
voxelization. Chapter 3 presents the experimental methodology, including de-
sign, implementation, data collection, and setup. Chapter 4 presents the tested
system, from design specifics to the actual implementation of the various ap-
proaches. Chapter 5 presents relevant results, followed by a discussion. Finally,
Chapter 6 presents conclusions and future work.

2 Background
This section introduces background concepts relevant to the topics covered in
this thesis.

2.1 GPU programmability
2.1.1 GPU computing

GPU computing takes advantage of the massively parallelized hardware avail-
able in modern graphics cards to perform many equivalent computations or
instructions concurrently and far more efficiently than a CPU. This is achieved
by bundling multiple arithmetic logic units (ALUs) into a SIMD unit and then
placing several SIMDs in a compute unit; a standard example is AMD’s Graphics
Core Next microarchitecture, which includes compute units (i.e. the hardware
that enables compute shader programmability) with 4 SIMDs, each with 16
ALUs [36]. SIMD stands for Single Instruction Multiple Data, meaning execut-
ing the same instruction over multiple work units- this is how the GPU is able
to perform a huge number of equivalent computations in parallel.

One argument passed into the compute shader is a thread index, but this
does not correspond to an individual thread as one might expect with a CPU.
Instead, the compute shader accepts a bundle of threads; this is commonly re-
ferred to as either a “wavefront,” a "workgroup," or a “warp” [37] (the last term
is NVIDIA-specific and describes a group of 32 threads). Threads do not take
individual branches, but rather all execute the same instructions concurrently;
in some cases, this may mean that results from some threads are thrown out
after the instruction is executed [37]. Also, having threads executing the same
instructions poses a thread divergence issue: if an execution path branches into
two, how do we handle the different cases? The solution is SIMT (Single Instruc-
tion Multiple Threads) architecture. SIMT falls under SIMD architecture, and
applies to processors that map thread execution paths during runtime. When
the processor reaches a split in the path, like an if statement, it disables some of
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the threads while the others execute the if case, and then vice versa for the else;
eventually, the threads converge again. As a result, all enabled threads within
a single warp still abide by the rule of executing the same instruction sequence
[38].

Instead of managing individual threads, compute units switch out work-
groups during memory operations in order to minimize latency [39]. GPUs are
designed for high throughput, hiding memory access latency by having a large
amount of work in-flight [38]. The SIMD nature of modern GPUs complicates
memory access of individual threads, as coalesced reads of contiguous blocks
of memory should result in faster execution time, but certain access patterns
are slower due to bank conflicts [38]. GPU shared memory is designed to be
accessed quickly and by all threads currently executing. However, accesses are
not coalesced and served in the same transaction as in “global memory”; instead,
the data is stored in banks which are then accessed by the enabled threads. The
problem here is that if two or more threads attempt to access different infor-
mation in the same bank (i.e. a bank conflict occurs), the bank must process
multiple transactions, which results in slower performance [38].

2.1.2 Graphics APIs

Interaction with the GPU is done via an API, like OpenGL [40], DirectX [41],
Metal [42], or Vulkan [19]. APIs provide methods for the application to draw
2D and 3D objects using hardware acceleration. More recent iterations provide
increased flexibility in how the objects are drawn by including the ability to
supply shaders (instructions on how vertices or colored fragments are processed)
to the GPU. Some APIs also provide methods for using the GPU for general
purpose computation, not just 2D and 3D geometry primitives. For this thesis
we use Vulkan’s general purpose computing capabilities.

2.1.3 Compute shaders

Shaders are the backbone of the GPU programmable pipeline because they allow
developers far more control over the specifics of what happens to vertices and
pixels, rather than relying on fixed functions which may be simpler to use, but
are limited in their range of capabilities. When shaders were introduced, each
type would generally correspond to a certain stage in the graphics pipeline; for
example, the vertex shader was designed to take the vertices of the triangles in a
mesh as input and process them to output values associated with those vertices,
such as position, color, texture coordinates, or triangle normal [24]. However,
having separate processors for different shaders can lead to poor load-balancing
and utilization, so “unified shaders” were developed; unified shaders consolidated
individual processors into one large grid which could handle vertex shader, pixel
shader, and geometry shader tasks [16, 20], as well as offer additional general
purpose computing functionality. Compute shaders, which were introduced as
part of DirectX 11, are an example of a shader that does not correspond to any
particular stage and acts as a form of GPU computing [24].
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2.2 Voxelization
2.2.1 Rasterization

Rasterization, a 2D variant of voxelization, is the process of identifying all pixels
contained within each triangle making up a polygonal mesh and outputting the
collections of pixels as fragments [23]. Since the 1990s, polygons have been the
default for representing geometric objects in computer graphics. While they can
be quadrilateral, polygons are almost always triangles with an order assigned to
their vertices; this order is important in identifying the inside versus the outside
of the polygon [23]. Complex 3D models are made up of polygons (generally
between hundreds [43] to hundreds of thousands [44] in the context of modern
video games) connected to form a mesh. However, because a screen display is
2D, rasterization is required to transform these models into a form that can be
displayed with pixels. This is a two-step process, beginning with computation
of triangle data (such as edge functions) based off the input from the previous
pipeline stage; more specifically, the triangle processing stage receives the coor-
dinate locations of all polygon vertices identified by vertex geometry processing,
as well as additional information such as the vertex normal, texture coordinates
or color [45]. The second step involves traversing the triangle pixel-by-pixel and
determining if the two overlap for each case.

The classic algorithm for testing if a point lies outside any edge of a triangle
involves edge functions (see Figure 3), and was proposed for rasterization by
Juan Pineda in 1988 [46]. Over forty years, many improved parallel rasteriza-
tion algorithms have been proposed which take advantage of massive hardware
improvements [47, 48] and pipeline programmability [49]; however, Pineda’s
method continues to be the basis of modern rasterization techniques.

(a) Single edge function. (b) Full triangle test.

Figure 3: Point-triangle edge function test (courtesy of Igor Glukhov).
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Pineda [40] defines an edge as a vector with two points (X,Y ) and (X +
dX, Y + dY ) and its edge function as

E(x, y) = (x−X)dY − (y − Y )dX

where (x, y) is the point (or pixel) being evaluated. This is mathematically
equivalent to calculating the cross-product of the vector from (X,Y ) to (X +
dX, Y + dY ) and the vector from (X,Y ) to (x, y).

The output of the edge function is positive when the point is to the “right”
of the edge, negative if it is to the “left” of the edge, and 0 if it is on the edge.
This has a clear application to rasterization, as one can simply evaluate all
pixels for “right” or “left” positioning in relation to each edge in the triangle
(“right” signifying the inside of the polygon for clockwise vertex order and “left”
for counterclockwise) in order to determine overlap.

2.2.2 Triangle-box test

The triangle-box overlap test developed and employed by Schwarz and Seidel
[8] in their algorithms is based off Pineda’s edge functions [46] and a Möller and
Aila paper which proposes a 2D variant of the test [50]. In order to perform a
conservative surface voxelization, the test needs to determine all voxels that a
triangle overlaps. Additionally, in order to allow efficient sequential and parallel
processing of many voxels at once, setup should be quick and only rely on data
regarding the triangle.

Schwarz and Seidel’s [8] test takes as input a triangle T with vertices v0, v1, v2
and an axis-aligned box B (representing a voxel) with a minimum corner p and
maximum corner p+∆p; axis-aligned means that the edges of the box are aligned
with the coordinate axes (i.e. for a 2D case, the vertical edges are parallel to the
y-axis and horizontal edges are parallel to the x-axis). They begin by calculating
the normal n of T (resulting from the cross products of all edge pairs) and the
critical point, given by

c =

({
∆px, nx > 0

0, nx ≤ 0

}
,

{
∆py, ny > 0

0, ny ≤ 0

}
,

{
∆pz, nz > 0

0, nz ≤ 0

})ᵀ

With these values, they can perform a plane overlap test (see Figure 4) to
determine whether the voxel in question is split by the triangle’s plane, if

((n, p) + d1)((n, p) + d2) ≤ 0

where d1 = (n, c− v0) and d2 = (n, (∆p− c)− v0).
This culls all voxels that do not intersect the plane, but does not guarantee

that the voxels that do are also overlapped by the triangle, since the triangle is
just a small section of an infinite plane. More 2D projection tests need to be
run, using Pineda’s edge function logic.

For each of the three coordinate planes (xy, xz, yz), Schwarz and Seidel
determine if the 2D projections of T and B in those planes overlap. For each
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(a) Line segment is an analog for a triangle. (b) Triangle-plane intersection
test

Figure 4: Plane overlap test (courtesy of Igor Glukhov). A line segment is a
1D analog of a 2D angle.

2D projection of B, the edge functions are evaluated at the corner that is ‘closest’
to the projection of T . For example, for the xy plane the 2D edge normal is

nxy
ei = (−ei,y, ei,x)

ᵀ ·
{

1, ∆nz ≥ 0
−1, ∆nz < 0

}
And by extension

dxyei = −〈nxy
ei , vi,xy〉+ max

{
0,∆pxn

xy
ei,x

}
+ max

{
0,∆pyn

xy
ei,y

}
where ei = vi+1 mod 3 − vi. With those values, they can test whether

2∧
i=0

(
〈nxy

ei , pxy〉+ dxyei ≥ 0
)

is true and, if so, know that there is overlap between the triangle and the box.
Additionally, they need to check that T ’s axis-aligned bounding box, which is
the box with the minimum dimensions to contain T , overlaps B. The same tests
can be run as for B and T , given T ’s bounding box, n, d1, d2, and nxy

ei , d
xy
ei ,

nxz
ei , d

xz
ei , n

yz
ei , d

yz
ei (i = 0, 1, 2).

2.2.3 Sparse Voxel Octrees

Similar to a binary tree, an octree is a data structure which can be used to repre-
sent volumetric regions. To construct a traditional octree, a 3D cubical volume
is recursively divided into eight congruent, disjoint cubes until a certain mini-
mum cube size or level is reached. Each node corresponds to a cube (or, more
specifically, a parent cube made up of eight child cubes); leaf nodes contain child
cubes that require no more subdivision and are entirely contained or entirely
outside of the volume [51]. Continuous 3D models cannot necessarily be broken
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down into cubes that are entirely contained or not, but once they are voxelized
into a discrete form, octrees become a natural representation. Each node cor-
responds to a voxel (or a collection of voxels in multiples of 8). A Sparse Voxel
Octree does not allocate nodes for empty regions of the total volume; instead of
including empty subtrees, it has leaf nodes that do not necessarily correspond
to individual voxels (i.e. at the highest resolution) [52].

Figure 5: An example octree of maximum depth 2 (courtesy of Igor Glukhov).
Note that a Sparse Voxel Octree can have leaf nodes at any level, not just at
the maximum depth.

One downside of voxel-based models is higher memory requirements com-
pared to polygon meshes. As resolution grows, the voxel storage increases by
O(n3) [24], whereas since every polygon is stored as a single unit, increasing the
polygon count results in a growth of O(n). The purpose of Sparse Voxel Octrees
is compacting memory layout, which saves space and reduces memory band-
width [52]; the hierarchical structure also improves the performance of traversal
algorithms, which are usually a linear function of the number of nodes in the
tree [51]. Laine and Karras [52] offer extensive information on Sparse Voxel
Octrees, including their method of storing voxel data, like shading attributes,
in conjunction with its parent, to avoid allocating storage for individual leaf
nodes.

Sparse Voxel Octrees offer the advantages of voxel-based 3D data represen-
tation, while reducing rendering and memory computational requirements [52].
Additionally, there are still existing assets and tools for working with or creating
meshes in traditional polygon form [53–56]. Therefore, voxelization offers the
convenience of working with meshes in polygonal form and the advantages of
representing data in voxel form.

2.2.4 Schwarz and Seidel algorithm

Schwarz and Seidel [8] introduce several versions of surface and solid voxeliza-
tion algorithms adapted for parallel GPU-based implementation, rather than
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using fixed-function rasterization. This frees the implementation from account-
ing for the gaps that appear in rasterization-pipeline-based surface voxelization
techniques. They extend to solid voxelization with a tile-based approach, which
serves as the basis for the algorithm studied in this paper (with the addition
of Sparse Voxel Octree format conversion). In tile-based solid voxelization, all
voxels contained in the 3D grid constituting the voxelization space are organized
into columns along one axis (they choose this as the x-axis and we choose z, but
ultimately this is irrelevant), which extend from the upper to the lower bound
of the discrete space; 16 of these columns together make up a 4x4 tile.

Tile-based solid voxelization consists of two stages: tile assignment and tile
processing. Tile assignment involves determining overlapped tile-triangle pairs
(see Figure 7). Within the 3D grid space lies the polygon mesh, and those
voxels that overlap the model will be part of the final discrete representation.
To assign triangles to tiles, Schwarz and Seidel [8] execute these steps:

1. Perform a first pass for all triangles in parallel to determine the number
of tiles that overlap their 2D projections in the yz plane (in our case, it
would be the xy plane). This requires storing just the integer number of
overlapped tiles in a data buffer.

2. Scan the buffer for the size of the required work queue and the queue offset
of each triangle.

3. Perform a second parallel pass through all triangles, this time to identify
overlapped tile-triangle pairs and writing them into the work queue, start-
ing at the triangle offset. This requires storing the offset, as well as the
values of tiles per triangle.

4. Sort the queue by tile.

5. Transform by compaction the list of triangle-tile pairs into a tile-triangle
list, removing duplicate entries.

In order to check which tiles overlap a triangle, Schwarz and Seidel [8] use a
triangle-point test, which is simpler than the triangle-box test, but uses similar
principles:

1. Derive the triangle’s bounding box and check whether the box overlaps
any voxel column center (i.e. whether it overlaps the tile).

2. If so, test those tiles whose voxel columns are overlapped by the bounding
box against the triangle, to determine voxel column center point overlap.
Both steps are performed using edge functions- the checks are analogous
to the second step in the triangle-box test.

Tile processing is the second stage of the algorithm and involves the ‘filling’
aspect of solid voxelization (see Figure 7):

20



Figure 6: Tile assignment (courtesy of Igor Glukhov). Light-gray are marked
tiles, dark-gray are overlapping columns.

1. Allocate one thread per voxel column to execute in parallel, though tri-
angles assigned to a tile are processed sequentially. The thread passes
through each voxel and tests for triangle-point intersection while main-
taining an active 32-bit memory segment and a flip bitmask corresponding
to all its segments (active and flushed).

2. If an overlap occurs, all voxels at the x index (for Schwarz and Seidel- z
index for us) and above until the upper bound of the column (or down
until the lower bound, as in our implementation (Figure 7 reflects our
approach)) are flipped. However, before voxels are set, perform a check
that the x index is in the thread’s active segment.

3. If not in the active segment, the active segment’s value is flushed to global
memory by a XOR operation, flipping all bits, and a new active segment
is chosen by q

32 (q being the x index) and initialized to zero.

4. Flip all bits for the corresponding voxels in the active segment, as well as
all bits in the flip bitmask corresponding to succeeding segments. When
the tile is processed, the bits within all segments whose bit in the bitmask
is flipped will be flipped themselves (i.e. the voxels corresponding to those
bits will be set). Atomic operations are avoided because each thread is
responsible for its own region of output memory.

Additionally, each thread sets up one triangle for the overlap test and stores
the precomputations in shared memory, in order to avoid all threads executing
this redundantly.
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Figure 7: Tile processsing (courtesy of Igor Glukhov). Dark-gray are filled
voxels, light-gray are voxels that were recently flipped back to empty state.

2.3 Related work
2.3.1 Surface voxelization

Though our work focuses on solid voxelization, we still felt it was relevant to
study recent surface voxelization algorithms in order to determine if there were
especially effective examples that could be paired with a volume filling algorithm
to fit our requirements. Baert et al. [14] propose an algorithm for voxelization
to Sparse Voxel Octrees which utilizes out-of-core (or external memory) algo-
rithms to allow all involved data structures to extend past available memory.
However, the mesh to Sparse Voxel Octree conversion requires an intermediate
3D voxel grid. Additionally, implementation is not GPU-based, and perfor-
mance results are slower than other, GPU-based methods. Pätzold and Kolb
[28] extend the previous algorithm to provide direct voxelization to Sparse Voxel
Octrees (also referred to as being “grid-free”), while remaining out-of-core and
GPU-based. Additionally, they also implement attribute-conservation, mean-
ing that triangle properties are conserved per-voxel to allow easier attribute
determination during the rendering stage. Pantaleoni [9] algorithm is a pro-
grammable, CUDA pipeline-based approach (taking advantage of vertex and
fragment shaders to create a flexible and extended pipeline) to surface vox-
elization. Apart from proposing only a surface algorithm, VoxelPipe also uses
anti-aliased buffers (A-buffers) in its bucketing mode for storing the list of frag-
ments which touch each voxel; the Schwarz and Seidel [8] approach is abstracted
for general-purpose GPUs and therefore do not rely on any particular storage
buffer or pipeline-specific techniques. Finally, an interesting sparse voxeliza-
tion algorithm proposed by Loop et al. [29] voxelizes a scene based on a set
of images and information about their origin (camera location, direction, etc.).
The parallelized, programmable GPU-based technique reconstructs 3D models
in real-time, however the voxel culling process relies on image data, which is not
relevant for our purposes.

22



2.3.2 Solid voxelization

We researched many solid voxelization algorithms in order to compare them
against the Schwarz and Seidel approach. Though several were discarded, there
were a few that proposed interesting methods, even if we decided to pursue
Schwarz and Seidel [8] in the end. Garcia and Ottersten [12] offer a CPU-based,
solid voxelization algorithm that takes as its input an incomplete point cloud
dataset, rather than a polygonal mesh. They approximate the point cloud to a
3D axis-aligned voxel grid by simply setting any voxels that contain at least one
point. This then allows surface voxelization through slice-wise construction of a
shell over the grid, followed by setting all voxels within each slice; the result is a
watertight surface and solid voxelization of the model. Liao [32] proposes a solid
voxelization algorithm with a focus on real-time representation of interior ma-
terials through dynamic use of different slice functions. Similarly to Schwarz’s
bit-flipping propagation method, Liao [32] employs surface parity flag toggling
to indicate whether depth buffer elements for each slice are volumetrically con-
tained within a model. He notes that the algorithm can be improved through
parallelization and by taking advantage of programmable pipelines.

Fang and Chen [30] were one of the first to implement voxelization on the
GPU. They created a slicing technique, using traditional (fixed-function) graph-
ics pipeline to voxelize one sheet (slice) of voxels at a time. Their approach works
for both solid and surface voxelization and is able to voxelize 3D geometry in
a variety of representations, supported by the traditional rendering pipeline for
drawing. Their approach is voxel-parallel and uses operations typically used
for color blending to achieve greater performance on GPUs. Due to the re-
laxed precision of color blending techniques in traditional pipelines the results
can be somewhat inaccurate, requiring use of anti-aliasing and thus increasing
computational requirements for the algorithm. An additional limitation is the
inherently dense approach, effectively checking every voxel in the axis-aligned
bounding box (AABB) of the drawn geometry. Dong et al. [34] put forth a pro-
grammable GPU-based, albeit older, approach to real-time voxelization. The
algorithm is made up of three stages: rasterization, where the triangle mesh is
converted into voxel space; texelization, where the voxels are encoded into three
directional (x-, y-, and z-axes) sheet buffers; and finally synthesis of the three
buffers into a final 2D texture (referred to as a “worksheet”) representation. Eise-
mann and Decoret [31] improve upon the Fang and Chen [30] approach, making
use of more recent graphics APIs and pipeline features, such as 3D textures
and bunching multiple layers of voxels per slice. They also present uses for the
resulting voxelization for calculating normals and density estimation. However,
as with the previous algorithm, they rely on traditional fixed-function pipeline
methods (specifically, using OpenGL on DirectX9 cards).
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3 Experimental methodology

3.1 Tested implementations
We test the following GPU-based implementations of a tile-based, solid voxeliza-
tion algorithm in order to compare and determine how GPU-specific approaches
impact performance (see sections 4.1 and 4.2 for further design and implemen-
tation descriptions):

1. The naive implementation is the simplest CPU to GPU migration of
the algorithm, meaning we assume that GPU architecture is somewhat
similar to CPU architecture in terms of performance characteristics.

2. The non-branching execution path implementation involves reduc-
ing conditional branching in the GPU instructions. This is done to min-
imize the thread divergence of the SIMT blocks on graphics cards, since
branching requires additional overhead for masking active threads and is
generally slower than arithmetic operations [57]; because of this we expect
the non-branching execution path approach to give a consistent runtime
performance improvement.

3. The data pre-processing implementation reuses common vertices in
the input geometry by redefining a triangle from three vertex coordinates
to three vertex indices. This reduces the memory usage of the input
geometry, since vertices in 3D meshes are usually shared between multiple
triangles. We expect the reduced memory usage to increase performance
in memory-bandwidth-limited cases, since less data needs to be transferred
and some data will be reused, increasing the cache hit rate. However, this
makes the memory access non-uniform, which may decrease performance
in cases where the computation is not limited by the memory bandwidth.

4. The combination implementation is a combination of the second and
third approaches, to see if combining these potential improvements will
have a greater positive impact. We expect the performance effect to be a
combination of the effects of the two composing approaches, although it
is possible that one will dominate over the other.

3.2 Experimental setup and data collection
3.2.1 Models

We run performance experiments on the four implementations by voxelizing a
range of standard polygon meshes (four, variantly-sized models):
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(a) Stanford Bunny mesh. (b) Utah Teapot mesh.

(c) Stanford Dragon mesh. (d) XYZ RGB Dragon mesh.

Figure 8: The tested meshes, consisting of (a) 4 968, (b) 6 320, (c) 871 414,
and (d) 7 218 906 triangles (courtesy of Stanford Computer Graphics Labora-
tory [27]).

3.2.2 Experimental design and implementation

All the implementations are first tested manually to make sure they work as
expected (i.e. the voxelized output is correct). Then, the four approaches are
executed sequentially to form a ’run’. In the experiments, we perform 16 runs for
each of the four result grid sizes (1283, 2563, 5123, and 10243 voxel grids). This
process is performed once per tested input mesh (see Figure 8). The resulting
process is then run once for each of the three testbeds. See Figure 9 for an
overview.

The times for each step are recorded by saving a time-stamp with a C++
standard high-resolution clock on the CPU, before issuing the first instruction
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Figure 9: Experiment design structure.

to the GPU for a given step and after the GPU is done processing. Since the
implementation is done on top of the host company’s infrastructure, some addi-
tional variance and overhead might be present; however, overhead should stay
consistent between experiments on the same test bed. The time measurements
include setup, allocation, data transfers, and synchronization and are thus rep-
resentative of real-world performance.

3.2.3 Data collection

We record the following data points:

• The number of triangles in the input mesh - Used to identify cases
where setup time takes longer based on the size of the inputted model.

• The size of the resulting voxel grid - Used to identify cases where
voxelization may take longer because of a larger resulting grid size.

• The number of tile-triangle overlaps - Used to identfy how big a given
workload is per tile, and whether the voxelization performance suffers as
a result.

• The sizes of GPU-allocated data buffers - Used to identify the GPU
memory requirements for a given implementation.

– Input geometry buffer

– Result buffer

• The duration of each step in high resolution clock cycles - Used
to identify which stage of voxelization has the biggest effect on runtime.

– Setup

– Tile counting

– Prefix scanning

– Sorting

– Marking unique tiles

– Stream reducing
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– Voxelization

– Conversion

Based off this data, we analyze the performance impact of each GPU-based
implementation approach. We identify the mean runtimes and memory usages
(inferred from sizes of GPU-allocated data buffers) for the sets of data regarding
time duration and memory usage of the voxelization process for each model on
all three testbeds, and then plot the mean. Since the graphics card used affects
runtime, we have one runtime graph for each testbed. We compare the durations
of voxelization to the result grid sizes for each implementation.

The GPU memory requirement is calculated for each of the 7 voxelization
steps, based on input mesh and output grid size parameters. Since each step
is done independently, the biggest requirement sets the limitation for the algo-
rithm. Note that the instructions (shaders) and pipeline infrastructure metadata
introduce additional overhead, however it is dependent on the platform (graph-
ics drivers, GPU manufacturer, API version, etc.) and the difference between
approaches should be negligible for larger output grids or input meshes, where
the overhead would impose a practical limitation.

3.3 Testing environment
3.3.1 Hardware

Testbed GPU CPU RAM
1 NVIDIA GTX 1070 Core i7-6700 16GB @ 2133 MHz
2 NVIDIA RTX 2070 Core i7-6700K 32GB @ 2400 MHz
3 AMD RX Vega 64 Ryzen 5 1600X 16GB @ 2400 MHz

Table 2: Testbed hardware setups

3.3.2 Software

The graphics card driver version used is 430.64 for the NVIDIA cards and 19.5.2
for the AMD RX 670 card. The system is run on the Windows 10 OS. The code is
written using C++, compiled with Microsoft Visual C compiler and the Vulkan
graphics API; we utilize the infrastructure provided through the host company’s
game engine, but all code related to the voxelization process is of our own doing
(any other references to the host company’s work are left intentionally vague).

4 Design and implementation
Though the three individual, GPU-based approaches vary in implementation,
their differences are primarily shader-based; overall, the algorithmic logic be-
tween them remains by and large the same. Therefore, we provide a general
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design and implementation descriptions in the following sections, which precede
and serve as a basis for the GPU-based approach specifics.

4.1 Design
The base design for our algorithm implementation is illustrated by the flowchart
in Figure 10.

4.1.1 Naive approach

As mentioned in section 3.1, the naive approach is the simplest migration from
a CPU- to GPU-based implementation; this means that there are GPU-specific
characteristics that we disregard. Firstly, we ignore that branching execution
paths are known to be slow due to thread divergence handling (explained in
section 2.1.1). Instead, we treat each thread as if it were independent, as we
would on a CPU. Secondly, we assume that vector operations are still less effi-
cient than simple type operations, when in fact they are performed equivalently
on a GPU; for example, vector multiplication is just as fast as single. This is
due to the GPU’s capability of performing many parallel computations at once,
rendering matrix operations trivial. Additionally, the input geometry data is
not processed and simply passed to the GPU by vertex positions.

4.1.2 Non-branching execution path approach

The non-branching implementation aims to avoid thread divergence by reduc-
ing the number of branches in execution paths- the less divergence handling
required, the quicker the voxelization performance. This is done by avoiding
if statements; if statements force some threads to take the if case while others
take the else, so rewriting the code to eliminate them decreases cases of thread
divergence.

4.1.3 Data pre-processing approach

For our data pre-processing approach we split the input geometry buffer into
two, reducing their total size by reusing vertex position data. Rather than stor-
ing the input geometry as one contiguous array of vertices, the input geometry
is processed, yielding a set of unique vertices and an array of indices of vertices
per triangle. This reduces average triangle memory usage, as triangles sharing a
vertex do not have duplicate position data (see Figure 12). The reduced mem-
ory footprint will reduce memory bandwidth used by the initial stages of the
algorithm.

4.1.4 Combined approach

The combined approach incorporates data pre-processing into the non-branching
execution path design. This combines their strengths and weaknesses and may
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Figure 10: Base implementation of solid voxelization algorithm
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not be as beneficial as the sum of their individual performance effects, in case
they counteract each other.

4.2 Implementation
The base implementation of our algorithm follows these steps:

1. The GPU Voxelizer class performs all voxelization processes, namely in-
teracting with the GPU, allocating any necessary resources, issuing com-
mands, and retrieving the result. It contains a Model struct, which rep-
resents the polygon mesh with one array, containing all vertex positions
corresponding to each triangle, without regard for duplicate vertices.

2. The overarching volume voxelization method takes 2 arguments: the path
to the model file and the size of the output grid.

3. The volume voxelization method:

• Performs a GPU capabilities check to make sure it supports all nec-
essary operations.

• Loads the mesh model from the provided file, calculating the size of
the loaded mesh.

• Calculates the transformation necessary for the model to be within
the result grid.

• Allocates GPU resources, namely data buffers for input and output
and a pipeline for a given compute shader, which includes all neces-
sary information, such as which buffers are going to be used for input
and output, the descriptor sets for those buffers, and the command
buffer for the compute pass.

• Performs the voxelization passes:

(a) The first pass takes the geometry data and voxelization parame-
ters as input, transforms the vertex position with the transforma-
tion calculated during the model loading process, and calculates
the per-triangle constants and the number of tiles overlapped by
a given triangle. It is triangle-parallel, meaning that one thread
is allocated per triangle.

(b) The second pass takes the number of overlapped tiles calculated
by the previous one and performs an exclusive scan on them,
outputting offsets for a given triangle to write its overlapped
tile-triangle pair to. This is also done in triangle-parallel fashion,
allocating the smallest number of workgroups that fully contain
the number of triangles. The size of a workgroup is dependent
on hardware, but is typically around 1024 threads.
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(c) The third pass takes triangle constants from the first pass and
the offsets from the second pass and writes the overlapping tile-
triangle pairs into the output buffer. This is also done per-
triangle. The pairs contain tile coordinates and the triangle index
(see Figure 11).

Figure 11: Tile data structure

(d) The fourth pass sorts the pairs. We employ bitonic sort along
with an optional padding pass, populating the rest of the tile-
triangle pair buffer with dummy pairs, until the buffer tile count
is an exact power of two. The sorting is done in-place, meaning
the input and the output are the same buffer and in pair-parallel
fashion, allocating one thread per pair.

(e) The fifth pass marks unique tiles in the pair buffer. The marks
are written to a different buffer, with a pair’s index in the buffer
if it is different from the previous one or zero if it is the same.

(f) The sixth pass is currently done on the CPU. It performs stream
compaction on the unique marker buffer, populating a buffer
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with only non-zero values. This is done linearly by the CPU by
appending a non-zero index to the offset buffer for the last pass.

(g) The seventh pass is the tile-parallel voxelization pass. Its inputs
are triangle constants, voxelization parameters, tile offsets from
the previous pass, and the tile-triangle pairs. For each tile, it goes
through its overlapped triangle list and flips all voxels below the
intersection point of a given column in the tile. The final output
is the result voxel grid. The pass is done in tile-parallel fashion,
allocating one workgroup per tile, which consist of 4x4 threads,
each dedicated to its own voxel column.

4. The last step of the voxelization is translating the results from the inter-
mediate, dense, grid format to the host company’s Sparse Voxel Octree
format. This step is excluded from our results, as the specifics of the
format are not important and are likely to be different depending on the
voxelization’s intended use.

4.2.1 Naive approach

The naive approach does not have any special implementation characteristics
outside of the base implementation described in the previous subsection.

4.2.2 Non-branching execution path approach

We avoid the if statements present in the naive approach by taking advantage of
a typecasting trick: when converting a boolean to a float, the behavior is well-
defined in that a false value results in 0.0, while a true results in 1.0 [40]. Based
on this, instead of conditionally manipulating data, the manipulation always
occurs, but does not change the data if the condition is false. For example,
when calculating triangle constants, instead of having an if condition to check
whether the normal is negative to reflect the edge normal direction (as in the
naive implementation),
i f normal . z < 0 :

edgeNormalDirect ion ∗= −1

the edge normal direction is always multiplied by 1.0 when the condition is false
and -1.0 when the condition is false:
edgeNormalDirect ion ∗= 1 − 2 ∗ f loat ( normal . z < 0)

4.2.3 Data pre-processing approach

The pre-processing implementation is mainly done on the CPU. The triangle
data structure is changed from the naive implementation by introducing a second
array: the index buffer (bottom array in Figure 12). Each element corresponds
to the position of a triangle’s vertices in the vertex buffer (top array in Figure
12). The input geometry is processed per vertex: we insert a vertex into a set
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Figure 12: Triangle data structure

(if no equivalent vertex is already present (to avoid duplicates)) and append the
index of the vertex in the set to the triangle buffer. To assemble a triangle’s
three vertex positions on the GPU, the shader retrieves the indices of the three
vertices and then retrieves the vertex positions by their indices. This makes
memory access less predictable, as many triangles may share the same vertex
positions. However, it also lowers the bandwidth requirement for a triangle, as
indices are smaller compared to vertex positions and the common positions will
be cached, increasing their following retrieval time.

4.2.4 Combined approach

The combined approach simply includes changes from both the data pre-processing
and non-branching execution path implementations.

5 Results and analysis

5.1 Major results
The following subsections present relevant data collected from 3072 voxelization
runs over three testbeds (NVIDIA GTX 1070 card, NVIDIA RTX 2070 card,
and AMD RX Vega 64). All raw, aggregated, and graphed data can be accessed
through the links in the Appendix. However, for the purpose of drawing conclu-
sions on the performance of the four algorithm implementations, we only directly
reference the mean runtimes (with and without considering the time-demanding
pre-processing setup), the relative performance of the GPU-based implementa-
tion changes compared to the naive approach, and the memory requirements.
Since the experimental voxelizations were performed on four different models,
we also chose the graphs for models which best showcase the behavior of the
four GPU-based approaches.
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5.1.1 Mean runtime performance

The following three pairs of graphs (Figures 13, 14, and 15) present the mean
runtime in ms of the voxelization process for the Stanford Bunny (smallest mesh)
and the XYZ RGB Dragon (largest mesh) models on each testbed. The grid
size unit on the x-axis refers to the number of voxels on one face of the resulting
discrete space, meaning that for a grid size of 128, the result grid is actually a
128x128x128 voxel cube.

The different approaches resulted in essentially equivalent runtimes for the
smaller mesh (left graph in Figures 13, 14, and 15), while the larger mesh re-
vealed clearer variation between performance (right graph in Figures 13, 14,
and 15) (see section 5.1.2 for a summary of the relative performance effects
on all models). However, in both cases the non-branching execution path ap-
proach improved the mean runtime compared to the naive approach, whereas
the performance effect of the pre-processed and combination approaches varied
between graphics cards.

Figure 13: Mean runtime performance results for Stanford Bunny and XYZ
RGB Dragon meshes on NVIDIA GTX 1070 card. Does not include the pre-
processing step.
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Figure 14: Mean runtime performance results for Stanford Bunny and XYZ
RGB Dragon meshes on NVIDIA RTX 2070 card. Does not include the pre-
processing step.

Figure 15: Mean runtime performance results for Stanford Bunny and XYZ
RGB Dragon meshes on AMD RX Vega 64 card. Does not include the pre-
processing step.
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Stanford Bunny Utah Teapot Stanford Dragon XYZRGB Dragon
128 127 ms 117 ms 224 ms 752 ms
256 150 ms 132 ms 239 ms 775 ms
512 157 ms 151 ms 283 ms 842 ms

1024 283 ms 201 ms 539 ms 1104 ms

Table 3: Average voxelization times for different meshes, excluding pre-
processing time.

5.1.2 Relative runtime performance

The following three pairs of graphs (Figures 16, 17, and 18) present the relative
runtime performance impact of the changed voxelization implementations; the
naive approach is used as the baseline.

Figure 16: Relative runtime improvement results for Stanford Bunny and
XYZ RGB Dragon meshes on NVIDIA GTX 1070 card. Does not include the
pre-processing step.

For the Stanford Bunny mesh (Figure 8a) the non-branching execution path
had the best performance for all grid sizes with an average improvement of
5% over the naive approach. The pre-processing approach performed closer to
the naive one, ranging from being 1% slower to 2% faster, disregarding the
pre-processing step (which is negligible for the 4968 triangles of the Bunny
mesh). The combined approach always performed worse than the non-branching
execution path, but faster than the naive approach. The results for the Utah
Teapot mesh (Figure 8b) are very similar to the ones for the Bunny.

For the Stanford Dragon mesh (Figure 8c, 871414 triangles), the results di-
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Figure 17: Relative runtime improvement results for Stanford Bunny and
XYZ RGB Dragon meshes on NVIDIA RTX 2070 card. Does not include the
pre-processing step.

Figure 18: Relative runtime improvement results for Stanford Bunny and
XYZ RGB Dragon meshes on AMD RX Vega 64 card. Does not include the
pre-processing step.

verged for AMD and NVIDIA graphics cards. On NVIDIA, the non-branching
execution path was always the fastest, being about 4% faster than the naive
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approach. The pre-processed approach performed similarly to the naive one,
ranging from 3% slower to 3% faster. The combined approach was marginally
faster than the pre-processed approach, but always performed worse than the
non-branching execution path alone. On the AMD RX Vega 64 however, all
other implementations were faster than the naive approach. The smallest im-
provement was from the pre-processed one, which ran 6% faster than naive.
The non-branching execution path performed significantly better, being on av-
erage 17% faster than the naive approach. The combined approach had the best
improvement, at around 21% quicker runtime performance.

Finally, for the largest XYZ RGB Dragon mesh (Figure 8d, 7218906 trian-
gles), the non-branching execution path was not always the quickest, however
was still consistently 5% faster than the naive approach on NVIDIA GPUs. On
the AMD RX Vega 64 graphics card, the non-branching execution path averaged
28% runtime performance improvement. On the NVIDIA RTX 2070, the pre-
processed approach diminished performance significantly, running on average
40% slower than the naive approach. However, on the GTX 1070 the pre-
processed approach performed on par with the non-branching execution path
one, and on the AMD RX Vega GPU it also had a significant performance im-
provement of 10%. The combined approach was a simple combination of the
two other ones, being over 40% faster on the AMD RX Vega, 10% faster on the
GTX 1070, and 30% slower on the RTX 2070.

5.1.3 Mean runtime performance with pre-processing

The following three pairs of graphs (Figures 19, 20, and 21) present the mean
runtime performance, but with the addition of the pre-processing step of the
data pre-processing approach. The distinction between the pre-processed imple-
mentation with and without the actual pre-processing stage is that the former
includes the first step for pre-processing the input geometry and compressing
the vertex array, while the latter uses the data from the pre-processing stage
(i.e. keeping the shaders and pipelines for processing the new geometry struc-
ture), but does not consider the runtime added by the actual pre-processing.
The reason for this distinction becomes clear when we see that for large meshes,
like the XYZ RGB Dragon, pre-processing alone runs for 5 times longer than
the rest of the voxelization process.
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Figure 19: Mean runtime performance results with pre-processing step for the
Stanford Bunny and XYZ RGB Dragon meshes on NVIDIA GTX 1070 card.

Figure 20: Mean runtime performance results with pre-processing step for the
Stanford Bunny and XYZ RGB Dragon meshes on NVIDIA RTX 2070 card.

The data pre-processing step took on average 1.5 ms for the Stanford Bunny,
1.6 ms for Utah Teapot, 501 ms for Stanford Dragon, and 4570 ms for the XYZ
RGB Dragon meshes. In other words, pre-processing the geometry took roughly
the same amount of time as the rest of voxelization to the 10243 voxel grid for
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Figure 21: Mean runtime performance results with pre-processing step for the
Stanford Bunny and XYZ RGB Dragon meshes on AMD RX Vega 64 card.

the Stanford Dragon mesh, and took significantly longer than the rest of the
voxelization process for the XYZ RGB Dragon mesh.

5.1.4 GPU memory requirement

The following pair of graphs (Figure 22) presents the maximum memory re-
quirements (in mebibytes) of the voxelization processes on the Stanford Bunny
and XYZ RGB Dragon models. In this case, the four implementations are col-
lapsed into two pairs: the naive and non-branching approaches, which have the
exact same memory footprint, and the pre-processed and combined approaches,
which are designed to improve memory performance. VRAM stands for Video
Random Access Memory and represents memory for data local to the graphics
cards.

The memory requirements of the algorithm depend on the number of trian-
gles in the input geometry and the result grid size. The result of the data pre-
processing technique was a roughly 20% smaller memory footprint of the input
geometry. For particularly large meshes, such as the Stanford Dragon or XYZ
RGB Dragon, a relatively large amount of memory is required to process the ge-
ometry in the first voxelization stage. For such cases, the compression achieved
through reusing vertex positions with our pre-processing approach lowers the
memory requirement for the whole algorithm. However, for larger output grids
the final voxelization stage is still the limiting factor, which does not depend on
triangle position data representation.
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Figure 22: Memory requirements for Stanford Bunny and XYZ RGB Dragon
mesh voxelization.

5.2 Discussion
5.2.1 Runtime performance

Unsurprisingly, the voxelization runtime varies significantly between different
hardware configurations and input geometry. If we consider the naive approach
as the baseline, the non-branching execution path increased the performance
of the voxelization algorithm without introducing new limitations. The data
pre-processing approach would only occasionally increase performance, but the
gained performance would be much smaller than the cost of doing the pre-
processing step. The combined approach had the negative cost of the pre-
processing step and did not yield significantly better performance than just the
non-branching execution path one.

The results for the non-branching execution path approach align with our
expectations of a small, consistent runtime performance improvement at no
additional cost. The data pre-processing provided unsatisfactory runtime per-
formance results, likely due to resulting non-uniform memory access. Even in
memory-bandwidth-limited cases (GTX 1070, RX Vega 64) the performance
gained was marginal compared to the cost of doing the pre-processing, and in
non-memory-bandwidth-limited cases (RTX 2070) it degraded the performance
significantly. The combined approach performance was dominated by the effects
of the pre-processing, which was somewhat expected, since it has the bigger im-
pact.

We note that the differences in runtime performance between different ap-
proaches were significantly bigger on the AMDGPU than on the NVIDIA GPUs,
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however the non-branching execution path is still the most consistent and, usu-
ally, bigger improvement for both vendors.

5.2.2 Memory performance

The data pre-processing step reduced the memory requirement for the input
geometry, however it only made a difference for the biggest XYZ RGB Dragon
mesh. For other meshes, both pre-processed and non-pre-processed approaches
had the same memory requirements for the 10243 voxel grid. The memory
requirement of the whole algorithm is typically limited by the last step in the
voxelization process, which depends on the number of triangles of the input mesh
and the size of the output grid. Since the result grid memory footprint grows
exponentially, reducing the linearly-growing footprint of the input geometry is
insufficient to significantly reduce the memory limitation of the voxelization
algorithm.

6 Conclusions and future work

6.1 Conclusions
Of the four approaches studied, the non-branching execution path is clearly su-
perior. It does not introduce additional costs or bottlenecks to the algorithm and
gives a consistent performance improvement over the naive approach. The data
pre-processing approach we used did not give a consistent runtime performance
improvement and is therefore not recommended, even if it is pre-computed on
the input mesh. Doing the pre-processing incurs a significant cost that outweighs
any potential performance improvement. The combined approach performance
was dominated by the data pre-processing and would usually result in worse
performance than just the non-branching execution path.

The memory requirement grows exponentially with the resulting grid size,
therefore the reduction in the linearly-growing input geometry memory footprint
is insufficient to reduce the memory limitation of the voxelization algorithm.
Thus, we conclude that the vertex-reusing pre-processing technique we explored
in this thesis is not fit for significantly reducing the memory requirements of the
voxelization algorithm.

We conclude that the non-branching execution path is a worthwhile improve-
ment to the voxelization algorithm, resulting in a consistently reduced runtime
of the algorithm and incurring no additional costs. It is also relatively simple
to implement and will likely work for other GPU-based algorithms.

6.2 Limitations
There are a few limitations regarding our study and results, including other
possible improvements for GPU-based implementations of different algorithms
that we did not explore, such as reducing memory bank conflicts or improving
cache hit rate for the input geometry [58].
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We also only tested our implementations on GTX 1070, RTX 2070 and
RX Vega 64 graphics cards, which all belong to the two latest generations of
graphics hardware. The improvements might differ significantly compared to
older technology [38].

6.3 Future work
After implementing the different approaches and running the experiments, we
found a paper detailing a method by Sander et al. [58] for improving the cache hit
rate, which could have affected the data pre-processing approach performance.
Unfortunately, we did not have time to incorporate it, but this could be tested
in future runs.

As GPGPU hardware evolves, other improvements may arise or the ones
presented might become obsolete. Also, memory and processing speeds increase
at different rates, meaning reducing the proportion of one to the other might be
more beneficial in the future and require a different approach altogether.
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Appendix

Raw data
The raw, aggregated, and graphed data gathered from the experiments can be
found at:
https://drive.google.com/open?id=1SDkuNLgjfBDIEu_Qk4eUlsVdyPChzYjy
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