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Males produce numerous sperm in a single ejaculate that greatly outnumber their potential egg targets. Recent studies found

that phenotypic and genotypic variation among sperm in a single ejaculate of a male affects the fitness and performance of the

resulting offspring. Specifically, within-ejaculate sperm selection for sperm longevity increased the performance of the resulting

offspring in several key life-history traits in early life. Because increased early-life reproductive performance often correlates with

rapid ageing, it is possible that within-ejaculate sperm selection increases early-life fitness at the cost of accelerated senescence.

Alternatively, within-ejaculate sperm selection could improve offspring quality throughout the life cycle, including reduced age-

specific deterioration. We tested the two alternative hypotheses in an experimental setup using zebrafish Danio rerio. We found

that within-ejaculate sperm selection for sperm longevity reduced age-specific deterioration of fecundity and offspring survival

but had no effect on fertilization success in males. Remarkably, we found an opposing effect of within-ejaculate sperm selection

on female fecundity, where selection for sperm longevity resulted in increased early-life performance followed by a slow decline,

while females sired by unselected sperm started low but increased their fecundity with age. Intriguingly, within-ejaculate sperm

selection also reduced the age-specific decline in fertilization success in females, suggesting that selection for sperm longevity

improves at least some aspects of female reproductive ageing. These results demonstrate that within-ejaculate variation in sperm

phenotype contributes to individual variation in animal life histories in the two sexes and may have important implications for

assisted fertilization programs in livestock and humans.
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Impact Summary
One male produces thousands to millions of sperm in a

single ejaculate but only very few end up fertilizing an

egg. The sperm within an ejaculate vary not only in their

shape and performance, but also in the genetic material

that each of them carries. The variation among sperm

within an ejaculate has long been thought to be of little

consequence for the resulting offspring. However, here

we show that when we select for the longer lived sperm

within the ejaculate of male zebrafish, the resulting off-

spring is much fitter than their full siblings sired by the

shorter lived sperm of the same male. More specifically,

offspring sired by longer lived sperm produce more and

healthier offspring throughout their life and age at a

slower rate. This is a surprising result, which suggests
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that it is important to understand how sperm selection

may contribute to the fitness of the next generations.

Our findings not only have important implications for

evolutionary biology but potentially beyond into areas

that use assisted fertilization technologies.

Sexual reproduction in eukaryotes requires the alteration be-

tween a diploid and a haploid phase (Mable and Otto 1998). A

large majority of animals spend most of their life as diploid organ-

isms, which alternates with a very short haploid gametic phase.

Nevertheless, even a short phase may offer a window for selection

to act upon, particularly in male gametes that vary substantially

in phenotypes (Holt and Van Look 2004) and genotypes (Wang

et al. 2012) and are often exposed to various environmental chal-

lenges (Birkhead et al. 1993; Keller and Reeve 1995). However,

a long-standing and common belief holds that selection on ma-

ture sperm is of little consequence for the following generation

because gene expression is thought to be minimal at the post-

meiotic stages (Eddy 2002). Nevertheless, empirical evidence for

gene expression in haploid spermatids is increasing (Fujimoto

et al. 1984; Barreau et al. 2008) and the scope for haploid gene

expression and hence selection may be more important than as-

sumed so far (Joseph and Kirkpatrick 2004; Immler 2008; Immler

and Otto 2018). Even though the haploid phase is rather short in

predominantly diploid organisms, selection occurring during the

haploid gametic phase may have far reaching consequences for

basic evolutionary processes including the rate of adaptation (Orr

and Otto 1994), the genetic load (Charlesworth and Charlesworth

1987; Otto et al. 2015), and genetic variation more generally

(Immler et al. 2012; Immler and Otto 2018). However, empirical

evidence for these effects is still scarce. Selection on longer lived

sperm within the ejaculates of a marine ascidian Styela plicata

resulted in an increase in hatching success and survival (Crean

et al. 2012). A similar study in the Atlantic salmon Salmo salar

showed effects of sperm longevity on time until hatching (Immler

et al. 2014). More recently, a study in the zebrafish Danio rerio

provided strong evidence for the impact of selection at the hap-

loid sperm level on offspring survival and reproductive success

and linked sperm phenotype to sperm genotype (Alavioon et al.

2017). These findings suggest that selection on sperm is likely

to have a general impact on offspring fitness and will affect an

organism throughout life. In this study, we set out to further test

how selection on sperm longevity affects life history traits in male

and female offspring.

Previous studies suggest that within-ejaculate sperm selec-

tion on sperm longevity has positive effects on a number of impor-

tant life-history traits in the resulting progeny, such as early-life

survival, embryo viability, cell apoptosis, and reproductive fitness

of male offspring (Alavioon et al. 2017). Specifically, adult males

sired by longer lived sperm produced more and faster swimming

sperm, which resulted in a higher fertilization success and more

offspring early in life when spawning with control females com-

pared to their male siblings sired by unselected sperm. Because

the “disposable soma” theory of ageing (Kirkwood et al. 1979;

Kirkwood and Austad 2000) states that ageing results from the re-

source allocation trade-offs between investment in reproduction

and investment in somatic maintenance, and because increased

investment in early-life fitness can come at the cost of late-life fit-

ness (Lemaı̂tre et al. 2015), it is reasonable to predict that within-

ejaculate sperm selection can contribute to accelerated ageing in

both sexes, but especially in males. Sexual selection theory sug-

gests that because male reproductive success is more variable than

female reproductive success (Andersson 1994; Bateman 1948),

males stand to gain more than females from increased invest-

ment in early-life reproduction to the detriment of their long-life

reproduction and survival (Bonduriansky et al. 2008; Maklakov

and Lummaa 2013). Indeed, several studies suggested that in-

creased investment in sperm quality trades off with other costly

traits, such as immune response (Simmons 2012), which can have

negative implications for survival. For example, one recent study

suggested that increased sperm competition led to the evolution of

male semelparity in marsupials (Fisher et al. 2013). Such a “live

fast, die young” reproductive strategy can result in rapid repro-

ductive ageing in high-quality males (Hunt et al. 2004; Hooper

et al. 2018).

However, the payoffs from strategic investment in early-life

reproduction for males depend on the ecology and the mating

system of the species and are far from being universal (Hooper

et al. 2018). Therefore, it is also possible that within-ejaculate

sperm selection selects for higher quality offspring of both sexes

that will exhibit better reproductive performance throughout their

life cycle and will thus not only enjoy increased fitness but

also decelerated reproductive ageing. Here, we studied the ef-

fect of within-ejaculate sperm selection on sperm longevity on

age-specific life histories of male and female zebrafish Danio re-

rio. We were primarily interested in the two following questions:

(i) Does within-ejaculate sperm selection accelerate or decelerate

reproductive ageing? (ii) Does within-ejaculate sperm selection

affect male and female offspring differently? In order to address

these questions, we investigated the effect of within-ejaculate

sperm selection on sperm longevity on age-specific fertilization

success, embryo survival, and fecundity in the two sexes.

Materials and Methods
ANIMAL MODEL

For all experiments, we used zebrafish Danio rerio from the

outbred wild-type AB strain originally obtained from ZIRC
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(Zebrafish International Resource Center, University of Ore-

gon, Eugene, USA) and maintained at the SciLifeLab ze-

brafish platform at Uppsala University (http://www.scilifelab.se/

facilities/zebrafish/) for up to two generations following a strict

outbreeding regime. The fish were kept in 3-L tanks in a recircu-

lating rack system (Aquatic Habitats, Beverly, MA, USA, Z-Hab

System) at 26.4 ± 1.4°C and a 12:12 diurnal light cycle. They

were fed two to three times a day with a mixture of dry food

(Aquatic Habitats, Zeigler adult zebrafish diet) and live artemia

(ZM Brineshrimp Cysts).

IN VITRO FERTILIZATIONS

All the fish used for in vitro fertilizations (IVF) and outcrosses

were kept in 3-L tanks at densities of 15–20 fish in mixed sex

groups. One day before the experiment, the males were separated

into unisexual groups of three and kept overnight. The experi-

mental females were kept in breeding tanks with a company male

using a separator (smell and visual contact). Each tank contain-

ing experimental females was covered by a black cloth until next

morning (to avoid light-induced oviposition). Males and females

were not fed for 20 h before the experiment to avoid fecal con-

tamination of sperm and egg samples.

Females and males were anesthetized using 1.0–3.0 mg/L

metomidate hydrochloride (AquacalmTM) or in 0.16 g/L Tricaine

methanesulfonate (MS222; Sigma–Aldrich). Males were placed

on a soft and wet sponge and squeezed gently in cranio-caudal

direction to collect the ejaculate under a dissecting microscope

(Nikon SMZ800). From each male, 0.7–0.8 μL of ejaculate were

collected and transferred into a 0.2 mL Eppendorf tube containing

80 μL of Hank’s buffer (HBSS) and kept on ice for 5–10 min

until IVF. Females were placed on 15 cm Petri dishes and gently

stripped to obtain eggs. Clutches used for IVFs contained 20–300

high quality eggs and they were used within one minute after

stripping.

SPERM SELECTION AND IVFS

To create the first generation (F1), we used a split clutch design to

perform IVFs. Sperm samples were very gently mixed and each

ejaculate and egg clutch were divided into two parts. In each part,

the sperm were under one of two treatments. In the long-activation

time (LAT) treatment, 25 μL of ejaculate-Hank’s mix of a male

were activated with 400 μL of water and added to one half of each

clutch 25 s after activation to obtain a 50% decline in the amount

of motile sperm (see Alavioon et al. 2017 for supporting data). In

the short-activation treatment (SAT), 10 μL of ejaculate-Hank’s

mix from the same male were mixed with extra 15 μL of HBSS

(to compensate for osmolarity in HBSS to water ratio), activated

with 400 μL water and added to the other sub-clutch immediately

after activation. Activated sperm in both treatments were added

simultaneously to both sub-clutches to avoid any egg effect. In

the LAT treatment, we selected against sperm with longevity less

than 25 s while in the SAT treatment, eggs could be fertilized by

any sperm capable of fertilization (for experimental details see

Supporting Information). Applying a split clutch design enabled

us to compare the effect of sperm selection on reproductive ageing

between full siblings sired by sperm of different phenotype and

presumably genotype. Eggs and sperm were mixed gently using a

brush and eggs were transferred onto a 15 cm Petri dish containing

a Methylene blue solution (Sigma Aldrich, anti fungus) after 1

min and 30 s. All IVFs were performed on a warming plate

(Minitube HT50) at 28.5°C and all Petri dishes were transferred

to an incubator set to 28.5°C.

REARING F1 OFFSPRING

The embryos resulting from IVFs were checked 2–4 h post fer-

tilization (hpf). Unfertilized and bad quality eggs were removed

and about 70 embryos were transferred to a 9 cm Petri dish con-

taining Methylene blue solution (antifungus treatment). On day

5–6 post fertilization, 70 larvae from each family were transferred

into a 3-L tank in the zebrafish system at the facility and reared

until adulthood. All fish were maintained until a maximum age of

24 months. Fish that survived until that age were then humanely

killed with an overdose of MS222. Captive zebrafish have their

reproductive peak between 6 and 18 months of age. For ethical

and health reasons, fish can only be maintained until this age

to reduce the risk of disease in the facility accumulating at an

increased rate in fish older than 24 months.

NATURAL SPAWNING

Starting at the age of 12 months, experimental males and females

from F1 were setup for natural spawnings with wild-type fish to

assess reproductive success. All the fish used for outcrosses with

SAT and LAT F1 fish at each age point were wild-type AB fish

bred in the facility following a careful breeding regime to maintain

outcrossing. They were maintained in 10-L tanks at densities of

30–40 fish in mixed sex groups at 1:1 sex ratio. The SAT and LAT

fish were kept in 10-L tanks at densities of 30–40 fish, both in

mixed sex groups. One day before natural spawning, males and

females were randomly chosen from both, selection and wild-type

lines. One male from either of the selection lines and one female

from wild-type lines or vice versa were kept in a breeding tank

with a separator in between. The next morning, the separator was

taken out at 8:30–8:45 am to let the two fish spawn. Eggs were

collected 2–3 h after spawning.

Two to four males and two to four females were ran-

domly selected from 26 LAT and SAT families. The same fam-

ilies were chosen in each selection regime for the comparison

of full siblings across treatments and reduce variation between

families. Fish were individually tagged by using Visible Im-

plant Elastomer (VIE; BIOWEB) for tracking over time. Each
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fish was randomly assigned wild-type AB partners aged 8–

12 months for natural spawning as described above. The same

procedure was repeated for all experimental fish at age 12, 15,

18, and 24 months, but every time, we used a new partner fish

between 8 and 12 months old. In total, we were able to observe

116 fish from SAT and 111 fish from LAT at age 12 months; 105

fish from SAT and 107 fish from LAT at age 15 months; 98 fish

from SAT and 99 fish from LAT at age 18 months; 77 fish from

SAT and 76 fish from LAT at age 24 months. All tagged fish

were individually followed and checked upon on a daily basis and

natural or accidental death was recorded.

OFFSPRING TRAITS MEASUREMENTS

To calculate the fertilization success, eggs were checked within

one hour post fertilization. To calculate fertilization success and

fecundity, unfertilized and bad quality eggs were counted and

removed. Survival rate was checked at 24 h post fertilization.

Seventy embryos were transferred to a 15 cm Petri dish containing

a Methylene blue solution and moved back to the incubator set

to at 28.5°C. All the traits were measured at 12, 15, 18, and

24 months.

STATISTICAL ANALYSIS

Software R version 3.3.0 was used for all analysis. We performed

a survival analysis to establish differences in lifespan between

the treatment and the sexes. In order to do so, we performed Cox

models using the package coxme. For analyses of traits related to

reproductive fitness, all binomial traits were analyzed assuming

a binomial error distribution, whereas total egg production was

analyzed assuming a Poisson error distribution. We used general-

ized linear mixed effect models for all analyses (glmer function in

package lme4). The significance of the fitted model was assessed

using analysis of variance (ANOVA) with type III sums of squares

tested with an analysis of deviance on a chi-square distribution

using package car.

We defined “family” and individual “ID” as a random factor

and “Treatment,” “Age at Last Reproduction (ALR),” and “Age”

as fixed factors. We analyzed data for males and females sepa-

rately, because the traits that were measured represent different

biological traits in the two sexes and are not directly comparable.

All the interactions in the final models were assessed performing

backward selection (removing model terms starting with inter-

actions with highest order term). At each level, the model was

compared to the previous model running Anova function in pack-

age car. Age and ALR were scaled in all models and optimizer

“bobyqa” was used in all models except total number of eggs

(fecundity).
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Figure 1. Lifespan data for all fish up to 24 months of age is

shown with a clearly reduced lifespan in SAT females compared

to LAT females but a less clear difference between SAT and LAT

males.

ETHICS PERMIT

All experiments described here are in accordance with the guide-

lines and approved by the Swedish Board of Agriculture (Jord-

bruksverket approval number C3/15).

Results
Overall, we found striking effects of our sperm selection treatment

on the rate of reproductive ageing in the F1 offspring. In gen-

eral, SAT offspring exhibited a shorter overall lifespan than the

LAT offspring, particularly in females (Treatment: log likelihood

value = –411.16, χ2
1 = 11.36, p = 0.007; Sex: log likelihood

value = –409.18, χ2
1 = 3.95, p = 0.046; Fig. 1). While the

strength of the effect differed between the sexes, the overall pat-

tern was the same as indicated by a nonsignificant interaction

term. In addition, within-ejaculate sperm selection affected life-

time reproductive success in both sexes, but the effects differed

markedly between males and females.

FERTILIZATION SUCCESS

Fertilization success generally declined with age in both sexes

and both treatments. However, sperm selection decelerated female

senescence in fertilization success but had no effect on this trait

in males.

FEMALES

SAT females that achieved highest fertilization success rates early

in life (12 months) lived a shorter life, while LAT females invested

moderately into reproduction at early ages but exhibited a longer

lifespan (Treatment: χ2
1 = 0.52, p = 0.47; Age: χ2

1 = 570.08,

p < 0.0001; ALR: χ2
1 = 0.01, p = 0.92; Treatment × Age:

χ2
1 = 62.93, p < 0.0001; Treatment × ALR: χ2

1 = 0.15, p =
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Figure 2. The effect of within-ejaculate sperm selection on age-specific fertilization success in males and females in SAT and LAT

treatments. Fertilization success declines with age but the pattern differs between the sexes. The decline is smaller in LAT females than

SAT females, while fertilization success is higher in LAT males than SAT males.

0.70: Age × ALR: χ2
1 = 2.06, p = 0.15;Treatment × Age × ALR:

χ2
1 = 113.71, p < 0.0001; Fig. 2). Female LAT offspring showed

relatively little decline in age-specific fertilization success (�4%)

compared to SAT females (�14%).

MALES

In males, fertilization success rate also declined with age and

fertilization success rate was higher in LAT males early in life

(Treatment: χ2
1 = 2.04, p = 0.15; Age: χ2

1 = 556.45, p < 0.0001;

ALR: χ2
1 = 1.08, p = 0.30; Treatment × Age: χ2

1 = 6.80, p =
0.009; Treatment × ALR: χ2

1 = 0.25, p = 0.62: Age × ALR:

χ2
1 = 12.12, p = 0.0005; Treatment × Age × ALR: χ2

1 =
19.87, p < 0.0001; Fig. 2). Fertilization success dropped by 16–

18% in males from both treatments across the monitored lifespan

and was on average higher in LAT males than in SAT males. In

both treatments, fertilization success rate in males peaked early

in life (at 12 months) and then steadily declined until the age of

24 months.

EMBRYO SURVIVAL

Similarly, embryo survival declined with increasing age in males

and females, but the patterns differed between the treatments.

FEMALES

In females, higher offspring survival at an early age did not result

in reduced lifespan, but this negative association was observed in

males. All females exhibited higher rates of embryo survival at

early ages with a peak at age 12 months irrespective of overall

lifespan. However, embryo survival was generally higher in LAT

females than in SAT females, and there was little evidence for a
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Figure 3. The effect of within-ejaculate sperm selection on age-specific embryo survival in males and females in SAT and LAT treatments.

Both, LAT males and females had higher embryo survival rate but there was less of a decline with age in LAT offspring than in SAT offspring

of both sexes.

difference in age-specific rates of decline between LAT (1.3%)

and SAT (3%) females (Treatment: χ2
1 = 1.14, p = 0.29; Age:

χ2
1 = 145.51, p < 0.0001; ALR: χ2

1 = 0.17, p = 0.68; Treat-

ment × Age: χ2
1 = 4.23, p = 0.04; Treatment × ALR: χ2

1 =
0.04, p = 0.84: Age × ALR: χ2

1 = 169.05, p < 0.0001;Treat-

ment × Age × ALR: χ2
1 = 15.94, p < 0.0001; Figure 3).

MALES

In SAT males, high embryo survival was associated with a longer

lifespan, whereas shorter lived SAT males produced less viable

offspring. In contrast, high embryo survival in LAT males was

coupled with a shorter lifespan. The decline of embryo survival

rate with ageing was faster in SAT males (3%) and almost neg-

ligible in LAT males (0.7%; Treatment: χ2
1 = 2.93, p = 0.09;

Age: χ2
1 = 1.08, p = 0.30; ALR: χ2

1 = 0.08, p = 0.78; Treat-

ment × Age: χ2
1 = 6.25, p = 0.01; Treatment × ALR: χ2

1 =
2.11, p = 0.15: Age × ALR: χ2

1 = 13.36, p = 0.0003; Treat-

ment × Age × ALR: χ2
1 = 7.35, p < 0.0001; Figure 3).

FECUNDITY

Finally, the most dramatic difference in age-specific reproductive

performance between the sexes was found in fecundity. Both,

male and female LAT offspring had higher fecundity values

than their SAT counterparts throughout their reproductive life

cycle.

FEMALES

While in LAT females the reproductive output declined very

slowly across the 12 months period, SAT females slightly in-

creased their reproductive output with age (Treatment: χ2
1 = 2.93,

p = 0.09; Age: χ2
1 = 31.22, p < 0.0001; Age2: χ2

1 = 280.73,

p < 0.0001; ALR: χ2
1 = 3.69, p = 0.06; Treatment × Age: χ2

1

= 7.71, p = 0.006; Treatment × Age2: χ2
1 = 437.12, p < 0.0001;

Treatment × ALR: χ2
1 = 0.02, p = 0.88: Age × ALR: χ2

1 =
1990.02, p < 0.0001; Treatment × Age × ALR: χ2

1 = 266.47, p

< 0.0001; Figure 4).
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Figure 4. The effect of within-ejaculate sperm selection on age-specific fecundity (number of eggs) in males and females in SAT and

LAT treatments. LAT offspring had higher fecundity compare to their SAT siblings. SAT females produced higher numbers of eggs at later

ages while there was a decline in fecundity in other groups.

MALES

Fecundity in LAT males also declined slower with age (roughly

halved their reproductive output from 280 eggs at 12 months to

140 eggs at 24 months laid by mated females) than in SAT males

(roughly three times lower reproduction from 240 to 80 eggs at the

same time period; Treatment: χ2
1 = 1.67, p = 0.20; Age: χ2

1 =
5792.52 p < 0.0001; Age2: χ2

1 = 16.95, p < 0.0001; ALR: χ2
1 =

16.09, p < 0.0001; Treatment × Age: χ2
1 = 247.32, p < 0.0001;

Treatment × Age2: χ2
1 = 9.48, p = 0.002; Treatment × ALR:

χ2
1 = 1.31, p = 0.25: Age × ALR: χ2

1 = 689.86, p < 0.0001;

Treatment × Age × ALR: χ2
1 = 14.47, p = 0.0001; Figure 4).

Discussion
Overall, our results do not support the hypothesis that sperm se-

lection within a single ejaculate results in offspring that show

high fitness and rapid ageing. Instead, our findings suggest that

within-ejaculate sperm selection on sperm longevity produces

offspring that have higher fitness and longer lifespan during the

first 24 months and enjoy lower rates of reproductive ageing

(Table 1). The effects on reproductive traits are sex-specific and

vary markedly across the studied traits. Nevertheless, within-

ejaculate sperm selection resulted in male offspring that showed

slower decline in fecundity and offspring quality with age, while in

females within-ejaculate sperm selection positively affected egg

quality in late life, as evidenced by increased fertilization success

in older LAT females compared to SAT females. Lifespan was

longer in LAT offspring of both sexes than in SAT offspring with

a slightly stronger effect in females but no significantly different

pattern.

The effect of within-ejaculate sperm selection on male age-

specific reproductive performance was relatively consistent across

all three traits. LAT males had better fertilization success, em-

bryo survival, and total fecundity than SAT males at every age.
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Table 1. Summary of the effect of within-ejaculate sperm selection on offspring reproductive performance in both sexes. Reproductive

lifespan was deducted from our measurements of Age at Last Reproduction (ALR).

Trait Sex Treatment Reproductive peak/reproductive lifespan Ageing rate

Fertilization success Female SAT Young/short SAT > LAT
LAT Young/short

Male SAT Young/intermediate SAT = LAT
LAT Young/intermediate

Embryo survival Female SAT Young/intermediate SAT > LAT
LAT Young/intermediate

Male SAT Young/intermediate SAT > LAT
LAT Young/short

Total eggs Female SAT Old/intermediate LAT > SAT
LAT Young/long

Male SAT Young/long SAT > LAT
LAT Young/long

Interestingly, in the high-quality LAT cohort, short-lived males

showed higher early-life performance than their long-lived coun-

terparts in embryo survival, suggesting that short-lived males

adopted a “live fast, die young” reproductive strategy. In con-

trast, in the SAT cohort, long-lived males exhibited higher early-

life reproductive performance with respect to embryo survival.

These results suggest some form of condition dependence where

high-quality LAT males have different resource allocation strate-

gies than low-quality SAT males in some traits, underscoring the

fact that within-ejaculate sperm selection shapes age-specific life

histories of the resulting offspring.

The effect of within-ejaculate sperm selection on female re-

productive traits was more variable. While LAT females aged

slower than SAT females in terms of fertilization success, the

only trait–cohort combination showing improvement with age

was fecundity in SAT females. Generally, LAT females produced

more eggs than SAT females throughout life. However, in abso-

lute terms, old SAT females still laid fewer eggs than old LAT

females; combined with reduced embryo survival of old SAT fe-

males, the late-life fitness of SAT females appears to be quite low.

The fact that old SAT females have low fertilization success and

low embryo survival suggests that they simply lay many infertile

eggs in late life. Because the quality of SAT females’ eggs de-

clined, as suggested by the results showing reduced fertilization

success and embryo survival, SAT females strategically allocate

relatively more resources to egg production toward the end of

their life, which compensates for the decline in their general re-

productive state and reduced oocyte quality.

Interestingly, females that reproduced only once or twice at

the ages of 12 and 14 months showed highest values for fertiliza-

tion success, suggesting that these low-quality individuals may

have strategically allocated a substantial amount of resources into

early-life reproduction. This effect is similar to the effect within-

ejaculate selection on embryo survival in LAT males (see above).

These findings suggest a potential trade-off between investments

in early-life versus late-life performance at least in some repro-

ductive traits in both sexes. Nevertheless, these putative trade-offs

within LAT and SAT cohorts were not sufficiently strong to mask

the much more pronounced differences between the two treat-

ments. For example, despite the fact that long-lived LAT males

had lower early life fertilization success than short-lived LAT

males, the latter still aged slower that long-lived SAT males.

While increased sperm competition between different males

can result in the evolution of trade-offs between sperm quantity

and quality versus other traits, such as immune response (Sim-

mons 2012), we currently have no evidence for any trade-off

between selection for sperm longevity and offspring fitness with

any other trait. In a previous study, we looked for a trade-off be-

tween sperm swimming speed and sperm longevity, but did not

find any (Alavioon et al. 2017). Whether a trade-off may be found

in any other aspect is currently unclear. It may well be that traits

other than swimming speed are key in determining fertilization

success in the zebrafish. Future investigations should therefore be

directed in identifying sperm traits that affect the probability of

fertilizing an egg under various circumstances.

Our findings so far suggest that sperm selection within a sin-

gle ejaculate generally improves offspring performance across the

life cycle. These results suggest that haploid selection can play a

crucial role in zebrafish and possibly other species’ reproduction

by for instance weeding out suboptimal male gametes, thereby

ensuring the quality of the resulting offspring. Importantly, in-

creased offspring fitness resulting from sperm selection within a

male’s ejaculate does not come at the cost of accelerated repro-

ductive ageing. These findings have important implications for

assisted reproductive techniques, such as in vitro fertilization and

intracellular sperm injection that are widely used in the agricul-

tural practice and the clinic because they essentially remove many

aspects of within-ejaculate sperm selection. In fact, a recent study
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in house mice Mus musculus found that selecting sperm through

chemotaxis prior to intracellular sperm injection improved the

outcome success rate (Pérez-Cerezales et al. 2018). We therefore

need more research into within-ejaculate sperm selection across

a broad variety of taxa because we are only beginning to un-

derstand the importance of this biological process for offspring

fitness, ageing, and health.
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