Carbon in Boreal Streams

Isotopic Tracing of Terrestrial Sources

AUDREY CAMPEAU
The boreal biome comprises vast areas of coniferous forests, dotted with millions of peatlands. Plants harbouring these ecosystems fix CO$_2$ from the atmosphere, which is later incorporated into the vegetation biomass and subsequently buried in soils. Over the course of millennia, this process has led to the formation of a large repository of organic C, currently stored in boreal soils. Streams draining this landscape are typically enriched with carbon dioxide (CO$_2$), methane (CH$_4$) and dissolved organic carbon (DOC). As a consequence, streams tend to emit CO$_2$ and CH$_4$ to the atmosphere, two potent greenhouse gases, and thus contribute positively to radiative climate forcing. The sources fuelling C to boreal streams are not well understood. This thesis aims to unravel these sources, and promote a better consolidation of terrestrial and aquatic C biogeochemical processes. The work is largely based on stable and radiogenic C isotope characterization of various dissolved C forms in stream and groundwater, within contrasting ecosystem types across Sweden.

This thesis identifies boreal soils as the main source of CO$_2$ in streams. Soil respiration (i.e. biogenic sources) overwhelmingly supply CO$_2$ to streams, leaving only a few exceptions where geogenic CO$_2$ sources were present. An array of biological processes also transform CO$_2$ during its transport from soils to streams. These include; methanogenesis, aquatic DOC mineralization and primary production. The majority of C in boreal streams is sustained by the decomposition of recent photosynthates, with ancient C substrates holding a negligible share of the total C export. While these results suggest that the repository of ancient soil organic C is currently stable, within boreal forests and peatlands, the close connection with recently occurring photosynthesis suggest that forecasted alterations in plant C allocation patterns, driven by climate and land-use changes, will produce a rapid response in stream CO$_2$ emissions. Isotopic characterization of C in stream and groundwater can help reveal these sources and transformation processes, but its interpretation must be made with care.

Audrey Campeau, Department of Earth Sciences, LUVAL, Villav. 16, Uppsala University, SE-75236 Uppsala, Sweden.

© Audrey Campeau 2019

ISSN 1651-6214
ISBN 978-91-513-0654-4
urn:nbn:se:uu:diva-381847 (http://urn.kb.se/resolve?urn=nbn:se:uu:diva-381847)
For Christopher
This thesis is based on the following papers, which are referred to in the text by their Roman numerals.

Reprints were made with permission from the respective publishers.
Additional Papers

In addition, the author has contributed to the following papers, which are not included in the thesis

V Riml, J., Campeau, A., Bishop, K., Wallin, M.B. (in review) Spectral decomposition reveals new perspective on CO₂ concentration patterns and soil-stream linkages in a boreal headwater catchment. *Journal of geophysical research: Biogeosciences*
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prologue</td>
<td>11</td>
</tr>
<tr>
<td>Introduction</td>
<td>13</td>
</tr>
<tr>
<td>Carbon Cycling in the Boreal Biome</td>
<td>13</td>
</tr>
<tr>
<td>Sources of CO₂ in Streams</td>
<td>15</td>
</tr>
<tr>
<td>Isotopic Tools to Reveal C sources</td>
<td>17</td>
</tr>
<tr>
<td>Stable Isotope Ratio</td>
<td>17</td>
</tr>
<tr>
<td>Radiocarbon dating</td>
<td>19</td>
</tr>
<tr>
<td>Objectives and Study Design</td>
<td>22</td>
</tr>
<tr>
<td>Methodology</td>
<td>25</td>
</tr>
<tr>
<td>Stream Surveys</td>
<td>25</td>
</tr>
<tr>
<td>Catchment-Scale Studies</td>
<td>26</td>
</tr>
<tr>
<td>Laboratory Water Chemistry Analysis</td>
<td>28</td>
</tr>
<tr>
<td>Stable C Isotope Ratio</td>
<td>28</td>
</tr>
<tr>
<td>Graphical Techniques</td>
<td>29</td>
</tr>
<tr>
<td>Rayleigh Function</td>
<td>30</td>
</tr>
<tr>
<td>Kinetics of CO₂ Evasion</td>
<td>31</td>
</tr>
<tr>
<td>Radiocarbon Dating</td>
<td>31</td>
</tr>
<tr>
<td>Main Findings</td>
<td>34</td>
</tr>
<tr>
<td>Soil-Stream CO₂ linkages</td>
<td>34</td>
</tr>
<tr>
<td>Passive Pipes and Active Reactors</td>
<td>36</td>
</tr>
<tr>
<td>Stability of the Boreal C Repository</td>
<td>39</td>
</tr>
<tr>
<td>From Leaves to Streams</td>
<td>39</td>
</tr>
<tr>
<td>Lessons Learned from Isotopic Tracing of C Sources</td>
<td>41</td>
</tr>
<tr>
<td>The pH Effect</td>
<td>41</td>
</tr>
<tr>
<td>Filtering out CO₂ evasion</td>
<td>42</td>
</tr>
<tr>
<td>Miller-Tans Plot</td>
<td>42</td>
</tr>
<tr>
<td>Tracing Hydrological Flowpaths</td>
<td>43</td>
</tr>
<tr>
<td>Conclusions & Future Perspectives</td>
<td>45</td>
</tr>
<tr>
<td>Developing Better Indicators</td>
<td>45</td>
</tr>
<tr>
<td>A False Sense of Stability</td>
<td>46</td>
</tr>
<tr>
<td>References</td>
<td>48</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>DIC</td>
<td>Dissolved Inorganic Carbon</td>
</tr>
<tr>
<td>DOC</td>
<td>Dissolved Organic Carbon</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>δ¹³C</td>
<td>Stable C Isotope Ratio</td>
</tr>
<tr>
<td>¹⁴C</td>
<td>Radiocarbon Content</td>
</tr>
<tr>
<td>NEE</td>
<td>Net Ecosystem Exchange</td>
</tr>
<tr>
<td>NECB</td>
<td>Net Ecosystem Carbon Balance</td>
</tr>
<tr>
<td>ABI</td>
<td>Abisko</td>
</tr>
<tr>
<td>DAL</td>
<td>Dalarna</td>
</tr>
<tr>
<td>KRY</td>
<td>The Krycklan Catchment</td>
</tr>
<tr>
<td>LAVI</td>
<td>South-West of Sweden</td>
</tr>
<tr>
<td>DEG</td>
<td>Degerö Stormyr</td>
</tr>
<tr>
<td>SVB</td>
<td>Svartberget or Site C2</td>
</tr>
<tr>
<td>SKOG</td>
<td>Skogaryd or Mineral Site</td>
</tr>
</tbody>
</table>
Prologue

Our planet is equipped with its own thermostat. Life on Earth is self-perpetuated by controlling the amount of greenhouse gases and water present in our atmosphere, hence regulating the climate system. This regulation is partly achieved through biological and geochemical processes circulating carbon between the biosphere, atmosphere, lithosphere and hydrosphere. Together, these mechanisms are termed the *Global Carbon Cycle*. Fossil fuel burning, deforestation and ocean acidification, has and will continue to profoundly alter the natural course of these processes. Today, photosynthetic organisms on land and in oceans, pump over half of the annual CO₂ emissions resulting from human activities. This process dampens our impact on the global carbon cycle, and slows down the rise in radiative climate forcing. But how resilient is the global C cycle? How is it regulated, and how will it respond to forthcoming disturbances? How do these mechanisms also shape important environmental aspects, such as water quality, ecosystem functioning and other societal services. These are the research questions that have led to the scientific discipline of *Carbon Biogeochemistry*, some of which are reflected in the subject of this thesis. Global warming is one of the most defining challenge of our time. The Earth is a source of wonder, but it is also our only home. Understanding it, ultimately means to protect it and ourselves.
Introduction

“Nothing in life is to be feared, it is only to be understood, Now is the time to understand more, so that we may fear less.”
- Marie Curie

Carbon Cycling in the Boreal Biome

The boreal biome forms a large belt encircling the northern high latitudes. It’s land cover is composed of a mosaic of coniferous forests and peatlands. Through photosynthesis, the living vegetation found across this remote landscape continuously fix carbon dioxide (CO₂) from the atmosphere. The C entering these ecosystems is then used as building blocks for the vegetation, and later for soil litter formation. Decomposition, carried out by soil microbes and other organisms, returns a fraction of this CO₂ to the atmosphere. The net results of these two countering processes, is however, to remove CO₂ from the atmosphere, with boreal ecosystems providing alone ~20% of the global net forest C sink (Pan et al., 2011). Since CO₂ acts as an important greenhouse gas, boreal ecosystems contribute to a net cooling of the climate and neutralize a significant fraction of anthropogenic CO₂ emissions (Chapin et al., 2000, Gauthier et al., 2015, Winkler et al., 2019).

The exchange of CO₂ between boreal ecosystems and the atmosphere, rapidly grows in complexity when considering the role of the hydrosphere (Cole et al., 2007, Tranvik et al., 2009). The boreal biome harbours the world’s highest density of freshwater ecosystems; composed of inter-connected lakes, ponds, rivers and streams (Allen & Pavelsky, 2018, Downing et al., 2006, Downing et al., 2012). Freshwater bodies draining the boreal landscape are overwhelmingly enriched with CO₂ (Raymond et al., 2013) and methane (CH₄) (Bastviken et al., 2011) and receive high dissolved organic carbon (DOC) loads (Algesten et al., 2004, Laudon et al., 2011). The greenhouse gas component of aquatic C, comprising CO₂ and CH₄, is rapidly returned to the atmosphere by physical gas exchange. Freshwaters, thus contribute positively to atmospheric climate forcing. A large body of research has been devoted to
quantify freshwater greenhouse gas emissions, in order to better constrain their role in the global C cycle and climate system. These efforts have led to a first integration of freshwater CO₂ emissions in the global C cycle scheme in the most recent IPCC report on climate change (IPCC, 2013). Proceeding from here, this thesis sets out to reveal the sources leading to the presence of C in streams draining boreal ecosystems.

Due to the cold and wet climate conditions prevailing across the boreal biome, decomposition of plant material and soil litter is often incomplete. This has led to the formation of a large repository of soil organic C, slowly expanding over the last ~10 000 years (Holocene), which contributed to cool the climate system (Frolking & Roulet, 2007). The estimated magnitude of this latent C repository currently represents a third of the global soil organic C reserves and is near equivalent to the total atmospheric CO₂ pool (200-500 Pg of C (Bonan & Pollard, 1992, Gorham, 1991, Malhi et al., 1999)). Boreal soil C stocks are mostly accumulated in waterlogged environments, such as peatlands and riparian zones. Mobilizing these C stocks, for example through runoff, would have unprecedented consequences for the climate system. Its stability in the face of climate and land-use changes is complex and currently unknown.

Most organisms found across the boreal biome are currently living within their climatic limits. Rising temperatures in these regions will profoundly transform the structure and functioning of boreal ecosystem, more so than in lower latitudes (Gauthier et al., 2015, Jarvis & Linder, 2000). Some of these transformations are already observable, through a northward shift in the tree line and a widespread greening of the northern high latitudes (Piao et al., 2006, Serreze et al., 2000, Winkler et al., 2019). Other disturbances are less progressive and may instead emerge suddenly. An anticipated increase in forest fires frequency, due to a growing water stress and intensified summer heat waves (Bond-Lamberty et al., 2007, Turetsky et al., 2015), coupled with devastating insect outbreaks (Kurz et al., 2008, Stinson et al., 2011), will lead to extensive forest destruction (Lenton et al., 2008). These disturbances will likely alter the boreal biome’s C sink capacity and ecosystem level C allocation patterns, which may rapidly feedback on the climate system (Bonan, 2008, Piao et al., 2008). How the C balance of freshwaters systems draining these landscapes will respond to such disturbances is still unclear (Benoy et al., 2007, Campeau & Del Giorgio, 2014, Marchand et al., 2009).
Sources of CO₂ in Streams

Over the last decade, boreal freshwater CO₂ emissions have been estimated across a vast range of scales; e.g. catchment scale (Crawford et al., 2013, Kokic et al., 2015, Wallin et al., 2013), regional scale (Campeau et al., 2014, Crawford et al., 2014, Teodoru et al., 2009), national scale (Butman & Raymond, 2011, Humborg et al., 2010, Wallin et al., 2018) and global scale (Raymond et al., 2013). These studies point out to the same conclusion: streams hold a large relative contribution to CO₂ emissions, despite representing only a small areal coverage. This disproportionately high contribution is explained by two major factors. Firstly, streams are associated with turbulent flow conditions that triggers rapid atmospheric gas exchange (Raymond et al., 2012, Wallin et al., 2011). Secondly, stream waters are often excessively saturated in CO₂, considered to arise from a close connectivity with catchment soils (Duvert et al., 2018, Hotchkiss et al., 2015, Johnson et al., 2008). Approaches for integrating stream CO₂ emissions into terrestrial C budgets are, however, still unclear (Billett et al., 2015, Raymond et al., 2013). Defining stream CO₂ sources will provide a process-based understanding to help reconcile aquatic and terrestrial components in catchment C budgets.

CO₂ can arise from various biogeochemical processes and C substrates; each associated with different timescales, turnover rates and environmental controls (Figure 1). Given the age of the boreal soil C repository, substrates fueling biogenic CO₂ production in soils through decomposition of organic matter can span from current to ~10 000 years old (Figure 1). The age of DOC circulating within boreal freshwater systems reflects this wide range of substrates (Marwick et al., 2015). Microbial decomposition of DOC within groundwater or surface waters may generate CO₂ with a corresponding range of age (Mayorga et al., 2005, McCallister & del Giorgio, 2012, Raymond et al., 2004). The DOC circulating in freshwaters can also be photo-oxidized once exposed to solar radiation, leading to aquatic CO₂ production (Amon & Benner, 1996, Graneli et al., 1996, Köhler et al., 2002). However, this processes can be reduced in streams shaded by the canopy. Similarly, aquatic microbial decomposition of DOC can be restricted in streams, owing to short water transit times (Catalán et al., 2016). Together, this information suggest that DOC processing in-streams is controlled by a complex set of environmental and hydrological conditions. It’s relevance for stream CO₂ emissions is highly variable, and remains unclear.

Within shorter timescales, the photosynthetic activity of the above ground vegetation can directly fuel CO₂ in soils, by directly supporting autotrophic root metabolism (Bond-Lamberty et al., 2004, Hogberg et al., 2001, Kuzyakov & Larionova, 2005) (Figure 1). Microbes and fungi associated with
the root system can also decompose root exudates and other recent photosynthates transported to soils via throughfall and stemflow (Van Hees et al., 2005, Van Stan & Stubbins, 2018) (Figure 1).

Counteracting processes may further contribute to remove CO₂ from stream waters, thus acting as C sinks. Stream primary producers can, much like forests on land, take up ambient CO₂ to be incorporated into the emergent plants and benthic algae inhabiting the streams (Falkowski & Raven, 2013) (Figure 1). Abiotic processes such as chemical weathering consume CO₂ and generate freshwater carbonate alkalinity, that supports life both in freshwaters and oceans (Amiotte Suchet et al., 2003, Meybeck, 1987) (Figure 1). These reactions occur through two distinct chemical pathways; weathering of carbonate or silicate containing minerals. While silicate weathering reaction simply converts CO₂ to HCO₃, the analogous reactions with carbonate containing minerals simultaneously releases geogenic C in the form of CaCO₃ (Figure 1). The weathering processes links the contemporary and geological reservoir of the C cycle and has provided a long-term thermostat, stabilizing the Earth’s climate over geological timescales (Berner, 1992, Liu et al., 2011, Walker et al., 1981).
In the absence of oxygen, organic C decomposition gives rise to CH\textsubscript{4} production. Water-logged and organic-rich environments, such as peatlands and riparian zones, are prone to oxygen depletion and thus represent key source areas for methanogenesis (Harriss et al., 1985, Jones & Mulholland, 1998b, Roulet et al., 1992). Streams draining such environments also tend to emit significant amounts of CH\textsubscript{4} to the atmosphere (Campeau et al., 2014, Hope et al., 2001, Wallin et al., 2018). Methanogenesis can occur through two fundamental pathways, acetoclastic methanogenesis, which consumes organic C and generate both CO\textsubscript{2} and CH\textsubscript{4}, or hydrogenotrophic methanogenesis, which consumes CO\textsubscript{2} in order to produce CH\textsubscript{4} (Whiticar et al., 1986) (Figure 1). Methanogenesis can thus represent both a source and a sink of CO\textsubscript{2} depending on the pathway prevailing in the environment.

A complex mixture of sources, sinks and transformation processes fuelling C in streams need to be separated. Tracers allowing to partition these processes are necessary to address the sources of C in boreal streams. Each of the above listed processes are associated with specific isotopic fractionations, or with an imprint on the age component of C. These effects can thus be interpreted by C isotopic characterization in streams.

Isotopic Tools to Reveal C sources

Stable Isotope Ratio

The stable C isotope ratio, \(^{13}\text{C}/^{12}\text{C} (\delta^{13}\text{C}) carries the imprint of various sources and transformation processes generating CO\textsubscript{2}. Its interpretation can be challenging, owing to the multiple co-founding factors that need disentangling. The first partitioning of CO\textsubscript{2} sources can be made based on the large gap in \(\delta^{13}\text{C} value that stands between two major C reservoirs; biogenic and geogenic C (Figure 2). Biogenic CO\textsubscript{2} results from the degradation of organic material, which in a C3-plant dominated catchment generates \(\delta^{13}\text{C} ranging between -33‰ to -24‰ (O'Leary, 1988, Vogel et al., 1993) (Figure 2). Alternatively, geogenic CO\textsubscript{2} results from the dissolution of calcium carbonate (CaCO\textsubscript{3}, \(\delta^{13}\text{C}=0‰), generating a mixture with \(\delta^{13}\text{C}=-12‰ if reacting with biogenic CO\textsubscript{2} (\(\delta^{13}\text{C}=-27‰) or \(\delta^{13}\text{C}=0‰ if reacting with non-carbon bearing acids (Clark & Fritz, 1997, Land, 1980) (Figure 2).

Historically, the separation of these two C sources has involved a simple two end-members mixing ratio, where the range in \(\delta^{13}\text{C} value is attributed to a combination of the two sources (Deines et al., 1974, Kendall et al., 1992). While this simple scheme can be appropriate in closed systems, it holds a high risk for misinterpretation when CO2 is also mixing with the atmosphere, such as for shallow groundwater and surface waters (Clark & Fritz, 1997).
Figure 2. Conceptual scheme illustrating biogeochemical processes controlling stream δ^{13}C-DIC values in streams, adapted from Amiotte-Suchet et al. (1999) and Alling et al. (2012). The x-axis represents the reported range of stream δ^{13}C-DIC values and y-axis a gradient in DIC concentration with arbitrary units. The internationally agreed δ^{13}C end-members for the biogenic (-27‰) DIC source in a C3-plant dominated catchment (green square) and geogenic (0‰) DIC source (orange) as well as the atmospheric CO$_2$ (-8.5‰) are represented with their documented range (coloured bars) from Coplen et al. (2002). The blue box represents the stream water environment, with the commonly accepted range of δ^{13}C-DIC values in equilibrium with each of these three end-members (Biogenic (-26 to -18‰), Geogenic (-12‰ to 5‰), Atmospheric (-15% to 8‰), represented in coloured rectangles, along with the isotopic effect of in-stream biogeochemical processes represented as the black arrows (Paper I).

δ^{13}C values are typically reported for the total dissolved inorganic C (DIC) pool, which includes dissolved CO$_2$ gas (carbonic acid: H$_2$CO$_3$), but also two ionic forms; bicarbonates (HCO$_3^-$) and carbonates (CO$_3^{2-}$). The reported range of δ^{13}C-DIC value in flowing waters spans from +5 to -35‰, which exceeds the end-member values for the geogenic and biogenic DIC (Marwick et al., 2015) (Figure 2). This wide range in δ^{13}C-DIC values clearly demonstrate that additional processes affect the δ^{13}C in surface waters. The relative proportion of the three C forms that comprise DIC is controlled by pH dependent equilibrium reactions, where low pH conditions boost the CO$_2$ fraction, while high pH conditions increases the relative proportion of ionic forms. Large isotopic equilibrium fractionation occurs when C is exchanged between these three components (Zhang, 1995). This isotopic effect is particularly important in freshwater systems, where supersaturated CO$_2$ evades to the atmosphere, but
carbonate alkalinity remains in the aqueous phase (Clark & Fritz, 1997, Zeebe & Wolf-Gladrow, 2001). The kinetics of gas exchange in streams is a key process in stream waters, since CO₂ is often found in supersaturation relative to the atmosphere (Figure 2). The DIC concentration and composition, the gas exchange rates, pH and alkalinity together shape the isotopic composition of stream water DIC exchanging with the atmosphere. Recent progress in modelling have allowed to describe this effect in certain environmental conditions. Using the observed δ¹³C-DIC values, these models allow to trace back the mass of CO₂ evaded from streams (Marx et al., 2018, Polsenaere & Abril, 2012, Venkiteswaran et al., 2014).

A large combination of biogeochemical processes may alter the δ¹³C-DIC values in streams including: DOC mineralization, either biological or photochemical, in-stream primary production, methanogenesis and CH₄ oxidation (Figure 2). Taken individually, each of these various processes can be described, but disentangling them simultaneously is challenging. Hence, methods to separate those confounding isotopic effects in order to extract the information held in the observed δ¹³C-DIC values are clearly needed.

Radiocarbon dating

Radiocarbon (¹⁴C) dating is a fundamental technique in biogeochemistry. Historically, it has allowed to reveal key processes controlling the global C cycle and climate (Levin & Hesshaimer, 2000, Oeschger et al., 1975). The β-decay of ¹⁴C, with a half-life of 5730 years, can be used to trace back the origin of any C bearing molecule, up to around 50'000 years. Nuclear testing in the 1950’s has set profound changes in the natural levels of radioactive elements present in our environment, causing a near doubling of the natural ¹⁴C abundance in the atmosphere (Levin & Kromer, 2004, Rafter & Fergusson, 1957) (Figure 3). The exceedance of the natural ¹⁴C abundance in the atmosphere has forced us to reconsider the interpretation of ¹⁴C dating, now precluding a linear translation of the ¹⁴C-content to calendar years (Figure 3).
The ^{14}C contents are typically reported in terms of relative ^{14}C enrichment in percent modern C ($\%$ modern) or in terms of years before present (yrs BP), where 0 BP corresponds to 1950 - beginning of nuclear testing. According to the conventional radiocarbon age (CRA), the ^{14}C content is thus interpreted as follow; >100$\%$modern indicates a considerable incorporation post-bomb ^{14}C. Its average age can be assigned to either the rising (1950-1964) or falling limb (1964-present) of the bomb atmospheric ^{14}C peak. Alternatively, the ^{14}C content <100$\%$modern indicate the presence of older material and can be assign to an average CRA calendar year.

While this interpretation may be correct for a selection of standing solid materials, e.g. tree rings, ice and soil cores, it involves several complications for mobile material, such as solutes and gases. For these materials, the average ^{14}C content likely represents a combination of molecules with different origins, with a standard error associated to the average value that remains unknown. Thus an average ^{14}C content of <100$\%$modern in solutes or gas samples does not preclude the intrusion of post-bomb C. New research is shedding light upon these issues by revealing that microbial decomposition can yield CO$_2$ with a considerably different ^{14}C-content than its organic C substrate (Dean et al., 2019, Mann et al., 2015, McCallister et al., 2004). This suggest that the average ^{14}C-content of DOC and CO$_2$, does in fact represent a mixture of different values. For this reason, the analysis of ^{14}C-content in this thesis specifically avoided potential translation to calendar years. Instead, we focused on relative differences between C species (DOC, CO$_2$ and CH$_4$) and their changes over time, to help appropriate differences in C sources and environmental controls.
Objectives and Study Design

“The world is beautiful to look at, but it’s even more beautiful to understand”
- Brian Cox

This thesis sets out to reveal the sources of C in boreal streams. The CO₂ component was given particular emphasis, but CH₄ and DOC were also considered for the significant overlap in their respective cycling, and the major fraction that they form to the total stream C loading. Several different techniques were applied to address C sources in streams. These mostly focused on the use of C isotopes (δ¹³C and ¹⁴C), but also on automated logger systems to help monitor changes in soil and stream water hydro-chemical properties over time.

The thesis combined two different approaches: 1) a synthesis of large-scale synoptic surveys of headwaters streams covering different regions of Sweden (Paper I) and 2), three detailed catchment-scale studies within different ecosystem types (Paper II-III-IV) (Figure 4). Through this study design, we aimed to acquire a broad spatial understanding, coupled with a more detailed knowledge of small-scale processes with their temporal variability. The specific objectives for each of the included studies were:

I. Characterize the sources and sinks of stream water DIC across multiple catchments through the interpretation of the δ¹³C-DIC values (Paper I).

II. Reveal the biogeochemical processes occurring during the transport of DIC from soils to stream within contrasting ecosystem types (Paper II).

III. Determine the sources of lateral CO₂, CH₄ and DOC export from a boreal peatland in order to assess the stability of the peat C storage (Paper III)

IV. Separate the biogeochemical sources of lateral DOC and CO₂ export from an old-growth boreal forested catchment (Paper IV).
Figure 4. Map of Sweden indicating the location of the four synoptic stream surveys (left side, top-down: ABI, KRY, DAL, LAVI) and three detailed catchment-scale studies (right side, top-down: DEG, SVB, SKOG). Left: the location of each stream sampled in the synoptic surveys are illustrated with grey circles within each regions. Right: the catchment boundaries are delimited with the grey line and specific land covers are illustrated, comprising forests (green) peatlands (orange) and bedrocks outcrop (grey). The blue lines represent the stream line upstream of the transect sampling location (black stars) and the red circles indicate the location of stream flow gauging station.
Methodology

“Equipped with his five senses, man explores the universe around him and calls the adventure Science”
- Edwin Powell Hubble

Stream Surveys

Synoptic stream surveys were conducted within four distinct geographical regions in Sweden: from north to south, Abisko (ABI), the Krycklan catchment (KRY), Dalarna (DAL) and the South-west coast (LAVI) (Figure 3; Paper I). The study included a total of 326 different stream water chemistry measurements. The studied streams in the DAL (n=101) and LAVI (n=68) region were selected based on a randomized statistical selection and were visited only once, in June 2013 and 2014 respectively. The selected streams were of Strahler order 1 exclusively, contained no lakes within their specific catchment areas and were located away from urbanized or agricultural areas but nonetheless within walking distance of roads. The 18 studied rivers and streams included in KRY were visited at 7 different occasions, for a total of 108 measurements. For ABI, 49 different rivers and stream were visited once in mid-September 2008 and have been previously published in Giesler et al. (2013). The sampling in KRY and ABI was undertaken outside the work frame of this thesis. The studied rivers and streams in KRY and ABI spanned from Strahler order 1 to 5. A detailed description of each of the regions and their sampling design is presented in paper I.
Catchment-Scale Studies

Three distinct ecosystem types were considered for the detailed catchment-scale studies (Figure 3). In the north, a boreal oligotrophic fen, Degerö Stormyr (DEG), and a mature boreal forest, Svartberget (Site C2) (SVB). In the southwest, a reforested hemi-boreal agricultural area, Skogaryd (Mineral Site) (SKOG). All three catchments are involved in the Swedish Infrastructure for Ecosystem Science (SITES; fieldsites.se). A more detailed description of the three catchments (DEG, SVB and SKOG) is presented in paper II, with more specific information regarding the DEG catchment in paper III and SVB catchment paper IV.

The groundwater sampling at the DEG study site consisted of a single vertical peat profile allowing manual groundwater collection, located about 70 m away from the stream initiation point (Figure 5). The groundwater tubes screened across a depth range between 0.25 and 1 m in vertical extent, allowed sampling of peat pore water across the full 4 meters depth profile, divided into six different peat horizons [0–0.25 m, 0.25–0.5 m, 0.5–1 m, 1–2 m, 2–3 m, and 3–4 m] (Figure 5).

Figure 5. Schematic of the groundwater tubes characterizing the full peat depth profile at Degerö (right side) along with peat bulk density profile (left side) indicating the location of a deep macropore (~2.5m below ground) potentially exporting water and C to the stream.
The groundwater and stream water sampling at SVB and SKOG was designed following a three-level lateral transect; upslope-riparian-stream (Figure 6). The upslope location was situated 10-15 m away from the stream, and the riparian 1-4 m away from the stream. Two different soil depths were considered at both locations, shallow [0 to 0.5m] and deep [0.5 to 1m] below ground surface (Figure 6). Two different sets of groundwater tubes were installed next to each other at each location and depth (Figure 6). The first set was equipped with a manual sampling tube that allowed to suck up water from the ground. The second set was instrumented with automated sensors recording hourly CO$_2$ concentrations and temperature (Figure 6). A fifth tubes was installed at both locations where water table position was monitored (Figure 6).

![Figure 6. Schematic of the upslope-riparian-stream transect (unscaled) at the SVB catchment indicating the location and depth of each instrument, blank soil tubes were used for manual groundwater collection.](image)

Hourly measurements of CO$_2$ concentration in stream and groundwater were conducted using Vaisala CARBO- CAP GMP221 nondispersive infrared (NDIR) CO$_2$ sensors (range from 0-1% to 0-20% depending on the location) (Figure 6). The sensors were enclosed within a water-tight, gas-permeable Teflon membrane (PTFE) and sealed with Plasti Dip (Plasti Dip international, Baine, MN, USA) to ensure that the sensor was protected from water, but remained permeable to gas (Johnson et al., 2010). Water table positions was measured using pressure transducers (MJK 1400, 0–1 m, MJK Automation AB) and water temperature was measured using thermistors (TO3R, TOJO Skogsteknik) that recorded hourly data (Figure 6). All continuously measured data were stored on an external data loggers (CR1000, Campbell Sci.).
Laboratory Water Chemistry Analysis

Groundwater and stream water chemistry was analyzed for pH, alkalinity and C concentrations; DIC, CO$_2$, CH$_4$, TOC. The groundwater and stream water DIC and CO$_2$ concentrations were analyzed using the acidified headspace methods (Åberg and Wallin 2014). The pH analysis were conducted in the laboratory using mostly a Mettler Toledo MP 220 pH Meter with an accuracy of ±0.1 units. The groundwater or stream water DOC concentration was analysed in the laboratory using a Shimadzu Total Organic Carbon Analyzer TOC-VCPH, following sample filtration at 0.45 μm in the field. For a subset of samples, additional measurements for δ18O and δ2H were also performed using a Picarro cavity ringdown laser spectrometer (L2130-i) with a vaporizer module (A0211).

Stable C Isotope Ratio

A total of 535 samples were analysed for δ13C-DIC for this thesis work alone, including 360 samples from stream waters, and 175 samples from groundwater. In addition, a total of 44 stream water and groundwater samples were analysed for δ13C-CH$_4$ values and 40 more were analysed for δ13C-DOC. Specific analysis of the δ13C-CO$_2$ values was also conducted for a total of 52 groundwater and stream water samples.

The δ13C-value for DIC, CO$_2$, CH$_4$ and DOC is given as a ratio between the stable 13C and 12C isotopes, which is then reported in terms of deviation from the standard Pee-Dee Belemnite (PDB) in per mile:

\[
\delta^{13}C_{\text{sample}} = \left(\frac{^{13}R_{\text{sample}}}{^{13}R_{\text{PDB}}} - 1 \right) \times 10^3
\]

(eq.1)

Where δ13C sample is the isotopic composition of the sample, expressed in (‰) as a result of the 103 multiplication factor, and 13R is the isotopic ratio of $[^{13}\text{C}]/[^{12}\text{C}]$ from the sample and the PDB standard respectively. The standard deviation of the standards were <0.2‰.

The fractionation factor (α or ε) can be used to compare the isotopic ratio of two molecules in different phases, compounds or material. It can reconstruct processes causing or influencing isotopic effects, either kinetic or environmental factors.

\[
\alpha_{a-b} = \frac{(\delta^{13}C_a + 1000)}{(\delta^{13}C_b + 1000)}
\]

(eq.2)

\[
\varepsilon_{a-b} = (\alpha_{a-b} - 1) \times 10^3
\]

(eq.3)
Where α is the fractionation factor between the component a and b. The $\delta^{13}C_a$ and $\delta^{13}C_b$ is the isotopic ratio of a and b respectively. The α is unit less and often very close to 1 as a result of the very small differences in isotopic ratios. The α factor can be replaced by the ε factor, which is expressed in ‰ and more clearly illustrates the change in isotopic composition (Zeebe & Wolf-Gladrow, 2001).

Graphical Techniques

The Miller-Tans (Miller & Tans, 2003) and Keeling (Keeling, 1958) plots were used in Paper I and II to identify and separate DIC sources in groundwater and stream water based on the $\delta^{13}C$ values. Both graphical techniques are based on the principle of conservation of mass and assume mixing of isotopically distinct C sources (eq.4)

$$\delta^{13}C_{\text{obs}} \times C_{\text{obs}} = \delta^{13}C_S \times C_S + \delta^{13}C_B \times C_B \quad \text{(eq.4)}$$

Where ($\delta^{13}C_{\text{obs}}$) and ($C_{\text{obs}}$) are the observed C isotopic composition and concentration respectively, resulting from a mixture of the C isotopic composition and concentration of the source “S”, for example biogenic or geogenic DIC source ($\delta^{13}C_S \times C_S$) and background “B” ($\delta^{13}C_B \times C_B$), represented in the atmospheric CO$_2$.

This principle, if re-written as a linear relationship, is expressed as equation 5 in terms of the Keeling plot regression, and equation 6 in the Miller-Tans plot regression.

$$\delta^{13}C_{\text{obs}} = C_B (\delta^{13}C_B - C_S) \times (1/ C_{\text{obs}}) + \delta^{13}C_S \quad \text{(eq.5)}$$

$$\delta^{13}C_{\text{obs}} \times C_{\text{obs}} = \delta^{13}C_S \times C_{\text{obs}} - \delta^{13}C_B (\delta^{13}C_B - \delta^{13}C_S) \quad \text{(eq.6)}$$

The $\delta^{13}C_S$ is found in the intercept of the linear regression in equation 5 or in the slope of the linear regression in equation 6 (Figure 7). Conceptually, the differences between the two regression models imply that the stream $\delta^{13}C$-DIC value in equilibrium with atmospheric CO$_2$ ($\delta^{13}C_B \times C_B$), must remain fixed across observations in equation 5. However, this requirement can be disregarded in equation 6, since the $\delta^{13}C_B \times C_B$ is found in the residual variation of the regression line (Figure 7).
Figure 7. Graphical illustration of the Keeling Plot and Miller-Tans methods showing the location of the $\delta^{13}C$ of the observations, background, and source identified with black arrows along the regression line. The main three CO2 reservoirs; atmospheric CO2 (grey section), geogenic CaCO3 (orange section) and biogenic OC in a C3-plant dominated landscape (green section) (Supplementary Figure 1 - Paper I)

The Miller-Tans plot technique is particularly suitable for approximating the $\delta^{13}C$ source when including multiple observations across variable spatial or temporal scales, for which background conditions often differ. Both models assume linearity, with mixing of the two C sources/sinks without further fractionation processes (Pataki et al. 2003; Zobitz et al. 2006; Nickerson and Risk 2009). The assumption of linearity can be violated in cases of kinetic fractionation processes during CO2 outgassing and Rayleigh distillation processes that occur because of in-stream photosynthesis or methanogenesis. Consequently, the interpretation of the $\delta^{13}C_S$ derived from these mixing equations must be made with caution.

Rayleigh Function

A variety of biological processes have an observable impact on the $\delta^{13}C$-DIC values, for example photosynthesis, methanogenesis, CH4 oxidation etc. These isotopic effects can be described through a Rayleigh approach (Rayleigh, 1896):

$$\delta^{13}C_{obs} = \delta^{13}C_S + 10^3(\alpha-1) \ln(f) \quad (eq.7)$$

where $\delta^{13}C_{obs}$ is the observed stream water $\delta^{13}C$-DIC value, $\delta^{13}C_S$ is the $\delta^{13}C$ values of the substrate, α is the isotopic fractionation factor and f is the C flux required to explain the observed $\delta^{13}C$-DIC values.
In stream waters, DIC can be taken up by primary producers, which has a known apparent fractionation factor of $\alpha_{pp} = 0.975$ according to the C3 plant metabolic pathways (Alling et al., 2012, O’Leary, 1988). In the alternative of DIC consumption by hydrogenotrophic methanogenesis, a range of apparent isotope fractionation factors can be applied $\alpha_{hm} = 1.055$ to 1.085 (Whiticar, 1999). Alternatively, DIC production can occur through acetoclastic methanogenesis, which can be estimated using a range of apparent isotope fractionation factors, $\alpha_{am} = 1.040$ to 1.05576 (Corbett et al., 2013, Whiticar, 1999).

In the case of paper I, the above listed biological process were considered as additional influences that supplemented the kinetics of CO2 outgassing in streams. To identify those effects, the $\delta^{13}C$ were set to the expected $\delta^{13}C$-DIC values from the CO2 evasion model (Venkiteswaran et al., 2014). Deviations from the expected modelled values were quantified and used to determine these additional biogeochemical processes. In paper I and II, estimates of acetoclastic methanogenesis were made setting $\delta^{13}C$ to the average $\delta^{13}C$-DOC value. For hydrogenotrophic methanogenesis, the $\delta^{13}C$ was instead set to the $\delta^{13}C$-DIC source value approximated from the Miller-Tans analysis.

Kinetics of CO2 Evasion

The kinetic isotopic effect during CO2 outgassing favours the evasion of 12CO2 and the progressive build-up of 13CO2 in stream water. This isotopic effect is concentration dependant and follows a non-linear relationship. Its influence on the streams $\delta^{13}C$-DIC values can be modelled, for example (Polsenaere & Abril, 2012, Venkiteswaran et al., 2014). These models are limited to specific environmental conditions involving that 1) in-stream processes are negligible, 2) organic acids does not affect carbonate alkalinity as CO2 is evaded 3) carbonate alkalinity is conserved in the streams, and 4) in the case of Venkiteswaran et al. (2014), the DIC pool holds no geogenic contribution.

Radiocarbon Dating

A total of 70 water samples were collected and analysed for 14C content in the DEG and SVB catchment, respectively. This data collection represent one of the largest published aquatic 14C sampling effort within a given catchment. At both DEG and SVB, a complete year characterization (May 2015 to June 2016) of the 14C-CO2 and 14C-DOC was conducted in the stream water. The stream water characterization was complemented with repeated sampling of the connecting groundwater. The groundwater sampling at DEG was distributed vertically, across the full depth peat profile (0 to 4m below surface) (Figure 5). The material characterized for 14C included at DEG included DOC,
CO₂ and CH₄. Dating of the solid soil organic C across peat depth from a separate study was also included (Larsson et al., 2016). At the SVB catchment, the groundwater ¹⁴C characterization focused on ¹⁴C-DOC and ¹⁴C-CO₂, and was distributed horizontally, following the upslope-riparian-stream transect (Figure 6).

Manual spot measurements of ¹⁴C-CO₂ and ¹⁴C-CH₄ were conducted using the super headspace method (Figure 8a) according to (Garnett et al., 2016a) and (Garnett et al., 2016b) respectively. In summary, the method consist in equilibrating a large volume of water with air in a close container, and extracting the headspace to be injected in air bags (CH₄) (Figure 8b) or stored in molecular sieves (CO₂) (Figure 8c).

![Image of ¹⁴C sampling methods](image)

Figure 8. Photo collage of ¹⁴C sampling, a) Jumbo headspace method b) ¹⁴C-CH₄ air bags, c) molecular sieves for ¹⁴C-CO₂ sample storage, d) ¹⁴C-DOC samples in bottles collected at the SVB site, in the stream, riparian and upslope location (left to right) e) passive molecular sieves for time integrated ¹⁴C-CO₂ samples deployed in the SVB stream.

The manual spot measurements for ¹⁴C-DOC were collected in 0.5L bottles in the field and subsequently filtered at 0.7µm in the laboratory (Figure 8d). The manual spot measurement for all C species at SVB and DEG were repeated on 3 different occasions (May, August and October) to help capture the seasonal variability in hydro-climatic conditions that may affect the C sources.

Time-integrated measurements of ¹⁴C-CO₂ in the stream water were conducted using a novel method involving the deployment of passive molecular sieves in the streams (Garnett et al., 2009) (Figure 8e). The sieves were deployed for periods ranging from 4 to 6 weeks. Collectively, these individual measurements provided a complete year characterization of stream water ¹⁴C-CO₂ in both catchments.
Main Findings

“Eureka!”
-Archimedes

Soil-Stream CO₂ linkages
All four papers included in this thesis recognize that stream water CO₂ is primarily sustained by terrestrial sources, transported by inflowing groundwater. Previous studies have put forward this close connection between soil and streams, using mass balance exercises, for example in SVB (Ledesma et al., 2015, Leith et al., 2015, Öquist et al., 2014), DEG (Leach et al., 2016) and in other catchments world-wide (Duvert et al., 2018, Hope et al., 2004, Hotchkiss et al., 2015). In our case, however, this link was established through C isotope analysis.

Based on a compilation of 318 stream water δ¹³C-DIC values, within different catchments and regions, paper I identifies that biogenic soil respiration is the primary source of DIC within four distinct geographical regions in Sweden. This was demonstrated by the close correspondence between the approximated δ¹³C-DIC source from the Miller-Tans plots and the measured δ¹³C-DIC values observed in shallow ground water (Figure 9). In paper II, this coupling was further emphasized by simultaneously analysing the stream water and groundwater δ¹³C-DIC values over time from DEG, SKOG and SVB. This analysis demonstrated a close agreement between the δ¹³C-DIC source in streams and groundwaters, further supporting their close connection (Figure 10). In paper III and IV, the ¹⁴C content of stream water CO₂, DOC and CH₄ over the course of a complete study year was well representative of the connecting groundwater, allowing to identify and partition the contributing hydrological flowpaths. These flowpaths consisted of a deep source area, located at ~2m below ground, supplemented with an intermittent activation of a second flowpath located in the near surface zone of the peat profile.
Figure 9. Miller-Tans plot analysis for δ^{13}C-DIC values (a) and the calculated δ^{13}C-CO$_2$ values (b) presenting the relationship between δ^{13}C-DIC × DIC as a function of DIC. The points are coloured according to their regions (LAVI, DAL, KRY, ABI). The regression lines are plotted for each individual region and follow the regional colour coding, with the equations listed in Table 2. The triangles represent stream outliers (LAVI n=1, KRY n=1) identified with the Cook’s distance and discussed in supplementary materials (Paper I).

Figure 10. Miller-Tans plots showing δ^{13}C-DIC×DIC and DIC concentration in the SKOG (triangles), SVB (squares), and DEG (circles) catchment. The symbols are coloured according to their locations/depth (see legend). The full line represents the linear regression model for SVB: δ^{13}C-DIC×DIC = -22.76 × DIC + 0.62, n=50, R2=0.99, p<0.0001, and dotted line represents SKOG: δ^{13}C-DIC×DIC = -23.25 × DIC - 2.22, n=82, R2=0.99, p<0.0001 (Paper II).
Passive Pipes and Active Reactors

Stream water CO₂ supersaturation relative to the atmosphere was widespread across all surveyed streams (paper I), and constant over time in all three catchment scale studies (paper II-IV). This supported previous findings that streams act as ubiquitous sources of atmospheric CO₂ within Sweden (Humborg et al., 2010, Wallin et al., 2018). Two conflicting views concerning the sources for these emissions are found in the literature, 1) streams are passive conduits, simply relocating groundwater CO₂ to the atmosphere (Crawford et al., 2015, Leith et al., 2015, Winterdahl et al., 2016), or 2) streams are active reactors that generate CO₂ through in-stream biogeochemical reactions (Campeau & Del Giorgio, 2014, Lapierre et al., 2013, Mayorga et al., 2005).

Through the analysis of the stream water δ¹³C-DIC values in paper I and II, we established that both of these views are valid. Atmospheric CO₂ evasion was considered the sole fate of CO₂ in a number of streams, thus supporting the conceptualization of streams as passive pipes (Figure 11 and 12). Secondary sources and sinks, associated with in-stream primary production, DOC mineralization through photochemical or biological reactions and anaerobic processes were also significant in some streams, thus validating the active reactor conceptualization (Figure 11 and 12). These secondary processes have a significant influence on both δ¹³C-DIC values and DIC fluxes.
Figure 11 Scatterplots showing the relationship between δ^{13}C-DIC and the inverted CO$_2$ concentration [1/CO$_2$], comparing stream observations with modelled trajectories of δ^{13}C-DIC evolution with CO$_2$ evasion for the streams in a) LAVI, b) DAL, c) KRY and d) ABI from Giesler et al. (2013). The mean modelled trajectories are represented as the black dotted line with the grey area illustrating the upper and lower prediction boundaries. Each point represents a different stream observation. In the case of (a) and (c) certain streams were also colored to identify streams with DOC:DIC ratios above the regional average, and peatland cover $>$30%. In the case of (c) and (d) different symbols were attributed to the Strahler stream order (1-5). In (d), additional curves represent the shift in modelled CO$_2$ evasion with 20%, contribution of geogenic DIC source (initial δ^{13}C-DIC value =-20‰) (Paper I).
Figure 12. Synthesis scheme representing the identified dominant DIC sources and sinks for the studied streams (n=318). The top bar shows the separation between streams with strictly biogenic DIC sources (n=269) (green) or with a detected geogenic DIC influence (n=49) (orange). The bottom bar represents the streams within the category of biogenic DIC sources for which additional DIC sources and sinks are important. All streams were considered to be affected by CO2 evasion. The grey area represents the streams with no detectable additional influence besides CO2 evasion to the atmosphere (n=126). The brown area represents streams where DOC mineralization was identified (n=64). The purple area represents the streams likely influenced by anaerobic processes (n=22). The blue area represents the streams possibly influenced by in-stream primary production (n=58) (Paper I).

The concept of active reactors extend beyond stream waters. Groundwater, also appeared as areas of intensive C transformation. Methanogenesis, associated with peat-rich environments found in the different types of studied catchments DEG, SVB and SKOG, had a dominant influence on the catchment scale DIC cycling (Paper II). These areas comprised a large boreal fen (DEG), where hydrogenotrophic methanogenesis consumes groundwater DIC (Paper II-III), an organic-rich riparian zone (SVB), where acetoclastic methanogenesis likely sustained groundwater DIC production, and a previously unrecognized hydrological source associated with an upstream peatland (SKOG), that contributed disproportionately to the catchment total C export relative to its areal coverage. The similarity between 14C-CO2 and 14C-CH4 at DEG further reinforced the close source connections between the two C-species (Paper III). Collectively, these results demonstrate that the catchmentscale cycling of CO2 is intertwined with that of CH4. Depository environments, poor in oxygen and rich in CH4, are widespread across the boreal biome (Gorham, 1991, Nilsson et al., 2001, Yu, 2012). They likely play a predominant role in modulating and transforming CO2 exported to freshwaters.
Stability of the Boreal C Repository

In both the DEG and SVB catchment, the 14C content of dissolved C species was remarkably different from the age of the standing soil OC, indicating little remobilization of ancient peat C stocks in both catchments (Paper III, IV). Projecting the total 14C export at DEG relative to the hydrological conditions over the last 12 years indicated that inter-annual shifts in discharge will have a negligible influence on the age of lateral C export from DEG (Figure 13). This boreal fen has been spared from human disturbances and remains in relative pristine condition. Studies in peatlands that were disturbed by human activities, demonstrate that ancient C stocks can be remobilized through the aquatic pathway (Butman et al., 2014, Evans et al., 2014, Moore et al., 2013). Our study suggest that in the absence of such disturbances, C losses from boreal peatlands should remain limited.

![Figure 13](image)

Figure 13. a) Flow duration curve of the stream for each year between 2003 and 2014 (circles in grey scales) and during the study year (black triangle; 2015), with flow conditions at the time of stream water 14C-DOC sample collection identified as dotted lines. b) the estimated annual weighted average 14C content of total C export (Total 14C exp) for each year between 2003-2016, in relation to the annual runoff expressed in mm, with the bars representing the uncertainty of each prediction, and the solid line representing the least-square linear regression model (Total 14C exp = 105.2 + Runoff \times 0.004, $R^2=0.53$, n=12, p=0.004) (Paper III).

From Leaves to Streams

The systematic gap in 14C content between CO$_2$ and DOC, prevailing in both DEG and SVB throughout the studied year, was one of the most surprising result of this thesis (Figure 14). In both catchments, the 14C-CO$_2$ was constant across locations and sampling periods, but the 14C-DOC was considerably more variable. This aspect was even more striking at the SVB catchment,
where 14C-DOC spanned from 50 to 117 %modern, while the 14C-CO$_2$ remained stable, ranging from 99 to 107 %modern in the same waters (Figure 14). This gap highlighted differences in the sourcing and turn-over rates of DOC and CO$_2$. In addition, contrasts in the 14C distribution of CO$_2$ and DOC across the vertical peat profile at DEG further indicated that these two compounds are subject to different turnover times, but also to different hydrophysical processes controlling their respective transport across depth.

Figure 14. This schematic (unscaled) includes the forest NEE and the lateral and downstream CO$_2$ and DOC export and stream CO$_2$ emissions, along with their cumulative annual 14C content represented by the sizes of the spheres (blue (14C-CO$_2$) and orange (14C-DOC)), at the three locations along the Upslope-Riparian-Stream transect, and depth (shallow [0-0.5 m] and deep[0.5-1 m]). Mass of C export (g C m$^{-2}$ yr$^{-1}$) are written on the left side of each spheres and in italic, while the 14C-contents are written on the right side *(Paper IV)*.

In the SVB catchment, we were able to elaborate on the drivers behind this disconnect in the cycling of DOC and CO$_2$ *(Paper IV)*. The steadiness of the 14C-CO$_2$ represented well the current atmospheric 14C-CO$_2$ levels, indicating a constant and rapid cycling. We connected this source to currently occurring forest C fixation, and the ensuing soil respiration carried out by roots and microbes mineralizing recent photosynthates. In the light of these results, we conclude that stream CO$_2$ emissions will rapidly feedback on the anticipated future changes in forest C sink capacity and C allocation patterns driven by climate and land-use changes in the boreal biome.
Lessons Learned from Isotopic Tracing of C Sources

Separating multiple co-occurring isotopic effects is certainly the most challenging aspect in the interpretation of stream water δ^{13}C-DIC values. While there are no perfect ways to address these issues, a few alternative methods have been developed in this thesis to circumvent some of these problems. Our approach began by describing some of the key well-described isotopic effects on δ^{13}C-DIC values. This was followed by a second analysis focusing on the residual variation of δ^{13}C-DIC values.

The pH Effect

The composite nature of DIC and its isotopic composition [H_2CO_3, HCO_3^-, CO_3^{2-}] was the first key-isotopic effect considered in the analysis of δ^{13}C-DIC values. The pH was the best explanatory variable for δ^{13}C-DIC value across the streams surveyed in paper I (Figure 15). This relationship is not attributed to differences in C sourcing, but rather to the isotopic effect of CO$_2$ evasion, where CO$_2$ escapes to the atmosphere and leaves behind ionic DIC forms. These ionic forms have a higher affinity for 13C isotopes, which leads to large equilibrium isotopic effects in combination with kinetic fractionation (Zhang, 1995). In streams with high CO$_2$ supersaturation and low pH, this isotopic effect will remain low, but for streams with high buffering capacity, this will have a substantial effect on δ^{13}C-DIC values (Figure 15). If neglected, this effect will lead to misguided interpretations of C sources. As such, analysis of stream water δ^{13}C-DIC values across variable temporal and spatial scales should begin with a contextualization with pH and carbonate alkalinity, which in our case was achieved by deriving the δ^{13}C-CO$_2$ values (Paper I).
Figure 15. Scatterplots showing the relationship between δ^{13}C-DIC as a function of pH, with the solid black line representing the least square linear regression model, the green area representing δ^{13}C-DIC in equilibrium with soil CO$_2$ (-23 to -28‰), the grey area representing equilibrium with atmospheric CO$_2$ (-8.5‰) the orange area representing the conventional threshold where geogenic DIC sources are considered possible. Each dot represents a different stream observation and is colored according to its region (DAL, LAVI, KRY and ABI) (Paper I).

Filtering out CO$_2$ evasion
The kinetics of stream water CO$_2$ evasion is a second key isotopic effect that can be well-described through modelling (Polsenaere & Abril, 2012, Venkiteswaran et al., 2014). By quantifying this isotopic effect for multiple streams, we were able to identify secondary isotopic effects and connect them to different biogeochemical processes. While we recommend to use caution when quantify CO$_2$ evasion based on δ^{13}C-DIC observations, we also highlight novel opportunities to unravel the presence of additional mechanisms regulating DIC concentration in surface waters using δ^{13}C-DIC values (Paper I).

Miller-Tans Plot
The Keeling plot is a well-known graphical technique, but requires fixed background conditions that can rarely be validated in field conditions. The Miller-Tans graphical technique is less notorious in comparison, but allows for background conditions to vary between sampling points. Consequently, this graphical technique proved to be more valuable for separating and approximating stream δ^{13}C sources between multiple catchments scattered through time and space. This method clearly revealed distinct groups in δ^{13}C-DIC values, which were not distinguishable using the Keeling plot technique or a basic distribution of values.
Tracing Hydrological Flowpaths

An array of isotopes and chemical compounds can be used to trace hydrological flowpaths (Abbott et al., 2016). Because C transformations typically leave an imprint on the δ^{13}C value and ^{14}C content, they too can be used as tracers. This thesis contains several examples where hydrological information could be derived from C isotopes. In DEG, a deep hydrological flowpath, ~2m below ground surface, was found to support ~70% of the total aquatic C export (Paper II). In the same catchment, a 9-day lag was identified between the different contributing areas exporting CO₂ to the stream (Paper II). A deep hydrological flowpath, transporting ancient DOC, was revealed in the upslope soils at the SVB catchment (Paper IV). In the SKOG catchment, the disagreement between the stream water and the groundwater δ\(^{13}\)C-DIC values suggested a methanogenic source that was not captured by our groundwater characterization. This revealed a previously unaccounted hydrological source from an upstream peatland (Paper II), which comprised only 6.5% of the total catchment area, but dominated the lateral C export.
Conclusions & Future Perspectives

“Science never solves a problem without creating ten more”
– George Bernard Shaw

This thesis has provided new information on the sources of C in boreal streams. Most striking, was the rich complexity of processes shaping the export of C from soils to streams. Stream CO₂ arises from multiple sources and sinks (Paper I & II), but is mostly driven by fast-cycling processes within the connecting soils (Paper III and IV). These findings open up to new questions such as; how to better capture the complexity in stream C sources across large spatial scales and how to track potential shifts in C sources in response to climate and land-use changes.

Developing Better Indicators

This thesis recommends that future studies aim to combine catchment C budgets with a determination of stream C sources and sinks. The integration of lateral C export into catchment scale budget is complex, and mass balance exercises will not fully capture the relationships between different flux components. These attempts can be supported by the interpretation of large-scale patterns in δ¹³C values and ¹⁴C-contents, but can we derive better indicators that would facilitate a large-scale determination of stream C sources? Methanogenic processes are important in the cycling of CO₂ at the catchment scale (Paper I-III) and may respond differently to warming and water stress (Campeau & Del Giorgio, 2014, Updegraff et al., 2001). The CH₄ in surface waters tend to be controlled locally (Stanley et al., 2016), but is often associated with specific environments, e.g. peatlands and riparian zones (Wallin et al., 2014), or certain landscape features, e.g. flat topography (Campeau et al., 2014, Jones & Mulholland, 1998a). Floodable lands have recently been identified as key areas controlling the C supply to freshwaters (Abril & Borges, 2019). This aspect is surely relevant to headwater systems, including ephemeral streams, for which the true areal extent still remains unknown (Allen & Pavelsky, 2018, Benstead & Leigh, 2012, Bishop et al., 2008). The C that is
supplied to streams by these intermittently flooded areas needs further assessment. Developing remote sensing tools to map methane-rich environments and intermittently flooded areas could possibly help better describe these influences at larger spatial scales. In-stream primary production has a poor predictability (Lamberti & Steinman, 1997), but accessibility to light (Mulholland et al., 2001) and application of fertilizers associated with agriculture (Gücker et al., 2009) are major controls that could potentially be described at large spatial scales. In-stream DOC processing has been studied extensively, new concepts relating to hydrological controls are emerging in the literature, for example, the pulse shunt concept (Raymond et al., 2016), providing a framework to dynamically address the influence of residence time (Catalán et al., 2016) and stream size (Hotchkiss et al., 2015). These effects may, someday, be quantifiable by remote sensing methodologies.

A False Impression of Stability

While this thesis demonstrates that the age component of C mobilized through the aquatic pathway in a pristine boreal fen (DEG) is resilient to changes in hydro-climatic conditions, the boreal forest catchment (SVB) revealed an ancient DOC source in the upslope groundwater. Why aged DOC is mobilized in this catchment remains unclear. An aged C component re-emerges further downstream of the Krycklan river, this time in the form of CO2 (Figure 16). How the occurrence of this aged-CO2 in the Krycklan river catchment could be connected to the same old-DOC pool found in the upslope groundwater remains to be determined. Alternatively, both aged-DOC and CO2 may simply be co-transported with deep groundwater emerging in different sections of the catchment. Further isotopic characterization across this catchment could help elucidate the hydrological sources and fate associated with this old DOC and CO2 pool and whether fast-cycling CO2 sources are, or not, ubiquitous in this catchment.

A predominant hydrological flowpath in the boreal fen (DEG), located about 2 m below ground, feeds most of the C found in the connecting stream. While this deep pathway surprisingly transports relatively fresh DOC, CO2 or CH4, it may relocate ancient particulate organic C (POC), which was not measured in the study. How the potential seeping of aged-POC affects the stability and the C budget of the peatland is still unquantified. An extreme summer-heatwave in 2018 lowered the groundwater level at Degerö further than at any time since measurements began at this location. Such extreme events, would expose new peat depths to oxygen and promote the mineralization of older peat material. How such conditions affects the remobilization of ancient C towards the atmosphere has yet to be determined.
Figure 16. Map of the Krycklan river catchment showing the location of time-integrated 14C-CO$_2$ samples in stream waters collected between 2015-07-08 to 2015-08-06 with their 14C-content expressed in %modern (Campeau A., unpublished data).

The close connection between aquatic and terrestrial CO$_2$ sources, gives rise to suspicion that anticipated changes in the forest C balance and C allocation will be mirrored in aquatic ecosystems. While a connection to current forest activity could be made based on the 14C-CO$_2$, the specific biological pathways giving rise to groundwater CO$_2$ could not be separated. This limits our capacity to predict how changes in forest C allocation patterns will be reflected in the source and magnitude of lateral C export. Forest manipulation, e.g. interrupting the flow of energy to the root system, could help further separate the various respiratory processes associated with the lateral C export, i.e. autotrophic/heterotrophic, but these questions remain to be explored.

At last, little of what has been concluded in this thesis should be extrapolated across the boreal biome without caution. The heterogeneity of this landscape is far too great to be represented by this collection of studies. Our understanding of biogeochemical processes in high-latitude ecosystems has been said to be strongly biased towards Sweden (Metcalfe et al., 2018). More studies in other regions of the boreal biome and within different ecosystem types will be needed to develop a broader picture of C sources in boreal streams.

Genom nedbrytning, utförd av markmikrober och andra organismer, återförs en viss del av detta kol till atmosfären. Nettoresultatet av dessa två motverkande processer är emellertid oftast att CO₂ avlägsnas från atmosfären, och där boreala ekosystem representerar ~ 20% av den globala kolsänkan utförd av skogsmark. Eftersom CO₂ fungerar som en viktig växthusgas bidrar boreala ekosystem till en nettoavkylning av klimatet och neutraliserar en betydande del av det antropogena CO₂-utsläppet.

Utbytet av CO₂ mellan boreala ekosystem och atmosfären blir dock mer komplex när man inkluderar hydrosfären. Den boreala biomen har världens högsta tätthet av sötvattenekosystem, bestående av sjöar, dammar, älvar samt bäckar. Dessa sötvattenförekomster som dränerar det boreala landskapet är i de flesta fall övermättade med CO₂ och metan (CH₄) i förhållande till atmosfären. Dessutom transporteras mycket löst organiskt kol (DOC) till sjöar och vattendrag från avrinningsområdets kolrika marklager. CO₂ och CH₄ i dessa vatten returneras snabbt till atmosfären genom fysiskt gasutbyte. Boreala sötvatten bidrar därmed positivt till halter av växthusgaser i atmosfären.

Under de senaste decennierna har försökt gjorts till att kvantifiera utsläpp av växthusgaser från sötvatten, detta för att bättre kunna förstå dess roll i den globala kolkretsel och i förlängningen jordens klimatsystem. Dessa ansträngningar har lett till en första integrering av CO₂-utsläpp från sötvatten i den senaste IPCC-rapporten om klimatförändringar (2013), där den globala kolkretsen beskrevs.

Denna avhandling syftar till med förståelsen om växthusgasemissioner från sötvatten sam bas försöka ta ett steg till och förstå de källor av kol som gör att små vattendrag som dränerar boreala ekosystem ofta är övermättade med avseende på CO₂. Dessa små vattendrag utgör en proportionellt liten andel av den totala ytan av sötvatten men bidrar samtidigt med en stor andel av de totala
CO2-emissionerna. CO2 i små vattendrag kan härröra från flera källor. En växande forskning har visat att grundvatteninflödet av CO2 är tillräckligt för att förklara mycket av de CO2 emissioner och nedströms export som observerats i vattendrag. Dessa slutsatser har till stor del baserats på massbalansberäkningar, men där det fortfarande saknas en tydlig processförståelse.

Åldersbestämning av kol kan vara en metod för att förstå de olika processer som reglerar CO2 i rinnande vatten. CO2 i grund- och bäckvatten kan ha sitt ursprung från nedbrytningsprocesser som ägt rum det senaste året, men också från nedbrytning av gammalt markkol, som i Sverige kan vara upp till ~ 10 000 år gammal (början av Holocen). Skillnaden mellan dessa tidsskalor är fundamental för vår processförståelse, men är information som oftast saknas eller bortses från när det gäller CO2 i vattendrag.

Denna avhandling baseras i stor utsträckning på karakterisering av naturlig förekomst av stabila och radioaktiva kolisotoper i grund- och bäckvatten. Studien har inkluderat de olika formerna av kol samt provtagning av olika ekosystemtyper över hela Sverige med syftet att ta fram en så god förståelse som möjligt rörande mark-vatten interaktioner. Medan den stabila isotopen (13C) bär avtrycket av flera källor och transformationsprocesser, ger den radioaktiva isotopen (14C) en uppskattning av den tidsskala involverad för att producera CO2.

Resultaten från isotopanalyserna visar att boreal mark är huvudkällan för CO2 i bäckvatten. Markrespiration (dvs biologisk nedbrytning av organisk material) producerar CO2 som transportereras till dränerande vattendrag och där skapar ett övertryck i förhållande till atmosfären. I ett fåtal undantag visade resultatet på att geologiska CO2-källor (vittring av karbonatinnehållande min-
eral) bidrog. En rad biologiska processer omvandlar också CO2 under transporren från mark till vatten, eller i vattendraget. Dessa inkluderar; metanogenes, DOC-mineralisering och primärproduktion i vattendraget.

Majoriteten av CO2 i små boreala vattendrag upprätthålls genom det senaste årets kolfixering av vegetationen. Detta tyder på snabb omsättning och transport från mark till vatten och där antika kolsubstrat utgör en mycket liten andel av den producerade CO2 som når vattendrag. Dessa resultat visar dessutom att lagret av organiskt kol i boreal skogs- och torvmark för närvarande är stabilt. Dock indikerar den direkta kopplingen mellan vattendragets CO2 och skogens fotosyntetiska aktivitet att förändringar i kolinbindningsmönstret i det boreala landskapet, drivna av klimat och markanvändning, kan ge direkta effekter på CO2 emissioner från små vattendrag.
Acknowledgments

“If I have seen further, it is by standing on the shoulders of Giants.”
— Isaac Newton

Like a small mushroom, I consider this work to be the fruit of a very large root system that is often under appreciated. Many people need to be acknowledged for its success. If this kappa wasn’t long enough already, it will get even longer. I made sure to highlight each of your names, so you can find yourself more easily.

The quote for this section is most appropriate to the first person I want to thank here, not only because you are particularly tall, but mostly because your presence and support was central to the success of this thesis. Thank you Marcus for all the time and help you have given me over the years. Your role as a supervisor was exemplary. From day one, I knew that I could always count on you. I enjoyed our spontaneous meetings, your constant involvement in my work, your encouragements and guidance. Thanks for believing in me, when we first met in New Orleans, back in 2013. You were there for me all along, both professionally and personally. Thank you for welcoming me when I first arrived in Sweden, thank you for being there when I signed my first mortgage, thank you for the driving lessons, thank you for all the advices and thank you for all you did to help me integrate this country. I will miss having you nearby and being able to come knock on your door at any time. We make such a great team!

Thank you Kevin for your constant support and enthusiasm for my work. Your involvement in this team was just as capital. I enjoyed our scientific discussion, your keen eye for a good story and your many advices. You represent a pillar to all of us who have had the pleasure to work under you supervision. I am so grateful to have had the privilege to join the cohort of Bishop’s PhDs. You are so generous of your time and resources. Also, thanks for the delicious dinners and fun evenings playing Catan (thanks also to Tasse: I apologize again for letting Kevin win)

This thesis was born before I even arrived in Sweden. To my first mentor, Paul del Giorgio, thank you for giving me my first chance. My life would be
very different today if I had not worked with you. Years later, you remain one of the most inspiring scientist I know and a true role model. Those years at UQAM shaped the scientist I have become today. There, I learned what it meant to do science and this was also greatly thanks to Jean-François Lapierre, Dominic Vachon, Francois Guillemette and Yves Prairies. Thanks for seeing potential in me.

There are many people whose work contributed immensely to my own. **Hjalmar Laudon**, my third supervisor, thank you for giving me the opportunity to work at the Krycklan catchment and for your involvement in my work. Despite the distance, you were always ready to board the train when it came. Thanks to all the staff members of the Krycklan Crew, particularly **Peter Blomkvist**, thank you for all the help and especially the days spent setting up my loggers. **Viktor Sjöblom** and **Johannes Tawari**, I cannot list all the times that both of you helped me, thank you! Thanks to **Åsa Boily, Abdul-majid Mahomoud** and **Bengt Andersson** for the lab work and for being patient with me when I was confused with my samples. In Skogaryd, thank you **David Allbrand**, you are so dedicated to your work and the success of the Skogaryd study is mostly thanks to you. Thank you also to **Leif Klemmedtsson** for the opportunity to work at this site and for collaborating with us.

The field work was a major part of this project. Setting up the logger systems would have been impossible without your help. Thank you **Fraser Leith** for the months spent working with me in Uppsala. Your diligence and care for detail made me save months of work, your presence was pivotal in this project. Thanks also to **Mike Billet** for the help planning and running the radiocarbon sampling. I keep a great memory of the week we spent on the field. Thank you for being such a nice person and for all the support you so kindly gave me. Thanks also to **Joachim Audet**, who volunteered his time to accompany me on the field for yet another radiocarbon sampling campaign. You are so “généreux de ton temps” and it was great fun to work together.

Thanks to the French interns, who volunteered their summers to work for us and endure the mosquitoes in the north of Sweden, especially to **Aurélie Saisou, Antoine-Félix Husson, Thibault Imbert**. It was great fun to spend the summer with you guys, driving around Dalarna, sampling streams in the forest.

Many people were involved in the development of the papers, to all my co-authors - thank you! To **Mats Nilsson**, thank you for giving me the opportunity to work at Degerö. Thanks also to **Mats Öquist**. Thanks to both of you, for challenging me and being assiduous scientist. I enjoyed collaborating with you two very much for your straight-talking, patience and your wide knowledge. To **Mark Garnett**, thank you for your diligence with the 14C data,
both for the logistics, handling the samples, and for the interpretation of the data. It gave me great peace of mind to have you on board. Thanks to Reiner Geisler and Carl-Magnus Mörth for joining the $\delta^{13}C$ stream survey project and sharing their data from Abisko and expertise working with stable isotopes. Thank you Jason Leach for your clever ideas and kindness. Thank you, Sherry Schiff, for your involvement in the $\delta^{13}C$ stream survey project. You are the only women I have collaborated with so far, thanks for holding the fort. Thanks to Jason Venkiteswaran for the isotope chats, for challenging my ideas and the long hours you gave to this project. Thanks to Stephan Löfgren for the stream selection method - this really strengthened the paper.

Thanks to all the administration staff at Geocentrum for their hard work. In particular, I must thank Fatima, who has always been my first go-to-person. You are so kind and welcoming, and I am most grateful for all the help and support you provided me over the years.

To my sidekick, Nino Amvrosiadi. I am so grateful that fate made our paths cross. Sitting in the same office together, hours upon hours, weeks upon weeks, made me know you in a way that I would never have in regular circumstances. You are so sweet, but so wild at the same time. I don’t think many people know that. You inspire me and you will always hold a special place in my heart.

Thanks to all my friends and colleagues from Geocentrum, most particularly; Chiara, Lebing, Bea and Martin, Saba, Kaycee, Kristina, Eduardo and Nilsa, Agnes and Marc, Sergey, Dorothee, Anna, Diana, Jean-Marc, Reinert, Adam, Johan, Lucia, Nina, Claudia and Thomas, Claudia and Oscar, Silvia and Fredric, Börje, Maryeh and many others that I may forget.

Thanks to my good friends, Anna and Jay, I am so grateful to have you near, you make a wonderful auntie and uncle! To my old friend Marie-Eve and Clauderic, thanks for coming over to Sweden several times and welcoming us to Copenhagen. It’s great to have you in our European lives. Thanks to my old friend Zia and Claire, who also came to visit and welcomed us in San Francisco. Thank you especially to Bojan and Alenka for making our everyday life brighter and happier. Your presence in our lives is incredibly important and I am so grateful that we met at daycare.

I was blessed with two “Swedish dads”; Jarl Nilsson thanks for your friendship and for everything you do for us. I wish so much that I could do as much for you. Secondly, Christer Wik, Bruce and Léon first dad, thanks for being such a good friend and for all the help you so kindly give us with our boys.
I also want to thank this country; Sweden. It might sound a little strange to acknowledge a whole nation, but I have so much to be grateful for. I moved here when I was 26 years old and this country has allowed me to grow up to the adult I have become today. I could not have found such good living conditions anywhere else in the world while undertaking my degree. I will be eternally grateful for that. Thank you for opening your doors to me and to many other immigrants like me. This country has given me the opportunity to take roots, find a home and raise a family.

Overseas, many people should also be acknowledged for my success. First my Mumzy and Daddzy, who always believed in me and made me become the women I am today. I have you to thank for everything in life and this section is not merely enough to express all the love and gratitude I have for you. Thanks for being such good role models, for giving me your unconditional love and the best start in life anyone could hope for. To my sister, Stéphanie, you are a model of resilience, strength and courage, thanks for being part of my life.

I also have extended family to thank, my aunt Nancy, who is yet another strong female figure in my life and has shaped the person I am today. My grand-maman Jeanine, the foundation of our family, all that we have become today comes down to the person you were. My cousins, Valérie and Maxime, who are like siblings to me, thank you for inspiring me and for putting so much joy and happiness into my life.

To my grand-maman Lucille, thanks for passing on your artistic genes and for being the most loving person. To my god parents Claudine and Sylvain and cousins Florence, Jean-Philippe, thanks for brightening up my life. To my old friends Genevieve, Amélie and Frisou, thanks for not giving up on me despite the distance. To Genevieve particularly, you have spent so much time in Sweden with us, thank you. I will be eternally grateful that you were here, by my side, on the most extraordinary day of my life. You give the best back rubs…

To my Australian family, thank you for being who you are and for not hating me for taking Chris to Sweden. I am so grateful to have you all in my life and I could not hope for better in-laws; Sandy, Peter, Kate and Samuel, Andrew and Tilopa, Matthew and Josephine, along with all the kids and doggies - I love you all very much. To Lucas and Hanna thanks for our my family away from home. Having you here made us feel like we weren’t so far from home all the time.

One of the best days I had in this country was on a seemingly ordinary autumn day, playing with Bruce in the Stadskogen. He was running wild in the grass,
like he usually does, and he suddenly ran towards you and Max. Jenny Waddling, I will forever be grateful that we met that day in the forest. I could not dream of a better friend. My life is so much better simply because you are part of it. I have put you at the end here because truly, you are like family to me and I love you.

And finally to Christopher, thanks for following me on this adventure to Sweden. You have sacrificed so much to be here with me. I can’t thank you enough for everything you do for me every day. Thank you for being the world’s best husband, the world’s best dad, the world’s best friend and even world’s best field assistant. I know lots of people have claimed those titles before, but they haven’t met you. You are my number one fan and if I can seem to have endless motivation, it is only because I never want to disappoint you. Thank you for being the best life partner. Je t’aime…

Et pour toi mon Cœur, sache que c’est toi qui me pousse à vouloir me surpasser chaque jour et devenir une meilleur personne.
Je t’aime plus que tout
References

IPCC (2013) Summary for policymakers. in: climate change: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.

A doctoral dissertation from the Faculty of Science and Technology, Uppsala University, is usually a summary of a number of papers. A few copies of the complete dissertation are kept at major Swedish research libraries, while the summary alone is distributed internationally through the series Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology. (Prior to January, 2005, the series was published under the title “Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology”.)