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Abstract

Engineering sciences deal with the problem of optimal design in the face of
uncertainty. In particular, control engineering is concerned about designing poli-
cies/laws/algorithms that sequentially take decisions given unreliable data.

This thesis addresses two particular instances of optimal sequential decision
making for two different problems. The first problem is known as the H∞-norm (or
`2-gain, for LTI systems) estimation problem, which is a fundamental quantity in
control design through the small gain theorem. Given an unknown system, the goal
is to find the maximum `2-gain which, in a model-free approach, involves solving a
sequential input design problem. The H∞-norm estimation problem (or simply “gain
estimation problem”) is cast as the composition of a multi-armed bandit problem
generating data, and an optimal estimation problem given that data. It is shown
that the separation of the gain estimation problem into these two sub-problems is
optimal in a mean-square sense, as the expected estimation error asymptotically
matches the Cramér-Rao lower bound.

In the second part of the thesis, we address the problem of risk-coherent optimal
control design for disturbance rejection under uncertainty, where optimality is studied
from an H2 and an H∞ sense. We consider a parametric model for the plant and the
noise spectrum, where the modeling error between the model and the real system is
uncertain. This uncertainty is condensed in a probability density function over the
different realizations of the parameters defining the model. We use this information to
design a controller that minimizes the risk of falling into poor closed-loop performance
within a financial theory of risk framework. A systematic approach for the design of
H2- and H∞-optimal controllers is proposed in terms of a quadratically-constrained
linear program and a semi-definite program, respectively. An interesting application
to H2-optimal design under covert attacks is also developed.





Sammanfattning

Inom ingenj̈rsvetenskapen är man intresserad av problem inom optimal design
under osäkerhet. Speciellt inom reglerteknik arbetar man med design av poli-
cyer/regler/algoritmer vilka sekventiellt fattar beslut givet otillförlitlig data.

Denna avhandling behandlar tv̊a särskilda fall av optimal sekventiell beslutsfat-
tande för tv̊a olika problem. Det första problemet är känt som H∞-norm (eller
`2-gain, för LTI-system) estimeringsproblemet, vilket är en grundläggande storhet
inom reglerdesign via l̊agförstärkningssatsen. Målet här är att givet ett okänt system
hitta den maximala `2-förstärkningen vilket i en modellfri metod skulle innebära
en sekventiell insignaldesign. H∞ estimeringsproblemet har formulerats som en
kombination av en multi-armad bandit-problem för datagenerering och en optimal
estimeringsproblem givet denna data. Det visas att uppdelningen av H∞ estimer-
ingsproblemet i dessa tv̊a delproblem är optimalt i en medelkvadratisk mening d̊a
det förväntade estimeringsfelet asymptotiskt matchar Cramér-Raos undre gräns.

I den andra delen av avhandlingen behandlar vi problemet med riskkoherent
optimal reglerdesign för störningsdämpning under osäkerhet, där optimaliteten
studeras med avseende p̊a H2 och H∞. Vi tittar p̊a en parametrisk modell för
systemet och dess störningspektrum där modelleringsfelet mellan modellen och det
verkliga systemet är osäkert. Denna osäkerhet har samlats i en täthetsfunktion över
de olika realiseringarna av de parametrar som definierar modellen. Vi utnyttjar
denna information för att designa en regulator som minimerar risken av att hamna
i ett slutet system med d̊alig prestanda i ett finansteoretiskt sammanhäng. En
systematisk metod för design av H2- och H∞-optimala regulatorer har presenterats i
termer av ett linjärt programmeringsproblem under kvadratiska bivillkor respektive
ett semidefinit program. En intressant tillämpning av H2-optimal design inom
datasäkerhet har ocks̊a utvecklats.
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Chapter 1

Introduction
“All models are wrong, but some are useful.”

— George Box, statistician

The general cross-cutting goal of science is to build and organize knowledge in
the form of testable (falsifiable) explanations and predictions of the universe [1].
The job of building knowledge is split up among the different scientific disciplines
where efforts are concentrated just in one part of reality at a time [2]. This part is
called system and everything else in nature (where we as scientists also belong to)
becomes the environment, which interacts with the system by acting upon it, e.g.,
shaking it, warming it up, among other kind of actions. A model is the organization
of knowledge about a system under study. This abstraction allows us to answer
questions without asking the system itself, and can be delivered as “hypotheses”,
“laws of nature”, “paradigms”, etc. [3]. Models provide science with that magical
component that allows it to predict the future, although different disciplines predict
the future with different degrees of precision according to their intrinsic goal. For
example, pure sciences (such as physics, chemistry, biology) derive models in order to
make more general claims or to build even more complex and complete models upon
them, with the sole purpose of improving our understanding of the universe. On the
other hand, applied sciences (such as medicine, pharmacy, engineering) build models
attempting to manipulate the behavior of a system by controlling its surrounding
environment.

Engineering sciences are essentially about optimally shaping the future. And
not only as an active agent developing new technologies, but also —literally— as
a systematic approach to solve problems. An engineer strives to make optimal
decisions under limited information. In contrast with other scientific disciplines,
engineering not only seeks for a model describing reality, but also to optimally
shape the future behavior of a system (to optimally interact with the system). Civil
engineers develop complex models of bridges, as their goal is to design and build
robust bridges that do not collapse. However, resources are expensive, meaning that
the amount of them invested on the construction of a bridge must be the exact right
amount to prevent failures. Investing more resources than those actually needed
incurs in unnecessary expenses, while investing less resources than needed leads to

1



2 Introduction

bridge failure. Optimality is a mathematical notion1 that formalizes what exact right
amount means—not more, not less; it accounts for the central economic problem
“resources are limited” [4]. Engineering design, as in bridge design, tries to optimally
determine the allocation of resources given the limited information a model provides.

Building models in control engineering: the fiction of the true system

The class of models control engineering deals with are mathematical models, de-
scribing the laws of the interaction between the system and its environment. A
mathematical model relates adjectives of the environment (such as cold, high, long)
to those of the system by quantifying them into signals. In other words, a math-
ematical model describes how the environment signals (input signals) affect the
signals of the system (output signals). The process of modeling (i.e., deriving a
model for a system) is commonly done in two different ways. One route is to use
“laws of nature” and well-established facts (e.g., Newton’s laws) to mathematically
describe the properties of the system, and this does not necessarily involve any
experimentation on the system. The other way, which is probably the most popular
one in control engineering, is based on experimentation where input and output
signals of the system are recorded and later used off-line to infer a model; this
approach is called system identification.

Models and systems intrinsically belong to parallel universes: we can observe
the system but we can never establish any exact equivalence between mathematical
descriptions and the real world [3]. Control engineering takes a pragmatic view of
models guided by usefulness rather than truth, as the complexity in the design is
proportional to the one of the model. We are particularly interested on the mismatch
existing between the system and the model, as knowing some features of this error
provides theoretical guarantees on the control performance.

In this thesis, we develop approaches for optimal design in the face of uncertainty,
which makes the task of designing more challenging. Uncertainty can be seen as
the lack of knowledge needed to fully describe a phenomenon, and causes several
problems when trying to take the best decision under limited information. In control
engineering, models are commonly derived from experimental data, which induces
many sources of uncertainty: the data itself has a random component (noise), while
the structure of the model is chosen by the user and might represent reality with
more or less accuracy. Furthermore, the control algorithm operates under uncertainty
as the available real-time data is always blurred out by noise. In summary, design
in the face of uncertainty must account for the uncertainty of the model and the
one from the real-time data.

1 In English, optimal literally means most desirable or satisfactory, which might differ from
our notion of optimality, while other scientific disciplines consider optimality as the satisfaction of
the result. For example, a surgeon builds a simple anatomic model of the human body that allows
him to optimally perform surgery.
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In a more detailed description, this thesis deals with two views of the same prob-
lem, namely sequential resource allocation, and traditional control design. Both so-
lutions involve designing an allocation/control/sequential rule/policy/algorithm/law
that attains an optimal performance, from which they receive the prefix of optimal.
These policies make use of the available information to design an input to the system
generating subsequently new information, while at the same time we are able to
measure its performance.

1.1 Sequential resource allocation for H∞-norm estimation

Sequential allocation problems are an instance of Reinforcement Learning [5], where
at each time resources are allocated on a set of actions, and some of observable
pay-off is revealed. The goal is to maximize the total pay-off obtained in a sequence
of allocations. We use this powerful machine learning framework for studying the
mismatch existing between the true system and our model, i.e., the modeling error.

The success of control engineering lies in the robustness with which control
laws can be designed to account for modeling errors. In fact, the performance of
the control policy depends on the largest magnitude of the modeling error across
the frequency axis. Previous works [6–8] have studied this topic under the name
of robust control. The solution to the robust control problem requires not only a
nominal model of the system, but also a measure of its uncertainty, i.e., a bound
on the modeling error. A standard bound for this purpose is the largest gain of
the modeling error (or a weighted version of it), also known as its H∞-norm or
`2-gain [9]. In this thesis, we tackle the problem of estimating the H∞-norm of a
general system (i.e., not only restricted to the modeling error) in a data-driven
fashion, which we call the gain estimation problem.

There are several H∞-norm estimation methods available in the literature (see,
e.g., [10, 11]), however most of these techniques require an explicit parametric model.
This specification would involve determining an even more complicated model of the
difference between the system and the model (that is, of the modeling error). Since
only one specific feature of such the modeling error is sought, namely its largest
gain, one could instead appeal to data-driven, or also called model-free, approaches
to estimate it. Under this setup, and provided with a nominal model, input-output
data of the modelling error can be obtained by exciting the real system and its
model with exactly the same input signals, and then subtracting their outputs.

The key idea behind existing data-driven H∞-norm estimation methods is that
the H∞-norm can be computed as the maximum quotient between the Euclidean
norm of the noiseless output and the input. This is because it is well known that,
for linear and time-invariant (LTI) systems, the input that maximizes this ratio is a
sinusoid whose frequency is equal to the one where the largest gain of the system is
located (called the peak frequency from now on). Then, the corresponding problem
simplifies to finding this frequency, see, e.g., [12, Chapter 7]. However, if only noisy
measurements can be collected, the accuracy of the estimation highly depends on
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the quality of the data.
When a system is only accessible through input-output data, the problem of

efficiently estimating the H∞ norm involves finding the peak frequency as quickly
as possible, so the H∞ norm can be estimated by applying a sinusoidal input of
such frequency as input. In our setup, data is collected sequentially by adaptively
designing the input sequence. The model-free condition is motivated by the fact that
the system under study (being the one for which we want to derive its H∞-norm)
is—by its nature—unknown.

The hand-waving argument of firstly finding the optimal frequency and then
applying a sinusoid of that frequency for estimation motivates us to separate the
gain estimation problem in the following two sub-problems:

1. Running an underlying algorithm that is able to select the input signal on
every experiment.

2. Deriving an estimator that operates upon the data generated by the solution
to the first sub-problem.

At first glance, this heuristic approach has no reasons to achieve optimality, as
we do not know whether such separation principle holds or not. Nevertheless, and
to the best of our knowledge, this thesis provides the first thorough theoretical
analysis of the separated problem. We devote most of the first part of the thesis to
finding optimal algorithms solving the first task. The underlying algorithm solving
the first sub-problem can design, at each experiment, the frequency of the input
signal (or the power allocated at each frequency in a multi-sine), and its goal is
to—asymptotically—choose the peak frequency as often as possible (or to allocate
as much power as possible on that frequency). Since the information it handles
is limited, the algorithm must balance exploration and exploitation, wisely. That
is, the algorithm must balance between choosing frequencies with high gain often
enough while also choosing frequencies with lower gain in order to learn whether
they are—in fact—suboptimal.

In this thesis, we formulate the problem of quickly identifying the peak frequency
as an online stochastic optimization problem that resembles a linear Multi-Armed
Bandit (MAB) problem [13]. MAB are sequential decision problems where in each
round the decision maker selects an arm (for us a frequency) and observes a noisy
realization of its corresponding reward whose distribution is originally unknown [14].
The objective is to maximize the expected cumulative reward, and this requires
to balance exploitation (arms with high rewards should be selected often enough)
and exploration (all arms should be played enough times to learn their reward
distributions). In the MAB problem arising from H∞-norm identification, the arms
correspond to the possible input signals or to their spectral signatures, and the
feedback consists of the spectral response to this input signal.
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1.1.1 Related work

Multi-armed bandits (MAB) are a class of reinforcement learning problems formally
introduced in [15], which exhibit the so-called exploration-exploitation dilemma. In
these problems, an agent bets on an arm at each round, and this action generates an
outcome the agent perceives. The outcome is a realization drawn from a parametrized
distribution where the parameters for each arm are unknown to the agent. In the
traditional bandit setup [16], the goal of the agent is to minimize the expected
cumulative difference between the outcome of its choice and the one an oracle would
have drawn by always choosing the optimal arm.

Fundamental limitations on the regret depend on how many of the parameters
the agent knows beforehand, where a detailed analysis is provided in [17] for a
general class of problems. Explicitly derived as lower bounds, these limitations
motivate the search for optimal algorithms whose asymptotic performance match
these restrictions. Different classes of optimal algorithms can be found in [16].

Thompson Sampling [18] (TS) is one of the most interesting algorithms in MAB
due to its excellent empirical finite-time performance for many models, compared
to other optimal algorithms [19]. It corresponds to a Bayesian policy that keeps
track of the posterior mean for each of the arms, where the agent decides the
next action by sampling these posteriors and choosing the arm with the largest
sample. Optimality of TS for the Bernoulli model [20] has been extended to the
one-parameter one-dimensional exponential family bandit in [21]. Recently, [22] has
developed a thorough analysis for this algorithm under a two-parameter (mean and
variance) Gaussian bandit, concluding that its optimality crucially depends on the
choice of the prior. As the authors of [22] show, Thompson Sampling does not achieve
optimality when a Jeffreys prior [23] is employed, not even achieving logarithmic
asymptotic regret. The authors also discuss that the main difficulty of proving
optimality for the two-parameter Gaussian bandit lies in the posterior distribution
for the mean being heavy-tailed, so no straightforward upper/lower bounds can be
found. For the bandit model considered in this work, the two-dimensional posterior
mean distribution is a linear transformation of a multivariate t-distribution. Perhaps
surprisingly, the latter cannot be factorized as the multiplication of both one-
dimensional marginal posteriors, even when their outcomes and prior distributions
are statistically independent. This counter-intuitive phenomenon forces us to derive
multivariate concentration inequalities instead of recycling the ones in [22], making
the extension of their work into the bivariate Gaussian bandit of highest norm
not straightforward. A one-parameter Gaussian bandit model (known variance) for
H∞-norm estimation was firstly introduced in [24] where the policy is allowed to
choose arms inside a simplex. The authors of [24] showed that the asymptotic regret
lower bound for these policies is equal to the one of policies playing only one arm
per round, proving that playing several arms does not improve the performance of
an optimal algorithm (i.e., an algorithm whose asymptotic regret matches the lower
bound) which chooses one arm at a time.

Some iterative approaches for H∞-norm estimation have been already proposed
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in system identification for control [25, 26], where the input signal is allowed to be
designed upon previous data at each round, based on the power-iterations method
of numerical linear algebra. The particular problem of H∞-norm estimation has
gained some attention in computer science, where [27] has derived sharp asymptotic
bounds on the error incurred by a method that firstly fits an L-FIR (finite impulse
response) filter of L coefficients to N -length data, in terms of N .

Optimism in the face of uncertainty

The difficulty of the stochastic multi-armed bandit problem lies in the exploration-
exploitation dilemma that the forecaster is facing. This is a recurrent problem in
several engineering areas, such as adaptive control [28, 29]. An adaptive control
problem is a control problem in which some parameter describing the system is
partially unknown. Here, the input designer faces the same uncertainty principle:
it must balance between control actions that lead to good control performance
(exploitation) and those control inputs that are able to extract more information
of the controlled system (exploration). A simple heuristic principle for doing that
is the so-called optimism in the face of uncertainty. It is worth to mention that
this very general idea has been independently developed by [30, 31] in the control
community under the name of bet on the best (BoB) strategies. Under this principle,
the agent builds a ranking of the most favorable models and prescribes an action
that optimizes the most favorable model evolution. The favorability of a model is
measured by an upper confidence bound on its performance, where the bound itself
must be designed for balancing exploration (this is where optimism is important:
less explored models should have larger bounds) and exploitation (bounds should
decay quickly enough for suboptimal models).

Optimism in the face of uncertainty has been a very successful approach to solve
the stochastic multi-armed bandit problem. Policies designed under this principle
are known as UCB-type (upper confidence bound) algorithms, and it took nearly 30
years since 1985 [14] to find the correct bound definitions which, in fact, demands a
very careful design of exploration rates.

1.2 Risk-coherent optimal control design

From a classical perspective, control systems are designed so that the closed loop
attains a desired performance. Some of the many traditional frameworks used
for control design are: the linear quadratic regulator (LQR) [32], linear quadratic
Gaussian (LQG) control [33] and model predictive control (MPC) [34].

One of the most relevant indices to measure the loop performance is the `2-
norm of the tracking error signal [35]. The controller design is based on the prior
information we have about the system we want to control. Such information can be
obtained from different methods such as physical modelling, or experiments, where
uncertainty may be introduced.
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Uncertainty can be seen as the lack of knowledge needed to fully describe a
phenomenon, and it causes several problems when trying to make the best decision
under limited information. In the control framework, the task of designing a control
law might be difficult due to different sources of uncertainty. We can distinguish
between two of them: uncertainty in the transfer functions composing the system
(which we call modeling error) and uncertainty in the external signals affecting the
system, namely disturbances and noise (which we group under the name process
disturbance). Both sources of uncertainty are present in the different steps of the
control design.

The process disturbance can be interpreted in different ways, e.g., physical
disturbances and/or measurement noise. The design under the presence of process
disturbances can be addressed as a regulation problem [36] and it is usually solved,
in an `2 framework, by imposing an extra penalty on the performance cost related
to the frequency-domain properties of the process disturbance. These properties can
generate a trade-off between tracking performance and disturbance rejection in the
design [37].

On the other hand, the modeling error is related to how accurate the information
we have about the true process (usually condensed in models) is. This subject has
been widely studied in the field of robust control. In this line, [7] and [38] explain
how to compensate for our lack of knowledge in terms of fundamental limitations
over tracking performance and stability robustness. In robust control, the modeling
error problem is compensated by analyzing the worst-case scenarios, where a formal
framework, such as H∞-control [6], can be used. In this thesis, we will deal with
the error in the model for the process disturbance.

The problem of measuring uncertainty has been widely studied in theory of
risk in finance [39], where risk is known as the impact of decisions made under
uncertainty. Here, a family of measures known as coherent measures of risk [40] have
became popular due to their attractive properties, such as convexity. We discuss
how different measures of risk can be employed to account for the uncertainty in
the attacker’s filters design. In particular, we compare the nominal design case, i.e.,
when the defender assumes only one single realization of the attacker’s filters, to
different risk-oriented designs, such as average behavior and worst-case scenario. In
addition, we propose to use a third measure of risk called conditional value-at-risk
(CVaR) [41], which has gained popularity in the control community: [42] used this
notion of risk to derive quadratic constraints in LQG (linear-quadratic Gaussian)
control, while [24] used it to account for the modeling error when maximizing the
closed-loop disturbance rejection.

1.2.1 Control under covert attacks

Control-systems represent the fusion of computing and communication resources
that interact with some physical process. Although designed to improve operational
performance, decrease costs, and make these systems less prone to failures, the
integration of cyber and physical worlds opened the possibility for malicious cyber-
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attacks that can endanger the physical world [43]. In fact, several such cyber-physical
attacks have already been conducted [44–46]. The most well known of these attacks
is the Stuxnet malware [44], which was specifically designed to damage a targeted
physical system, while remaining undetected by the system operators. Thus, it is
not surprising that the topic of cyber-security has attracted considerable attention
within the control community.

Significant effort has been dedicated towards analyzing intelligent cyber-attacks
based on a physical model of a control system [47–49]. It has been recognized
that an attacker that uses the model knowledge can construct an attack that is
hard, or sometimes even impossible, to detect from the collected sensor measure-
ments [47]. Examples of these attacks include replay [50], zero dynamics [51], and
covert attacks [52].

As stated in a recent survey [53], the problem of designing a control system that
works in the presence of stealthy attacks has not received much attention. However,
in order to protect a control system against these stealthy attacks, novel detection
approaches have been proposed [50, 54, 55]. This problem is much more difficult
than the well-studied fault tolerant control problem, since the attacker will always
try to design the worst case attack based on the available resources, while trying to
stay undetected. Motivated by this challenge, we aim to design a control algorithm
that mitigates the impact of covert attacks.

In the covert attack strategy, the attacker uses specially designed filters to
construct additive measurement and control signals in order to stay undetected. If
these filters are designed based on full knowledge of the plant, the covert attack is
perfectly stealthy and, moreover, it is impossible to design a controller that mitigates
the influence of this attack [52]. However, assuming that the attacker has full model
knowledge can be quite conservative. For instance, the attacker may have an outdated
system model, or an inaccurate model due to identification error [56]. The defender
could also manipulate the plant intentionally (e.g., through sensors and actuation
gain), introducing fictitious uncertainty as a defensive measure, as proposed in [54].
In this thesis, we consider an attacker possessing only a partial knowledge of the
plant, with different levels of accuracy. Naturally, the more knowledge the attacker
possesses, the harder it is for the defender to control the system. The question we
aim to answer is then how to design a controller that performs well in most of the
feasible attacker scenarios in the presence of such a covert attack.

In the control design problem, the lack of knowledge of the attacker can be
modeled as uncertainty. More precisely, since the defender does not know what the
attacker’s knowledge is, the filters designed by the latter are, in fact, uncertain.

1.2.2 Related work

The problem of properly measuring uncertainty has been studied in the theory of risk
in finance, where in [39] this notion was originally applied to portfolio optimization.
To appropriately measure the risk associated with financial portfolios, the notion
of coherent measures of risk has been introduced by [40]. This family of measures
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has many attractive properties, such as convexity and the fact that it encourages
diversification of portfolios. The latter means that, in a portfolio setting, it is always
better to invest in several assets rather than in a single one, which is a well known
and intuitive strategy to reduce risk in portfolios. Some coherent measures of risk
are the expectation and the worst-case scenario. A specific measure of risk, known as
conditional value-at-risk (CVaR) [41], has been recently employed by [42] as convex
constraints in linear-quadratic control problems.

We remark that the coherent measures of risk approach is one of many existing
alternatives to measure uncertainty. Indeed, the notion of risk is not new in control
theory and several frameworks have been developed. One of the most important
ones is the risk-sensitive criterion introduced by [57] and polished by [58]. Works
as [59] address the problem of minimizing the risk according to the expected value
of the weighted tracking error performance, while [60] use this notion to study the
infinite-horizon control problem.

The main contribution of this second part is to propose an alternative framework
for control design when there is uncertainty in the parameters modeling the process
disturbance. We discuss how the notion of coherent measures of risk can be employed
in this setting, and we intend to obtain a systematic approach to account for the
uncertainty in the control design problem. The goal is to obtain a controller that
minimizes the risk of falling into low closed-loop tracking performance, by minimizing
its conditional value-at-risk, and to compare it with traditional designs such as
average risk, worst-case scenario, and the nominal design.

1.3 Thesis outline and contributions

In this Section, we provide the outline of the thesis and indicate the contributions
of each chapter.

Part I. Gain estimation under bandit feedback

Chapter 2 This chapter is devoted to the overview of the stochastic MAB
problem and it intends to formalize the multi-armed bandit problem and, at the
same time, provide some of the most transcendental results.

Chapter 3 We introduce the H∞-norm estimation problem (also called
gain estimation problem) as a composition of an input-design and point-estimation
problem. Our main focus is on the input-design problem which, in this thesis, is
casted as a stochastic MAB problem. When the goal is to find the peak frequency,
two different methods that adaptively design the spectrum of the input signal are
addressed: one of them allocates all the available power at one single frequency
(singe-frequency strategies), while the other strategy spreads the power among
different frequencies (power-spreading strategies). Finally, we give an overview on
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how the estimation problem can be tackled once the underlying input-design problem
is solved.

The chapter is based on the following publications:

• Matias I. Müller, Patricio E. Valenzuela, Alexandre Proutiere, and Cristian R.
Rojas. A stochastic multi-armed bandit approach to nonparametric H∞-norm
estimation. In Proceedings of the 56th IEEE Conference on Decision and
Control, 2017.

• Matias I. Müller and Cristian R. Rojas. Gain estimation of dynamical linear
systems using Thompson Sampling. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

Chapter 4 This chapter analyzes the theoretical properties of the so called
uniformly good policies in both setups: single-frequency and power-spreading strate-
gies, both under known and unknown variance of the noise. When the noise variance
is known (and equal among all frequencies), we report that no improvement in the
lower bound is observed by spreading the power at each round. In other words,
we show that the asymptotically optimal performance can be attained by single-
frequency strategies when power-spreading strategies are allowed. On the other
hand, if the noise variance is unknown, there is a gap between the lower bound
predicted for single-frequency strategies and power-spreading ones, showing that
the latter can attain a better performance. We conclude that, under unknown noise
variance, the class of policies does matter.

The chapter is based on the following publications:

• Matias I. Müller, Patricio E. Valenzuela, Alexandre Proutiere, and Cristian R.
Rojas. A stochastic multi-armed bandit approach to nonparametric H∞-norm
estimation. In Proceedings of the 56th IEEE Conference on Decision and
Control, 2017.

• Matias I. Müller and Cristian R. Rojas. Gain estimation of dynamical linear
systems using Thompson Sampling. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

• Matias I. Müller and Cristian R. Rojas. Gain estimation under bandit feedback.
In preparation.

Chapter 5 In this chapter, two algorithms are proposed to solve the input-
design problem in the gain estimation problem, namely Thompson Sampling (TS)
and Weighted Thompson Sampling (WTS). TS is a well-known single-frequency
algorithm in the bandit literature, whose optimality within this setup is presented.
On the other hand, we introduce WTS which is a TS-based algorithm that instead
of choosing only one frequency at each round (as TS does), assigns a power profile to
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all frequencies proportional to our posterior belief of each frequency being optimal.
A simulation study strongly suggests that WTS is optimal.

The chapter is based on the following publications:

• Matias I. Müller and Cristian R. Rojas. Gain estimation of dynamical linear
systems using Thompson Sampling. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

• Matias I. Müller and Cristian R. Rojas. Gain estimation under bandit feedback.
In preparation.

Chapter 6 This chapter explores the properties of a particular H∞-norm
estimator when a uniformly efficient power-spreading algorithm is employed for
solving the input-design problem for the known-variance set up. In particular, we
show that, when the estimator is a weighted version of the posterior means, the
MSE of the estimations decay asymptotically as σ2/T , where T is the number of
performed experiments and σ2 denotes the measurement noise variance. To the
best of our knowledge, this provides the first theoretical link between H∞-norm
estimation and multi-armed bandits.

The chapter is based on the following publications:

• Matias I. Müller and Cristian R. Rojas. Gain estimation of dynamical linear
systems using Thompson Sampling. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

• Matias I. Müller and Cristian R. Rojas. H∞-norm estimation under uniformly
efficient bandit policies. In preparation.

Chapter 7 The final chapter of Part I summarizes the main conclusions and
outlines possible directions for future work.

Part II. Risk-coherent optimal control design under uncertainty

Chapter 8 In the second part of this thesis, we cast the H2 control problem
from a perspective based on the theory of risk for finance, particularly for the
problem where the disturbance model is uncertain. A control design procedure
for disturbance rejection is proposed by using the probabilistic information about
the process disturbance. The design involves finding a controller that balances
conservativeness in order to attain better closed-loop performance with higher
chance. By introducing the notion of coherent measures of risk, we analyze standard
approaches to account for this uncertainty, and we intend to show that the conditional
value-at-risk (CVaR) is an appropriate function to measure the uncertainty in the
disturbance model. We also derive a convex formulation for the controller design
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problem when the Youla parameter is linearly parametrized. A numerical example
illustrates the main discussion.

The chapter is based on the following publications:

• Matias I. Müller, Patricio E. Valenzuela, and Cristian R. Rojas, “Risk-
coherent H2-optimal disturbance rejection under model uncertainty,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 15 530 – 15 535, 2017, 20th IFAC World
Congress.

Chapter 9 We exploit the potential of the framework introduced in
Chapter 8 by exploring the extensions to cyberphysical security. In this problem,
an attacker can inject malicious signals into the closed loop, which are designed
according to the knowledge the attacker possesses about the plant. That is, the
attack signals are designed in a model-based fashion. We discuss that the precision
of the model the attacker has has a negative impact in the achievable tracking
performance attainable by every controller. In particular, we show that it is not
possible to mitigate the attack whenever the attacker has complete knowledge of the
model. Here, the uncertainty encodes our belief on every model the attack might
potentially have. Different controllers, based on different risk measures, are proposed
to mitigate the attacks and a numerical example illustrates the main discussion.

The chapter is based on the following publications:

• Matias I. Müller, Jezdimir Milošević, Henrik Sandberg, and Cristian R. Rojas,
“A risk-theoretical approach to H2-optimal control under covert attacks,” in
2018 IEEE Conference on Decision and Control (CDC), 2018, pp. 4553–4558.

Chapter 10 This chapter presents a framework to address the traditional
filtering problem, in which an LTI (linear and time-invariant) MIMO (multi-input
multi-output) filter is designed to minimize H∞-norm of the estimation error
when model uncertainty is considered. Additionally, we present an application
to control design for disturbance rejection under model uncertainty. To account
for this uncertainty we employ coherent measures of risk, which are a family of
measures in theory of risk. We particularly discuss which measures are suitable by
comparing the conditional value-at-risk (CVaR) to other three common designs.
Using a scenario approach, we derive a convex optimization problem based on
linear matrix inequalities (LMIs), whose solution minimizes the risk of falling into
poor H∞ performance. Finally, we present an application to control design under
model uncertainty in the auto-covariance function of the output noise, comparing
approaches minimizing different notions of risk.

The chapter is based on the following publications:

• Matias I. Müller and Cristian R. Rojas, “Risk-coherent H∞-optimal filter
design under model uncertainty with applications to MISO control,” in 2019
European Control Conference, 2019.



1.3. Thesis outline and contributions 13

Chapter 11 The final chapter of Part II summarizes the main conclusions
and outlines possible directions for future work.

Contributions not included in this thesis

The following contributions do not correspond directly to any technical content in
this thesis, but they are relevant to the endeavors considered therein.

• Matias I. Müller and Cristian R. Rojas, “A Markov chain approach to compute
the `2-gain of nonlinear systems,” IFAC-PapersOnLine, vol. 51, no. 15, pp.
84–89, 18th IFAC Symposium on System Identification (SYSID), 2018.

• Roberto G. Ramı́rez-Chavarŕıa, Gustavo Quintana-Carapia, Matias I. Müller,
Robert Mattila, Daniel Matatagui, and Celia Sánchez-Pérez, “Bioimpedance
parameter estimation using fast spectral measurements and regularization,”
IFAC-PapersOnLine, vol. 51, no. 15, pp. 521–526, 2018, 18th IFAC Symposium
on System Identification (SYSID), 2018.
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Abbreviations

a.s. Almost surely

GE Gain estimation

iff If and only if

iid Independent and identically distributed

KL Kullback-Leibler

LTI Linear and time-invariant

MAB Multi-armed bandit

NE Norm estimation

UCB Upper confidence bound

TS Thompson Sampling

WTS Weighted Thompson Sampling

RM Regret minimization

pdf Probability density function

pmf Probability mass function
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Notation

:= Definition

N Set of natural numbers, N := {1, 2, . . . }

Z Set of integers, Z := {0,±1,±2, . . . }

R,R+ Set of real and nonnegative real numbers

C Set of complex numbers

T Number of rounds/experiments

N Number of pair of data-points per experiment

K Number of arms

µ Sequence of means µ := (µ1,µ2, . . . ,µK)

σ Sequence of variances σ := (σ2
1 , σ

2
2 , . . . , σ

2
K

1n Vector of ones, 1n := [1 1 . . . 1] ∈ Rn

0n Matrix in Rn×n with all its entries equal to zero

( )> Transposed operator

( )H Hermitian operator: transposed and complex conjugated

tr {A} Trace of A

11 {B} Indicator function defined by event B

Bc Complement of event B

In Identity matrix of size n

P,P′ Probability measures

P {B} Probability of event B

σ(X) σ-algebra generated by the random variable X

E {X} Expected value of X
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E {X |Y } Expected value of X conditioned on Y ,
E {X |Y } := E {X |σ(Y )}

cov{X} Auto-covariance matrix of X,
cov{X} := E

{
(X − E {X})(X − E {X})>

}
var{X} Variance of X,

var{X} := E
{

(X − E {X})>(X − E {X})
}

= tr {covX}

cov{X,Y } Covariance matrix between X and Y ,
cov{X,Y } = E

{
(X − E {X})(Y − E {Y })>

}
N (µ, σ) Gaussian distribution with mean µ and variance σ2

X ∼ p(x) Means that the random variable X is distributed according to
p(x)

D {ν1||ν2} KL-divergence between distributions ν1 and ν2

d(q, s) Binary entropy function, d(q, s) := q log(q/s)− log 1−q
1−s

bXc floor function

log Natural logarithm

<,≤ Strictly less than, less or equal than

>,≥ Strictly greater than, greater or equal than

z̄ Complex conjugate when z ∈ C

f(x) = o(g(x)) f is little-o of g(x), limx→∞ |f(x)| /g(x) = 0

f(x) = O(g(x)) f is big-O of g(x), lim supx→∞ f(x)/g(x) <∞

f(x) = Θ(x) f is big-Θ of g(x), there exists k1, k2 > 0 such that
k1g(x) ≤ f(x) ≤ k2g(x) for every x > x0

diag {v} Square matrix whose diagonal entries equal to the entries of v
and it is equal to zero everywhere else



Chapter 2

Multi-armed Bandits in a Nutshell
“Perfect is the Enemy of Good.”

— Voltaire

Stochastic Multi-armed bandits (MAB, or simply bandits) are a fundamental instance
of Reinforcement Learning originated in the early 1900 [18], and they capture a fun-
damental sequential decision problem. The bandit problem is completely defined by
the collection of reward distributions ν := (ν1, . . . , νK) (also known as bandit model)
associated with each of the different K arms. At each round/iteration/experiment
t = 1, 2, . . . , the decision maker/forecaster/agent interacts with the bandit model by
pulling one of its arms kt ∈ {1, . . . ,K}, also known as choosing action kt. This draw
results in the observation of a random variable Xkt ∼ νkt , known as the reward,
while the rewards of the other arms are not observed. Rewards are oftenly seen as
noisy observations/measurements of the expected value of Xkt , produced by the
system/environment [16]. The agent does not know the reward distribution, yet its
final goal is to maximize the expected cumulative reward over T <∞ rounds, i.e.,
to maximize E

{∑T
t=1Xkt

}
. Observe that the reward perceived at round t is only a

function of the chosen arm kt, and not of the round itself. We say then that the
(rewards of the) arms are statistically independent.

The final goal of this framework involves finding that arm whose reward is the
largest in average and playing it most of the time. That is, we are not required to
find out what the distributions ν are, nor the expected reward of each arm. This
task requires the agent to trade between exploitation (the arms known to provide
large rewards should be played more often) and exploration (all arms should be
played enough so the agent can rank the arms according to data).

The way in which the agent interacts with the bandit model is defined by
a policy/algorithm/strategy/law which is essentially a mapping from previous
actions and rewards to a decision. Policies can either be deterministic or ran-
domized. If π is a deterministic policy, then π = (π1,π2, . . . ,πT ) where πt+1 :
{1, . . . ,K}t × Rt → {1, . . . ,K}, t ∈ {1, . . . , T}, maps the available information
(k1, Xk1 , k2, Xk2 , . . . , kt, Xkt) to an action kπt+1 ∈ {1, . . . ,K}, with Xkt denoting the
observation at round t after playing arm kt. Observe that kπt+1 is itself a random
variable as it is a function of the also random available information. A random-
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ized policy π′ introduces an extra degree of uncertainty by precisely randomizing
the choice of kπ′t+1 ∼ At+1 which is obtained by sampling At+1, whose probability
density function (pdf) pπ′At+1

is σ(k1, Xk1 , k2, Xk2 , . . . , kt, Xkt)-measurable1. Here,
pπ
′

At+1
= πt+1(k1, Xk1 , k2, Xk2 , . . . , kt, Xkt), with πt+1 : {1, . . . ,K}t × Rt → [0, 1]K ,

t ∈ {1, . . . , T}. We emphasize the fact that randomized policies go through an
extra step of sampling and we make this difference explicit in Algorithm 2.1, sum-
marizing the interaction of an agent with the bandit model under deterministic
policies, and Algorithm 2.2, summarizing the one under randomized policies. If Ft
denotes the σ-algebra generated by (kπ1 , Xπk1

, kπ2 , X
π
k2
, . . . , kπt−1, X

π
kt−1

) under the
determinstic/randomized policy π, then we say that kt is Ft-measurable if π is
deterministic, and that pπAt is Ft-measurable if π is randomized. We have made
explicit the dependence of kt+1 on π, but in general we may drop the superscript
when this dependence is clear.

Algorithm 2.1 Interaction between the agent and the stochastic MAB model under
any deterministic policy π.

1: for t = 1 to T do
2: Play arm kt = πt(k1, X1, k2, X2, . . . , kt−1, Xt−1)
3: Obtain reward Xt (drawn from νkt)
4: end for

Algorithm 2.2 Interaction between the agent and the stochastic MAB model under
any randomized policy π′.

1: for t = 1 to T do
2: Obtain pπ

′

At
= π′t(k1, X1, k2, X2, . . . , kt−1, Xt−1)

3: Sample and play arm kt ∼ At
4: Obtain reward Xt (drawn from νkt)
5: end for

Denote as µ = (µ1, µ2, . . . , µK) the set of means of each distribution in ν, i.e.,
µk = E {Xkt | kt = k}, k ∈ {1, . . . ,K}. Additionally, let k? := maxk=1,...,K µk be the
optimal arm and define the sequence of gaps (∆1,∆2, . . . ,∆K) as ∆k := µk? − µk.
Observe that ∆k? = 0, by definition. In a very general framework, the MAB problem
is all about finding a policy π that maximizes the expected cumulative reward or,

1Observe that kπ′t is sampled from At, meaning that At is itself a discrete random variable
whose support is {1, . . . ,K}, and then pπAt is a probability mass function (pmf) that has a vector
representation in [0, 1]K .
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equivalently, that minimizes the expected value of the following notion of regret:

Rπ(T ) :=
T∑
t=1

Xk? −Xkπt
,

E {Rπ(T )} = E

{
T∑
t=1

Xk? −Xkπt

}
=

T∑
t=1

µk? − µkπt =
T∑
t=1

∆kπt
=

K∑
k=1

∆kN
π
k (T ),

(2.1)

where Nπk (t) denotes the number of times arm k has been played up to round t, and
where the last equality follows from Wald’s formula [61, 62]. In words, we compare
our performance to the one an oracle, knowing the best arm in hindsight, would
achieve. This allows to formally cast the general (frequentist) stochastic multi-armed
bandit problem for K arms and a collection of distributions ν as:

min
π∈Π

E {Rπ(T )} , (2.2)

where the expectation is taken with respect to the randomness of the rewards
as well as the randomness in the sequence of actions (when randomized policies
are considered). Set Π is the set of all sequential policies that exploit previous
information (of chosen arms and their respective rewards) to decide which arm to
pull on the following round. We are only interested on that set of policies Π that,
no matter µ, are always able to play the optimal arm (whatever arm it is defined by
µ) much more frequently than suboptimal arms as T grows large. As an example,
let π̃ be a policy that always chooses2 kπ̃t = 3. Whenever µ is such that k? = 3,
for every t = 1, . . . , T , (2.1) means that π̃ achieves regret zero, however, its regret
will escalate linearly in any other case. This motivates the definition of uniformly
efficient strategies3.

Definition 2.1. A strategy π is said to be uniformly efficient if and only if, for
every suboptimal arm4 k, Nπk (T ) = o(Tα), for every α > 0. 4

This definition implies that Nπk?(T ) increases linearly with T when T grows large.
Roughly speaking, uniformly efficient policies are the ones able to well-balance the
existing exploration-exploitation trade-off. Examples of functions in o(Tα) for every
α > 0 include, e.g., positive powers of logarithms and iterated logarithms.

The notion of regret dates back to Lai and Robbins seminal work [14] in a
frequentist setting which is, as discussed in [63], one of the two perspectives of the
same problem: frequentist and Bayesian. In the Bayesian approach of the bandit
problem the equivalent notion is called Bayes Risk [64], or Bayesian regret, which

2This is equivalent to mappings π̃t+1 : {1, . . . ,K}t × Rt → {3}, t = 1, . . . , T − 1.
3 The definition of uniform efficiency may vary from its original definition in the subsequent

chapters, adapting its definition to our specific problem.
4 A function f : R → R is o(g(x)) (or simply written f(x) = o(g(x))) if and only if

limx→∞ f(x)/g(x) = 0, for some function g : R→ R.
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involves averaging out the regret (2.1) respect to a prior pdf for ν (or the quantities
parametrizing it). This pdf can be, for example, our prior belief on different quantities
θ parametrizing νk, k = 1, . . . ,K. In other words, in the Bayesian bandit problem,
the expectation in the cumulative regret is not taken only respect to the randomness
of actions and rewards, but also to the randomness of those parameters that can
potentially determine the reward distributions.

In this work, we consider only frequentist bandit problems under parametric
models, in which νk is parametrized by some θk ∈ Rnθ , k = 1, . . . ,K, being unknown
to the agent. However, the structure of νk is in fact revealed to the agent who is
able to exploit this knowledge accordingly. For example, ν can belong to a set of
Gaussian pdf’s whose means and variances are unknown to the agent. Certainly, the
agent can exploit the information to optimally update its knowledge of which arm
has the largest mean. For the sake of completeness, the following section includes a
review of different bandit problems.

2.1 Non-stochastic and Markovian bandits

The different ways in which rewards can be generated lead to different multi-armed
bandit problems. In this section we provide a rough description on adversarial and
Markovian multi-armed bandits.

In adversarial multi-armed bandits [65] the bandit model itself is considered to
generate arbitrarily, possibly adversely chosen, rewards. The notion of an adversarial
policy comes into play as the opponent’s (or adversary’s) strategy can be based
on the both the opponent’s and agent’s sequences of actions and outcomes. This
was apparently the re-discovery of a problem already introduced in game theory.
Within a game-theoretic formulation, [66] introduced the problem of playing a game
repeatedly where the pay-off matrix is assumed to be known to the player, to whom
the actions of the opponent are also revealed. However, the exploration-exploitation
trade-off in this setting was not introduced until [67] where the player gets to know
only its own pay-off at each round. Strategies for playing unknown games (attaining
some degree of efficiency) were developed in [68–70]. For an application of the
Adversarial MAB framework to H∞-norm estimation, the interested reader may
check [71].

Markovian multi-armed bandits [16, 72] hold a closer relationship to the more
general reinforcement learning problem, where the reward generation is associated
with K parallel Markov processes. At each round, the player chooses arm k, where
arm k is in state s. This draw leads to an observable reward from distribution νk,s
and an observable state transition of the current state s of arm k. Additionally, arms
that are not played will have their states unchanged. The K transition matrices are
commonly known to the agent and the optimal arm at every round can be found by
dynamic programming [73].

In this work, we are mainly concerned with non-Markovian stochastic multi-armed
bandits. In what follows, the acronym MAB stands also for stochastic multi-armed
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bandits when the context is clear.

2.2 Index and Bayesian policies

As we have previously discussed, policies represent a mapping from history to
decisions. While these policies can be either deterministic or randomized, there are
mainly two streams of algorithms for stochastic multi-armed bandits, namely index
policies belonging to the deterministic family of policies, and Bayesian algorithms
belonging to the randomized one.

Under an index policy, the agent keeps track of an index vector bt = (bt1, bt2, . . . ,
btK) ∈ RK that is Ft-measurable. At each round t = 1, . . . , T , the policy assigns
arm kt ∈ arg maxk∈{1,...,K} btk. The way bt is defined (as a function of the available
information) originates many bandit algorithms in the literature [74], such as UCB
(upper confidence bound), UCB1, UCB2, KL-UCB, and Gittins-index [72] based
algorithms, among others. On the other hand, Bayesian algorithms are typically
related to randomized policies, in which the agent does not keep track of indexes
but of posterior distributions. One of the most important exponents in this family
is Thompson Sampling [18], originally designed for clinical trials in 1933. This
algorithm keeps track of the posterior distribution of every reward mean fµk | Ft ,
k = 1, . . . ,K. At each round t = 1, . . . , T , a sample µ̃k ∼ fµk | Ft is drawn and the
policy then chooses kTS

t ∈ arg maxk∈{1,...,K} µ̃k. It is clear that the choice of the arm
is random and depends on f := (fµ1 | Ft , fµ2 | Ft , . . . , fµK | Ft) which is Ft-measurable.
Equivalently, Thompson Sampling tries to obtain the posterior distribution for each
arm being optimal, i.e., it keeps track of Prob{k is the best arm | Ft}, at every round
t = 1, . . . , T and for every arm k = 1, . . . ,K, which denotes the agent’s belief of arm
k being the optimal arm at round t. Bayesian algorithms require a prior distribution
for the rewards of the arms, which needs to be provided for each specific problem.

2.3 Fundamental results: Bernoulli bandits

One of the most important (frequentist) stochastic MAB is the Bernoulli bandit
where the rewards, at each round, have a Bernoulli distribution with mean µk ∈ [0, 1],
for every k = 1, . . . ,K. That is, the outcome at round t when arm k is chosen, is 1
with probability µk and 0 with probability 1− µk. By means of policy π ∈ Π, the
agent tries to minimize E {Rπ(µ, T )} = E {Rπ(T )} in (2.1), where we have made
explicit the dependence of the regret on µ, as the following results are problem-
dependent.

In the seminal paper of Lai and Robbins [14], an optimal index policy based on
upper-confidence bounds for µ was proposed. To prove that this strategy is optimal,
the authors first derived a lower bound on the regret that any uniformly efficient (see
Definition 2.1) policy can attain. Then, they provide a specific way to define the
confidence bounds such that the algorithm is asymptotically upper-bounded by the
same lower bound for uniformly efficient strategies.
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The lower bound described above [14] reads: under any uniformly efficient
algorithm π

lim inf
T→∞

E {Nπk (T )}
log T ≥ 1

D {νk|| νk?}
, for all k 6= k?, (2.3)

where D {νk|| νk?} denotes the KL-divergence number between the distributions νk
and νk? . In particular, for the MAB with Bernoulli arms, D {νk|| νk?} = ∆2

k, and
then, by (2.1), the regret under the algorithm π satisfies:

lim inf
T→∞

E {Rπ(µ, T )}
log T ≥

∑
k 6=k?

∆k

∆2
k

=
∑
k 6=k?

1
∆k

.

This lower bound defines the notion of optimality: we say that a uniformly
efficient policy π? is optimal for the Bernoulli MAB if and only if

lim sup
T→∞

E
{
Rπ

?(µ, T )
}

log T ≤
∑
k 6=k?

1
∆k

.

The fact that the lim inf and the lim sup coincide guarantees that

lim
T→∞

E
{
Rπ

?(µ, T )
}

log T =
∑
k 6=k?

1
∆k

.

2.3.1 Asymptotically optimal algorithms
Together with the asymptotic lower bound, Lai and Robbins [14] also presented a
systematic method of finding optimal index policies. However the form of the indices
is not clear and involves the computation of functions attaining tight probability
bounds (see [14, Eqs. (3.1)-(3.3)]). Later, Agrawal [75] introduced simpler (more
explicit) index policies under the name of UCB-type algorithms (although this name
was already used in [14]). UCB-type algorithms became more and more popular
in the first decade of this century, with interesting exponents, e.g., [74] designed
UCB1, an algorithm for bandit models whose rewards have bounded support. At
each round t = 1, . . . , T , UCB1 chooses

kUCB1(t) ∈ arg max
k

bk(t), bk(t) := µ̂k(t) +
√

γ(t)
2NUCB1

k (t)
, (2.4)

with exploration rate γ(t) := 4 log t, and where µ̂k(t) := 1
Nk(t)

∑t
`=1Xkt11 {kt = k},

k = 1, . . . ,K, is the sample mean. The exploration rate for this algorithm is obtained
with Hoeffding’s inequality [76]. The upper bound obtained by [77] was

RUCB1(µ, T ) ≤ 8
∑
k 6=k?

1
∆k

log T +
(

1 + π2

3

)∑
k 6=k

∆k. (2.5)
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This result implies that the algorithm performs at least 8 times worse than the lower
bound prescribed by (2.3). Later on, refinements of the exploration rate [78, 79]
(γ = α log t, α > 1), incurred in better results, i.e., the constant in front of the first
addend in (2.5) became smaller, yet still larger than the lower bound prescribed
by [14].

History of bandits revealed that finding optimal index policies involves finding
very refined confidence bounds, which translates in the search for tighter and tighter
probability bounds. In 2013, [80] introduced KL-UCB (Kullback-Leibler UCB), an al-
gorithm that builds confidence bounds on top of the Kullback-Leibler divergence [81].
At each round t = 1, . . . , T , KL-UCB chooses kKL-UCB(t) ∈ arg maxk∈{1,...,K}Bk(t),
with

Bk(t) := sup{q ≥ µ̂k(t) : Nk(t)D
{
ηµ̂k(t)||ηq

}
≤ γ′(t)}, (2.6)

and where ηθ denotes the pdf of a Bernoulli random variable with mean θ. The
exploration rate is set to γ′(t) = log(t) + 3 log log(t), which shows up by using Cher-
noff’s inequality for finding an upper confidence bound that holds with probability
1− 1/(t log3(t)). Under this set up, the following result holds:

Theorem 2.2 (Cappé et. al. [80]). In a Bernoulli bandit model, the KL-UCB
algorithm satisfies

E
{
NKL-UCB
k (T )

}
≤ 1

D {νµk ||νµk?}
log(T ) + o(log T ) = log T

∆2
k

+ o(log T ). (2.7)

4

The actual terms hidden in o(log T ) are explicit in [80], as they provide a finite-
time analysis5. To sum up, it took nearly 30 years since 1985 [14] to go from defining
MAB to finding a matching algorithm (i.e., whose incurred regret upper bound
matches the predicted lower bound). As briefly exposed here, this process involved
finding more and more refined upper confidence bounds on every attempt.

In contrast to index policies, Thompson Sampling—a Bayesian algorithm—gained
attention only after 2000. It has been neglected since it was recognized as the first
bandit algorithm [82] in 1985, and it has been rediscovered many times earlier
this decade. Grammo [83] re-introduced Thompson Sampling under the name of
Bayesian Learning Automaton, although he credited Thompson [18]. The author
of [83] provided the first consistency result of TS, that is, TS is able to play the
optimal arm much more frequently than suboptimal arms. In parallel, [84] proposed
a heuristic method called Randomized Probability Matching, which is also nothing
but TS applied to linear bandits. The popularity of TS just increased when Chapelle
and Li [19] proposed an empirical evaluation of the algorithm, which suggested that
TS outperforms UCB-type strategies, from previous works, in finite time. It was not
until the work of Kaufmann [20, 63] that TS was shown to be asymptotically optimal
for Bernoulli armed bandits (and general one-parameter exponential bandits):

5For simplicity and brevity, we only present asymptotic bounds here.
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Theorem 2.3 (Kaufmann et. al. [20]). Consider the Bernoulli MAB. For every
ε > 0, Thompson Sampling satisfies

E
{
NTS
k (T )

}
≤ (1 + ε) log T

D {νk||νk?}
+ o(log T ) = (1 + ε) log T

∆2
k

+ o(log T ). (2.8)

4

From this groundbreaking result, the optimality of Thompson Sampling has
been studied in many different bandit problems, e.g., [21] proved optimality for the
one-parameter exponential bandit under Jeffrey’s prior, while [22] showed that the
optimality of Thompson Sampling, for two-parameters Gaussian models, depends
on the prior distribution.

2.4 Summary

This chapter has served as an introduction to stochastic multi-armed bandit problems,
stating what the key elements on every problem are: the bandit model (how data is
generated), arms (actions), rewards (observations), and regret (cost function). The
interaction between the agent (who tries to minimize the regret) and the bandit
model is done through a policy, which is a sequential mapping from observed data in
actions. The different classes of policies (deterministic and randomized) have been
also introduced.

Finally, a historical perspective on multi-armed bandit problems has been pro-
vided, highlighting the most relevant results within a particular class of problems:
the Bernoulli bandit. In fact, many of the ingredients in solving the gain estimation
problem under bandit feedback involve using key concepts of traditional bandit
games.



Chapter 3

From bandits to H∞-norm estimation
“Would you like me to give you a formula for success? It’s quite simple,
really: Double your rate of failure. You are thinking of failure as the
enemy of success. But it isn’t at all. You can be discouraged by failure
or you can learn from it, so go ahead and make mistakes. Make all you
can. Because remember that’s where you will find success.”

— Thomas J. Watson, former CEO of IBM
[in a perhaps not so optimal bandit policy]

The previous chapter compiled some of the most relevant results in the bandit frame-
work, such as the best performance any reasonable algorithm (i.e., any uniformly
good algorithm) could attain. We additionally introduced some algorithms whose
performance indeed attains that lower bound. Along this chapter, we formulate the
H∞-norm estimation problem as a multi-armed bandit, together with extending
well known results to this particular bandit problem.

For the sake of brevity, the proofs of some technical results have been appended
at the end of the chapter.

3.1 Introduction

The notion of H∞-norm of a linear system is a particular instance of a much broader
concept known as the `2-gain of a system [85]. A stable operator G is a mapping
G : `2 → `2 that takes an input signal u = (u0, u1, . . . ) ∈ `2 and maps it to an output
y ∈ `2, where `2 := {x : ‖x‖`2 = ‖x‖2 :=

∑∞
t=0 x

2
t <∞}. The `2-gain of a system G,

denoted as β, is an intrinsic property that upper bounds the energy gain an input
suffers when being filtered, i.e.,

β := sup
u∈`2\{0}

‖y‖2
‖u‖2

= sup
u∈`2\{0}

‖Gu‖2
‖u‖2

. (3.1)

In a very general set-up, G can be any stable mapping, including nonlinear operators.
When G is a linear and time-invariant (LTI) operator, it has a representation in
the complex plane as a complex function G : C→ C, where G is a real proper and

29
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stable rational function in the complex variable z, also known as a transfer function.
In this case, by Parseval’s theorem [9] and by defining U : C→ C as the (one-sided)
z-transform [86] of u ∈ `2, i.e., U(z) :=

∑∞
k=0 ukz

−k, β can be rewritten as

β := sup
u∈`2\{0}

‖Gu‖2
‖u‖2

= sup
U 6=0

‖GU‖2
‖U‖2

= sup
U 6=0

√
1

2π
∫ π
−π |G(ejω)U(ejω)|2 dω√
1

2π
∫ π
−π |U(ejω)|2 dω

≤ max
ω∈[0,π]

∣∣G(ejω)
∣∣

=: ‖G‖∞, (3.2)

with j :=
√
−1 . This means that the supremum in the above expression is at-

tained by an input u /∈ `2 corresponding to a sinusoidal signal of frequency
ω? ∈ arg maxω∈[0,π]

∣∣G(ejω)
∣∣ [87], called the peak frequency from now on. Then,

β = ‖G‖∞ = maxω∈[0,π]
∣∣G(ejω)

∣∣ and the corresponding problem of finding β
simplifies to finding ω?, see, e.g., [12, Chapter 7].

When the transfer function G is known, the computation of ‖G‖∞ involves max-
imizing a known function, where standard calculus methods can be employed [10,
11]. However, when G is unknown, one must estimate this quantity from input-
output data which can be used either to build a model Ĝ and then approxi-
mate ‖G‖∞ ≈ ‖Ĝ‖∞ (model-based approach) or to directly approximate β ≈
maxu∈`2\{0} ‖y‖2/‖u‖2 (model-free approach). Finding the latter quantity involves
an iterative input design problem, as the optimal input (i.e., maximizing the ratio
‖y‖2/‖u‖2) explcitely depends on the unknown system G [15, 88, 89]. The approach
presented in this thesis is a model-free approach motivated within a control frame-
work, where we are interested in estimating the H∞-norm of the modelling error,
i.e., the largest gain of the mismatch existing between the true system and a given
model.

In a model-free setup, the H∞-norm of G, defined by the supremum in (3.2),
can be well approximated, for N ∈ N large, as

β ≈ max
u′∈`2\{0}
u′n=0,∀n≥N

‖y′‖2
‖u′‖2

, (3.3)

where u′ ∈ `” is the N -length input of G and y′ ∈ `2 is N -truncated version of the
output Gu. For N large, one can approximate the latter by restricting the search
space to sinusoidal signals:

β ≈ max
u′∈`2\{0}
u′n=0,∀n>N

‖y′‖2
‖u′‖2

≈ max
ω∈[0,π]

u′n=sin(ωn)
u′n=0,∀n≥N

‖y′‖2
‖u′‖2

= ‖y
?‖2

‖u?‖2
, (3.4)

where u?n = sin(ω?n) for 0 ≤ n < N , u?n = 0 for n ≥ N , and y? ∈ `2 being
the N -truncated output when u? is used as input. Since ω? is a function of the
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G

eτ

yτuτ +

wτ H

Figure 3.1: Mathematical model of a linear system with additive non-white noise.

unknown system G, the solution to (3.4) (i.e., finding ω?) involves sampling the
ratios ‖y′‖2/‖u′‖2 for different ω’s, where taking one sample of the ratio involves
running one experiment. The choice of ω ∈ [0, π] at each experiment might be
adaptive and may depend on the information obtained on previous experiments.

As the above discussion tries to illustrate, finding a good approximation of
β involves iteratively finding ω?. In a more general setup, the measured output
contains noise and then sampling the ratios ‖y′‖2/‖u′2‖ corresponds to observing a
random variable, exposing the difficulty in designing an estimator for β. We then
identify two major issues when trying to estimate the H∞-norm of a system, which
essentially are:

1. finding the best possible data for this purpose (i.e., finding ω?), and

2. building the best possible estimator upon the available data.

Whether or not there exists such a separation principle between these two, as if
they were independent steps, is still an open problem. However, we do know that
the performance of an estimator highly correlates to the available data. This hand-
waving argument motivates the exploration of algorithms running underlying input
design algorithms producing data for an external (possibly recursive) function to
estimate the H∞-norm. Observe that any model-based approach will end up facing
exactly the same crossroad, since the difference with a model-free approach consists
in only a more complicated estimator. As in a model-free fashion, a model-based
approach does not need to derive an accurate model at all frequencies, but only
those where the peak frequency is located.

3.2 Model set-up and problem statement

Following the set-up described in [3], let g := (gτ )∞τ=0 and h := (hτ )∞τ=0 denote the
impulse responses of systems G and H, respectively, depicted in Fig. 3.1, where
gτ , hτ ∈ R, τ = 1, 2, . . . . The systems are assumed to be LTI and causal, where
causality means that gτ , hτ = 0, for every τ < 0.

Let t = 1, 2, . . . , T index the experiments performed on the system shown in
Fig. 3.1, from which an agent collects input-output data. At experiment t, the output
signal (yτ )∞τ=0, as a function of the input (uτ )∞τ=0 and the zero-mean unit-variance
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Ĝ

eτ

yτuτ +

wτ
H

G0

−

G := G0 − Ĝ

W̃

Figure 3.2: Equivalent set-up for collecting data from the modelling error. In this
work, filter W̃ is set to W̃ ≡ 1, albeit an arbitrary W̃ can be employed when the goal
is to estimate a weighted version of the H∞-norm of G.

and white1 [33] Gaussian sequence (wτ )∞τ=0 is defined as

yτ = (g ∗ u)τ + (h ∗ w)τ︸ ︷︷ ︸
=:eτ

=
∞∑
τ ′=0

gτ ′uτ−τ ′ +
∞∑
τ ′=0

hτ ′wτ−τ ′ , (3.5)

where each term corresponds to a convolution (denoted by ∗) between a signal and
an impulse response.

Assumption 3.1. Both systems G and H in Fig. 3.1 are stable in a BIBO (bounded
input bounded output) sense, that is, every (uτ )∞τ=0 satisfying |uτ | < ∞, for all
τ ∈ Z, implies that |yτ | <∞, for all τ ∈ Z. 4

Assumption 3.1 implies that the Fourier transforms of g and h exist for each
frequency ω ∈ [0, π], denoted by G(ejω) and H(ejω), also known as the frequency
responses of G and H, respectively.

Remark 3.2. The system in Fig. 3.1 is suitable to model the problem of collecting
noisy data from the modelling error system G = Go − Ĝ, where Go denotes the real
system we are trying to derive a model for, while Ĝ is the actual model. Assuming
that Go and Ĝ are stable LTI systems, the difference is also stable and LTI, implying
that measurements from G = Go − Ĝ can be collected by exciting Go and Ĝ
independently with the same input sequence (uτ )∞τ=1 and then subtracting their
outputs, as Fig. 3.2 suggests. 4

The filter H is deterministic, but can be unknown to us. Under this set-up, the
goal is to estimate the H∞-norm of G: β = ‖G‖∞ = maxω∈[0,π]

∣∣G(ejω)
∣∣, where, for

simplicity and without loss of generality, we assume that the maximum is attained
for some ω in (0, π). The extension to the case where the peak is located at ω = 0

1 A zero-mean sequence (wt) is said to be white if E {wiwk} = δij .
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or at ω = π can be straightforwardly done at the expense of more complicated
notation.

In this work, we focus on strategies that estimate ‖G‖∞ recursively from input-
output data collected in sequential experiments (rounds) t = 1, . . . , T , each of length
N . At each round t ∈ {1, . . . , T}, experiments are designed by defining an input
sequence ut := (ut0, . . . , utN−1) and collecting a noisy output yt := (yt0, . . . , ytN−1) dis-
turbed by the additive non-necessarily white Gaussian sequence et := (et0, . . . , etN−1)
of zero mean, induced by the Gaussian zero-mean sequence wt := (wt0, . . . , wtN−1).
Experiments are performed independently of previous and future ones by waiting
long enough between two consecutive experiments.

Remark 3.3. There is a waiting time between experiments so the natural response
of the system, due to initial conditions introduced by the previous experiments,
decays to zero, making the plant static in terms of the sequence of inputs (u1, u2, . . . )
and the sequence of outputs (y1, y2, . . . ). Because G and H are stable, one can
always find a waiting time between experiments N ′ < ∞ such that the energy
(Euclidean norm) of the internal state response of the system in Fig. 3.1 is upper
bounded by some pre-defined quantity δ > 0. 4

We allow experiments to be sequentially designed, that is, sequence ut is mapped
from previous input-output data (u1, y1, . . . , ut−1, yt−1). Furthermore, the input
to G at round t ∈ {1, . . . , T} is restricted2 to be a unit-norm sum of sinusoidal
sequences [2], each of them parametrized by frequencies in [0, π]. As we explain
in the following paragraph, we make use of bandit technology to find an agent π
able to design these experiments optimally by discretizing the frequency axis into
K equally spaced frequencies, with K large enough, denoting the possible arms
the agent can choose at each round. Then, the discretized H∞-estimation problem
becomes

β = ‖G‖∞ = max
ω∈[0,π]

∣∣G(ejω)
∣∣ ≈ max

k∈{1,...,K}

∣∣G(ejωk)
∣∣ , (3.6)

where ωk := 2πk/(2K + 1). Hence, at every round t, ut = (ut0, ut1, . . . utN−1) is
completely characterized by its frequency response at the sampled frequencies
ω1, ω2, . . . , ωK . Now, it is worth to define ptk := |U tk|

2 as the power level assigned
to frequency ωk, k = 1, . . . ,K, corresponding to the power contribution of each
sinusoidal sequence composing ut. Since the input signal is unit-norm, we define pt :=
(pt1, . . . , ptK) ∈ Λ := {p ∈ [0, 1]K :

∑K
k=1 pk = 1}. For other class of applications, the

power restriction of 1 can be modified accordingly.

Remark 3.4. To avoid frequency leakage [3], N is set to L(2K + 1) with L ∈ N. 4

2 This assumption is not restrictive since ‖G‖∞ = supu∈`2\{0} ‖y‖2/‖u‖2 is attained by a
sinusoidal sequence of frequency ω? = arg maxω∈[0,π]

∣∣G(ejω)
∣∣ [12, Chapter 7].
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For every k, U tk, Y tk , Etk and W t
k denote the discrete Fourier transforms (DFT)

of ut, yt, et and wt, respectively, at frequency ωk(t) where

U tk = U t(ωkt) := 1√
N

N−1∑
τ=0

utτe−jωktτ , (3.7)

and analogously for yt, et and wt.

Remark 3.5. {Etk}Kk=1 is a circularly symmetric [90, Section 3.7] complex zero-mean
and white sequence [91], whose real and imaginary parts are statistically independent
for every k ∈ {1, . . . ,K}. Moreover, for every k, the real and imaginary parts of Etk
are zero-mean Gaussian with variance σ2

k/2 := E{|Etk|2}/2 = |H(ejωk)|2/2. Notice
that the sequence σ := (σ2

1 , σ
2
2 , . . . , σ

2
K) might be unknown since H may also be

unknown. 4

The agent has access to both U t and Y t, but not to Et, and it is interested in
finding a U t such that the gain: ∑K

k=1 |Y tk |
2∑K

k=1 |U tk|
2 , (3.8)

now in the frequency domain, is maximized. The agent perceives a complex-valued
sequence {

Y t1
U t1
,
Y t2
U t2
, . . . ,

Y tK
U tK

}
. (3.9)

when it applies signal ut to the system. Observe that, for every k ∈ {1, . . . ,K}:

Y tk
U tk
≈ G(ejωk)U tk + Etk

U tk
= G(ejωk) + Etk

U tk
, (3.10)

where the quality of the approximation depends on the pair of data points N =
L(2K + 1) collected from each experiment3. Then, for L large enough, the following
lemma holds.

Lemma 3.6. Given U t (or, equivalently, the power profile pt = (pt1, pt2, . . . , ptK)),
Y tk/U

t
k is a one-dimensional complex-valued Gaussian random variable with mean

G(ejωk) ∈ C and with covariance matrix

E

{(
Y tk
U tk
− E

{
Y tk
U tk

})(
Y tk
U tk
− E

{
Y tk
U tk

})H
}

= σ2
k

2ptk
I2 ∈ R2×2.

4
3 As described in [3, Theorem 2.1], truncating the output to N points introduces a residual

term describing the difference between the Fourier transform of the complete output and the one
of the truncated output. This residual term decays as 1/

√
N in magnitude, so the approximation

in (3.10) is valid for L ∈ N large enough.
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This motivates the definition of the outcome perceived by the agent when it
chooses the power profile pt := (pt1, pt2, . . . , ptK) and applies signal ut to the system.
To avoid complex notation, we define the outcome vector at frequency ωk and at
experiment t as the R2-vector

Xt
k :=

[
Re Y tk

Ut
k

Im Y tk
Ut
k

]>
=
[
Re
{
G(ejωk) + Etk

Ut
k

}
Im
{
G(ejωk) + Etk

Ut
k

}]>
, (3.11)

for every k ∈ {1, . . . ,K} and t ∈ {1, . . . , T}. Since G(ejωk) is deterministic, it follows
that

E
{
Xt
k |U tk

}
=
[
ReG(ejωk) ImG(ejωk)

]>
, (3.12)

varXt
k = E

{
|Etk|

2

|U tk|
2

}
= σ2

k

ptk
. (3.13)

3.2.1 Problem statement
Under the previously introduced setup, the objective is to find an estimate of β =
‖G‖∞ when the frequency axis is discretized in K equispaced frequencies. Formally,
we aim to find a strategy υ that sequentially designs (p1, p2, . . . , pT ) (or, equivalently,
(u1, u2, . . . , uT )) and that, at the same time, provides estimates of β such that the
mean squared error of β ≈ maxk∈{1,...,K} |G(ejωk )| is minimized. The strategy υ
is a sequence of mappings υ = (υ1, υ2, . . . , υT ) such that υt+1 : Λ × R2t → R × Λ
maps the available information (p1, p2, . . . , pt, X1, X2, . . . , Xt) into pt+1 and into
an estimate of β, denoted by υ̂t ∈ R, for every t = 1, . . . , T . Here, the estimate υ̂t is
σ(p1, p2, . . . , pt, X1, X2, . . . , Xt)-measurable. Let Υ denote the set of such adaptive
strategies that recursively (a) design multi-sine input signals and (b) estimate β.
Then, the gain estimation problem, denoted as (GE) is:

(GE) min
υ∈Υ

E
{

(υ̂T − β)2} . (3.14)

As the structure of the mappings υ suggests, we separate (GE) into two sub-problems:
(a) regret minimization and (b) norm estimation. Based on the available information
up to round t, the solution to (a) regret minimization recursively designs pt+1,
whereas the solution to (b) norm estimation delivers an estimate υ̂t of β. The two
following sections describe each of these problems in more detail.

3.3 Regret minimization: the bandit model

The bandit model introduced in Section 3.2 for adaptive input design in the gain
estimation problem was originally introduced in [24] for white additive noise and
when the variance is completely known to the agent. In turn, the formulation
presented in this work is more general than the one in [24] and follows the one
presented in [92].
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3.3.1 The arms
The arms in this bandit problem are the indexes of the possible frequencies one can
assign a power profile to, that is, k = 1, . . . ,K are the arms.

3.3.2 The outcomes
In bandit notation, the outcome Xt

k corresponds to a bivariate Gaussian vector

Xt
k |U tk ∼ N

(
µk,

σ2
k

2ptk
I2

)
, (3.15)

where µk := [ReG(ejωk) ImG(ejωk)]>, and where the best arm is denoted by
k? := arg maxk∈{1,...,K} ‖µk‖ = arg maxk∈{1,...,K}

∣∣G(ejωk)
∣∣, such that µ? := µk? .

The outcomes Xt := (Xt
1, X

t
2, . . . , X

t
K) are revealed to the agent after running the

t-th experiment parametrized by the power levels (pt1, pt2, . . . , ptK).

3.3.3 The policy
At each round, the agent selects a power profile pt = (pt1, . . . , ptK) ∈ Λ = {p ∈
[0, 1]K :

∑K
k=1 pk = 1}. The selection of pt may be adaptive, and depend on the

power levels and observed output signals in previous experiments. We denote by Π
the set of such possible adaptive power level selection strategies, also called the set of
“power-spreading strategies”. That is, if π ∈ Π, the power levels pt,π selected under
π at the t-th experiment is Fπt -measurable, where Fπt is the σ-algebra generated
by (p1,π, X1, ..., pt−1,π, Xt−1).

3.3.4 The goal
Given that pt ∈ Λ, maximizing (3.8) involves finding pt such that

K∑
k=1

∣∣Y tk ∣∣2 =
K∑
k=1

∣∣G(ejωk)U tk +H(ejωk)W t
k

∣∣2
=

K∑
k=1

∣∣G(ejωk)U tk
∣∣2 +

∣∣H(ejωk)W t
k

∣∣2 − 2Re {G(ejωk)H(ejωk)U tkW t
k}

(3.16)
is maximized in expected value, i.e., finding pt maximizing

E

{
K∑
k=1

∣∣Y tk ∣∣2
∣∣∣∣∣U t

}
=

K∑
k=1

ptk‖µk‖2 + σ2
k. (3.17)

Since the first term is the only one affected by the choice of pt, the power profile
should intend to maximize

∑K
k=1 p

t
k‖µk‖2. The reader may notice that allocating

all the power at ωk? attains the maximum of this quantity, which is exactly what
we are looking for, thus motivating the following definition of regret.
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3.3.5 The regret
For a given policy π, its performance is indexed by the expected cumulative regret

E {Rπ(µ,σ, T )} :=
T∑
t=1

K∑
k=1
‖µk‖(pt,?k − p

t,π
k ), (3.18)

where Rπ is a problem-dependent index (depending on T , µ and σ). The sequence
pt,? := (pt,?1 , pt,?2 , . . . , pt,?K ) is the policy that an oracle, knowing k? beforehand, would
employ at every round t = 1, . . . , T , selecting

pt,?k =
{

1, k = k?,

0, k 6= k?.
(3.19)

The bandit problem is then summarized as [16]

min
π∈Π

E {Rπ(µ,σ, T )} = min
π∈Π

T∑
t=1

K∑
k=1
‖µk‖(pt,?k − E

{
pt,πk

}
), (3.20)

where the expectation is taken with respect to the randomness of the sequence of
power profiles p1,π, p2,π, . . . , pT,π, which are Fπt -measurable. The regret provides
only a theoretical means of evaluating the performance of a policy π. It is, in general,
not possible to evaluate this quantity empirically as the best arm is unknown.

Remark 3.7. Our definition of regret involves the measurement of a random
variable with mean

∑K
k=1 p

t,π
k ‖µk‖ at every round, which would be traditionally

referred to as the reward. The feedback the agent receives is not the reward, but
the outcome Xt, which is actually more detailed information. This is an important
difference to traditional MAB problems. 4

As discussed, the solving the gain estimation problem (GE) involves finding an
algorithm that sequentially designs experiments t = 1, . . . , T or, equivalently, the
power profiles pt for every t ∈ {1, . . . , T}. Here we present two different problems
whose solutions involve iterative input design:

• Best Arm Identification (BAI): In this approach [93], only after T experiments,
π ∈ Π returns an estimation of the peak frequency index k̂π (k̂π is FπT+1-
measurable), and we wish to solve:

(BAI) min
π∈Π

E
{
‖µk?‖ − ‖µk̂π‖

}2
.

Since this framework only accounts for minimizing the instantaneous ex-
pected regret at round T , the existing algorithms (many of them optimal)
highly encourage exploration (see, e.g., UCB-E (upper confidence bound explo-
ration) [94], and GapE (gap-based exploration) [95]). Other instances of the
best arm identification problem attempt to minimize the expected probability
of recommending the wrong arm after T rounds P{k̂π 6= k?}.
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• Regret Minimization (RM): We compare the power level selection strategy π
to an oracle strategy always concentrating its power on the peak frequency, and
we quantify its performance using the following notion of expected cumulative
regret:

E {Rπ(µ,σ, T )} =
T∑
t=1

K∑
k=1
‖µk‖(pt,?k − E

{
pt,πk

}
)

= T‖µk?‖2 −
T∑
t=1

K∑
k=1

E
{
pt,πk

}
‖µk‖2. (3.21)

Hence, here our goal is to solve:

(RM) min
π∈Π

Rπ(µ,σ, T ).

As discussed in [96], solving (RM) is more challenging than solving (BAI) because
it accounts for the sample complexity, i.e., it accounts for the number of experiments
needed to successfully learn the peak frequency. In other words, the solution to
(RM) has the attractive property of finding the peak frequency as fast as possible in
order to to minimize the cumulative error, rather than the error at round T . The
final goal of our work is to produce the best possible data (hopefully by allocating
all the power on the peak frequency, or frequencies close to it, as quick as possible)
so the estimation of β can be as accurate as possible. For this reason, we employ
the solution to (RM) as a way to design experiments and collect data.

Remark 3.8. The problem (RM) resembles a linear stochastic bandit problem [13]:
the continuous set of arms (here power profiles) is the simplex Λ; the reward at exper-
iment t is the scalar product of the selected power profile pt and (‖Xt

1‖2, . . . , ‖Xt
K‖2).

However, in [13] the feedback provided to the decision maker after it selects pt
is actually a noisy version of the reward

∑
k p

t
k‖µk‖2, whereas in our problem, it

receives much more detailed feedback. More precisely, the feedback consists of a
complex K-dimensional vector Xt whose k-th component is centred at G(ejωk) and
has a variance inversely proportional to the power allocated at frequency ωk. This
difference in feedback is crucial: in [13], the regret is known to scale at least as4

Θ(
√
T ). 4

We finish this section by pointing out that the smoothness of the frequency
response of G and H is not exploited in the presented setup. In other words, we
consider that the K arms are statistically independent, which is not true when LTI
systems are considered. As discussed in [97], the regret can be pushed down if the
agent were allowed to consider smoothness as prior knowledge, for example in terms
of Lipschitz continuity constants. This follows from the fact that rewards drawn
from an arm provide information of the rewards from other arms.

4 A function f : R → R is Θ(g(x)), for some g : R → R, if and only if there exist constants
c1, c2 > 0 such that c1g(x) ≤ f(x) ≤ c2g(x) for every x > x0 ∈ R. This is commonly written as
f(x) = Θ(g(x)).
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3.3.6 Single-frequency strategies
Given that the oracle’s policy in (RM) allocates all its power at only one frequency, it
is insightful to compare the performances achieved by the family of power-spreading
strategies Π with the one of single-frequency strategies ΠSF ⊂ Π. A single frequency
strategy π ∈ ΠSF selects, at each round t = 1, . . . , T , a power profile pt,π ∈ ΛSF,
ΛSF := {p = (p1, . . . , pK) ∈ {0, 1}K :

∑K
k=1 pk = 1}. This resembles the traditional

bandit problem, in which choosing a power profile in ΛSF is equivalent to choosing one
arm kt ∈ {1, . . . ,K}, for every t ∈ {1, . . . , T}. Hence, the outcome Xt

k corresponds
to the bivariate Gaussian vector

Xt
k |U tk ∼ N

(
µk,

σ2
k

2 I2

)
, (3.22)

and the bandit feedback the agent receives comes only from one arm kt. For a
given policy π ∈ ΠSF, its performance is indexed by the cumulative expected regret
E {Rπ(µ,σ, T )} =

∑T
t=1 E

{
∆kπt

}
it incurs, where ∆k := ‖µk?‖ − ‖µk‖, and kπt

is the arm at round t under policy π. Under this set-up, the regret minimization
problem becomes

min
π∈ΠSF

E {Rπ(µ,σ, T )} = min
π∈ΠSF

∑
k 6=k?

E {Nπk (T )}∆k. (3.23)

In the following chapter, we derive fundamental limitations on how good an
algorithm in Π or ΠSF can perform. Furthermore, we discuss in Chapter 5 how
different, so-called, optimal algorithms can attain these limitations when the search
space is Π or ΠSF.

3.4 Norm estimation

As previously motivated, we have attempt to solve (GE) by separating this problem
into two sub-problems, namely regret minimization (RM) and norm estimation. The
solution of the norm estimation problem involves finding an estimate of β from data
gathered during previous experiments. These experiments are sequentially designed
by the solution to (RM) and, then, we say that the solution of the norm estimation
problem runs on top of an underlying bandit algorithm. The estimator makes use
of the data gathered from previous experiments but it is statistically independent
of how those and future experiments are designed. The separability of (GE) is not
necessarily optimal and it has not been established in the literature, however, we
show in Chapter 6 that such separation is asymptotically optimal.

Formally, a point estimator is a collection β̂ = {β̂t}t of functions such that, such
that β̂t : R2t × Λt → R+ is Ft+1-measurable, i.e.,

β̂t = β̂t(p1,π, X1, p2,π, X2, . . . , pt,π, Xt), t = 1, . . . , T. (3.24)

The estimator only has access to the data and not to the underlying MAB algorithm
generating it. The set of all estimators satisfying (3.24) is denoted by E .
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As introduced in Section 3.2.1, the performance of an estimator β̂ is given by
its guessing quality after t rounds, i.e., β̂t. More precisely, the performance of β̂ at
round t is defined as

MSE(β̂t) := E
{(

β̂t − β
)2
}
, (3.25)

and our goal is to solve the norm estimation (NE) problem

(NE) min
β̂∈E

MSE(β̂T ).

Notice that the solution of (NE) does not involve finding an estimator accounting
for the sample complexity, as we rely that task to the solution to (RM).

The optimal bandit algorithms introduced in Chapter 5 easily motivate the
construction of estimators that might use current and previous experiments to make
a reasonable guess of β. In Chapter 6, we devise three different methods to approach
(NE), motivated by the detailed information in the bandit feedback. By means of
sufficient statistics, we can keep track of an estimate for each of the two-dimensional
means in µ as well as the cumulative allocated power in each arm. This information
will be specifically exploited in order to build estimators. Later, we analyze the
asymptotic performance of one of the methods when the sequence of variances
σ = (σ2, σ2, . . . , σ2) is known. More precisely, we show that the MSE decays to zero
as5 O(T−1) with the right constant in front of T−1.

3.5 Summary

We introduced the problem of gain estimation (GE) as two independent problems,
namely regret minimization (RM) and norm estimation (NE). Independence follows
from the fact that the algorithm solving (RM) does not exploit the structure of the
estimator solving (NE) while, at the same time, the latter only relies on the data
provided by the bandit policy, but not on the structure of the algorithm. At each
round, an experiment is performed from which input-output data is gathered. Here,
the input is a multi-sine where the power allocated at each of the K frequencies can
be adaptively chosen at every experiment, and the output is corrupted by additive
Gaussian noise. By means of the Fourier transform, the input-output data has a
frequency-domain representation in R2K called outcome.

The regret minimization problem corresponds to a nonlinear bandit with two-
dimensional Gaussian feedback, since the measurements of the modelling error are
complex-valued. Particularly, it corresponds to a two-parameter Gaussian bandit
whenever both µ and σ are unknown (otherwise it corresponds to a one-parameter
Gaussian bandit). The twist of this problem is that, unlike traditional bandit

5 A function f : R → R is O(g(x)), for some function g : R → R, if and only if
lim supx→∞ f(x)/g(x) <∞. Equivalently, we write f(x) = O(g(x)).
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problems, the goal here is to find the arm whose complex mean has the largest
magnitude. The problem presented in this work is interesting not only because it
models an important engineering problem, but also because it introduces a non-
traditional bandit problem in which the best arm is defined by a nonlinear function
of its Gaussian outcomes’ parameters.

The solution to the norm estimation problem runs on top of the bandit algorithm,
and it may use all the information gathered during previous experiments to make a
guess of β = ‖G‖∞.

3.6 Proof of Lemma 3.6

We start by stating a well known result [90] regarding W t
k:

E
{

ReW t
k

}
= E

{
ImW t

k

}
= 0, (3.26)

cov ReW t
k := E

{
(ReW t

k − E
{

ReW t
k

}
)2} = 1/2, (3.27)

cov ImW t
k := E

{
(ImW t

k − E
{

ImW t
k

}
)2} = 1/2, (3.28)

cov ReW t
k, ImW t

k = 0, (3.29)
var ReW t

k + jImW t
k = 1. (3.30)

Y tk/U
t
k is a complex random variable since it is a function of W t

k. Observe that

E

{
Y tk
U tk

∣∣∣∣∣U tk
}

= G(ejωk) + H(ejωk)
U tk

E
{
W t
k

}
= G(ejωk). (3.31)

On the other hand, let Hk := H(ejωk ). Then,

Re {HkW
t
kŪ

t
k} = Re {(ReHk + jImHk)(ReU tk − jImU tk)(ReW t

k + jImW t
k)}

= ReW t
k(ReHkReU tk + ImHkImU tk)

− ImW t
k(ImHkReU tk − ReHkImU tk),

where z̄ stands for the complex conjugate of z ∈ C. Then,

E
{

(Re {HkW
t
kŪ

t
k})2} = 1

2(ReHkReU tk + ImHkImU tk)2

+ 1
2(ImHkReU tk − ReHkImU tk)2

= 1
2 |Hk|2

∣∣U tk∣∣2
= 1

2σ
2
kp
t
k, (3.32)
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because ReW t
k, ImW t

k ∼ N (0, 1/2) are independent. Hence,

var Re Y
t
k

U tk
= E

{(
Re Y

t
k

U tk
− E

{
Re Y

t
k

U tk

})2
}

= E

{(
Re HkW

t
k

U tk

)2
}

= E


(

Re HkW
t
kŪ

t
k

|U tk|
2

)2


= σ2
k

2ptk
. (3.33)

By using the same procedure, it follows that

var Im Y tk
U tk

= var Re Y
t
k

U tk
= σ2

k

2ptk
, (3.34)

and that

cov Re Y
t
k

U tk
, Im Y tk

U tk
= 0, (3.35)

which proves the result.



Chapter 4

Regret lower bounds

As in the traditional MAB framework, the first task in solving (RM) is to investigate
the fundamental limitations of any algorithm, i.e., what is the minimum regret we can
expect. We restrict our attention however only to algorithms that perform acceptably
no matter what values (µ,σ) take. Roughly speaking, these algorithms have an
important and desirable feature corresponding to always balancing exploration and
exploitation independently of the bandit problem. Think of a deterministic policy
π′ = (π′1, . . . ,π′T ) where π′t : {1, . . . ,K}t−1 × R2(t−1) → {4} for every t = 1, . . . , T ,
that is, policy π′ allocates all the available power to arm k = 4 at each round
t = 1, . . . , T , regardless of the previous perceived outcomes. This policy achieves
zero regret whenever k? = 4, but incurs into an unacceptable performance in any
other case. This motivates the search for algorithms that adapt to the problem
defined by (µ,σ), balancing exploration and exploitation.

In this section we provide regret lower bounds for algorithms under the following
two classes of assumptions:

1. Known variance: In (RM) the sequence of variances σ is known and satisfies
σ2
k = σ2 for every k = 1, . . . ,K.

2. Unknown variance: In a more general instance of (RM), the sequence σ of
possibly different variances is completely unknown to the agent.

As a disclaimer, some proofs in this chapter assume that k? = 1. This assumption
can be made without loss of generality, since the bandit model assumes that there
is no correlation between different arms.

For the sake of brevity, the proofs of some technical results have been appended
at the end of the chapter.

4.1 Regret lower bounds for single-frequency strategies

Motivated by the previous discussion, we introduce the notion of uniformly efficient
policies that play only one arm at each round. We remark that uniform efficiency is

43
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defined on a class of bandits and the following definition differs from the notion of
uniform efficiency for power-spreading strategies, however it does not change upon
the knowledge of σ.

Definition 4.1 (Uniform efficiency in ΠSF). An algorithm π ∈ ΠSF is uniformly
efficient (in ΠSF) if for any (µ,σ), the number of rounds Nπk (t) a suboptimal arm
(here frequency) is selected up to experiment t satisfies E {Nπk (t)} = o(tα), for every
α > 0. The set of uniformly efficient policies is denoted by Π?

SF. 4

A direct consequence of π being uniformly efficient is that E {Nπk?(t)} = Θ(t),
which means that a uniformly efficient policy is expected to play k? regularly as t
grows large.

4.1.1 Known variance
In their seminal paper [14], Lai and Robbins derive a tight asymptotic (when T grows
large) regret lower bound satisfied by any uniformly efficient algorithm in Π?

SF. Let
νk denote the distribution of the only observable outcome Xt

kt=k ∼ N (µk, σ2I2/2)
when the frequency ωk is selected. It is shown in [14] that under any uniformly
efficient algorithm π in Π?

SF:

lim inf
T→∞

E {Nπk (T )}
log T ≥ 1

D {νk|| νk?}
, for all k 6= k?,

where D {νk|| νk?} denotes the Kullback-Leibler divergence [81] (denoted as KL-
divergence from now on) number between the distributions νk and νk? . In particular,
the regret under the algorithm π satisfies:

lim inf
T→∞

E {Rπ(µ, T )}
log T ≥

∑
k 6=k?

∆k
σ2

∆2
k

=
∑
k 6=k?

σ2

∆k
, (4.1)

because the νk’s are Gaussian distributions, so D {νk|| νk?} = (‖µk?‖−‖µk‖)2/σ2 =
∆2/σ2, In chapter 5 we show that this lower bound is achievable by Thompson
Sampling.

4.1.2 Unknown variance
When k? is the unique optimal arm, among other mild regularity conditions, Burnetas
and Katehakis [17] generalized and tightened the bound provided by Lai and
Robbins [14] on the asymptotic number of times each suboptimal arm is played.
Using a similar reasoning, we derive the following lower bound for the regret incurred
by any uniformly efficient algorithm aimed at solving (RM).

Theorem 4.2. Consider (RM) under unknown parameters µ and σ = (σ1, σ2, . . . ,
σK). Under every uniformly efficient algorithm π ∈ Π?

SF, the expected cumulative
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regret satisfies

lim inf
T→∞

E {Rπ(µ,σ, T )}
log T ≥

∑
k 6=k?

‖µ?‖ − ‖µk‖

log
(

1 + (‖µ?‖−‖µk‖)2

σ2
k

) =
∑
k 6=k?

∆k

log
(

1 + ∆2
k

σ2
k

) .
(4.2)

4

Proof. Without loss of generality, let k? = 1. For every µ = (µ1,µ2, . . . ,µK)
satisfying ‖µ1‖ > ‖µi‖, i = 2, . . . ,K, it is known [16] that

lim inf
T→∞

E {Nπk (T )}
log T ≥ 1

infµ′
k
,σ′2
k

: ‖µ′
k
‖>‖µ1‖D {µk, σ2

k||µ′k, σ′2k }
, (4.3)

holds for every k ∈ {1, . . . ,K}, where D
{
µk, σ

2
k||µ′k, σ′2k

}
denotes the KL-divergence

between two bivariate distributions parametrized by (µk, σ2
kI2) and (µ′k, σ′2k I2),

respectively, and is given by

D
{
µk, σ

2
k||µ′k, σ′2k

}
= log σ

′2
k

σ2
k

+ σ2
k + ‖µk − µ′k‖2

σ′2k
− 1. (4.4)

In order to find infµ′
k
,σ′2
k

: ‖µ′
k
‖>‖µ1‖ D

{
µk, σ

2
k||µ′k, σ′2k

}
, we consider D

{
µk, σ

2
k||µ′k, σ′2k

}
to be a function of (µ′k, σ′2k ), and then the minimum of D

{
µk, σ

2
k||µ′k, σ′2k

}
can be

found by setting the partial derivatives equal to zero and solving the resulting
equations. This procedure yields

∂D
{
µk, σ

2
k||µ′k, σ′2k

}
∂σ′2k

= σ′2k − σ2 − ‖µk − µ′k‖ = 0 ⇐⇒ σ′2k = σ2 − ‖µk − µ′k‖,

and then, by substituting this in (4.4), we obtain

D
{
µk, σ

2
k||µ′k, σ′2k

}
≥ log

(
1 + ‖µk − µ

′
k‖2

σ2
k

)
. (4.5)

This lower bound is maximized and valid for every µ′k ∈ {µ′k : ‖µ′k‖ > ‖µ1‖} by
picking µ′k = µ1‖µk‖/‖µ1‖, i.e., a vector in the direction of µ1 with the magnitude
of µk. It then follows that

inf
µ′
k
,σ′2
k

: ‖µ′
k
‖>‖µ1‖

D
{
µk, σ

2
k||µ′k, σ′2k

}
= log

(
1 + (‖µ1‖ − ‖µk‖)2

σ2
k

)
,

and the proof is completed by observing that E {Rπ(µ,σ, T )} =
∑K
k=1 ∆kE {Nπk (T )}

(see, e.g., [16]). �
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Observe that, for every π ∈ Π?
SF, the asymptotic (as T →∞) lower bound for

E {Rπ(µ,σ, T )} / log T increases1 from
∑
k 6=k? σ

2∆k to
∑
k 6=k? ∆k log−1

(
1 + ∆2

k

σ2
k

)
,

although the asymptotic regret lower bound is still logarithmic in the number of
experiments T . The reason behind the increment follows from our ignorance of σ,
which is compensated by sampling suboptimal arms more often.

4.2 Regret lower bounds for power-spreading strategies

In this section we study the asymptotic rate of the expected cumulative regret under
power-spreading strategies. Analogous to Section 4.1, we start by providing the
following formal definition.

Definition 4.3 (Uniform efficiency in Π). An algorithm π ∈ Π is uniformly efficient
(in Π) if for any (µ,σ),

∑T
t=1 E

{
pt,πk

}
= o(Tα), for every α > 0 and k 6= k?, where

we recall that pt,πk denotes the power allocated to frequency ωk under π. The set of
uniformly efficient policies is denoted by Π?. 4

Again, this definition of uniform efficiency implies that, under π ∈ Π?, the
expected cumulative power allocated on the optimal arm satisfies

∑t
t=1 E

{
pt,πk?

}
=

Θ(T ), i.e., π is able to allocate most of the available power at k? when the round
number t grows large.

4.2.1 Known variance

Before introducing the lower bound for power-spreading strategies under known
variance, we state and prove two lemmas that capture important properties of the
KL divergence, introducing the following notations: P := Pµ (resp. P′ := Pµ′) is a
probability measure for (Xt

k)k parametrized by the set of means µ (resp. µ′), E {·}
(resp. E′ {·}) is the expectation under µ (resp. µ′), and ν:=νµ (resp. ν′:=νµ′) is a
pdf for (Xt)Tt=1 under µ (resp. µ′) whose marginal Gaussian pdf’s are νtµk (resp.
νtµ′

k
).

Lemma 4.4. Let µ := (µ1, ...,µK) and µ′ := (µ′1, ...,µ′K) be two sets of means for
the outcome (Xt

k)k. Then, the KL-divergence between the parametrized densities ν
and ν′ satisfies

D{ν || ν′} = 1
σ2

T∑
t=1

K∑
k=1

E
{
ptk
}
‖µk − µ′k‖2, (4.6)

where the expectation is taken over the distribution defined by µ. 4

1 This follows from the fact that log(1 + x) ≤ x holds for every x ≥ 0.
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Proof. The log-likelihood function under µ is given by

`(µ) := log ν(X1, ...XT ) =
T∑
t=1

K∑
k=1

log νµk(Xt
k)

= − log πσ2 +
T∑
t=1

K∑
k=1

log ptk −
1
σ2

T∑
t=1

K∑
k=1

ptk‖Xt
k − µk‖2.

The expression for `(µ′) can be obtained analogously. Let Pt denote the σ-algebra
generated by (p1, p2, . . . , pt). Then, taking expectation with respect to ν parametrized
by µ, we have that

D{ν || ν′} = E {`(µ)− `(µ′)}

= E

{
1
σ2

T∑
t=1

K∑
k=1

ptk
(
‖Xt

k − µ′k‖2 − ‖Xt
k − µk‖2

)}

= 1
σ2

T∑
t=1

K∑
k=1

E
{
E
{
ptk
(
‖Xt

k − µ′k‖2 − ‖Xt
k − µk‖2

)
| Pt
}}

= 1
σ2

T∑
t=1

K∑
k=1

E
{
ptkE

{
‖Xt

k − µk + µk − µ′k‖2 − ‖Xt
k − µk‖2 | Pt

}}
= 1
σ2

T∑
t=1

K∑
k=1

E
{
ptk

(
σ2

ptk
+ ‖µk − µ′k‖2 −

σ2

ptk

)}

=
T∑
t=1

K∑
k=1

E {ptk}
σ2 ‖µk − µ′k‖2. (4.7)

�

Lemma 4.5. Let ν and ν′ denote two different distributions for a random vari-
able, and let P and P′ denote the respective probability measures. Then, for every
measurable event B, the KL-divergence between ν and ν′ satisfies

D {ν||ν′} ≥ d(P{B},P′{B}), (4.8)

where d(q, s) = q log(q/s) + (1− q) log([1− q]/[1− s]) is known as the binary entropy
function [98]. 4

Proof. Let E {·} and E′ {·} denote the expectation operator under P and P′, respec-
tively. Introducing a change of measure, and by Jensen’s inequality [99], we have
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that

P′{B} = E′ {11 {B}} =
∫ (

dP′

dP

)
11 {B} dP =

∫
e`(ν

′)−`(ν)11 {B} dP

= E
{

e`(ν
′)−`(ν)11 {B}

}
= E

{
e`(ν

′)−`(ν) ∣∣B}P{B}

≥ eE{`(ν
′)−`(ν)|B}P{B}, (4.9)

from which we conclude that

E {`(ν)− `(ν′)|B} ≥ log P{B}
P′{B}

. (4.10)

It now follows that

D {ν||ν′} = E {`(ν)− `(ν′)}
= E {`(ν)− `(ν′)|B}P{B}+ E {`(ν)− `(ν′)|Bc}P{Bc}

≥ P{B} log P{B}
P′{B}

+ P{Bc} log P{Bc}
P′{Bc}

= P{B} log P{B}
P′{B}

+ (1− P{B}) log 1− P{B}
1− P′{B}

= d(P{B},P′{B}). (4.11)

�

As mentioned above, (RM) can be interpreted as a linear stochastic MAB
problem with continuous set of arms and specific feedback. In linear bandits [13], the
minimal regret usually scales as Θ(

√
T ) as T grows large, but for (RM), thanks to

the nature of the feedback, this regret may scale logarithmically with T . Indeed the
TS algorithm belongs to ΠSF ⊂ Π and exhibits logarithmic regret. The following
theorem provides an asymptotic regret lower bound for (RM) for strategies in Π.

Theorem 4.6. For any uniformly efficient algorithm π ∈ Π?, the cumulative
expected power allocated at some frequency ωk satisfies:

lim inf
T→∞

∑T
t=1 E

{
pt,πk

}
log T ≥ σ2

(‖µk?‖ − ‖µk‖)2 = σ2

∆2
k

(4.12)

for every k 6= k?. In particular, the regret under π ∈ Π? satisfies:

lim inf
T→∞

E {Rπ(µ,σ, T )}
log T ≥

∑
k 6=k?

σ2

‖µk?‖ − ‖µk‖
=
∑
k 6=k?

σ2

∆k
. (4.13)

4
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The above theorem reveals, by comparison with (4.1), an interesting property of
the bandit problem under known variance: in order to solve (RM), one can restrict
to strategies in ΠSF, i.e., selecting only one frequency at each experiment. It is
important to note that the above regret lower bound is valid when T is very large
only. When T is small, it might be much wiser to spread the power on different
frequencies so as to quickly gather information on all frequencies, and exploit this
information to minimize the regret. This hand-waving argument motivates the
development of a new Thompson-Sampling based algorithm belonging to the family
of power-spreading frequencies, which we introduce in Chapter 5.

4.2.2 Unknown variance
Unlike the bandit problem under known variance, the fact of not knowing the variance
has a direct impact on the lower bound of the cumulative expected regret. In fact, the
lower bound constant increases from

∑
k 6=k? σ

2/∆k to
∑
k 6=k? ∆k/ log(1 + ∆2

k/σ
2
k).

Perhaps surprisingly, the following theorem recovers the original lower bound of
Theorem 4.6 whenever we allow power-spreading strategies.

Theorem 4.7 (Lower bound). The regret incurred by any uniformly efficient power-
spreading strategy π ∈ Π? satisfies

lim inf
T→∞

E {Rπ(T,µ)}
log T ≥

∑
k 6=k?

σ2
k

∆k
. (4.14)

4

4.3 Summary

The most important observation is that there is no improvement in the lower bound
of the asymptotic regret when power-spreading strategies in Π? are preferred over
single-frequency policies in Π?

SF under known noise variance. This follows from
the fact that, given σ, the accuracy the outcomes are observed with is known
by the algorithm, which is inversely proportional to the power allocated at that
frequency. Even though both strategies achieve the same asymptotic performance
rate, power-spreading strategies may achieve a much better performance for a finite
number of experiments. On the other hand, when the variance sequence σ remains
unknown, it is indeed smart to spread the power over frequencies as the asymptotic
regret can be considerably pushed down, since

∆k
σ2
k

∆2
k

≤ ∆k

log
(

1 + ∆2
k

σ2
k

) , (4.15)

for every k 6= k?, since ∆k, σ
2
k > 0 for every k ∈ {1, . . . ,K}. We summarize our

findings in Table 4.1.
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lim inf
T→∞

E {Rπ(T )}
log T ≥

Known σ = (σ2, σ2, . . . , σ2) Unknown σ = (σ2
1 , σ

2
2 , . . . , σ

2
K)

π ∈ Π?
SF

∑
k 6=k?

σ2

∆k

∑
k 6=k?

∆k

log
(

1 + ∆2
k

σ2
k

)
π ∈ Π?

∑
k 6=k?

σ2

∆k

∑
k 6=k?

σ2
k

∆k

Table 4.1: Regret lower bounds for known/unknown variance noise and policies
restricted to being uniformly efficient in the set of single-frequency (Π?

SF)/power-
spreading (Π?) strategies.

In the classic MAB problem, the traditional approach is to simultaneously
iterates on both lower and upper bounds as the goal is to find a match between these
two. That is, finding a lower bound that is actually attainable by some algorithm.
This section has been concerned on deriving tight problem-dependent lower bounds
(the bounds depend on the actual parameters). Their tightness involves finding an
algorithm with a matching upper bound on the regret, which is precisely developed
in Chapter 5.

4.4 Proof of Theorem 4.6

We rely on the proof in [63], originally formulated for the classical stochastic MAB
problem. Without loss of generality, let µ = (µ1,µ2, . . .,µK) denote the true mean of
the outcomes, such that ‖µ1‖2 > ‖µ2‖2 ≥ · · · ≥ ‖µK‖2. Let a denote a sub-optimal
arm (i.e., a 6= 1). Also, consider a confusion parameter µ′ = (µ′1,µ′2, . . .,µ′K) that
satisfies µ′k = µk, for all k 6= a, and ‖µ′a‖2 > ‖µ1‖2, for some a 6= 1 (i.e., according
to µ, a 6= 1 is originally a suboptimal arm). By means of Lemma 4.4, it holds that

D{ν || ν′} = ‖µ
′
a − µa‖2

σ2

T∑
t=1

E
{
pt,πa

}
. (4.16)

On the other hand, by invoking Lemma 4.5 with B = BT := {
∑T
t=1 p

t,π
1 < T − T γ},

0 < γ < 1, we have that

P{BT } = P

{
T−

T∑
t=1

pt,π1 > T γ

}
(a)= P

{
K∑
k=2

T∑
t=1

pt,πk > T γ

}
(b)
≤ 1
T γ

K∑
k=2

T∑
t=1

E
{
pt,πk

}
(c)= o(Tα−γ), for every α > 0, (4.17)
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where (a) follows from the fact that
∑T
t=1
∑K
k=1 p

t,π
k = T , (b) follows from Markov’s

inequality [100], and (c) is a consequence of π being uniformly efficient. Similarly,
under µ′ (where arm 1 is suboptimal), it follows that

P′{BcT } = P′
{

T∑
t=1

pt,π1 > T − T γ
}

≤ 1
T − T γ

T∑
t=1

E′{pt,π1 }

= o(Tα−1), for every α > 0. (4.18)

Combining Lemma 4.5 with (4.17) and (4.18), and taking α < γ sufficiently
small, it follows that

d(P{BT },P′{BT }) ≥ P{B} log P{BT }
P′{BT }

+ (1− P{BT }) log 1− P{BT }
1− P′{BT }

= o(Tα−γ) log o(Tα−γ)
1− o(Tα−1) + (1− o(Tα−γ)) log 1− o(Tα−γ)

o(Tα−1)
= o(1) + (1− α) log T.

Finally, using the latter equation together with (4.16),

lim inf
T→∞

∑T
t=1 E {pt,πa }

log T ≥ σ2(1− α)
‖µ′a − µa‖2

. (4.19)

The proof finishes by letting α→ 0+ and by choosing µ′a = ‖µ1‖µa/‖µa‖ in (4.19),
i.e., a vector in the direction of µa with magnitude ‖µ1‖. In this way, the best
(largest) lower bound is attained:

T∑
t=1

E
{
pt,πa

}
≥ σ2

∆2
a

log T + o(1), (4.20)

for every a 6= k?, implying that

lim inf
T→∞

Rπ(µ, T )
log T ≥

∑
k 6=k?

∆k
σ2

∆2
k

=
∑
k 6=k?

σ2

∆k
. (4.21)

4.5 Proof of Theorem 4.7

Let µ := (µ1, . . . ,µK) satisfy ‖µ1‖ > ‖µk‖, k = 2, . . . ,K, and let σ2 := (σ2
1 , . . . , σ

2
K).

Thus, the log-likelihood function of the outcomes (X1, X2, . . . , XT ) under µ and
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σ2 is
`(µ,σ2) = log ν(X1, . . . , Xt)

=
T∑
t=1

K∑
k=1

log

pt,πk
πσ2

k

e
−
p
t,π
k
σ2
k

‖Xtk−µk‖
2


=

T∑
t=1

K∑
k=1
− log π + log pt,πk − log σ2

k −
pt,πk ‖Xt

k − µk‖2

σ2
k

. (4.22)

Now consider confusion parameters µ′ := (µ′1, . . . ,µ′K) and σ′2 := (σ′21 , . . . , σ′2K), and
let Pt denote de σ-algebra generated by (p1, p2, . . . , pt). Then, the expected difference
of the likelihood function parametrized by (µ,σ2) and the one parametrized by
(µ′,σ′2) satisfies

Eµ,σ
{
`(µ,σ2

k)− `(µ′, σ′2k ) | Pt
}

= Eµ,σ

{
T∑
t=1

K∑
k=1

pt,πk ‖Xt
k − µ′k‖2

σ′2k
−
pt,πk ‖Xt

k − µk‖2

σ2
k

+ log σ
′2
k

σ2
k

∣∣∣∣∣Pt
}

=
T∑
t=1

K∑
k=1

pt,πk

(
σ2
k

pt,π
k

+ ‖µk − µ′k‖2
)

σ′2k
− 1 + log σ

′2
k

σ2
k

=
T∑
t=1

K∑
k=1

E
{
pt,πk

}
‖µk − µ′k‖2

σ′2k
− 1 + σ2

k

σ′2k
+ log σ

′2
k

σ2
k

, (4.23)

where Eµ,σ denotes expectation under the distribution of the outcomes parametrized
by (µ,σ). By letting parameter µ′ satisfy µ′i = µi, for every i 6= k, and by letting
µ′k satisfy ‖µ′k‖ > ‖µ1‖, for k 6= 1, it follows that

D
{
µ,σ2||µ′,σ′2

}
= E

{
`(µ, σ2

k)− `(µ, σ′2k )
}

= E
{
Eµ,σ2

k

{
`(µ, σ2

k)− `(µ, σ′2k ) | Pt
}}

=
E
{
pt,πk

}
‖µk − µ′k‖2

σ′2k
− 1 + σ2

k

σ′2k
+ log σ

′2
k

σ2
k

(4.24)

On the other hand, let P and P′ (and E {·} and E′ {·}) denote probability measures
for (Xt)t (and expectations) under (µ,σ2) and (µ′,σ′2), respectively, and recall
that π ∈ Π?. Invoking Lemma 4.5 with B = BT := {

∑T
t=1 p

t,π
1 < T −T γ}, for some

0 < γ < 1, yields

P{BT } = P
{
T −

∑T
t=1p

t,π
1 > T γ

} (a)= P
{∑K

k=2
∑T
t=1p

t,π
k > T γ

}
(b)
≤ 1
T γ
∑K
k=2

∑T
t=1E

{
pt,πk

}
(c)= o(Tα−γ), (4.25)
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for every α > 0, where (a) follows from
∑K
k=1 p

t,π
k = 1 for every t ∈ {1, . . . , T}, (b)

is Markov’s inequality [100], and where (c) is a consequence of π being uniformly
efficient according to Definition 4.3. That is, the expected-cumulative power allocated
at arms 2, . . . ,K by π ∈ Π? is o(Tα). Similarly, under (µ,σ′2) (where arm 1 is
suboptimal) we have that

P′{BcT } = P′
{
T −

∑T
t=1p

t,π
1 < T γ

}
≤ 1
T − T γ

∑T
t=1E

′ {pt,π1
}

= o(Tα)
T − Tα−1

= o(Tα−1), (4.26)

for every α > 0. Now for α < γ, (4.25) and (4.26) lead us to

d(P{BT },P′{BT }) ≥ P{BT } log P{BT }
P′{BT }

+ (1− P{BT }) log 1− P{BT }
1− P′{BT }

= o(Tα−γ) log o(Tα−γ)
1− o(Tα−1) + (1− o(Tα−γ)) log 1− o(Tα−γ)

o(Tα−1)
≥ o(1) + (1− α) log T, (4.27)

Thus, combining this result together with (4.24) and Lemma 4.5 yields

T∑
t=1

E {ptk} ‖µk − µ′k‖2

σ′2k
− 1 + σ2

k

σ′2k
+ log σ

′2
k

σ2
k

≥ o(1) + (1− α) log T, (4.28)

implying hat

T∑
t=1

E
{
ptk
}
≥ σ′2k
‖µk − µ′k‖2

[(
1− σ2

k

σ′2k
− log σ

′2
k

σ2
k

)
T + o(1) + (1− α) log T

]
.

(4.29)

It now follows that the confusion parameters (µ′,σ′2) maximizing the lower bound
in (4.29) are obtained by solving

sup
µ′
k
,σ′2
k

: ‖µ′
k
‖>‖µ1‖

σ′2k
‖µk − µ′k‖2

[(
1− σ2

k

σ′2k
− log σ

′2
k

σ2
k

)
T + o(1) + (1− α) log T

]
,

whose solution involves that the term multiplying T must be zero since

1− σ2
k

σ′2k
− log σ

′2
k

σ2
k

< 0,

i.e., σ2
k = σ′2k , for every k ∈ {1, . . . ,K}. The supremum is attained by choosing

µ′k = ‖µ1‖µk/‖µk‖, that is, a vector in the direction of µk with the magnitude of
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µ1, allowing us to conclude

lim inf
T→∞

∑T
t=1 E {ptk}

log T ≥ σ2
k(1− α)

(‖µ1‖ − ‖µk‖)2 = σ2
k(1− α)

∆2
k

, (4.30)

where the result follows from E {Rπ(µ,σ, T )} =
∑
k 6=k?

∑T
t=1 E

{
pk,πk

}
∆k and by

taking α→ 0+.



Chapter 5

Optimal algorithms

The two previous chapters have described the bandit model used for solving the
regret minimization (RM) problem, and have analyzed the best possible performance
a uniformly efficient algorithm can attain. In particular, we have shown asymptotic
(when T grows large) lower bounds for the expected cumulative regret of the form

lim inf
T→∞

E {Rπ(µ,σ, T )}
log T ≥ CS(µ,σ), (5.1)

where CS(µ,σ) is a problem-dependent constant parametrized by the considered
class of algorithm S ∈ {Π?

SF,Π?}. As we show in this chapter, the set of lower
bounds presented in Chapter 4 (see Table 4.1) are achievable, which motivates the
following notion of optimality:

Definition 5.1 (Asymptotic optimality). An algorithm π ∈ S is said to be asymp-
totically optimal if and only if

lim sup
T→∞

E {Rπ(µ,σ, T )}
log T ≤ CS(µ,σ). (5.2)

4

The above definition have an important implication: if π? is asymptotically
optimal, then limT→∞ E {Rπ(µ,σ, T )} / log T = CS(µ,σ), since the limsup and
liminf coincide.

In the following sections we propose and prove asymptotic optimality (or simply
“optimality”, for brevity) of Thompson Sampling (TS), a well known single-frequency
algorithm, under known and unknown noise variance. Furthermore, we introduce
Weighted Thompson Sampling [24] (WTS), a power-spreading strategy based on
Thompson Sampling that, at each round, allocates power on every frequency pro-
portionally to our belief of that frequency being the peak frequency. Evidence in
simulation studies suggests that WTS is asymptotically optimal.

This chapter is divided into two parts: Sections 5.1 and 5.2 only tackle (RM)
when the variance sequence is unknown (and possibly different), where the difference

55
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in the class of considered algorithms plays an important role in the achievable lower
bound (see Table 4.1). In line with what was discussed in Chapter 4, power-spreading
strategies might achieve a smaller rate of growth in the asymptotic regret. The
results are complemented by simulation studies. Secondly, in Section 5.3, we shortly
study problem (RM) under known noise, showing that (at least) one solution lies in
the set of single-frequency strategies, as predicted by Chapter 4. The results of this
section are also complemented by a simulation study.

For the sake of brevity, the proofs of some technical results have been appended
at the end of the chapter.

5.1 Single-frequency algorithms: Thompson Sampling

Thompson Sampling [18] (TS) is a randomized policy belonging to the Bayesian fam-
ily that starts with a prior distribution denoting our belief of each arm being the opti-
mal one. The optimal arm is deterministic but unknown, and the aforementioned prior
distribution has a representation in the simplex Λ = {ρ ∈ [0, 1]K :

∑K
k=1 ρk = 1}.

At each experiment, the agent collects data and updates its belief on each arm being
optimal (also with a representation in Λ), called the posterior distribution, where
we denote as k̃?t | Ft the random variable1 whose pdf is that posterior distribution
denoted as fk̃?t | Ft . In other words, P

{
k̃?t = k | Ft

}
= Prob{arm k is optimal given

Ft} = fk̃?t | F
(k).

At each round t = 1, . . . , T , Thompson sampling chooses arm kTS
t by sampling

k̃?t ∼ fk̃? | Ft . The procedure is summarized in Algorithm 5.3, where the sampling
rule is a particular instance of the one described in Algorithm 2.2 (see Chapter 2),
where pπAt+1

is set as the posterior distribution of the optimal arm.

Algorithm 5.3 Thompson Sampling: original algorithm
1: Input: fk̃?1 | F1

(prior distribution for each arm being optimal)
2: for t = 1 to T do
3: Sample and play arm kTS(t) ∼ k̃?t | Ft
4: Collect the outcome Xt

kTS
t

from arm kTS
t

5: Update the posterior fk̃?t+1 | Ft+1

6: end for

As we previously mentioned, the considered bandit model is parametric and,
more specifically, the arm distributions ν are parametrized by (µ,σ). This implies
that, instead of keeping track of a posterior for the optimal arm k̃?t | Ft, we can
keep track of a posterior distribution for (µ,σ), denoted as fµ,σ (notice that we
dropped accents). Again, these parameters are deterministic but unknown, and we

1Recall that, in the single-frequency approach, filtration Ft is the σ-algebra generated by
(kπ1 , Xt

kπ1
, kπ2 , X

t
kπ2
, . . . , kπt−1, X

t
kπ
t−1

), with π ∈ ΠSF being the policy chosen by Thompson Sam-
pling.
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assign a prior distribution over the set of parameters representing our belief of each
point in (R2 × R+)K being the true parameters. As we are interested only in the
mean norm of the outcomes, we might introduce the posterior distribution fµk | Ft
of a random variable from which a sample µ̃k(t) ∼ fµk | Ft , for every k = 1, . . . ,K,
can be obtained at every round. As discussed in [63], Thompson’s algorithm can be
implemented without computing fk̃?t | F at every round, as it might be extremely
complex to obtain (it involves computing the K-dimensional integral of argument
11 {‖µ̂k(t)‖ > ‖µ̂i(t)‖,∀i 6= k}, for every k = 1, . . . ,K). Sampling k̃?t | Ft is equivalent
to sampling µ̃k(t) ∼ ρtk from every arm k = 1, . . . ,K and then assigning kTS

t =
arg maxk∈{1,...,K} ‖µ̃k(t)‖, because

P
{
kTS = k | Ft

}
= Prob{ arm k is optimal | Ft}
= fk̃?t | F

(k)
= P {‖µ̃k(t)‖ > ‖µ̃i(t)‖,∀i 6= k}

= P
{
‖µ̃k(t)‖ = max

i∈{1,...,K}
‖µ̃i(t)‖

∣∣∣∣Ft} . (5.3)

Algorithm 5.4 summarizes this alternative procedure to which we refer as Thomp-
son Sampling, where we collect the posterior distribution at a given round t in a
sequence fµ | Ft := (fµ1 | Ft , fµ2 | Ft , . . . , fµK | Ft).

Algorithm 5.4 Thompson Sampling
1: Input: fµ | F1 = (fµ1 | F1 , fµ2 | F1 , . . . , fµK | F1) (prior distribution for each out-

come mean)
2: for t = 1 to T do
3: for k = 1 to K do
4: Draw one sample µ̃k(t) ∼ fµk | Ft
5: end for
6: Play arm kTS(t) = arg maxk ‖µ̃k(t)‖
7: Collect the outcome Xt

kTS
t

from arm kTS(t)
8: Update the posterior fµ | Ft+1

9: end for

At this point, a natural question is how to encode our ignorance into a prior
distribution. In our case, the prior distribution fµ,σ =: (fµ1,σ2

1
, fµ2,σ2

2
, . . . , fµK ,σ2

K
) =

(fµk,σ2
k
)Kk=1 is selected as fµk,σ2

k
(µk, σ2

k) ∝ 1, (µk, σ2
k) ∈ R2× (0,∞), k ∈ {1, . . . ,K}.

This corresponds to an improper prior (since it is not integrable) that, in spirit,
assigns the same confidence to each pair in R2 × (0,∞).

5.1.1 Sufficient Statistics
We now proceed to derive sufficient statistics [101] for the likelihood of the outcomes,
from which we will derive a closed form for the posterior distributions fµk | Ft , for



58 Optimal algorithms

every k = 1, . . . ,K, t = 1, . . . , T .
Firstly, given Nk(t), we condense Ft+1 into the sufficient statistics

x̄k(t) := 1
Nk(t)

t∑
`=1

X`
k11 {k` = k},

Sk(t) :=
t∑
`=1
‖X`

k − x̄k,Nk(t)‖211 {k` = k},
(5.4)

for every t ∈ {1, . . . , T}. That is, the likelihood of the outcomes and arms sequences
given Ft+1 is equivalent to the likelihood of the outcomes and arms sequences given
x̄k(t), Sk(t) and Nk(t). In what follows, we recurrently fix Nk(t) = n, so it is worth
to denote x̄k,n := x̄k(t) |Nk(t) = n and Sk,n := Sk,n |Nk(t) = n. In consequence,
the statistics in (5.4) when conditioned to Nk(t) = n satisfy:

x̄k,n ∼ N (µk,
σ2
k

2nI2),
Sk,n
σ2
k/2

∼ χ2
2(n−1).

(5.5)

The following result shows that, given Nk(t) = n and the sufficient statistics,
the random vector

√
2(n− 2)n/Sk,n (µ̃k(t)− x̄k,n) has a bivariate 2-dimensional

t-distribution [102] with 2(n− 2) degrees of freedom, for every k ∈ {1, . . . ,K}.

Lemma 5.2. Let the outcomes Xt
kt

be generated as in (3.15), and consider the
improper prior fµk,σ2(µk, σ2) ∝ 1, for every k = 1, . . . ,K. Then, for every k ∈
{1, . . . ,K}, the posterior mean density function, given Nk(t) = n ≥ 2 samples and
sufficient statistics (x̄k(t), Sk(t)) = (x̄k,n, Sk,n), is

fµk | Ft(µ̃) = fµk | x̄k(t)=x,Sk(t)=s,Nk(t)=n(µ̃) = n(n− 2)
πs

(
1 + n ‖µ̃− x‖2

s

)−n+1

.

(5.6)

4

The above result states that the samples from the posterior distribution fµk | Ft
are symmetrically distributed around x̄k(t) and with a dispersion proportional
to
√
Sk(t)/Nk(t) . At the same time x̄k(t) has a symmetric Gaussian distribution

around the true mean µk and with a variance that decays with the number of times
arm k hast been played. These two properties are exploited in the following.

5.1.2 Concentration Inequalities
In this section we provide concentration inequalities for the tail upper bounds of
the sufficient statistics and for the posterior mean conditioned on them.
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Lemma 5.3. For every arm k ∈ {1, . . . ,K}, with Nk(t) = n ≥ 2, and ε > 0, it
holds that

P {‖x̄k,n‖ ≥ ‖µk‖+ ε} ≤ e−nε
2/σ2

k , (5.7)

and

P
{
Sk,n ≥ n(σ2

k + ε)
}
≤ e−nh(ε/σ2

k), (5.8)

where h(x) = x− log(1 + x) > 0, ∀x > 0. 4

Proof. Consider an arbitrary arm k ∈ {1, . . . ,K}, and let n ≥ 2 arbitrary. For the
first inequality, we exploit the fact that the sample mean x̄k(t) is symmetrically
distributed around µk for every round and for every arm. Then,

P {‖x̄k,n‖ ≥ ‖µk‖+ ε} ≤ P {‖x̄k,n − µk‖ ≥ ε}

=
∫
x:‖x−µk‖≥ε

n

πσ2
k

e−n‖x−µk‖
2/σ2

kdx

=
∫
z:‖z‖≥ε

n

πσ2
k

e−n‖z‖
2/σ2

kdz

=
∫ 2π

0

∫ ∞
ε

n

πσ2
k

e−nr
2/σ2

kr dr dθ

= e−nε
2/σ2

k ,

where we have introduced the two change of variables z := ‖x− µk‖ followed by a
polar change of variable. For the second inequality, we relax Chernoff’s [103, 104]
bound:

P
{
Sk,n ≥ n(σ2

k + ε)
}
≤ einfλ<1/σ2

k
logE{eλSk,n}−λn(σ2

k+ε)

=
(

n

n− 1

)n−1(
1 + ε

σ2
k

)n−1
e−(1+nε/σ2

k)

=
(

n

n− 1

)n−1(
1 + ε

σ2
k

)−1
en log(1+ε/σ2

k)−nε/σ2
k−1

=
(

n

n− 1

)n−1(
σ2
k

σ2
k + ε

)
︸ ︷︷ ︸

≤1

e−n(ε/σ2
k−log(1+ε/σ2

k))e−1, (5.9)

and the bound follows from
(

n
n−1

)n−1
< e1 for every n ≥ 2. �

Lemma 5.4. For every k = 1, . . . ,K, satisfying Nk(t) = n ≥ 2, it holds that

P {‖µ̃k(t)− x̄k,n‖ ≥ δ | Ft} ≤
(

1 + nδ2

Sk,n

)−n+2

. (5.10)

4
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Proof. We exploit the fact that the posterior µ̃k(t) is symmetrically distributed
around x̄k(t) at every round and for every arm. Then, from Lemma 5.2, and by a
polar change of coordinates,

P {‖µ̃k(t)− x̄k,n‖ ≥ δ | Ft} =
∫
µ̃ : ‖µ̃k−x̄k,n‖>δ

n(n− 2)
πSk,n

(
1 + n‖µ̃k − x̄k,n‖2

Sk,n

)−n+1

dµ̃

=
∫
z : ‖z‖>δ

n(n− 2)
πSk,n

(
1 + n‖z‖2

Sk,n

)−n+1

dz

=
∫ 2π

0

∫ ∞
δ

n(n− 2)
πSk,n

(
1 + nr2

Sk,n

)−n+1

r dr dθ

=
(

1 + nδ2

Sk,n

)−n+2

, (5.11)

where we have introduced the change of variable z := µ̃k − x̄k,n followed by a polar
change of variable. �

5.1.3 Optimality of Thompson Sampling
In this section we present the main result of this section: we derive an upper bound
for the expected cumulative regret incurred by TS. We do this by splitting the non-
expected regret into three different terms parametrized by some arbitrary ε(T ) > 0
depending on the time horizon T . It is shown then that as T →∞, one of the terms
achieves the lower bound, while the other two increase slower than log T . One of
the main difficulties in proving this result follows from the fact that the sufficient
statistics are a function of the random quantity Nk(t) and, along the proof, different
techniques are used to overcome their dependence on Nk(t).

Theorem 5.5. Under the improper prior fµk,σ2
k
(µk, σ2

k) ∝ 1 for every k = 1, . . . ,K
and (µk, σ2

k) ∈ R2 × (0,∞), the regret incurred by TS satisfies

lim sup
T→∞

E
{
RTS(µ,σ, T )

}
log T ≤

∑
k 6=k?

∆k

log
(

1 + ∆2
k

σ2
k

) . (5.12)

4

Proof. Define the following events for 0 < ε < mink(‖µ1‖ − ‖µk‖)/2:

A(t) := {‖µ̃?(t)‖ ≥ ‖µ1‖ − ε},
Bk(t) := {‖x̄k(t)‖ ≤ ‖µk‖+ ε, Sk(t) ≤ n(σ2

k + ε)},

where µ̃k(t) follows the posterior distribution in Lemma 5.2, and where ‖µ̃?(t)‖ :=
maxk ‖µ̃k(t)‖. Let ∆max := maxk ∆k, and recall that kTS

t denotes the arm played at
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round t under TS. Define also T̄ := 3K. Then, the non-expected cumulative regret
can be written as

RTS(µ,σ, T ) =
T∑
t=1

∆kTS(t)

≤
T̄∑
t=1

K∑
k=2

∆k11
{
kTS(t) = k

}
+

T̄∑
t=1

K∑
k=2

∆k

(
11
{
kTS(t) = k,A(t)

}
+ 11

{
kTS(t) = k,Ac(t)

})

≤ T̄
K∑
k=2

∆k +
K∑
k=2

T̄∑
t=1

∆k11
{
kTS(t) = k,A(t)

}
+ ∆max

T∑
t=T̄+1

11
{
kTS(t) 6= 1,Ac(t)

}
= ∆max

T∑
t=T̄+1

11
{
kTS(t) 6= 1,Ac(t)

}
+

K∑
k=2

∆k

( T∑
t=T̄+1

11
{
kTS(t) = k,A(t),Bk(t)

}
+

T∑
t=T̄+1

11
{
kTS(t) = k,A(t),Bck(t)

}
+ T̄

)

≤ ∆max

T∑
t=T̄+1

11
{
kTS(t) 6= 1,Ac(t)

}
+

K∑
k=2

∆k

( T∑
t=T̄+1

11
{
kTS(t) = k,A(t),Bk(t)

}
+

T∑
t=T̄+1

11
{
kTS(t) = k,Bck(t)

}
+ T̄

)
, (5.13)

where Ac(t) and Bck(t) denote the complements of A(t) and Bk(t), respectively. Now,
by Lemmas 5.14, 5.15, and 5.16 (all of them appended at the end of this chapter),
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Figure 5.1: Frequency response of G together with the frequency response of H at
arms k = 1, . . . , 200. Additionally, we present an empirical average of ‖x̄i(T )‖ as red
dots and Si(T )/NTS

i (T ) as red bars around x̄i(T ), for i ∈ {35, 76, 115, 154, 190}.

the expected value of (5.13) yields

E
{
RTS(µ,σ, T )

}
log T ≤

K∑
k=2

1
log
(

1 + (‖µ1‖−‖µk‖−2ε)2

σ2
k
+ε

) + −1 + O(ε−2) + O(ε−6)
log T ,

(5.14)

so the result follows by choosing ε ≤ log−a T , 1/6 > a > e(mink ‖µ1‖−‖µk‖)/2. �

5.1.4 Simulation study
In this section we study the performance of single-frequency strategies in the
regret minimization problem, under unknown noise variance. In particular, given
an unknown system to the agent, we analyze the behavior of the asymptotic regret
incurred by Thompson Sampling.

We consider systems G,H having the frequency responses depicted in Fig. 5.1.
The frequency axis is discretized into K = 200 equispaced frequencies. Under this
setup, the optimal arm is k? = 76 (ωk? = 2π k?

2K+1 = 1.1908 [rad/s]), satisfying
‖µk?‖ = maxk ‖µk‖ = ‖µ76‖. This configuration makes the problem difficult as the
noise level is particularly large at suboptimal frequencies.

Figure 5.1 shows the sufficient statistics of five representative arms (including
k?): the empirical mean x̄k,NTS

k
(T ) and the empirical variance Sk,NTS

k
(T ). Notice that

the estimation of the variance of a given arm grows as the arm is played less often,
as predicted: the best arm has a smaller empirical variance as it has been played
more often. It is also important to notice that the empirical means of suboptimal
arms are far from the true value due to the presence of noise, even though TS
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Figure 5.2: Expected number of times each of the 200 arms has been played at round
T = 106 for each arm k ∈ {1, . . . ,K} (in blue) and for the optimal arm (k? = 76) in
red.
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Figure 5.3: Comparison between the regret incurred by Thompson Sampling and the
theoretical lower bound derived in Theorem 4.2.

quickly realizes that those arms are not worthy and are seldom played. We observe
in Fig. 5.2 that, on average, Thompson’s algorithm is able to find the optimal arm.

Figure 5.3 shows the performance of TS by comparing it with the predicted
lower bound in Theorem 4.2. As predicted by Theorem 5.5, the asymptotic slope in
the rate of growth of the expected cumulative regret under Thompson Sampling
matches the slope described by the lower bound in Theorem 4.2.
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5.2 Power-spreading algorithms: Weighted Thompson
Sampling

Weighted Thompson Sampling (WTS) is a power-spreading strategy in Π originally
introduced in [24]. It corresponds to a Thompson Sampling-based algorithm in the
sense that it condenses gathered information in the form of posterior distributions
of each arm being optimal, but instead of randomizing the action (as TS does),
WTS uses this posterior distribution as a power profile pt.

We introduce the vector form in [0, 1]K of fk̃?t | Ft , denoted as ρt ∈ [0, 1]K , where
the k-th entry of ρt is defined as ρtk = P{k̃? = k | Ft}. Equivalently, ρt represents our
belief of each arm being optimal based on history. Recall that, in a fully spreading set-
up, filtration Ft denotes the σ-algebra generated by (p1,π, X1, p2,π, X2, . . . , pt−1,π

Xt−1) under algorithm π ∈ Π. As in Thompson’s algorithm, WTS starts with a
prior distribution for each arm being optimal denoted by ρ1, and at each round
t = 1, . . . , T , chooses pt,WTS = ρt. The general Weighted Thompson Sampling
algorithm is presented in Algorithm 5.5.

Algorithm 5.5 Weighted Thompson Sampling
1: Input: ρ1 = (ρ1

1, ..., ρ
1
K) (prior distribution for k̃?1 | F1)

2: for t = 1 to T do
3: Select the power profile pt,WTS = ρt

4: Collect outcome Xt = (Xt
1, X

t
2, . . . , X

t
K)

5: Update ρt+1

6: end for

Analogously to the previous section, we introduce the posterior mean distribution
fµk | Ft of a random variable ˆ̃µk(t), for every k = 1, . . . ,K. Interestingly, as discussed
in [63], the posterior distribution ρt corresponds to the posterior mean µ̃k(t) (i.e.,
maximizing the norm). More specifically, if ‖µ̃?(t)‖ := maxk ‖µ̃k(t)‖, then

ρtk := P
{
k̃? = k | Ft

}
= E

{
11
{
k̃? = k |

}
Ft
}

= E {11 {‖µ̃?(t)‖ = ‖µ̃k(t)‖} | Ft}
= P {‖µ̃?(t)‖ = ‖µ̃k(t)‖ |Ft} , (5.15)

which means that ρt can be completely computed from the knowledge of fµ | Ft =
(fµ1 | Ft , fµ2 | Ft , . . . , fµK | Ft). At this point, it is important to mention that finding
a closed form for the mapping from fµ | Ft to ρt might involve the computation of
K-dimensional very complicated integrals. We overcome this issue by estimating ρt
through the Monte Carlo method [105] defined in Algorithm 5.6.

In the following, we explain how one obtains fµ | Ft for the two different instances
of (RM), namely with known and unknown noise variance. The method, as in the
previous section, involves computing sufficient statistics for the likelihood of the
outcomes. These statistics do not depend on the number of times an arm has been
played (Nk(t)), as every arm is played (with different intensity) at each round.
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Algorithm 5.6 Estimation of ρt

1: Input: fµ | Ft = (fµ1 | Ft , fµ2 | Ft , . . . , fµK | Ft) (posterior distributions at round
t), M (number of samples per arm)

2: Draw M samples µ̃(1)
k , µ̃

(2)
k , . . . , µ̃

(M)
k ∼ fµk | Ft , for every k = 1, . . . ,K

3: for k = 1 to K do
4: Set ρtk ≈ 1

M

∑M
m=1 11

{
arg maxi{‖µ̃(m)

i ‖} = k
}

5: end for

5.2.1 Sufficient Statistics
Similar to the sufficient statistics derived for TS, we show that the sample mean
and t − 1 times the sample variance are sufficient statistics under the knowledge
of p1

k, p
2
k, . . . , p

t
k, for every k = 1, . . . ,K and for every t = 1, . . . , T . In words, the

first two are sufficient statistics once the sequence of power allocation at that arm is
known.

Lemma 5.6. For each arm k ∈ {1, . . . ,K},

x̄k(t) :=
∑t
`=1 p

`
kX

`
k∑t

`=1 p
`
k

, (5.16)

Sk(t) :=
t∑
`=1

p`k‖X`
k − x̄k(t)‖2, (5.17)

are sufficient statistics for (Xt
k)t, conditioned on p1

k, . . . , p
t
k. That is, under knowledge

of (p1
k, . . . , p

t
k), the likelihood of (X1

k , . . . , X
t
k) is just a function of x̄k(t) and Sk(t),

for every k = 1, . . . ,K. 4

The above lemma implies that x̄k(t) and Sk(t) are Ft-measurable since pt` is
Ft-measurable2. Moreover, the following result shows that the distribution of x̄k(t)
depends only on

∑t
`=1p

`
k, while the distribution of Sk(t) depends only on t. In

words, the probability of event x̄k(t) ∈ X has a closed form expression conditioned
on
∑t
`=1p

`
k, while the probability of event Sk(t) ∈ S has a closed form expression

that depends only on t.

Lemma 5.7. For every k ∈ {1, . . . ,K}, for every t ∈ {1, . . . , T}, and given
p1
k, . . . , p

t
k, the sufficient statistics satisfy

x̄k(t) ∼ N
(
µk,

σ2
k

2
∑t
`=1p

`
k

I2

)
,

Sk(t)
σ2
k/2
∼ χ2

2(t−1).

2Recall that, in the power-spreading setting, Ft is the σ-algebra generated by
(p1,π , X1, p2,π , X2, . . . , pt−1,π , Xt−1).
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4

As in the previous section, we select a prior distribution representing our total
ignorance on what the real value of (µ,σ) is by considering a prior distribution
fµk,σ2

k
(µk, σ2

k) ∝ 1, for every µk, σ2
k ∈ R2 × (0,∞) and for every k = 1, . . . ,K.

The following result states that the posterior means are symmetrically distributed
around the empirical mean x̄k(t) at every round t ∈ {1, . . . , T} and for every arm
k ∈ {1, . . . ,K}.

Lemma 5.8. Consider the improper prior distribution fµk,σ2
k
(µk, σ2

k) ∝ 1, for
every (µk, σ2

k) ∈ R2 × (0,∞) and for every arm k ∈ {1, . . . ,K}. Then, the posterior
distribution fµk | Ft of µk given the history at round t ∈ {1, . . . , T}, given x̄k(t) = x̄,
Sk(t) = s and

∑t
`=1p

`
k is

fµk | Ft(µ̃) = f
µk | x̄k(t)=x̄,Sk(t)=s,

∑t
`=1p

`
k

(µ̃)

= (
∑t
`=1p

`
k)(t− 2)
πs

(
1 + (

∑t
`=1p

`
k)‖µ̃− x̄‖2
s

)−t+1

, (5.18)

for every k = 1, . . . ,K. 4

It is important to remark that the posterior distribution for the mean is only
built upon the knowledge of

∑t
`=1p

`
k and not the sequence (p`k)t`=1. The definition

of sufficient statistics allows us to state an instance of WTS when the sequence of
noise variances σ is unknown. The proposed algorithm is presented in Algorithm 5.7,
and recall that the computation of ρt can be done by means of Algorithm 5.6.

Algorithm 5.7 Weighted Thompson Sampling: unknown noise variance
1: Input: ρ1 = (1/K, 1/K, . . . , 1/K) (prior distribution for k̃?1),
2: for t = 1 to 2 do
3: Select the power profile pt,WTS = ρ1

4: Perform an experiment and collect outcome Xt

5: Update the sufficient statistics x̄k(t) and Sk(t) according to (5.16) and (5.17)
6: end for
7: Compute ρ3 given F3.
8: for t = 3 to T do
9: Select the power profile pt,WTS = ρt

10: Perform an experiment and collect outcome Xt

11: Update the sufficient statistics x̄k(t) and Sk(t) according to (5.16) and (5.17)
12: Compute ρt+1 given Ft+1.
13: end for
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5.2.2 Concentration Inequalities

This section present some inequalities that will be useful for proving the optimality
of WTS. The following result establishes the concentration speed of the empirical
mean and dispersion of the outcomes. Observe that, unlike TS, the concentration
of the empirical mean of every arm is slower than the number of times every arm
has been visited, while the speed at which Sk(t) concentrates is proportional to the
number of rounds.

Lemma 5.9. For every k ∈ {1, . . . ,K}, t ∈ {1, . . . , T}, and ε > 0, it holds that

P
{
‖x̄k(t)‖ ≥ ‖µk‖+ ε

∣∣∣∣∑t
`=1p

`
k

}
≤ e

−
∑t
`=1p

`
k

σ2
k

ε2

, (5.19)

and that

P
{
Sk(t) ≥ t(σ2

k + ε)
}
≤ e−th(ε/σ2

k), (5.20)

where h(x) := x− log(1 + x), ∀x > 0. 4

Proof. By Lemma 5.7, we have that

P
{
‖x̄k(t)‖ ≥ ‖µk‖+ ε |

∑t
`=1p

`
k

}
≤ P {‖x̄k(t)− µk‖ ≥ ε}

=
∫
x:‖x−µk‖≥ε

∑t
`=1p

`
k

πσ2
k

e
−
∑t
`=1p

`
k

σ2
k

‖x−µk‖2
dx

=
∫
z:‖z‖≥ε

∑t
`=1p

`
k

πσ2
k

e
−
∑t
`=1p

`
k

σ2
k

‖z‖2
dz

=
∫ 2π

0

∫ ∞
ε

∑t
`=1p

`
k

πσ2
k

e
−
∑t
`=1p

`
k

σ2
k

r2

r dr dθ

= e
−
∑t
`=1p

`
k

σ2
k

ε2

, (5.21)

which follows from the change of variables z := x− µk, followed by a polar change
of variable.
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To derive (5.20), we relax Chernoff’s bound on Sk(t)/(σ2
k/2) ∼ χ2

2(t−1):

P
{
Sk(t) ≥ t(σ2

k + ε)
}
≤ einfλ<1/σ2

k
logE{eλSk(t)}−λt(σ2

k+ε)

=
(

t

t− 1

)t−1(
1 + ε

σ2
k

)t−1
e−(tε/σ2

k+1)

=
(

t

t− 1

)t−1(
1 + ε

σ2
k

)−1
et log(1+ε2/σ2

k)e−(tε/σ2
k+1)

=
(

t

t− 1

)t−1
e−1

(
σ2
k

σ2
k + ε2

)
︸ ︷︷ ︸

≤1

e−t(ε
2/σ2

k−log(1+ε2/σ2
k))

≤ e−t h(ε/σ2
k), (5.22)

since
(

t
t−1

)t−1
≤ e1 for every t > 1. �

As in TS, the posterior means also distribute symmetrically around the empir-
ical mean, as the following result illustrates. It also illustrates that the posterior
distributions concentrate faster under TS than under WTS, when the number of
times an arm has been visited is fixed, say t (compare Lemma 5.10 to Lemma 5.4).
This follows from the fact that WTS visits every arm at every round.

Lemma 5.10. For every k ∈ {1, . . . ,K}, for every t > 2, it holds that

P {‖µ̃k(t)− x̄k(t)‖ ≥ δ | Ft} =
(

1 + (
∑t
`=1p

`
k)δ2

Sk(t)

)−t+2

. (5.23)

4

Proof. By Lemma 5.8, and by changing to polar coordinates, we have that

P {‖µ̃k(t)− x̄k(t)‖ ≥ δ | Ft}

=
∫
µ̃:‖µ̃−x̄k(t)‖>δ

(
∑t
`=1p

`
k)(t− 2)

πSk(t)

(
1 + (

∑t
`=1p

`
k)‖µ̃− x̄k(t)‖2
Sk(t)

)−t+1

dµ̃

=
∫
z:‖z‖>δ

(
∑t
`=1p

`
k)(t− 2)

πSk(t)

(
1 + (

∑t
`=1p

`
k)‖z‖2

Sk(t)

)−t+1

dz

=
∫ 2π

0

∫ ∞
δ

(
∑t
`=1p

`
k)(t− 2)

πSk(t)

(
1 + (

∑t
`=1p

`
k)r2

Sk(t)

)−t+1

r dr dθ

=
(

1 + (
∑t
`=1p

`
k)δ2

Sk(t)

)−t+2

. (5.24)

�
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In the following section we will constantly use these inequalities to prove the
optimality of the proposed algorithm.

5.2.3 Consistency of Weighted Thompson Sampling
Here, we establish a technical result that guarantees that WTS always allocates an
infinite cumulative amount of power on each frequency as T →∞. In other words,
there exists a lower bound on the rate at which the algorithm decreases its rate of
exploration.

Lemma 5.11. Consider problem (RM) under unknown variance σ. Then, the
cumulative power at arm k up to round T under WTS (see Algorithm 5.7) satisfies

lim
T→∞

T∑
t=1

ptk =∞, a.s., (5.25)

for every k = 1, . . . ,K. 4

Proof. For the sake of brevity, we denote pt,WTS
k as ptk. Recall that ptk = P

{
k̃?t = k | Ft

}
=

P {‖µ̃k(t)‖ > ‖µ̃i(t)‖,∀i 6= k | Ft}, where µ̃k(t) ∼ fµk | Ft . Notice that the quantity∑t
`=1p

`
k is non-decreasing, as ptk ≥ 0 for every t = 1, . . . , T . The proof is by con-

tradiction. Fix k ∈ {1, . . . ,K} and assume limT→∞
∑T
t=1 p

t
k = c <∞. Then x̄k(t)

converges to some x̄k := limt→∞ x̄k(t). From Lemma 5.8, we know that µ̃k(t) has a
pdf

fµk | Ft(µ̃) = (
∑t
`=1p

`
k)(t− 2)

πSk(t)

(
1 + (

∑t
`=1p

`
k)‖µ̃− x̄k(t)‖2
Sk(t)

)−t+1

, (5.26)

so, if µ̃ 6= x̄k, lim inft→∞ fµk | Ft(µ̃) ∝ ce−c‖µ̃−x̄k‖2 , since Sk(t) = O(t). This means
that the probability of µ̃k being larger (in norm) than some other µ̃i (i 6= k) is
lower bounded by some constant c, leading to the conclusion limt→∞ ptk ≥ c > 0,
implying that limT→∞

∑T
t=1 p

t
k does not converge. This argument, combined with

the fact that
∑T
t=1 p

t
k is non-decreasing, leads to the desired conclusion. �

5.2.4 Power-spreading algorithms: Simulation study
In this section we study the performance of the introduced algorithm WTS when σ
is unknown to the agent. We consider systems G,H having the frequency responses
depicted in Fig. 5.1. Following the same set-up of single-frequency strategies, the
frequency axis is discretized into K = 200 equispaced frequencies where k? = 76.

The results are depicted in Fig. 5.4, where we can observe that the bound derived
in Theorem 4.7 is essentially tight. As expected, the asymptotic rate of the algorithm
beats the lower bound predicted by Theorem 4.2, since WTS is a power-spreading
strategy. The fact that WTS matches the lower bound in simulations implies that,
asymptotically, most of the power is allocated on the optimal arm, at every round.
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Figure 5.4: Comparison between the regret incurred by Weighted Thompson Sampling
and the theoretical lower bound derived in Theorem 4.7, in contrast to the one derived
in Theorem 4.2.

5.3 Optimal algorithms under known noise level

In this section we study Thompson Sampling under known noise variance. Under
this set-up, the bandit problem reduces to a one-parameter Gaussian bandit, which
corresponds to a one-parameter exponential problem. It is well known that Thompson
Sampling is asymptotically optimal for one-parameter exponential distributions [21].
That is, as predicted by the lower bounds presented in Chapter 4, a matching
algorithm can be found in the set of single-frequency strategies. The reason why the
regret incurred by TS can be easily upper bounded follows from the fact that the
posteriors mean distributions belong to the exponential family and then standard
probability bounds can be employed to predict the performance of this policy. We
formalize this known result in the following lemma:

Lemma 5.12 (Kaufmann et. al. [20]). Consider problem (RM) with known variance
σ = (σ2,σ2, . . . ,σ2). Then, the regret incurred under Thompson Sampling satisfies

E
{
RTS(µ,σ, T )

}
log T ≤

∑
k 6=k?

σ2

∆k
. (5.27)

4

Proof. See [20, Chapter 3]. �

We remark that (RM) resembles a one-parameter 2-dimensinoal Gaussian bandit
so asymptotically optimal UCB-based algorithms are not hard to design, as the only
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Figure 5.5: Average cumulative regret incurred by Thompson Sampling (see Algo-
rithm 5.4) based on 50 runs, and under known σ = (σ2,σ2, . . . ,σ2), σ2 = 0.1. The
simulation illustrates how TS is a matching algorithm.

twist to the traditional bandit problem is the complex nature of the rewards. It is
possible to build a KL-UCB algorithm based on [80], which also provides with the
same asymptotic rate of growth as the one in (4.6).

5.3.1 Simulation study
For completeness, we provide a simulation study in order to illustrate the optimality
of Thompson Sampling. Consider the set-up introduced in Figure 3.1 with the
unknown frequency response of G being the one shown in Fig. 5.1 with known noise
level σ = (σ2, σ2, . . . , σ2), σ = 0.1. i.e., H =

√
0.1 . This noise level exceeds the

10% of the power of the frequency response of G. The frequency axis is discretized
into K = 100 equispaced frequencies. Under this setup, the optimal arm is k? = 76
(ωk? = 2π k?

2K+1 = 1.1908 [rad/s]), satisfying ‖µk?‖ = maxk ‖µk‖ = ‖µ76‖.
The expected cumulative regret (based on 50 simulations) under Thompson

Sampling is presented in Fig. 5.5 as a function of T . We notice how the asymptotic
slope of the expected cumulative regret matches the lower bound, as predicted by
Theorem 4.6 together with Lemma 5.12.

5.3.2 Weighted Thompson Sampling under known variance
From Chapter 4, we know that TS is optimal when the noise variance σ is known.
That is, there is no need to spread the power over frequency as the asymptotic
performance of TS cannot be improved by any other algorithm in Π. However, we
still provide a description of how WTS assigns power profiles at each experiment.

Recall that the variance sequence σ = (σ2, σ2, . . . , σ2) is known and the means
µ = (µ1, . . . ,µK) are unknown to the agent. Let fµ̃t

k
| Ft denote the distribution of
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the random variable µ̃tk denoting posterior mean of each arm, given the observed
data. That is, fµ̃t

k
| Ft is a pdf that encodes in fµ̃t

k
| Ft(µ̃) our belief of µ̃ being the

true mean.

Lemma 5.13. Let µ̃0
k ∼ N (0, λ2I2) be a Gaussian prior. Then

µ̃tk | Ft ∼ N



λ2
∑t

`=1
ptkX

t
k(1)

σ2+λ2
∑t
`=1p

`
k

λ2
∑t

`=1
ptkX

t
k(2)

σ2+λ2
∑t
`=1p

`
k

 , λ2

1 + λ2

σ2

∑t
`=1p

`
k

I2

 , (5.28)

for every k = 1, 2, . . . ,K. 4

5.4 Summary

This chapter closes the study of (RM). We have derived lower bounds in the previous
chapter and proposed algorithms with matching upper bounds. When restricted to
single-frequency bandits, we have shown that Thompson Sampling is asymptotically
optimal in both settings: known and unknown variance sequence. When power-
spreading strategies are considered, Thompson Sampling is still optimal whenever
the variance sequence σ is known, while simulations suggests that its weighted
version WTS is optimal for the unknown variance case.

5.5 Proof of Lemma 5.2

Proof. Let k be fixed and Nk = n. Let (Xt)nt=1 denote the sequence of rewards
associated with arm k, so (Xt) denotes an iid sequence with Xt ∼ N (µ, σ2

kI2/2).
Then x̄k,n = 1

n

∑n
t=1Xt ∼ N (µk, σ2

kI2/(2n)), implying that cov (Xt − x̄k,n), x̄k,n =
1
n2 (nσ2I2 − nσ2I2) = 0. It follows that, conditioned on σ2

k and µk, x̄k,n and
(Xt − x̄k,n) are statistically independent for every t ∈ {1, . . . , n}, so x̄k,n and Sk,n
are also independent.

Because ReXt and ImXt have equal variances, Sk,n satisfies

Sk,n =
n∑
t=1

∥∥∥∥∥Xt −
1
n

n∑
i=1

Xi

∥∥∥∥∥
2

=
n∑
t=1

X>t Xt −
1
n

n∑
i,j=1

X>i Xj , (5.29)
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hence, defining

A :=


(
λ
n + 1

σ2 − λ
)
I2 −λnI2 · · · λ

nI2
λ
nI2

(
λ
n + 1

σ2 − λ
)
I2 · · · λ

nI2
...

... . . . ...
λ
nI2

λ
nI2 · · ·

(
λ
n + 1

σ2 − λ
)
I2

 ∈ R2n×2n,

(5.30)

it follows that

E
{

eλSk,n
}

= 1
(πσ2

k)n
∫
R2n

e
λ(
∑n

t=1
X>t Xt− 1

n

∑n

t=1
X>t Xi)− 1

σ2
k

∑n

t=1
X>t Xt

dX1 · · · dXn

= 1
(πσ2

k)n
∫
R2n

e
[X>1 ···X

>
n ]A

[
X1
...
Xn

]
dX1 · · · dXn

=
√

detA−1

σ2n
k

=
det−1/2

{[
1
σ2
k

− λ
]
I2n + λ

n1n1>n ⊗ I2

}
σ2n
k

= 1
σ2n
k

(
1
σ2
k

− λ
)−(2n)/2

(1 + λn

n
( 1
σ2 − t

))2
−1/2

= 1
(1− σ2

kλ)n−1 , λ < 1/σ2
k, (5.31)

where ⊗ denotes Kronecker’s product [106]. Thus, Sk,n/(σ2
k/2) ∼ χ2

2(n−1) because
of uniqueness of the moment-generating function, so its pdf is given by

fSk,n|µ,σ2
k
(s) = sn−2

Γ(n− 1)
e−s/σ2

k

σ
2(n−1)
k

, (5.32)

and the likelihood of (x̄k,n, Sk,n) is therefore given by

fSk,n,x̄k,n|µk,σ2
k
(s,x) = fSk,n|µk,σ2

k
(s)fx̄k,n|µk,σ2

k
(x)

= n

πσ2
k

e
− n

σ2
k

‖x−µk‖2 sn−2

Γ(n− 1)
e−s/σ2

k

σ
2(n−1)
k

= nsn−2

πΓ(n− 1)
e−

1
σ2 (s+n‖x−µk‖2)

σ2n
k

. (5.33)
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It now follows that, for a uniform improper prior over (µk, σ2
k), for every arm

k ∈ {1, . . . ,K},

fµk,σ2
k
|x̄k,n=x,Sk,n=s(µk, σ2

k) =
fSk,n,x̄k,n|µk,σ2

k
(s,x) · 1∫∞

0
∫
R2 fSk,n,x̄k,n|µk,σ2

k
(s,x) · 1dµk d(σ2

k)

=
nsn−2

πΓ(n−1)σ2n
k

e
− 1
σ2
k

(s+n‖x−µk‖2)

∫∞
0

(
nsn−2

πΓ(n−1)σ2n
k

e−s/σ2
k

∫
R2 e

−n
σ2
k

‖x−µk‖2
dµk

)
d(σ2

k)

=
nsn−2

πΓ(n−1)σn
k

e
− 1
σ2
k

(s+n‖x−µk‖2)

∫∞
0

nsn−2

πΓ(n−1)σ2n
k

e
− s

σ2
k
σ2
k
π

n d(σ2
k)

(a)=
nsn−2

πσ2n
k

e
− 1
σ2
k

(s+n‖x−µk‖2)∫∞
0 un−3e−udu

= nsn−2

πΓ(n− 2)σ2n
k

e
− 1
σ2
k

(s+n‖x−µk‖2)
, (5.34)

where (a) follows from u = s/σ2
k. Therefore, the posterior distribution for the mean

µk is

fµk|x̄k,n=x,Sk,n=s(µk) =
∫
fµ,σ2

k
|x̄k,n=x,Sk,n=s(µk, σ2

k)d(σ2
k)

= nsn−2

πΓ(n− 2)

∫ ∞
0

e
− 1
σ2
k

(s+n‖x−µk‖2)

σ2n
k

d(σ2
k)

(b)= nsn−2

πΓ(n− 2)

(
s+ n ‖x− µk‖2

)−n+1 ∫ ∞
0

e−uun−2du

= n(n− 2)
πs

(
1 + n ‖x− µk‖2

s

)−n+1

, (5.35)

where (b) follows from defining u := (s+ n‖x− µk‖2)/σ2
k. �

5.6 Proof of Theorem 5.5

5.6.1 Lemma 5.14

Here we provide the complementary lemmas, and their respective proofs, that
complete the proof of Theorem 5.5.
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Lemma 5.14. Under the conditions of Theorem 5.5,

E


T∑

t=T̄+1

11
{
kTS
t = k,A(t),Bk(t)

} ≤ log T
log
(

1 + (‖µ1‖−‖µk‖−2ε)2

σ2
k
+ε

) + 3. (5.36)

4

Proof. Firstly, the fact that 11
{
kTS
t = k,A(t),Bk(t)

}
= 1 implies that ‖µ̃?(t)‖ =

‖µ̃k(t)‖ ≥ ‖µ1‖ − ε under Bk(t). Then, for every n > 0 it holds that

T∑
t=T̄+1

11
{
kTS
t = k,A(t),Bk(t)

}
≤

T∑
t=T̄+1

(
11
{
kTS
t = k,A(t),Bk(t), Nk(t) < n

}
+ 11

{
kTS
t = k,A(t),Bk(t), Nk(t) ≥ n

})
≤

T∑
t=T̄+1

(
11
{
kTS
t = k,Nk(t) < n

}
+ 11 {‖µ̃k(t)‖ ≥ ‖µ1‖ − ε,Bk(t), Nk(t) ≥ n}

)
≤ n+

T∑
t=T̄+1

11 {‖µ̃k(t)‖≥‖µ1‖−ε,Bk(t), Nk(t) ≥ n}

≤ n+
T∑

t=T̄+1

11 {‖µ̃k(t)‖≥‖µ1‖−ε,Nk(t) ≥ n | Bk(t)} .

(5.37)

Secondly, consider P {‖µ̃k(t)‖ ≥ ‖µ1‖ − ε | Bk(t), Nk(t) = n} (where, unlike equa-
tion (5.37), Nk(t) is fixed). As depicted in Fig. 5.6, and invoking Lemma 5.4, it is
possible to upper bound this probability as

P {‖µ̃k(t)‖ ≥ ‖µ1‖ − ε | Bk(t), Nk(t) = n}
≤ P {‖µ̃k(t)− x̄k,n‖ ≥ ‖µ1‖ − ‖µk‖ − 2ε | Bk(t), Nk(t) = n}

≤
(

1 + (‖µ1‖ − ‖µk‖ − 2ε)2

σ2
k + ε

)−n+2

. (5.38)

Thirdly, we exploit the fact that (5.38) is decreasing in n, implying that3
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Figure 5.6: Bound used in (5.37). On the left side, the probability that µ̃k(t) belongs to
the purple area, corresponding to P {‖µ̃k(t)‖ ≥ ‖µ1‖ − ε | Bk(t), Nk(t) = n}, is upper
bounded by the probability that µ̃k(t) is outside the white disk centered at x̄k,n,
corresponding to P {‖µ̃k(t)− x̄k,n‖ ≥ ∆k − 2ε | Bk(t)}. This is made explicit on the
right-hand side figure, where the gradient area represents the symmetric distribution
of µ̃k(t) around x̄k,n. An upper bound for the area outside the disk of radius ‖µ1‖ − ε
is upper bounded by every disk of radius ∆k − 2ε centered at x̄k,n, whenever ‖x̄k,n‖ ≤
‖µk‖ − ε.

P {‖µ̃k(t)‖ ≥ ‖µ1‖ − ε,Nk(t) ≥ n | Bk(t)}

=
∞∑
i=n

P {‖µ̃k(t)‖ ≥ ‖µ1‖ − ε | Bk(t), Nk(t) = i}P {Nk(t) = i}

≤ P {‖µ̃k(t)‖ ≥ ‖µ1‖ − ε | Bk(t), Nk(t) = n}
∞∑
i=n

P {Nk(t) = i}

= P {‖µ̃k(t)‖ ≥ ‖µ1‖ − ε | Bk(t), Nk(t) = n} , (5.39)

3Equation (5.39) follows from the following: Let X,Y be two random variables with joint, con-
ditional and marginal pdf’s pX,Y , pX |Y=y , pY , resp., and let y? ∈ arg maxy∈B P {X ∈ A |Y = y}.
Then P {X ∈ A, Y ∈ B} =

∫
y∈B

∫
x∈A pX,Y (x, y)dxdy =

∫
y∈B

∫
x∈A pX |Y=y(x)dxpY (y)dy =∫

y∈B P {x ∈ A |Y = y} pY (y)dy ≤
∫
y∈B P {x ∈ A |Y = y?} pY (y)dy = P {x ∈ A |Y = y?}.
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for every n > 2. Then, the expected value of (5.37) yields

E


T∑

t=T̄+1

11
{
kTS
t = k,A(t),Bk(t)

}
≤ n+

T∑
t=T̄+1

P {‖µ̃k(t)‖ ≥ ‖µ1‖ − ε,Nk(t) ≥ n | Bk(t)}

≤ n+
T∑

t=T̄+1

P {‖µ̃k(t)‖ ≥ ‖µ1‖ − ε,Bk(t), Nk(t) = n}

≤ n+ T

(
1 + (‖µ1‖ − ‖µk‖ − 2ε)2

σ2
k + ε

)−n+2

. (5.40)

In particular, for n = 2 + logT
log(1+(‖µ1‖−‖µk‖−2ε)2/(σ2

k
+ε)) > 2 we have that

E


T∑

t=T̄+1

11
{
kTS
t = k,A(t),Bk(t)

} ≤ log T
log
(

1 + (‖µ1‖−‖µk‖−2ε)2

σ2
k
+ε

) + 3, (5.41)

which concludes the proof. �

5.6.2 Lemma 5.15
Lemma 5.15. Under the conditions of Theorem 5.5, and for every k ∈ {2, . . . ,K}:

E


T∑

t=T̄+1

11
{
kTS
t = k,Bck(t)

} = O(ε−2). (5.42)

4

Proof. We start by noting that the event Bck(t) is independent of t whenever Nk(t)
is known. Then,

T∑
t=T̄+1

11
{
kTS
t = k,Bck(t)

}
=

T∑
n=dT̄ /Ke

11


T⋃

t=T̄+1

{
kTS
t = k,Bck(t), Nk(t) = n

}
≤

T∑
n=dT̄ /Ke

11


T⋃

t=T̄+1

{Bck(t), Nk(t) = n}


≤

T∑
n=dT̄ /Ke

11
{
‖x̄n,k‖ ≥ ‖µk‖+ ε or Sn,k ≥ n(σ2

k + ε)
}
.

(5.43)
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Then, by means of Lemma 5.3, the expected value of (5.43) yields

E


T∑

t=T̄+1

11
{
kTS
t = k,Bck(t)

} ≤
T∑

n=dT̄ /Ke

(
P {‖x̄n,k‖ ≥ ‖µk‖+ ε}

+ P
{
Sn,k ≥ n(σ2

k + ε)
})

≤
T∑

n=dT̄ /Ke

(
e−nε

2/σ2
k + e−nh(ε/σ2

k)
)

≤ 1
1− e−ε2/σ2

k

+ 1
1 + e−h(ε/σ2

k
)

= O(ε−2) + O(ε−2)
= O(ε−2), (5.44)

finishing the proof. �

5.6.3 Lemma 5.16
Lemma 5.16. Under the conditions of Theorem 5.5,

E

∆max

T∑
t=T̄+1

11
{
kTS
t 6= 1,Ac(t)

} = O(ε−6). (5.45)

4

Proof. Note that

T∑
t=T̄+1

11
{
kTS
t 6= 1,Ac(t)

}
=

T∑
t=T̄+1

T∑
n=T̄+1

11
{
kTS
t 6= 1,Ac(t), N1(t) = n

}

=
T∑

n=T̄+1

T∑
m=1

11

m ≤
T∑

t=T̄+1

11
{
kTS
t 6= 1,Ac(t), N1(t) = n

} ,

(5.46)

since, for a fixed t, 11
{
kTS
t 6= 1,Ac(t), N1(t) = n

}
= 1 only for that value of n

being exactly N1(t). Observe that kTS
t 6= 1 means that ‖µ̃1(t)‖ ≤ ‖µ̃?(t)‖, and

Ac(t) means ‖µ̃?(t)‖ ≤ ‖µ1‖ − ε. Then, (8.18) implies that, for a fixed n, the event
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‖µ̃1(t)‖ ≤ ‖µ1‖− ε has taken place, at least, m times for the first {t : Ac(t), N1(t) =
n}. This implies that

E


T∑

t=T̄+1

11
{
kTS
t 6= 1,Ac(t)

}
=

T∑
n=T̄+1

T∑
m=1

P

m ≤
T∑

t=T̄+1

11
{
kTS
t 6= 1,Ac(t), N1(t) = n

}
≤ E


T∑

n=T̄+1

T∑
m=1

(1− P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n})m


≤
T∑

n=T̄+1

E
{

1− P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}
P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}

}
, (5.47)

for every t satisfying N1(t) = n in the right-hand side of (5.47).
Now, when ‖x̄1,n‖ ≥ ‖µ1‖ − ε the symmetry of fµ1 | Ft(µ̃1) (defined in (5.6))

around x̄1,n guarantees that P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n} ≥ 1/2, and then it
follows that

1− P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n} ≤
1
2 ,

1
P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}

≤ 2,

for every t satisfying N1(t) = n. This argument allows us to split the argument
of (5.47) as

E
{

1− P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}
P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}

}
= E {11 {‖x̄1,n‖ ≥ ‖µ1‖ − ε}}+ E

{
11 {‖x̄1,n‖ ≤ ‖µ1‖ − ε}

P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}

}
= E

{
11
{
‖µ1‖ −

ε

2 ≥ ‖x̄1,n‖ ≥ ‖µ1‖ − ε
}}

+ E
{

11 {‖x̄1,n‖ ≤ ‖µ1‖ − ε}
P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}

}
+ E

{
11
{
‖x̄1,n‖ ≥ ‖µ1‖ −

ε

2 , Sk,n ≥ 2σ2
1n
}}

+ 2E
{
11
{
‖x̄1,n‖≥‖µ1‖−

ε

2 , Sk,n≤2σ2
1n
}

(1−P {‖µ̃1(t)‖≥‖µ1‖−ε | x̄1,n, S1,n})
}
.

(5.48)

We now proceed to upper bound each of the four terms in (5.48). For the first term,
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α

αx̄1,n

µ1
ε

‖µ1‖
−‖x̄

1,n
‖−ε

cosα

‖µ1‖ − ‖x̄1,n‖ − ε

Figure 5.7: Bound used in (5.50), where P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε} given that ‖x̄1,n‖ ≤
‖µ1‖ − ε is lower bounded by the shade area defined by the cone parametrized by α.

we have that

E
{

11
{
‖µ1‖ −

ε

2 ≥ ‖x̄1,n‖ ≥ ‖µ1‖ − ε
}}
≤ P

{
‖x̄1,n‖ ≤ ‖µ1‖ −

ε

2

}
=
∫
‖z‖≤‖µ1‖− ε2

n

πσ2
1

e
−n
σ2

1
‖z−µ1‖2

dz

≤
∫
‖z‖≤‖µ1‖− ε2

n

πσ2
1

e
−n
σ2

1
(‖µ1‖−‖z‖)2

dz

≤
∫
‖z‖≤‖µ1‖− ε2

n

πσ2
1

e
−n
4σ2

1
ε2

dz

=
(
‖µ1‖ −

ε

2

)2 n

σ2
1

e
−nε2

4σ2
1

≤ ‖µ1‖2
n

σ2
1

e
−nε2

4σ2
1 . (5.49)

For the second term, observe that, given ‖x̄1,n‖ ≤ ‖µ1‖ − ε and S1,n = s:

P {‖µ̃1(t)‖≥‖µ1‖−ε | x̄1,n, S1,n}≥
∫ α

−α

∫ ∞
‖µ1‖−‖x̄1,n‖−ε

cosα

n(n− 2)
πs

(
1 + nr2

s

)−n+1

r dr dφ

= α

π

(
1 + n (‖µ1‖ − ‖x̄1,n‖ − ε)2

s cos2 α

)−n+2

,

(5.50)
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for every α ∈ (0, π/2). as Fig. 5.7 shows. It then follows that

E
{

11 {‖x̄1,n‖ ≤ ‖µ1‖ − ε}
P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}

}

=
∫ ∞

0

∫
‖x‖≤‖µ1‖−ε

nsn−2

πΓ(n− 1)
e
− 1
σ2

1
(s+n‖x−µ‖2)

σ2n
k

π

α

(
1 + n (‖µ1‖ − ‖x‖ − ε)2

s cos2 α

)n−2

dxds

(a)
≤ ne−nε2/σ2

1

αΓ(n− 1)σ2n
1

∫ ∞
0
sn−2e−s/σ

2
1

∫
‖x‖≤‖µ1‖−ε

e
−n(‖µ1‖−‖x‖−ε)2

σ2
1

(
1 + n (‖µ1‖ − ‖x‖ − ε)2

s cos2 α

)n−2

dxds

(b)= 2πne−nε2/σ2
1

αΓ(n− 1)σ2n
1

∫ ∞
0
sn−2e−s/σ

2
1

∫ ‖µ1‖−ε

0
e
−n(‖µ1‖−v−ε)2

σ2
1

(
1 + n (‖µ1‖ − v − ε)2

s cos2 α

)n−2

v dvds

(c)= 2πne−nε2/σ2
1

α2n−1Γ(n− 1)σ2n
1

∫ ∞
0
sn−2e−s/σ

2
1

∫ ‖µ1‖

ε

e
−n(r−ε)2

σ2
1

(
1 + n (r − ε)2

s cos2 α

)n−2

(‖µ1‖ − r) drds

≤ 2π‖µ1‖ne−nε2/σ2
1

αΓ(n− 1)σ2n
1

∫ ∞
0
sn−2e−s/σ

2
1

∫ ∞
ε

e
−n(r−ε)2

σ2
1

(
1 + n (r − ε)2

s cos2 α

)n−2

drds, (5.51)

where inequality (a) follows from ‖µ1 − x‖2 ≥ (‖µ1 − x‖ − ε)2+ε2 ≥ (‖µ1‖ − ‖x‖ − ε)2

whenever ‖x‖ ≤ ‖µ1‖ − ε. Equality in (b) follows from a change of variables x to
polar coordinates (v, θ), while (c) is a consequence of changing v via r = ‖µ1‖ − v.
We now introduce a new change of variables in (5.51):

r = ε− cosα
√

zw
n

s = z(1− w)

}
=⇒ dr ds =

∣∣∣∣det
[ cosα

2
√

w
nz (1− w)

cosα
2
√

z
nw −z

]∣∣∣∣ dw dz
= cosα

2

√
z

nw
dw dz,

allowing us to rewrite the double integral in (5.51) as∫ ∞
0
zn−2√z e

−z
σ2

1

∫ 1

0
e−z/σ

2
1w
−1
2

cosα
2
√
n
dw dz

= cosα
2
√
n

∫ ∞
0
zn−2√z e−z/σ

2
1

σ1√
z sinαe

z sin2 α
σ2

1 D

(√
z

sinα
σ2

1

)
dz

(d)
≤ σ1

2
√
n tanα

∫ ∞
0
zn−2e−z cos2 α/σ2

1dz

= σ1

2
√
n tan(α)

σ
2(n−1)
1

cos2(n−1)(α)Γ(n− 1), (5.52)

where (d) follows from Dawson’s function D [107] being upper bounded by 1. Finally,
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using this upper bound in (5.51) yields

E
{

11 {‖x̄1,n‖ ≤ ‖µ1‖ − ε}
P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}

}
≤ π‖µ1‖ cos3 α

σ1 sinα
√
n

(
e−ε2/σ2

1

cos2 α

)n
, (5.53)

for every α ∈ (0, 2π). In particular, when α is small, the sequence in n defined by
the right-hand side of (5.53) converges to zero for α satisfying cos2 α ≈ 1− α2 =
e−ε2/(2σ2

1), i.e., for α =
√

1− e−ε2/(2σ2
1) = O(ε). With this particular choice, and for

small ε, the bound in (5.53) becomes

E
{

11 {‖x̄1,n‖ ≤ ‖µ1‖ − ε}
P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}

}
≤ π‖µ1‖

α2σ1

√
n
(

e−ε
2/(2σ2

1)
)n

. (5.54)

From Lemma 5.3, the third term in (5.48) is upper bounded by Lemma 5.3 as

E
{

11
{
‖x̄1,n‖ ≥ ‖µ1‖ −

ε

2 , S1,n ≥ n2σ2
1

}}
≤ P

{
S1,n ≥ n2σ2

1
}

≤ e−nh(1). (5.55)

To upper bound the fourth term in (5.48), denote the event C1,n := {‖x̄1,n‖ ≥
‖µ1‖ − ε

2 , S1,n ≤ 2σ2
1n}. Then by introducing polar-coordinates:

1− P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | C1,n} = P {‖µ̃1(t)‖ ≤ ‖µ1‖ − ε | C1,n}

≤
∫ π

−π

∫ ∞
ε
2

n(n− 2)
πs

(
1 + nr2

s

)−n+1

r drdφ,

≤
(

1 + ε2

8σ2
1

)−n+2

, (5.56)

and therefore

E
{

11
{
‖x̄1,n‖ ≥ ‖µ1‖ −

ε

2 , Sk,n ≤ n2σ2
1

}(
1− P

{
‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | θ̂1,n

})}
≤
(

1 + ε2

8σ2
1

)−n+2

.

(5.57)
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Putting together (5.49),(5.54),(5.55) and (5.57) together with (5.47) leads us to

T∑
n=T̄+1

E
{

1− P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}
P {‖µ̃1(t)‖ ≥ ‖µ1‖ − ε | x̄1,n, S1,n}

}

≤
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n=T̄+1
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n
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1

e
−nε2

4σ2
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α2σ1

√
n
(

e−ε
2/(2σ2

1)
)n

+e−nh(1)+
(

1 + ε2

8σ2
1

)−n+2

≤ ‖µ1‖2

σ2
1

e−ε2/(4σ2
1)

1− e−ε2/(4σ2
1) + π‖µ1‖

α2σ1

e−ε2/(2σ2
1)(

1− e−ε2/(2σ2
1))2 +

2
(

1 + ε
σ2
k

)−1

1− e−h(1)

+ 8σ2
1

ε2

(
1 + ε2

8σ2
1

)2

= O(ε−2) + O(ε−6) + O(1) + O(ε−2)
= O(ε−6). (5.58)

�

5.7 Proof of Lemma 5.7

For the sake of brevity, we write ptk instead of pt,WTS
k . Notice that x̄k(t) is Gaussian

distributed, since (X1
k , . . . , X

t
k) is an independent Gaussian sequence, whose mean

is E {x̄k(t)} = µk and whose covariance matrix is

cov x̄k(t) = E
{

(xk(t)− µk)(xk(t)− µk)>
}

= 1
(
∑t
`=1p

`
k)2

E


(

t∑
i=1

pik(Xi
t − µk)

)(
t∑
i=1

pit(Xi
t − µk)

)>
= 1

(
∑t
`=1p

`
k)2

E

{
t∑
i=1

(pik)2(Xi
t − µk)(Xi

t − µk)>
}

= 1
(
∑t
`=1p

`
k)2

t∑
i=1

(pik)2 σ
2
k

2pik
I2

= σ2
k

2
∑t
`=1p

`
k

I2. (5.59)

On the other hand, decompose Sk(t) = SRe
k (t) + SIm

k (t), where SRe
k (t) =∑t

`=1 p
t
k(ReX`

k − Re x̄k(t))2, and similarly for SIm
k (t). Consider k and t to be

fixed, and let X := [ReX1
k · · · ReXt

k]>, p := [p1
k · · · ptk]>. Notice that
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X ∼ N (0t, (σ2
k/2)diag {p}), since

cov ReXi
k − Re x̄k(t) =

E
{

[(
∑t
`=1p

`
k)(Xi

k − µk)−
∑t
`=1p

`
k(X`

k − µk)]2
}

(
∑t
`=1p

`
k)2

= (
∑t
`=1p

`
k)−2

[
(
∑t
`=1p

`
k)2 + σ2

k

2 (
∑t
`=1p

`
k)− σ2

k

2 (
∑t
`=1p

`
k)
]

= σ2
k

2pik
, (5.60)

for every i = 1, . . . , t. Under this definition, Re x̄k(t) = 1>X/(1p) and, recalling
that ReXt

k ∼ N (Reµk, σ2
k/2), SRe

k (t) can be written as

SRe
k (t) = X>

(
It −

1p>

1>p

)>
diag {p}

(
It −

1p>

1>p

)
X

= X>
(

diag {p} − pp
>

1>p

)
X

= σ2
k

2 E
> (diag {p})−1/2

(
diag {p} − pp

>

1>p

)
(diag {p})−1/2

E

= σ2
k

2 E
>
(
It −

p1/2p>/2

1>p

)
︸ ︷︷ ︸

:=A

E, (5.61)

whereE ∼ N (0t, It), and where p1/2 = [
√
p1
k . . .

√
ptk ]>. Notice that RankA =

t− 1 since p1/2p>/2 is a rank-1 perturbation [106], and that A corresponds to an
idempotent matrix since

(
It −

p1/2p>/2

1>p

)2

= It − 2p
1/2p>/2

1>p + p1/2p>/2p1/2p>/2

(1>p)2 = It −
p1/2p>/2

1>p .

(5.62)

Then, by [33, Lemma B.2], we have that SRe
k (t)/(σ2

k/2) ∼ χ2
t−1 and therefore, by

symmetry and independence of the real and imaginary parts, Sk(t)/(σ2
k/2) ∼ χ2

2(t−1).
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5.8 Proof of Lemma 5.8

We start by noticing that x̄k(t) and Sk(t) are independent, for every k ∈ {1, . . . ,K},
and t ∈ {1, . . . , T}, since

cov (Xi
k − x̄k(t), x̄k(t)) = E

{
(Xi

k − x̄k(t))(x̄k(t)− µk)>
}

= (
∑t
`=1p

`
k)−2E


t∑

j=1

t∑
`=1

pjp`(Xi
k −X

j
k)(X` − µk)


= 0, (5.63)

and since Xi
k and x̄k(t) are Gaussian distributed.

For every k ∈ {1, . . . ,K} and t ∈ {1, . . . , T}, the posterior distribution of (µk, σ2
k)

given (x̄k(t), Sk(t),Ft) is

fµk,σ2
k
| x̄k(t)=x,Sk(t)=s,Ft(µk, σ

2
k) =

fx̄k(t),Sk(t) |µk,σ2
k
,Ft(x, s) · 1∫∞

0
∫
R2 fx̄k(t),Sk(t) |µk=µ,σ2

k
=σ2,Ft(x, s)dµ d(σ2)

,

(5.64)

where

fx̄k(t),Sk(t) |µk,σ2
k
,Ft(x, s) = (

∑t
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`
k)st−2

πΓ(t− 1)
e
−1
σ2
k

(
s+
∑t
`=1p

`
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2
)

(σ2
k)t . (5.65)

Thus, the integral term in (5.64) is given by∫ ∞
0

∫
R2
fx̄k(t),Sk(t) |µk=µ,σ2

k
=σ2,Ft(x, s)dµ d(σ2)
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`
k)st−2
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∫ ∞
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e
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∫ ∞
0
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= Γ(t− 2)
Γ(t− 1) , (5.66)

implying that

fµk,σ2
k
| x̄k(t)=x,Sk(t)=s,Ft(µk, σ

2
k) =

∑t
`=1p

`
ks
t−2

πΓ(t− 2)
e
−1
σ2
k

(
s+
∑t
`=1p

`
k‖x−µk‖

2
)

(σ2
k)t . (5.67)
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Therefore, the posterior distribution of µk given (x̄k(t), Sk(t),Ft) is

fµk | x̄k(t)=x,Sk(t)=s,Ft(µk, σ2
k) =

∑t
`=1p

`
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πΓ(t− 2)

∫ ∞
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(
1 +
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k‖x− µk‖2

s

)−t+1

.

(5.68)

5.9 Proof of Lemma 5.13

Let µk := ReGejωk and xtk denote the first component of Xt
k, i.e., xtk := Re {Y tk/U tk}.

We prove the result only for one component of µ, since real and imaginary parts
are independent, which means that the update of the 2-dimensional posterior for
each mean can be done independently (component, arm and experiment-wise).

Assume, as prior knowledge, that µk ∼ N (0, λ2) holds, and that xtk |µk ∼
N
(
µk1t,diag

{
σ2

2pt
k

})
, with xtk := [x1

k x2
k · · · xtk]>. Then, since E {xtk} =

E {E {xtk |µk}} = 0, we have that

[
x1
k x2

k · · · xtk µk
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[
Rxt

k
Rxt

k
µk

Rµkxtk
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])
. (5.69)

Here,

Rxt
k

= varxtk = E
{
xtk(xtk)>

}
= E

{
E
{
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}
|µk
}
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{
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}
+ λ21t1>t , (5.70)

and Rxt
k
µk = E {µE {xtk |µk}} = E

{
µ21t

}
= λ21t, implying that Rµkxtk

= λ21>t .
Putting these results together gives
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which directly implies that
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µ̂tk, σ̂

2t
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(
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)−1

xtk,
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1t. (5.72)
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From the matrix inversion lemma [106], we obtain(
diag
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then
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and
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}

1t −
4λ21>t diag {ptk}1t1>t diag {ptk}1t

σ4
(

1 + 2λ2

σ2

∑t
`=1p

`
k

)


= λ2 − λ4

 2
σ2
∑t
`=1p

`
k −

4λ2

σ4
(

1 + 2λ2

σ2

∑t
`=1p

`
k

) (∑t
`=1p

`
k

)2


= λ2 − 2λ4

σ2
σ2∑t

`=1 p
`
k

σ2 + 2λ2∑t
`=1p

`
k

= λ2

1 + 2λ2

σ2

∑t
`=1p

`
k

. (5.75)
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Therefore

µk |xtk ∼ N

(
2λ2∑t

`=1 p
`
kx

`
k

σ2 + 2λ2∑t
`=1p

`
k

,
λ2

1 + 2λ2

σ2

∑t
`=1p

`
k

)
, (5.76)

meaning that

µ |X1
k , . . . X

t
k ∼ N



λ2
∑t

`=1
ptkX

t
k(1)

σ2+λ2
∑t
`=1p

`
k

λ2
∑t

`=1
ptkX

t
k(2)

σ2+λ2
∑t
`=1p

`
k

 , λ2

1 + λ2

σ2

∑t
`=1p

`
k

I2

 , (5.77)

for every k = 1, . . . ,K, where X`
k(1) and X`

k(2) are the first and second components
of the 2-dimensional vector X`

k.



Chapter 6

H∞-norm estimation performance

In Chapter 3 we have separated the problem of estimating the H∞-norm of a
system (GE) into two presumably independent problems, namely regret minimiza-
tion (RM) and norm estimation (NE) problems. We have devoted Chapter 4 and
Chapter 5 to study (RM), while (NE) will be study along this chapter.

For the sake of brevity, the proofs of some technical results have been appended
at the end of the chapter.

6.1 Introduction

The estimation procedure resorts to the underlying (hopefully good) bandit algorithm
that provides the latter with the (also hopefully) best data. As previously introduced
in Chapter 3, an estimate β̂πt : R2t × Λt → R+ is a random variable that maps the
available data into a point estimate. Algorithm 6.9 summarizes the procedure within
a bandit set-up.

Algorithm 6.8 H∞-norm estimation under bandit policy π
1: Input: Bandit policy π
2: for t = 1 to T do
3: Play arm kπ(t)
4: Receive outcome Xt

5: Design pt+1,π = πt(p1,π, X1, . . . , pt,πXt) according to policy π
6: Update β̂πt = β̂πt (p1,π, X1, . . . , pt,πXt)
7: end for

The complexity of solving (NE) arises from the fact that we do not know what
the peak frequency is, where the job of finding it is left to the bandit algorithm.
At this point, this brings up the following question—how good can an estimator
perform when data is produced by an underlying oracle policy (knowing the peak
frequency in advance)? The Cramér-Rao lower bound for the H∞-norm estimation
under oracle knowledge is given in the following lemma.

89
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Lemma 6.1. Consider the MAB problem with known variance σ = (σ2, σ2, . . . , σ2).
Let φ ∈ Π be an oracle policy allocating resources as in (3.19). Under this oracle
policy, any unbiased estimator β̂φt satisfies

MSE(β̂φt ) ≥ σ2

2t . (6.1)

4

Proof. When the oracle allocates all the power at k?, it only receives one spectral
point:

Y tk = G(ejωk
?

)U tk + Etk, (6.2)

as the variance in the other measurements becomes infinite. Without loss of generality,
let U tk = 1 + j0, which verifies

∑K
k=1 |U tk|

2 = 1. Then,[
ReY tk?
ImY tk?

]
=
[
ReG(ejωk?) −ImG(ejωk?)
ImG(ejωk?) ReG(ejωk?)

] [
ReU tk?
ImU tk?

]
+
[
ReEtk?
ImEtk?

]
=
[
ReG(ejωk?)
ImG(ejωk?)

]
+
[
ReEtk?
ImEtk?

]
= µk? +

[
ReEtk?
ImEtk?

]
. (6.3)

The problem is now a 2-dimensional parameter estimation problem with 2-dimensional
measurements. Under this set-up, [ReEtk? ImEtk? ]> ∼ N (02, σ

2I2/2), and are iid
for every t = 1, 2, . . . . It is well known [101] that the Cramér-Rao lower bound is
given by

Cµ̂t
k?
� σ2

2t I =: I−1
t,φ, (6.4)

where Cµ̂t
k?

:= E
{

(µ̂tk? − µk?)(µ̂tk? − µk?)>
}

is the covariance of the estimation
error for every unbiased estimator of µk? upon t (2-dimensional) measurements.

Recall that β = f(µk?) = ‖µk?‖. Hence, it follows [101] that

Cβ̂φt
= MSE(β̂φt ) ≥ ∂f(µk?)

∂µk?
I−1
t,φ

∂f(µk?)>
∂µk?

= I−1
t,φ = σ2

2t , (6.5)

where ∂f(µk?)/∂µk? denotes the 1× 2 Jacobian matrix of β with respect to each
component of µk? . �

The result derived in Lemma 6.1 is insightful only theoretically, as we have
no access to oracle bandit policies. If we allocate all the power on the peak fre-
quency, (NE) becomes a constant estimation problem under white Gaussian noise1

of the form yt = θ + et.
1This problem is known as a DC-level estimation problem in [101], because it resembles the

problem of estimating a constant voltage under noisy measurements.
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It is important to remark that, by allocating all the power on any frequency, the
oracle policy φ only has access to one complex-valued spectral point on every round.
Spreading the power among frequencies allows the decision-maker to collect more
information from suboptimal arms at the cost of decreasing its accuracy on the peak
frequency, as the variance of the measurements increases as the allocated power
decreases. However, information of suboptimal arms is neglected by the class of
estimators solving (NE) since outcomes from different frequencies are independent,
as discussed in Chapter 3. The following lemma formalizes this discussion, revealing
that the lower bound in Lemma 6.1 is only attained under oracle policies, i.e.,
estimators under non-oracle policies only incur in a larger MSE.

Lemma 6.2. Consider the gain estimation problem with known variance σ =
(σ2, σ2, . . . , σ2). Then, under every policy π ∈ Π, every unbiased estimator β̂πt of
β = ‖G‖∞ satisfies

MSE(β̂πt ) ≥ σ2

2t . (6.6)

4

Proof. We prove that φ = arg minπ∈Π I−1
t,π. The only measurements useful for the

estimator β̂πt are the spectral measurements at the peak frequency, which means
that a policy maximizing the information/minimizing the uncertainty of these
samples is optimal. We start by observing that, since the noise sequence is white
and independent among different frequencies, we face a point estimation problem
under noisy measurements. Here, under policy π, the bivariate measurements satisfy
Xt
k ∼ N (µ, σ2I2/(2pπ,tk )), meaning that the estimation error covariance of every

unbiased estimator µ̂t,π of µ := [µ>1 µ>2 · · · µ>K ]> at round t satisfies

Cµ̂t,π �



2
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σ2 I2 02×2 · · · 02×2

02×2
2
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`=1
pπ,`2

σ2 I2 · · · 02×2
...

... . . . ...

02×2 02×2 · · ·
2
∑t

`=1
pπ,`
K

σ2 I2



−1

= σ2



1
2
∑t

`=1
pπ,`1

I2 02×2 · · · 02×2

02×2
1

2
∑t

`=1
pπ,`2

I2 · · · 02×2

...
... . . . ...

02×2 02×2 · · · 1
2
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`=1
pπ,`
K

I2


=: I−1

t,π, (6.7)
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where Cµ̂t,π := E
{

(µ̂t,π − µ)(µ̂t,π − µ)>
}

. Now consider the quantity β = f(µ) :=
maxk∈{1,...,K} ‖µk‖ = ‖µ2

k?‖. It then follows that

Cβ̂πt
= MSE(β̂πt ) ≥

∂f(µ)
∂µ

I−1
t,π

∂f(µ)>

∂µ
= σ2

2
∑t
`=1 p

t,π
k?

, (6.8)

where ∂f(µ)
∂µ denotes the 1× 2K Jacobian matrix of β respect to each component

of µ. Therefore, that the smallest lower bound in (6.8) is attained by that policy
π that maximizes

∑t
`=1 p

t,π
k? , which corresponds only to the oracle policy π = φ,

finishing the proof. �

6.2 An asymptotically efficient estimator

There are many ways of building H∞-norm estimations using bandit technology.
One can keep track of the sufficient statistics (x̄tk, Stk) introduced in Chapter 5 and
use them, together with Ft, as estimators. Example of these estimators are

• maxk∈{1,...,K} ‖x̄tk‖,

• ‖x̄t
k̂
‖, k̂ = arg maxk∈{1,...,K}

∑t
`=1p

`
k,

• ‖x̄t
k̂
‖, k̂ = arg mink∈{1,...,K} Stk,

and so on. In this section, we focus an estimator that balances previous observations
and makes a weighted guess as:

β̂πt :=
∥∥∥∥∥
∑t
`=1
∑k
k=1 p

`,π
k X`

k∑t
`=1
∑K
k=1 p

`,π
k

∥∥∥∥∥ =
∥∥∥∥∥
∑t
`=1
∑k
k=1 p

`,π
k X`

k

t

∥∥∥∥∥ . (6.9)

The following result reveals that this choice of estimator is asymptotically unbi-
ased and asymptotically efficient [101, 108] under uniformly efficient policies (see
Definition 4.3).

Theorem 6.3. Let π ∈ Π? ⊂ Π be a uniformly efficient policy according to
Definition 4.3 and β̂πt be a point estimator the point estimator

β̂πt :=
∥∥∥∥∥
∑t
`=1
∑K
k=1 p

t,π
k Xt

k

t

∥∥∥∥∥ , t = 1, 2, . . . , T, (6.10)

under policy π. Then, for large t:

MSE(β̂πt ) := E
{

(β̂πt − µk?)2
}

= σ2

2t + o(t−1). (6.11)

4
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Figure 6.1: Frequency response of G together with the frequency response of H at
arms k = 1, . . . , 200.

Theorem 6.3 really closes the loop for the gain estimation problem. The separation
of (GE) into (RM) and (NE) is indeed an optimal solution to the original problem.
Under known variance, this result shows that the estimator defined in (6.9) is
asymptotically efficient under any of the algorithms introduced in Chapter 5, as we
know that all of them are asymptotically optimal—they are uniformly efficient.

6.3 Norm estimation under single-frequency strategies

In this section we present the empirical performance of two estimators for β under
Thompson Sampling (under a uniform prior distribution), based on a simulation
study. We compare the performance of these estimators to the one of two well-known
methods in the literature, namely power iterations (PI) [25, 26] and a model-based
approach developed in [27]. The first approach, PI, is known [26] to provide biased
estimations of β under noisy measurements, even if these are white. On the other
hand, the second approach derives a finite impulse response (FIR) model from input-
output data of G, and then the H∞-norm of the model is computed to estimate β.
In this approach, the presence of colored noise plays a crucial role as the quality
of the derived model for G is poor on the bands where the noise concentrates its
power. In other words, the method in [27] leads to the wrong model of G when the
measured output signal is corrupted with colored noise.

Our simulation study consists of a system G and H whose frequency responses
are depicted in Fig. 6.1, where the noise level is around 40 times larger than on
simulation studies presented in the previous chapter. We pick this configuration to
make the H∞-norm estimation of G more challenging (compare to Section 5.1.4 and
Section 5.3.1).
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Figure 6.2: Performance of different H∞-norm estimators in the mean-squared error
sense.

Let β := ‖G‖∞ denote the parameter, and let k̂(1)
t := arg maxk∈{1,...,K}NTS

k (t)
and k̂

(2)
t := arg maxk∈{1,...,K} ‖x̄k(t)‖ denote two different estimators of the best

arm at round t. In this case, k̂(1)
t takes the best arm as that one played the most up

to round t, while k̂(2)
t is that arm whose empirical mean is the largest at round t.

The two considered estimators are then

β̂
(i)
t := ‖x̄

k̂
(i)
t
‖, i ∈ {1, 2}. (6.12)

Algorithm 6.9 summarizes the procedure within a bandit set-up.

Algorithm 6.9 H∞-norm estimation using Thompson Sampling
1: Input: Prior distribution for each reward mean
2: for t = 1 to T do
3: Play arm kTS

t (see Algorithm 5.4)
4: Obtain k̂

(i)
t

5: Set β̂(i)
t := ‖x̄

k̂
(i)
t
‖, i ∈ {1, 2}.

6: end for

Figure 6.2 depicts how the proposed algorithms perform, in a MSE (mean-squared
error) sense, against the two other aforementioned methods. Covering |G| with the
noise level reveals that some algorithms are just unable to create accurate estimates.

We start by noticing the poor performance of the estimates provided by PI
where, in line with what is predicted by [26], the stationary estimates are biased and
the error covariance is significantly higher than the rest of the algorithms. On the
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other hand, we see that the quality of the estimates passing through an L-length
FIR model do not provide efficient estimates and that, at least empirically, the
estimation quality does not increase with the length of the filter, reinforcing what
we have discussed in the introduction. On the other hand, we see that both proposed
estimators β̂(i)

t , i ∈ {1, 2} perform similarly (they actually overlap in Fig. 6.2) well
compared to the other algorithms. We remark that the MSE in the estimation of
β̂

(i)
t , i ∈ {1, 2} can not be lower that the discretization error ‖G‖∞ − ‖µk?‖.

Finally, we notice that the proposed algorithm behaves similar in both cases,
attaining a covariance that decreases to zero, suggesting that these methods could
provide efficient estimates of β.

6.4 Summary

In this chapter we proved the existence of an algorithm that is able to asymptotically
match the Cramér-Rao lower bound when data is produced by uniformly efficient
bandit policies. This means that the joint strategy solving (RM) and (NE) is
asymptotically optimal to solve the gain estimation problem (GE).

A simulation study for norm estimation under Thompson Sampling shows the
potential of our approach for solving (GE), where the composition of (RM) and
(NE) outperforms state-of-the-art methods for H∞-norm estimation.

6.5 Proof of Theorem 6.3

Before presenting the proof, we need the following two technical lemmas.

Lemma 6.4. Let π be a uniformly efficient policy (see Definition 4.3), and let

[
f

(1)
t

f
(2)
t

]
:=
∑K
k=1(µk − µ1)

∑t
`=1 p

`,π
k

t
. (6.13)

Then,

E
{∣∣f (1)

t

∣∣n∣∣f (2)
t

∣∣m} = o(tα−1) (6.14)

for every α > 0 and every m,n ∈ N. 4
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Proof. Let δ(1)
k := µ

(1)
k − µ

(1)
1 , δ

(2)
k := µ

(2)
k − µ

(2)
1 ∈ R. Then

E
{∣∣f (1)

t

∣∣n∣∣f (2)
t

∣∣m}
= E

{∣∣∣∣∣
∑K
k=1

∑t
`=1 δ

(1)
k p`,πk

t

∣∣∣∣∣
n ∣∣∣∣∣
∑K
k=1

∑t
`=1 δ

(2)
k p`,πk

t

∣∣∣∣∣
m}

≤ 1
tn+m

K∑
k1,k2,...,kn=1
k′1,k

′
2,...,k

′
m=1

n∏
i=1

m∏
j=1

∣∣∣δ(1)
ki
δ

(2)
k′
j

∣∣∣ t∑
`1,`2,...,`n=1
`′1,`
′
2,...,`

′
m=1

E


n∏
i=1

m∏
j=1

p`i,πki
p
`′j ,π

k′
j


≤ 1
tn+m

K∑
k1,k2,...,kn=1
k′1,k

′
2,...,k

′
m=1

n∏
i=1

m∏
j=1

∣∣∣δ(1)
ki
δ

(2)
k′
j

∣∣∣ t∑
`1,`2,...,`n=1
`′1,`
′
2,...,`

′
m=1

E
{
p`1,πk1

}

= 1
t

K∑
k1,k2,...,kn=1
k′1,k

′
2,...,k

′
m=1

n∏
i=1

m∏
j=1

∣∣∣δ(1)
ki
δ

(2)
k′
j

∣∣∣ o(tα)

= o(tα−1), (6.15)

because
∏n
i=1
∏m
j=1

∣∣∣δ(1)
ki
δ

(2)
k′
j

∣∣∣ is a constant independent of t. �

Lemma 6.5. Let π ∈ Π? be a uniformly efficient policy. Let also [η(1)
t η

(2)
t ]> :=

t−1∑K
k=1

∑t
`=1(µk − µ1)ptk and [µ(1)

k µ
(2)
k ]> := µk. Under the conditions of

Lemma 6.4 and Theorem 6.3, it holds that

E
{∣∣∣η(1)

t − µ
(1)
1

∣∣∣ ∣∣∣η(2)
t − µ

(2)
1

∣∣∣3} = o(tα−1),

E
{∣∣∣η(2)

t − µ
(2)
1

∣∣∣ ∣∣∣η(1)
t − µ

(1)
1

∣∣∣3} = o(tα−1),

for every α > 0. 4

Proof. Consider Z ∼ N (z̄, s2). Then |Z| is a folded Gaussian variable that satis-
fies [109]

E {|Z|} = 2s√
2π

e− 1
2 z̄

2/s2 − z̄
[
1− 2Φ

(
− z̄
s

)]
,

E
{
|Z|3

}
= (z̄2 + 2s2)E {|Z|} − z̄s2

[
1− 2Φ

(
− z̄
s

)]
, (6.16)
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with Φ being the cumulative density function of the N (0, 1) distribution. We quickly
verify the following:

E {|Z|} ≤ 2s√
2π

e− 1
2 z̄

2/s2 + |z̄| ,

E
{
|Z|3

}
≤ (z̄2 + 2s2)

(
2s√
2π

e− 1
2 z̄

2/s2 + |z̄|
)

+ |z̄| s2. (6.17)

Let Gt := σ(p1,π, p2,π, . . . , p3,π). Then,

E
{∣∣∣η(1)

t − µ
(1)
1

∣∣∣ ∣∣∣η(2)
t − µ

(2)
1

∣∣∣3}
= E

{
E
{∣∣∣η(1)

t − µ
(1)
1

∣∣∣ | Gt}E
{∣∣∣η(2)

t − µ
(2)
1

∣∣∣3 | Gt}}
≤ E

{[
σ√
t
e−t(f

(1)
t )2/σ2

+
∣∣∣f (1)
t

∣∣∣]

×
[(

(f (2)
t )2 + σ2

t

)(
σ√
t
e−t(f

(2)
t )2/σ2

+
∣∣∣f (2)
t

∣∣∣)+
∣∣∣f (2)
t

∣∣∣ σ2

t

]}

≤ E

{[
σ√
t

+
∣∣∣f (1)
t

∣∣∣] [((f (2)
t )2 + σ2

t

)(
σ√
t

+
∣∣∣f (2)
t

∣∣∣)+
∣∣∣f (2)
t

∣∣∣ σ2

t

]}
= o(tα−1), ∀α > 0, (6.18)

where the result follows by using Lemma 6.4 and from the fact that e−t(f
(1)
t )2/σ2

and e−t(f
(2)
t )2/σ2 are O(1). By symmetry, the same result follows for the reciprocal

E
{
|η(2)
t − µ

(2)
1 | |η

(1)
t − µ

(1)
1 |3

}
. �

Let η(1) and η(2) be defined as

ηt := [η(1) η(2)]> :=
∑t
`=1
∑K
k=1 p

t,π
k Xt

k

T
, (6.19)

where we have dropped the dependence of ηt on π to keep neat notation.
Firstly, observe that the fisrt-order Taylor’s series expansion [110] of the β̂πt

around ‖µ1‖ is ‖ηt‖ =
√

(η(1))2 + (η(2))2 = ‖µ1‖+ 1
‖µ1‖µ

>
1 (ηt − µ1) + rt, where

rt is a second-order residual term. Then,

MSE(β̂πt ) = E
{

(β̂πt − ‖µ1‖)2
}

= E

{(
‖µ1‖+ 1

‖µ1‖
µ>1 (ηt − µ1) + rt − ‖µ1‖

)2
}

= 1
‖µ1‖2

E
{

[µ>1 (ηt − µ1)]2
}

+ E
{
r2
t

}
+ 1
‖µ1‖

E
{
µ>1 (ηt − µ1)rt

}
,

(6.20)
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and the goal is to upper bound each of these addends.
Our second observation is that, conditioned to the sigma field generated by the

power profiles Gt = σ(p1,π, p2,π, . . . , p3,π), Xt
k −µ1 | Gt ∼ N (µk −µ1, σ

2/(2ptk)I2),
which implies that

ηt − µ1 | Gt =
∑t
`=1
∑K
k=1 p

t,π
k (Xt

k − µ1)
T

| Gt (6.21)

is normally distributed, as it is a linear combination of Gaussian variables. Further-
more,

E {ηt − µ1 | Gt} =

∑t
`=1
∑K
k=1 E

{
p`,πk (X`

k − µ1) | Gt
}

t

=
∑K
k=2(µk − µ1)

∑t
`=1 p

`,π
k

t

=:
[
f

(1)
t

f
(2)
t

]
. (6.22)

Because π is uniformly efficient, it holds that
∑t
`=1 E

{
p`,πk

}
= o(tα), ∀α > 0 and

k 6= k?, and then

E

{[
f

(1)
t

f
(2)
t

]}
= E {E {ηt − µ1 | Gt}} = t−1

K∑
k=1

(µk − µ1)
t∑
`=1

E
{
p`,πk

}
=
[
o(tα−1)
o(tα−1)

]
,

(6.23)

for every α > 0 and k 6= k?. Additionally,

covηt − µ1 | Gt =
∑t
`=1
∑K
k=1(p`,πk )2 covXt

k − µ1 | Gt
t2

=
∑t
`=1
∑K
k=1 p

`,π
k σ2I2

2t2

= σ2

2t I2, (6.24)

allowing us to conclude that ηt −µt ∼ N (ft, σ2I2/2t). This implies that η(1) − µ(1)
1

and η(2) − µ(2)
1 are independent given Gt.

Now, for the first term in (6.20) and using the tower rule, we have that

E
{

[µ>1 (ηt − µ1)]2
}

= E
{
E
{

[µ>1 (ηt − µ1)]2 | Gt
}}

= E
{
‖µ1‖2E

{
(ηt − µ1)>(ηt − µ1) | Gt

}}
= ‖µ1‖2

σ2

2t . (6.25)
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To continue with the second term in (6.20), we need to introduce a new notation:
let µ(1)

k , µ
(2)
k ∈ R denote the first and second components of µk ∈ R2, respectively.

Then, the first-order Taylor’s expansion residual term, which satisfies [111] |rt| ≤
M(|η(1)

t − µ
(1)
1 | + |η

(2)
t − µ

(2)
1 |)2, for some M < ∞ since the function β̂πt is just a

polynomial in (η(1)
t ,η(2)

t ) and M is a constant that depends on the higher derivatives
of β̂πt . Hence,

E
{
r2
t

}
≤M2E

{
(|η(1)

t − µ
(1)
1 |+ |η

(2)
t − µ

(2)
1 |)4

}
= M2

(
E
{

(η(1)
t − µ

(1)
1 )4

}
+ E

{
(η(2)
t − µ

(2)
1 )4

}
+ 4E

{∣∣∣η(1)
t − µ

(1)
1

∣∣∣ ∣∣∣η(2)
t − µ

(2)
1

∣∣∣3}+ 4E
{∣∣∣η(2)

t − µ
(2)
1

∣∣∣ ∣∣∣η(1)
t − µ

(1)
1

∣∣∣3}
+ 6E

{
(η(1)
t − µ

(1)
1 )2(η(2)

t − µ
(2)
1 )2

})
. (6.26)

Here, by invoking Lemma 6.4, the first term in (6.26) satisfies

E
{

(η(1)
t − µ

(1)
1 )4

}
= E

{
E
{

(η(1)
t − µ

(1)
1 )4 | Gt

}}
= E

{
(f (1)
t )4 + 6(f (1)

t )2σ
2

2t + 3 σ
4

4t2

}
= o(tα−1) + o(tα−2) + o(t−2)
= o(tα−1), (6.27)

for every α > 0. The same reasoning applies to the second term in (6.26), obtaining
E
{

(η(1)
t − µ

(1)
1 )4

}
= o(tα−1). The third and fourth terms in (6.26) require the

results from folded Gaussian variables in Lemma 6.5, from which it follows that
E
{
|η(1)
t − µ

(1)
1 | |η

(2)
t − µ

(2)
1 |3

}
and E

{
|η(2)
t − µ

(2)
1 | |η

(1)
t − µ

(1)
1 |3

}
are o(tα−1), for

every α > 0. Finally, the fifth term in (6.26) is o(t1−α) by means of Lemma 6.4.
Putting all these together gives an upper bound for (6.26):

E
{
r2
t

}
= o(tα−1), ∀α > 0. (6.28)
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The final step is to bound the last term in (6.20). Observe now that

E
{
µ>1 (ηt − µ1)rt

}
≤ µ>1 E

{
(ηt − µ1)M(|η(1)

t − µ
(1)
1 |+ |η

(2)
t − µ

(2)
1 |)2

}
≤Mµ>1

(
E
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t − µ

(1)
1 )3 (η(1)

t − µ
(1)
1 )(η(2)

t − µ
(2)
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1 )2(η(2)

t − µ
(2)
1 ) (η(2)

t − µ
(2)
1 )3

]}
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∣∣η(2)
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1
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t − µ
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1
∣∣
]})

= Mµ>1

(
E
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t
σ2

2t f
(1)
t ((f (2)

t )2 + σ2
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f

(2)
t ((f (1)

t )2 + σ2

2t ) (f (2)
t )3 + 3f (2)

t
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+ 2E
{[

(η(1)
t − µ

(1)
1 )2

∣∣η(2)
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1
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(η(2)
t − µ

(2)
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∣∣η(1)
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(1)
1
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. (6.29)

Now, by Lemma 6.4, it is clear that all the entries of the first expected matrix
are o(tα−1), while the first entry in the second expected matrix of (6.29) is upper
bounded by means of Lemma 6.4 and Lemma 6.5, as

E
{

(η(1)
t − µ

(1)
1 )2∣∣η(2)

t − µ
(2)
1
∣∣} ≤ E

{(
(f (1)
t )2 + σ2

2t

)(
σ√
t
e−t(f

(1)
t )2/σ2

+
∣∣∣f (1)
t

∣∣∣)}
= o(tα−1), ∀α > 0. (6.30)

By symmetry, the second term of the second matrix in (6.29) is bounded as
E
{

(η(2)
t − µ

(2)
1 )2

∣∣η(1)
t − µ

(1)
1
∣∣} = o(tα−1), for every α > 0. Thus, from (6.29) we

have that

E
{
µ>1 (ηt − µ1)rt

}
= o(tα−1), ∀α > 0. (6.31)

Finally, putting (6.25), (6.28) and (6.31) together yields

MSE(βπt ) = σ2

t
+ o(tα−1), (6.32)

and the result follows by letting α→ 0.



Chapter 7

Summary and Future Research Directions

This first part, concerning the gain estimation problem, has been divided into
three steps: modeling, regret minimization, and asymptotically efficient estimation.
Chapter 2 and 3 have served as an introduction to multi-armed bandit problems and
to define a bandit model in the gain estimation problem, respectively. The second step
involves solving a regret-minimization problem (i.e., a sequential decision making).
As it is traditionally done in MABs, theoretical lower bounds are described in
Chapter 4, while matching algorithms, including their respective proofs of optimality,
have been introduced in Chapter 5. The third and final step, developed along
Chapter 6, studies the properties of the different estimators for the H∞-norm of
a system given the data provided by the underlying bandit algorithm. It is shown
that, under uniformly efficient policies, there exists at least one estimator whose
asymptotic estimation error matches the lower bound of Cramér and Rao (up to
some discretization error).

7.1 Future research directions

Perhaps the most evident extension is to prove that WTS is asymptotically optimal
when the noise variance is unknown. The ultimate objective of the gain estimation
under bandit feedback, is to solve the regret minimization problem for a continuous
sets of arms, avoiding the discretization error introduced when approximating set
(0, π) by K equispaced frequencies, and without recurring to batches of data, but
rather solving the sequential decision making at each time instant and not at
each experiment. Regarding the density of the arms, the continuum-armed bandit
problem can be potentially solved by using similar techniques to the ones employed
in [112–114]. Solving the sequential decision problem at each time instant resembles
a reinforcement learning problem since the system is no longer memory-less, meaning
that the outcomes are not only a function of the actions but also of the state in
which the system currently is.

An intermediate step to solve the continuous-armed problem is to solve the
finite-armed problem but when the outcomes of the arms are correlated. Indeed,
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the framework proposed in this work assumes that observations—sampled from
different arms—are independent, which is in general not true for an LTI system as
the Fourier transform of its impulse response is a continuous function of frequency.
This smoothness can be encoded as a Lipschitz continuity constant and the problem
can be tackled by employing a similar reasoning as in [97]. This approach involves
solving an optimization problem to find a good lower bound on the asymptotic
regret incurred by every uniformly efficient policy.

Other extensions include exploring other algorithms, different from Thompson
Sampling and Weighted Thompson Sampling to solve the regret minimization
problem. Particularly, it might be interesting to compare the performance of TS
and WTS regarding other index policies for two-parameter bandit problems. An
example of an index policy that might fit in our set-up is UCB-V (variance) [78] (or
their “follow the perturbed leader” [115] variants), that uses a variant of Bernstein’s
inequality to take into account the empirical variance of the rewards (in addition to
their empirical mean) to define tighter confidence bounds on the mean reward of
the arms.

Regarding estimations, it would be interesting to find optimal estimators for
single-frequency strategies, where the estimator proposed in Chapter 6 (for power-
spreading strategies) might not extend directly to single-frequency strategies. More-
over, the optimality of WTS is pending when the variance sequence is known to the
agent.

So far we have considered a gain estimation problem with noise measures where
the uncertainty of the noise is only affecting the output of the system. An interesting
extension may involve noise in the measured signal that is currently being applied
to the system.

Finally, given that we are able to quickly find that frequency maximizing
∣∣G(ejω)

∣∣,
this technology can be employed for improving the sequential design of experiments
in system identification.



Part II

Risk-Coherent Optimal Control
Design Under Uncertainty
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Abbreviations

cdf Cumulative density function

CVaR Conditional Value at Risk

FDI Frequency domain inequality

iid Independent and identically distributed

iff If and only if

KYP Kalman-Yakubovic-Popov

LMI Linear matrix inequality

LTI Linear and time-invariant

MIMO Multiple-input multiple-output

MISO Multiple-input single-output

pdf Probability density function

QCLP Quadratically-constrained linear program

SDP Semi-definite program

SISO Single-input single-output

VaR Value at risk

wss Wide-sense stationary
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Notation

:= Definition

N Set of natural numbers, N := {1, 2, . . . }

Z Set of integers, Z := {0,±1,±2, . . . }

R,R+ Set of real and nonnegative real numbers

C Set of complex numbers

Sm Set of m×m symmetric matrices

L Set of random variables with bounded first and second moments

H2 Space of all complex functions with bounded 2-norm

θ Parameter condensing the uncertainty

p(θ) Probability density function of parameter θ

Θ Set of all feasible parameters θ

G0 Nominal plant

R Risk functional

[X]+ Integer-valued function [X]+ := max{0, X}

supp X Support of X, supp X := {x : fX(x) 6= 0}

QL Space of finite-impulse response filters of length L
a.s.→ Almost-sure convergence
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1n Vector of ones, 1n := [1 1 . . . 1] ∈ Rn

0n Matrix in Rn×n with all its entries equal to zero

In Identity matrix of size n

X ∼ p(x) Means that the random variable X is distributed according to p(x)

<,≤ Strictly less than, less or equal than

>,≥ Strictly greater than, greater or equal than

≺,� strictly less than, less or equal than, in a positive definite sense

�,� strictly greater than, greater or equal than, in a positive definite
sense

z̄ Complex conjugate when z ∈ C

( )> Transposed operator

( )H Hermitian operator: transposed and complex conjugated

δ(t) Dirac’s delta function



Chapter 8

Risk-coherent H2-optimal control

The first section of this second part is devoted to the study of the design of
controllers optimizing the closed-loop performance in a risk-coherent sense. Coherent
measures of risk were introduced in the theory of risk in finance [40] for measuring
the uncertainty. This family of measures have many attractive properties such as
convexity.

We design a controller based on parametric models for the plant and the process
disturbance, whose uncertainty (i.e., the lack of precision to describe the real
systems) is captured by a probability density function on the set of parameters. The
true parameter (i.e., the one that produces the data) is deterministic but unknown,
so the aforementioned pdf encodes our belief of different parameters being the real
one. Therefore, from the designer’s perspective, the cost function attained by every
given controller is random and it depends on the realization of the parameter. In
contrast with a fully Bayesian approach, where the Bayesian cost (or Bayesian
risk) is obtained by averaging the original cost over the possible realizations of
the parameter, we propose a risk-coherent measure called conditional value-at-risk
(CVaR), which can be cast in terms of a chance-constrained optimization problem
corresponding to a quadratically constrained linear program (QCLP).

8.1 Problem formulation

Consider two discrete-time linear and time-invariant (LTI) filters G0(q) and H0(q),
as depicted in Fig 8.1, describing the system y(t) = G0(q)u(t) +H0(q)n(t), where
{u(t)} is the input signal to the plant, and where {n(t)} is a zero-mean white process
with variance σ2

n. Under this setting, we assume the following:

Assumption 8.1. The system G0 is known with sufficient accuracy for control
design purposes. We capture the uncertainty of H0 in a random variable θ ∈ L with
pdf p(θ) of bounded support Θ, such that H0(q) = Hθ(q) for a known structure
Θ→ Hθ. It is assumed that G0 is stable and strictly proper, while θ is such that
Hθ is a biproper minimum-phase stable filter, with probability 1. 4
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C(q) G0(q)
r(t) e(t) y(t)

−

n(t)

u(t)

H0(q)

Figure 8.1: Closed loop implementation of C(q) for the true systems G0(q) and
H0(q).

Assumption 8.1 requires that the information about the plant is accurate enough
for control design purposes, i.e., there is no uncertainty in G0(q). Also, since G0(q)
is already stable, the stabilization problem is not an issue here.

Remark 8.2. The reasoning behind why θ is random can be understood within a
Bayesian framework. The pdf p(θ) denotes our knowledge about θ, which comes from
prior knowledge and possibly experimental data collected from the true system. The
problem of obtaining p might be difficult and it is beyond the scope of this thesis,
however, this problem can be addressed by using approximate Bayesian techniques
such as Markov Chain Monte Carlo (MCMC) methods [116]. 4

The implementation of the controller is as depicted in Fig. 8.1, where the reference
process {r(t)} is zero-mean and wide-sense stationary (wss) with spectral factor [6,
Chapter 7] Ωr(z), such that r and n are statistically independent. Hence, the norm
of the tracking error e can be written as

‖e‖22 = lim
N→∞

1
N

N∑
t=1

E
{
e2(t) | θ

}
= lim
N→∞

1
N

N∑
t=1

E
{

[y(t)− r(t)]2 | θ
}

=
∥∥∥∥( G0C

1 +G0C
− 1
)

Ωr
∥∥∥∥2

2
+
∥∥∥∥ Hθ

1 +G0C
σ2
n

∥∥∥∥2

2
, (8.1)

where the latter equality follows from Parseval’s Theorem [117]. The right-hand
side of (8.1) is also commonly known as the tracking performance of the closed-loop
system. We remark that this quantity is a random variable since Hθ(q) depends on
the realization of θ.

In a traditional H2-design, we would use models for G0(q) and H0(q), ignoring
the information available in p(θ). Then, we can proceed by using the nominal model
Ĥ(q) instead of the true system. These nominal models can be obtained by, e.g.,
the prediction error method (PEM) [3]. Nevertheless, how to obtain such models
is beyond the scope of this thesis. The optimal controller for the nominal models
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is then the one that minimizes (8.1) where Hθ(q) is replaced by Ĥ(q). We refer to
this procedure as the nominal design. However, our main goal is to obtain a better
design by accounting for the uncertainty on H0(q).

To simplify the notation of the problem, we parametrize the closed-loop transfer
function according to the Youla parameter [118, 119] Q(z). The control loop in
Fig. 8.1 is internally stable if and only if Q ∈ Q := H2 when the controller transfer
function C(z) is [8, Lemma 15.1]

C(z) = Q(z)
1−Q(z)G0(z) . (8.2)

Thus, by using (8.2) with Q ∈ Q, the tracking performance in (8.1) can be rewritten
as

JQ(θ) := ‖Ωr(1−G0Q)‖22 +
∥∥Hθ(1−G0Q)σ2

n

∥∥2
2 , (8.3)

with JQ(θ) ∈ L, since θ ∈ L has a compact support and the closed-loop is stable. We
refer to JQ(θ) as the (random) cost function. Additionally, it is always possible to
retrieve C(z) from Q(z) by using (8.2). For each Q ∈ Q, we quantify the uncertainty
of each JQ in (8.3) by using a functional measure R : L→ (−∞,∞]. This accounts
for the uncertainty in the transfer function for the disturbance model. We are now
ready to formulate an optimization problem where the cost function is a functional
R evaluated at (8.1).

Problem 8.3. Consider that Assumption 8.1 holds. Find the optimal controller C?
such that

C?(z) := Q?(z)
1−Q?(z)G0(z) , (8.4a)

Q? := arg min
Q∈H2

R(JQ), (8.4b)

JQ(θ) := ‖Ωr(1−G0Q)‖22 +
∥∥Hθ(1−G0Q)σ2

n

∥∥2
2 , (8.4c)

where θ is distributed according to the pdf p(θ), Ωr(z) is the spectral factor of the
reference signal {r(t)}, and σ2

n is the variance of {n(t)}. �

Remark 8.4. The affine parametrization choice (8.2) follows from Assumption 8.1.
The general case when G0(q) is unstable can be addressed with the affine parametriza-
tion for unstable open-loops in [8], leading to a more complicated analysis. 4

Since p(θ) is fixed, different decisions Q ∈ Q define (possibly) different probability
density functions of JQ(θ). Thus, Q? is such that JQ?(θ) is distributed according to
a pdf with the lowest risk, where the risk is measured by R. As it can be seen from
this problem, one of the main issues is to choose R properly. In the next section we
provide insight into how to select this function to account for the risk incurred in
not knowing H0 accurately enough. This section will be also invoked in Chapter 10.
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Z ∼ p(z)
s2

c(s2, Z)

s1
c(s1, Z)

s3
c(s3, Z)

Random
vector Decision ∈ S Cost (pdf)

R(c(s2, Z))

R(c(s1, Z))

R(c(s3, Z))

Risk ∈ (−∞,∞]

Figure 8.2: In control, the risk framework is composed by a random vector Z = θ
condensing the uncertainty, a decision s = Q ∈ Q, and a random cost function
parametrized by a decision c(s, Z) = JQ(θ). The risk function maps the different
decisions into an element in (−∞,∞] for a fixed p.

8.2 Measures of risk

As we stated in the previous section, the selection of the functional R is crucial
in the controller design, since it will define the notion of optimality by accounting
for the uncertainty in Hθ(q). The randomness in the tracking performance JQ(θ)
does not allow us to minimize it directly, but we can still minimize its probabilistic
properties such as the expected value or the worst-case scenario. A natural question
at this point is whether these functionals properly account for the uncertainty on θ.
To address this question, we rely on some concepts from financial risk theory [120].

The objective in risk theory is to determine an optimal decision minimizing a
cost under uncertainty. To properly measure the risk, the notion of coherent measure
of risk has been introduced in [40]. As depicted in Fig. 8.2, the risk framework
requires three elements:

1. a random variable Z ∈ L with a known pdf p(z) describing the uncertainty in
the problem,

2. a decision s ∈ S, and

3. a cost function c(s, Z) : L× S → L.

We note that, for a fixed decision s, the cost c(s, Z) is a random variable in L.

Example 8.5. In Problem 8.3, Z = θ ∈ L with pdf p(θ), S = Q is the space of
decisions, and c(s, Z) = JQ(θ) ∈ L for all Q ∈ Q, as shown in Fig. 8.2. 4

The properties of a functional R to properly measure the risk associated with Z
have been discussed in [40], where the notion of coherent measure of risk has been
introduced. Its definition is provided below [121]:
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Definition 8.6. For a given decision s ∈ S, let Y := c(s, Z) (for brevity, we omit
the dependence of Y on s), with pdf p(y). We say the functional R : L→ (−∞,∞]
is a coherent measure of risk in the extended sense if and only if

(i) R(K) = K for every constant function K,

(ii) R is convex, i.e., for all Y1, Y2 ∈ L, and λ ∈ [0, 1],

R((1− λ)Y1 + λY2) ≤ (1− λ)R(Y1) + λR(Y2),

(iii) R(Y1) ≤ R(Y2) whenever Y1 ≤ Y2,

(iv) R(Y ) ≤ 0 when E
{

(Y ` − Y )2}→ 0 and R(Y `) ≤ 0, for every Y ` in {Y `}`≥0.

Moreover, R is said to be a coherent measure of risk in the basic sense if and only
if, in addition to (i)-(iv),

(v) R(λY ) = λR(Y ), for λ ≥ 0.

4

In the latter definition, condition (i) means that the risk of a random variable,
with constant outcomes K, is K. Property (ii) requires R to be convex. Property (iii)
assigns a higher risk to values with higher costs, condition (iv) requires closedness,
and (v) requires R to be positively homogeneous. It is important to note that
conditions (ii) and (v) allow us to conclude that

R(Y1 + Y2) ≤ R(Y1) +R(Y2), (8.5)

i.e., the risk is reduced by considering diversification.
According to Definition 8.6, functionals sup{·} and E {·} can be easily checked to

be coherent risk measures in the basic sense. In Problem 8.3, the choice R =sup{·}
would be useful, but it can lead to conservative results. When the maximum risk
is minimized there is no control over the average behaviour. On the other hand,
R = E {·} is a weak measure of risk, since it only imposes a requirement on the
average behaviour, which can lead to poor tracking performance for some outcomes.

For comparison purposes, we also introduce a non-coherent measure of risk,
known as value at risk (VaR), defined as [122]

VaRα(Y ) := min{y ∈ R : Prob{Y ≤ y} ≥ α}, (8.6)

where [X]+ := max{X, 0}. This function can be understood as the quantile where
α× 100% of the probability density function of Y is concentrated. Coherence is lost
since condition (ii) in Definition 8.6 is not satisfied.

In the following subsection, we formally introduce a coherent measure of risk in
the basic sense known as Conditional Value at Risk (CVaR), proposed by [40].
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8.2.1 Conditional Value-at-Risk
The conditional value-at-risk (CVaR) is defined, for α ∈ (0, 1), as [123]

CVaRα(Y ) := 1
1− α

∫
y≥VaRα(Y )

y p(y)dy, (8.7)

where VaRα(Y ) is given by (8.6). From (8.7), CVaRα(Y ) = β not merely implies
that y ≤ β at least α × 100% of the time (VaR condition), but that the average
of the worst (1 − α) × 100% of all possible outcomes of Y will be equal to β. In
addition, it is proved in [121] that for any probability level α ∈ (0, 1), the functional
CVaRα(Y ) is a coherent measure of risk in the basic sense.

When CVaR is employed to measure uncertainty, the problem of minimizing
the risk requires one to minimize (8.7), which is in general difficult. However, [41]
showed that it is possible to circumvent this issue by instead computing the CVaRα

as

CVaRα(Y ) = min
µ∈R

µ+ 1
1− αE {[Y − µ]+} . (8.8)

It is also stated that the bracketed expression in (8.8) is convex and differentiable
respect to µ, making CVaRα(Y ) easy to minimize numerically. Equation (8.8) allows
us to exploit the fact that Y = c(s, Z) by writing

CVaRα(Y ) = min
µ∈R

µ+ 1
1− α

∫
z

[c(s, z)− µ]+p(z)dz.

Then, if it is possible to draw iid samples zi from p(z), the latter expression can be
approximated with arbitrary accuracy, in the sense that, for N sufficiently large,

CVaRα(Y ) ≈ min
µ∈R

µ+ 1
N(1− α)

N∑
i=1

[c(s, zi)− µ]+

=: CVaRα({c(s, zi)}Ni=1). (8.9)

This approximation involves defining a new operator CVaRα that does not operate
directly over the random cost Y = c(s, θ) (for a fixed decision s) but over a set of
samples {c(s, θi)}Ni=1 of that random variable.

Remark 8.7. The parameter α in (8.7) must be defined by the user, and it can be
interpreted as a confidence level. However, it holds that

lim
α→0+

CVaRα(Y ) = lim
α→0+

1
1− α

∫
y≥VaRα(Y )

y p(y)dy

=
∫ ∞
−∞

y p(y)dy = E {Y } , (8.10)
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since limα→0+ VaRα(Y ) = −∞. Additionally, we have that

lim
α→1−

CVaRα(Y ) = lim
α→1−

min
µ
µ+ 1

N(1− α)E {[Y − µ]+}

= sup suppY, (8.11)

where the equality follows from the fact that, as α → 1−, E {[Y − µ]+} must
converge to zero. This means that the value of µ attaining (8.11) satisfies µ ≥
sup supp(Y ). The conditional value-at-risk then provides a trade-off between E {Y }
and supY , as we cannot simultaneously minimize the risk in both average and
worst-case scenarios. Therefore, α can be interpreted as a tuning parameter that
allows the user to choose an appropriate trade-off between average and extreme-case
risk. 4

8.3 CVaR controller design

So far we have discussed how to properly measure the risk of the random cost
function JQ(θ), defined in (8.3), associated with the uncertainty in θ. In this section,
we solve Problem 8.3 when R = CVaRα{·} for a particular structure in Q.

The rational function Q(z) is restricted to be a fixed-length finite-impulse
response filter (FIR),i.e.,

Q(z) =
L−1∑
`=0

x`z
−` = x>Γ(z), (8.12)

where L ∈ N, Γ(z) := [1 z−1 · · · z−(L−1)]> is given, and x := [x0 x1 · · ·
xL−1]> ∈ RL. An important feature of FIR filters is their linear structure, which
will allow us to formulate a QCLP. Furthermore, as L → ∞, QL := {Q : Q(z) =∑L−1

`=0 x`z
−`, x` ∈ R} tends to H2, since the functions {gi(z)} given by gi(z) =

z−i, i = 0, 1, . . . form a complete orthonormal set in H2 [124]. In words, good
approximations to the solution of Problem 8.3 can be achieved by considering large
enough values of L. The following theorem reformulates Problem 8.3 as a QCLP:

Theorem 8.8. Suppose that Assumption 8.1 holds. Let {θi}Ni=1 be a set of N
independent samples from the distribution p(θ). Let t := [t1 t2 · · · tN ]T ∈ RN .
When R = CVaRα{·}, α ∈ (0, 1), and Q = QL, the minimum risk R(JQ?) in
Problem 8.3 can be arbitrarily approximated by the sequence {R(JQ?

N
)}, where

Q?N (z) := (x?N )>Γ(z),

[x?N µ? t?]> := arg min
[xµ t]>∈RL+N+1

µ+ 1
N(1− α)1>N t

subject to ti ≥ ki + x>Mix− 2c>i x− µ,
ti ≥ 0, i = 1, . . . , N,
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and Mi ∈ RL×L, ci ∈ RL and ki ∈ R+ are given by

Mi = 1
2π

∫ π

−π
Γ(ejω)ΓH(ejω)

(∣∣Ωr(ejω)G0(ejω)
∣∣2 +

∣∣Hi(ejω)G0(ejω)
∣∣2) dω,

ci = 1
2π

∫ π

−π

(∣∣Ωr(ejω)
∣∣2 +

∣∣Hi(ejω)
∣∣2)G0(ejω)ΓH(ejω) dω,

ki = ‖Ωr‖22 + ‖Hi‖22,

with Hi(q) := Hθi(q), for every i = 1, . . . , N . 4

Proof. The facts that supQ∈Q |E {JQ(θ)}| < ∞ (since Assumption 8.1 holds) and
that, for a fixed value of µ, E {|[JQ(θ)− µ]+|} <∞, allow us to conclude that [125]

1
N

N∑
i=1

[JQ(θi)− µ]+
a.s.→
∫
u∈Θ

[JQ(u)− µ]+p(u)du. (8.13)

Thus, the cost function in (8.4c) is such that

min
µ∈R

µ+ 1
N(1− α)

N∑
i=1

[JQ(θi)− µ]+
a.s.→ CVaRα(JQ), (8.14)

which can be obtained by suitably adapting Theorem 10.8 in [126].
On the other hand, and by using the properties of the RL2-norm, JQ(θi) can be

written as

JQ(θi) = ki + M̄i + c̄i, (8.15)

where ki = ‖Ωr‖22+‖Hi‖22, M̄i = ‖ΩrG0Q‖22+‖HiG0Q‖22, and c̄i = −2〈Ωr,ΩrG0Q〉−
2〈Hi, HiG0Q〉. Notice that

‖ΩrG0Q‖22 = ‖ΩrG0x
>Γ‖22

= x>
(

1
2π

∫ π

−π
Γ(ejω)ΓH(ejω)

∣∣Ωr(ejω)G0(ejω)
∣∣2dω)x, (8.16)

and that similarly,

‖HiG0Q‖22 = x>
(

1
2π

∫ π

−π
Γ(ejω)ΓH(ejω)

∣∣Hi(ejω)G0(ejω)
∣∣2dω)x. (8.17)

By summing (8.16) and (8.17), we have that

M̄i = x>
(

1
2π

∫ π

−π
Γ(ejω)ΓH(ejω)(

∣∣Ωr(ejω)G0(ejω)
∣∣2 +

∣∣Hi(ejω)G0(ejω)
∣∣2)dω

)
x

= x>Mix. (8.18)
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By using a similar procedure, we can obtain that

〈Ωr,ΩrG0Q〉 =
(

1
2π

∫ π

−π

∣∣Ωr(ejω)
∣∣2G0(ejω)ΓH(ejω)dω

)
x, (8.19)

and thus,

c̄i = −2
(

1
2π

∫ π

−π

(∣∣Ωr(ejω)
∣∣2 +

∣∣Hi(ejω)
∣∣2)G0ΓH(ejω)dω

)
x

= −2c>i x. (8.20)

Therefore, by using (8.15), (8.18) and (8.20), it holds that

J(θi) = ki + x>Mix− 2c>i x. (8.21)

The proof is completed by noticing that the minimizer w? := arg minw
∑T
i=1[gi(w)]+

either satisfies [gi(w)] = gi(w) or gi(w) = 0, i.e., one of these equalities is an active
restriction. Then, this problem is equivalent to

min
w

T∑
i=1

ti

subject to ti ≥ gi(w),
ti ≥ 0,

whose structure is equivalent to the optimization problem in the statement. �

The following section illustrates the closed-loop performance achieved by different
measures of risk.

8.4 Numerical example

Here, we focus on four different coherent measures of risk to address Problem 8.3,
comparing the tracking performance for each design.

Consider the closed-loop system depicted in Fig. 8.1, where

H0(q)= 1+a1q
−1+a2q

−2

1+a3q−1+a4q−2, G0(q)= 1
q−0.3 , Ωr(z)= 0.2

z−0.8 ,

with θ = [a1 a2 a3 a4]>. The variance of {n(t)} is σ2
n = 1. It is known that the

nominal model for the process disturbance is Ĥ(q) = H0(θ̂), with

θ̂ =
[
â1 â2 â3 â4

]> = [−0.0214 0.21 0.164 − 0.0896]>.

Additionally, ai ∼ Unif.(Ai), where Ai := [α̂i − 0.5, α̂i + 0.5], i = 1, 2, 3, 4.
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Figure 8.3: Tracking performance comparison between the four different designs for
Nval = 2 · 103 validation points drawn from p(θ).

Each of the four coherent measures of risk {Rk}4i=k indexes an optimal parametrized
controller Q?(k), k = 1, 2, 3, 4, which are given by solving Problem 8.3 with Q = Q50,
where R1 = CVaR0.95{·}, R2(JQ(θ)) = JQ(θ̂) (nominal design), R3 = E {·} (av-
erage behaviour), and R4 = sup{·} (worst-case scenario). We compare the set
{JQ?(k)(θi)}

Nval
i=1 for each of the four controllers, all of them designed by using N = 104

samples from p(θ) instead of the pdf itself. The validation process uses Nval = 2 · 103

new samples.
The results are presented in Fig. 8.3 where, for each design, the top and the

bottom of the blue boxes represent the 25th and 75th percentiles of the samples,
respectively, the red line inside the box stands for the sample median, and obser-
vations beyond 1.5 times the interquartile length are marked as outliers, displayed
with red crosses. Observe that CVaR0.95 and the worst-case scenario lead to similar
results, in line with Remark 8.7. Nevertheless, the overall behaviour is slightly better
with the CVaR approach, in the sense that the average behaviour (red line) and the
outliers (red crosses) are lower. As it was expected, the design under E {·} gives a
lower tracking error, in average, that the average obtained by using CVaR0.95{·}.
All of the three cases mentioned above consider the information provided by p(θ).
The nominal design gives the poorest result in terms of outliers, but its average
performance is good, compared to the other functionals. This might be due to the
fact that θ̂ = E {θ}. Figure 8.4 shows the cumulative density function of JQ?

k
(θ) for

each of the controllers. Notice that CVaR0.95 grows at the fastest rate, achieving a
low tracking error with higher probability.
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Figure 8.4: Performance comparison in terms of the cumulative density functions (cdf)
of the four different designs. The cdf’s are approximated by considering Nval = 2 · 103

samples drawn from p(θ). Variable ξ is the argument of the cdf of JQ?
k
(θ).

8.5 Summary

This chapter presented a risk-theoretical approach to account for the uncertainty
in the model of the process disturbance, when the goal is to optimally reject
disturbances in the closed-loop system. A framework to measure the uncertainty was
proposed from the financial theory of risk, where the notion of coherent measures of
risk is introduced. The control design problem under uncertainty was reformulated
as a QCLP when the measure of uncertainty is the conditional value-at-risk. An
illustrative example exposes the tracking performance for different coherent measures
of risk and how well they compare to the nominal design. As it was expected, we
conclude that the additional information provided in the pdf p(θ) is useful and leads
to better control performance. Future work includes a risk-theoretical analysis for
robustness under uncertainty in the model of the plant.





Chapter 9

A risk-theoretical approach to H2-optimal
control under covert attacks

The development of technlogy during the last 50 years has digitalized the way
control systems are implemented, including computer-controlled and networked
control systems [127]. The main reason for control systems to be digitalized of
control systems is that it commonly increases operational performance, decreases
costs and reduces the chances of failure. However, the integration of cyber and
physical worlds opened the possibility for malicious cyber-attacks that can endanger
the physical world [43].

In this chapter, we study the extensions of Chapter 8 to H2-control under
covert attacks. Here, we assume a classic control structure where the control loop is
vulnerable to malicious injection of signals. In the covert attack strategy, the attacker
uses specially designed filters to construct additive measurement and control signals
in order to stay undetected. If these filters are designed based on the full knowledge
of the plant, the covert attack is perfectly stealthy and, moreover, it is impossible
to design a controller that mitigates the influence of this attack [52]. In other words,
the impact of the attack is somehow proportional to the accuracy of the attacker’s
plant model. The degree of precision of the attacker’s plant model is unknown to
the controller design, i.e., the defender, and such uncertainty can be encoded into a
probability density function for the parametrized models the attacker might possess.
In order to tackle this problem, we generalize the optimization problem presented in
the previous chapter as a filter design risk minimization that can be directly applied
to the setup presented in this chapter, and that can be potentially employed to solve
other problems. We aim to design a controller that minimizes the risk of falling into
low closed-loop tracking performance by minimizing its conditional value-at-risk
(see Section 8.2), and to compare it with traditional designs such as average risk,
worst-case scenario, and a nominal design.

121
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Figure 9.1: Control system structure accounting for the presence of a covert agent.

9.1 Model set-up

We use an appropriate variant of the framework introduced in [52], where the process
consists of a physical plant G(q), a controller C(q), and attacker’s blocks Π0(q) and
K0(q) as shown in Fig. 9.1. In what follows, we introduce these blocks in more detail,
and then formulate the problem of designing a controller that mitigates the impact
of covert attacks.

9.1.1 Plant and Feedback Controller

The process is modeled as y(t) = G(q)u(t), where G(q) represents the stable LTI
SISO transfer function of the system, u(t) denotes the control signal applied to the
process, y(t) represents the system output, and t ∈ {0}∪N. The output is perturbed,
in general, by colored noise H(q)w(t), where H(q) is a biproper stable LTI filter,
while w(t) is unit-variance white noise.

A one-degree-of-freedom feedback control architecture is employed, consisting
of a controller C = C(q), whose output, the control signal, is given by uc(t) =
C(q)

[
yref(t)− ym(t)

]
, where ym(t) denotes the measurable signal, and yref(t) is the

reference signal with spectral factor Ωr(z).

9.1.2 Attacker

Due to the noise and attack signals, the signal received by the controller, ym(t), and
the input to the plant, u(t), differ from the true plant output y(t) and the control
signal uc(t), respectively. In particular, we assume that

ym(t) =y(t) +H(q)w(t)−γ(t), u(t) =uc(t)+µ(t),

as depicted in Fig. 9.1. In contrast to the noise w(t), that has random nature, the
signals γ(t) and µ(t) are outputs of a specially designed closed loop system consisting
of blocks Π0(q) and K0(q). System Π0(q) represents the attacker’s estimate of the
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physical plant G(q), while K0 corresponds to the attacker’s controller, which is
assumed to be an LTI filter designed to track the attacker’s reference signal γref(t),
of spectral factor S(z). We additionally assume that K0/(1 +K0Π0) is stable. Then,
signals γ(t) and µ(t) can be expressed in terms of the attacker reference γref(t) as

γ(t) = K0(q)Π0(q)
1 +K0(q)Π0(q)γref(t),

µ(t) = K0(q)
1 +K0(q)Π0(q)γref(t).

(9.1)

9.1.3 Problem Formulation

We assume that the defender knows G(q) and H(q) accurately enough for control
purposes. From the defender’s perspective, the attacker’s blocks Π0(q) and K0(q)
are unknown. Thus, we adopt the following assumption.

Assumption 9.1. The defender’s uncertainty about the attacker’s filters is rep-
resented by a random vector θ ∈ L with bounded support Θ := supp θ, such that
K0(q) = Kθ(q) and Π0(q) = Πθ(q), for some known structures Θ → Kθ(q) and
Θ→ Πθ(q). Additionally, we assume that G(q) and Πθ(q) are strictly proper, that
Kθ(q) is proper, and that Kθ(q), Πθ(q) and (1 +Kθ(q)Πθ(q))−1 are stable transfer
functions, for every realization of θ. 4

Remark 9.2. The reasoning behind why θ is random can be understood within
a Bayesian framework. The probability density function (pdf) p(θ) denotes the
defender’s knowledge about θ, coming from prior information and possibly experi-
mental data. For instance, the attacker can obtain a model of the plant by using
system identification tools [56], where p(θ) is obtained from the accuracy of the
identification method. Nevertheless, the problem of obtaining p(θ) might be difficult,
and it will be treated in future work. The key observation here is that p(θ) is
assumed given. 4

Remark 9.3. The presented approach can also be employed when the attacker has
full model knowledge, i.e., when Πθ(q) = G(q). In this case, the defender needs to
use a detection mechanism by intentionally perturbing the plant G(q) [54] (e.g., by
perturbing sensors’ gain) with an additive known perturbation ∆G(q), introducing
fictitious uncertainty. 4

The difference between the desired output yref(t) and the true output of the
system y(t) is known as the tracking error e(t) := yref(t)− y(t), and it is commonly
employed to evaluate the closed-loop performance. Assuming that all external signals
(γref, yref, w) are independent, and defining the closed-loop performance, using the
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H2 norm, as JC(θ) := ‖e‖22, it holds that

JC(θ) =
∥∥∥∥(1− [G−Πθ]C

1 +GC

)
GSKθ

1 +KθΠθ

∥∥∥∥2

2
+
∥∥∥∥(1− GC

1 +GC

)
R

∥∥∥∥2

2
+
∥∥∥∥ HGC

1 +GC

∥∥∥∥2

2
.

(9.2)

In the above equation, each term represents the effect on the tracking error due to
each of the external signals (γref, yref, w). We notice here that, due to Assump-
tion 9.1, (9.2) is a random cost function depending on the random vector θ,
parametrized by controller C ∈ C(Θ), where C(Θ) is the set of all stabilizing
controllers for any realization of θ. The latter, together with the compactness of
Θ, imply that JC(θ) ∈ L. To quantify the uncertainty in JC(θ) due to the lack of
knowledge of the defender about the attacker’s plant model and controller (captured
in θ), we consider a functional measure R : L→ (−∞,∞]. This measure will account
for the risk of making bad decisions in the face of the uncertainty. We are now ready
to formalize our problem.

Problem 9.4 (H2-risk optimal control under covert attack (H2RCA)). Under the
set-up of this section, find the optimal controller C? such that

C? := arg min
C∈C(Θ)

R{JC(θ)}, (9.3)

where θ is distributed according to the known pdf p(θ), and where S(z) and Ωr(z)
are the spectral factors of γref(t) and yref(t), respectively.

Remark 9.5. Since p(θ) is fixed, different decisions C ∈ C(Θ) define (possibly)
different probability density functions of JC(θ). Thus, C?(q) is such that JC(θ) is
distributed according to a pdf with the lowest risk, measured by R. 4

As discussed in [24], the main problem here is how to properly choose R. Sec-
tion 8.2 introduces the notion of measures of risk and the family of coherent measures
of risk. It also describes several measures of risk that may be used to design a con-
troller, including CVaR.

The optimization problem arising for solving H2RCA (see Problem 9.4) involves
more complicated expressions than the ones presented for solving Problem 8.3 in
Chapter 8. For this reason, we extend the results of Theorem 10.5 to a general filter
design problem of the form minQ∈H2

∑m
i=1 ‖A

(m)
θ −B(m)

θ Q‖22, whose solution can
be arbitrarily approximated by solving a QCLP.
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9.2 CVaR Filter Design

In this section we derive a quadratically-constrained linear program (QCLP) to the
filter design problem

Q? := arg min
Q∈H2

CVaRα

(
M∑
m=1
‖A(m)

θ −B(m)
θ Q‖22

)
︸ ︷︷ ︸

=:VQ(θ)

, (9.4)

which represents a generalization of Theorem 10.5 (see [24]). Here, VQ(θ) is a
new cost function that will be shown to be equivalent to JC(θ) under some mild
conditions, and where {A(m)

θ , B
(m)
θ }Mm=1, M ∈ N, is a set of parametrized transfer

functions that are stable for all θ ∈ Θ.

Remark 9.6. The optimization problem (9.4) is convex since the cost function
‖A(m)

θ −B(m)
θ Q‖ is convex in Q and CVaR is monotonic and convex [121]. The

search space is convex since H2 is a linear space. Additionally, E {·} and sup{·} are
special cases of CVaR (for α→ 0, and α→ 1, resp.), and then both formulations
are convex as well. 4

For the sake of completeness, let us re-introduce the family of L-length FIR
(finite impulse response) filters as QL :=

{
Q : Q(q) =

∑L
`=0 x`q

−`
}
, with x :=

[x0 . . . xL]> ∈ RL+1. Notice that limL→∞QL = H2, in the sense that func-
tions gi(z) = z−i are a complete orthonormal set in H2. Then, with Γ(q) :=
[1 q−1 . . . q−L]>, every controller Q ∈ QL can be written as

Q(q) = x>Γ(q). (9.5)

We now state the main result of this section where, by means of Lemma 1,
Q? ∈ H2 and r? can be approximated arbitrarily well by solving a QCLP.

Theorem 9.7. Let {A(m)
θ , B

(m)
θ }Mm=1, M ∈ N, be a set of stable transfer functions

parametrized by θ. Let {θi}Ni=1 be a set of N samples from a known pdf p(θ),
and let t := [t1 t2 · · · tN ]> ∈ RN . The problem of finding Q? as in (9.4)
can be approximated arbitrarily well (as N,L → ∞) by Q̄?N,L ∈ QL ⊂ H2 and
CVaRα({VQ̄?

N,L
(θi)}Ni=1), respectively, where Q̄?N,L(q) := (x?N )>Γ(q), and

[x?N ν? t?]> := arg min
[x ν t]>∈RL+N+2

ν + 1
N(1− α)1>N t

s.t. ti ≥ ki + x>Mix− 2c>i x− ν,
ti ≥ 0, i = 1, . . . , N,
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where ki ∈ R, ci ∈ RL+1, and Mi ∈ R(L+1)×(L+1), are

Mi = 1
2π

∫ π

−π
Γ(ejω)ΓH(ejω)

(
M∑
k=1

∣∣∣B(m)
θi

(ejω)
∣∣∣2)dω,

c>i = 1
2π

∫ π

−π

(
M∑
k=1

A
(m)
θi

(ejω)(B(m)
θi

(ejω))H

)
ΓHdω,

ki =
M∑
k=1

∥∥∥A(k)
θi

(ejω)
∥∥∥2

2
.

4

Proof. We notice that, for a fixed m and for the i-th sample of θ, say θi, it holds
that

‖A(m)
θi
−B(m)

θi
Q‖22 =‖A(m)

θi
‖22︸ ︷︷ ︸

:=k(m)
i

+‖B(m)
θi
Q‖22−2

〈
A

(m)
θi
, B

(m)
θi
Q
〉
,

where, by means of (9.5), it follows that

‖B(m)
θi
Q‖22 = x>

(
1

2π

∫ π

−π
Γ(ejω)ΓH(ejω)

∣∣∣B(m)
θi

(ejω)
∣∣∣2dω)︸ ︷︷ ︸

:=M(m)
i

x,

and analogously,〈
A

(m)
θi
, B

(m)
θi

Q
〉

=
(

1
2π

∫ π

−π
A

(m)
θi

(ejω)(B(m)
θi

(ejω))HΓH(ejω)dω
)

︸ ︷︷ ︸
:=(c(m)

i
)>

x.

Then, for each θi, i = 1, . . . , N , the i-th sample of the cost function is given by

VQ(θi) =
M∑
m=1
‖A(m)

θi
−B(m)

θi
Q‖22

=
M∑
m=1

(
k

(m)
i + x>M (m)

i x− 2(c(m)
i )>x

)
=

M∑
m=1

k
(m)
i︸ ︷︷ ︸

:=ki

+x>
(

M∑
m=1

M
(m)
i

)
︸ ︷︷ ︸

:=Mi

x− 2
M∑
m=1

(c(m)
i )>︸ ︷︷ ︸

:=c>
i

x.
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On the other hand, the problem of finding

Q̄?N,L = arg min
Q∈QL

CVaRα({VQ(θi)}Ni=1)

is equivalent to finding

x? = arg min
x∈RL+1

CVaRα({VQ(θi)}Ni=1),

when Q is parametrized as in (9.5).
Finally, using (8.9), the latter expression is equivalent to

x? = arg min
[x> ν t>]>∈RL+N+2

ν + 1
N(1− α)1>t

subject to ti ≥ VQ(θi)− ν,
ti ≥ 0, i = 1, . . . , N,

since the nonlinearity
∑N
i=1[VQ(θi)− ν]+ can be replaced by its upper bound 1>t,

provided ti ≥ 0 or ti ≥ VQ(θi)− ν. �

9.3 CVaR Controller Design

This section presents a QCLP whose solution can arbitrarily approximate the solution
of H2RCA, connecting the filter design problem with the H2 control problem under
covert-attacks.

Theorem 9.8. Solving Problem 1 (H2RCA), i.e., the problem of designing a con-
troller C such that the risk of falling into poor performances R(JC) is minimized, is
equivalent to

min
Q∈H2

R

(
M∑
m=1
‖A(m)

θ −B(m)
θ Q‖22

)
, (9.6)

whose solution can be approximated by the approach described in Lemma ??. Here,
{A(m)

θ , B
(m)
θ }Mm=1 are stable transfer functions parametrized by θ. 4

Proof. Define the affine parametrization

Q(q) := C(q)
1 +G(q)C(q) (9.7)

in (9.2), also known as Youla parametrization [8], with Q being the Youla parameter.
The new cost function is then

VQ(θ) =
∥∥∥∥(1− [G−Πθ]Q) GSKθ

1 +KθΠθ

∥∥∥∥2

2

+ ‖(1−GQ)R‖22 + ‖HGQ‖22 , (9.8)
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which is exactly in the form of the argument of (9.6). The equivalence between VQ(θ)
and JC(θ) follows from G being a stable and proper transfer function. Moreover,
C(q) = Q(q)/(1 − G(q)Q(q)) is guaranteed to stabilize the closed loop whenever
Q ∈ H2 [8]. Then, solving Problem 1 in terms of C? is equivalent to solving (9.6) in
terms of Q?. �

We remark the versatility of the approach exposed here, where different signals
can be added into the loop depicted in Fig. 3.1 by just stacking one more term
of the form ‖A−BQ‖22 to the cost function, as long as these signals are mutually
uncorrelated. Additionally, uncertainty can also be assumed to be present in block
H of Fig. 3.1, addressing a more complex and robust problem.

9.4 A simulation study

Here we provide insight into how different coherent measures of risk achieve different
density functions for JC(θ). In particular, we compare the closed-loop performance
for different controllers, each of them designed under different risk measures, such
as CVaR, expected value, and worst-case scenario. We also show how the nominal
design performs.

Consider a second-order process

G(q) = 2q
(q − 0.9ejω0)(q − 0.9e−jω0) (9.9)

with resonance frequency ω0 = 0.6435 [rad/s].
We assume that the attacker knows the process structure, but it does not know

the resonance frequency nor the static gain of the process exactly. More precisely,
the structure for the attacker is given by

Πθ(q) =
θ1
∣∣1− 0.9ejθ2

∣∣ q
(q − 0.9ejθ2)(q − 0.9e−jθ2) , (9.10)

where θ1 is distributed uniformly over [5, 10] and θ2 is distributed uniformly over
[ω0−0.5, ω0 +0.5], θ := [θ1 θ2]>. For clarity, Fig. 9.2 shows the frequency response
of the plant G compared to the possible outcomes of the frequency response of Πθ.

We also assume that the attacker’s controllerKθ is optimally designed to minimize
the tracking error of signal γref(t), i.e., for a given θ, we assume that

Kθ(q) := arg min
K∈H2

∥∥∥∥∥
(

1− ΠθK

1 + ΠθK

)
S

∥∥∥∥∥
2

2

. (9.11)

The spectral factors of signals yref and γref are Ωr(z) = z
z2−1.52z+0.9025 and

S(z) = z
z−0.4 , respectively, and the noise transfer function is H(q) = q2

q2+0.81q+0.81 .

Under 4 different measures {Rnom, RCVaR, Rmean, Rwc}, the parametrized con-
trollers {C?nom, C

?
CVaR, C

?
mean, C

?
wc} are designed as each corresponding minimizer.

Measure Rnom(JC(θ)) corresponds to the nominal value JC(θ̂), where θ̂ = E {θ} =
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Figure 9.2: Frequency response of plant G, corresponding to the solid black line. The
shaded areas correspond to all possible frequency responses Πθ parametrized by θ ∈ Θ.

[0.75 0.6435]>. On the other hand, RCVaR = CVaR0.95, Rmean = E {·} (mean) and
Rwc = supξ∈Θ JC(ξ) (worst-case scenario). The latter are designed upon N = 1000
samples from the pdf p(θ), and Nval = 1000 samples for validation purposes.

The results are presented in Fig. 9.3, for each design, where the top and the
bottom of the blue boxes represent the 25th and 75th percentiles of the samples,
respectively, the red line inside the box stands for the sample median, and obser-
vations beyond 1.5 times the interquartile length are marked as outliers, displayed
with red crosses.

We first notice how poorly the nominal case performs in terms of the outliers,
showing how bad is to omit the information contained in the pdf of θ, giving the
poorest results among the four designs. On the other hand, the CVaR and worst-
case scenario controllers perform similarly in terms of outliers, however, CVaR
outperforms the latter in the average behavior, pushing a big mass of the pdf of
JC?CVaR

towards zero. As expected, the controller designed under Rmean performs
better than the latter two in terms of average performance. However, the closed
loop under C?mean falls into poor performance for some samples generating higher
outliers.

9.5 Summary

In this chapter, we have considered the problem of designing a controller that
mitigates the impact of covert attacks. To capture the lack of knowledge about the
attacker, we model the attacker’s blocks as uncertain, depending on a random vector
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Figure 9.3: Tracking performance comparison when the uncertainty is captured by
θ ∼ p(θ), when N = 1000 samples are drawn from this distribution for design purposes,
and when Nval=1000 samples are used for validation.

θ. We have introduced different measures of risk so the controller design problem can
be formulated as a convex optimization program. The tracking performance achieved
by controllers designed under different risk measures were compared in a numerical
simulation. The simulation showed that CVaR, a risk measure recently introduced
in [24] for optimal control, can be used to balance the trade-off between the average
performance and the worst case performance. Future work includes the problem of
accurately estimating the pdf of the parameter condensing the uncertainty in the
attacker’s design.



Chapter 10

Risk-coherent H∞ filter design

The development of H∞-methods for control gained attention in the 1980’s as
an alternative to traditional H2 methods and linear-quadratic-Gaussian (LQG)
control [128]. However, as H∞-control theory developed, the two approaches H2 and
H∞ are today seen as complimentary, where different mixed H2/H∞ methods can
be find in the literature [129, 130]. The H∞-control problem address the challenge
of designing a stabilizing controller that minimizes the largest gain (in the frequency
domain) of some transfer function in the closed loop. The traditional approach to
control design commonly considers only upper bounds on the uncertainty [35, 131].
In contrast to the traditional approach, we present a framework describing how extra
knowledge about the uncertainty, encoded as a pdf, can be employed for designing
a controller.

In this chapter we introduce a very general approach to multiple-input multiple-
output (MIMO) filter design when the goal is to find a filter that minimizes the
risk of falling into a poor H∞ performance. By means of the celebrated Kalman-
Yakubovic-Popov Lemma [132], we cast the filter design problem of minimizing
the H∞-risk as a set of linear matrix inequalities (LMIs). The MIMO filter design
problem has an interesting application to H∞ multiple-input single-output (MISO)
control, which we discuss in the light of an illustrative example in which we compare
theH∞ performance of the closed loop when the controller is designed under different
coherent measures of risk.

10.1 Problem statement

We consider the general filter design problem depicted in Fig. 10.1, where the goal
is to minimize some spectral property of the output signal y := {y(t)}∞t=1, where
y(t) = P0(q)u(t) for a given input sequence u := {u(t)}∞t=1, and where P0 is a causal,
stable, linear and time-invariant (LTI) multivariable filter. At the same time, P0
is composed by deterministic multivariable filters F0, E0 and a design variable Q
(being a multivariable system itself). Under this assumption, the traditional H∞
filtering problem aims to design Q such that the maximum gain (in the frequency

131
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Figure 10.1: The optimization problem can be casted as minimizing the H∞ norm
of the augmented system P0.

domain) of signal y(t) = P0(q)u(t) = [F0(q)−E0(q)Q(q)]u(t) is minimized. In other
words, it attempts to solve the deterministic optimization (DO) problem

(DO) min
Q∈H2

‖F0 −QE0‖∞.

In a more general setup, we consider parametric models F (q; θ) and E(q; θ), where
θ ∈ Lnθ is a random vector in Rnθ of compact support supp θ = Θ, with a known
pdf p(θ), i.e., θ ∼ p(θ). The deterministic problem is retrieved by considering
p(θ) = δ(θ − θ0), that is, P0(q) = P (q; θ0), F0(q) = F (q; θ0) and E0(q) = E(q; θ0),
which we refer from now on as the nominal models.

Assumption 10.1. Filters H(q; θ) and E(q; θ) are stable for every θ ∈ Θ. 4

Under the presented set-up, the cost function in (DO) is a random variable
depending on the realization of parameter θ. Denote this cost function, parametrized
by Q, as JQ(θ) := ‖F (·; θ)− E(·; θ)Q‖∞. Observe that JQ(θ) ∈ L,∀Q ∈ H2, since
F (q; θ)−Q(q)E(q; θ) is stable for every θ ∈ Θ. To account for the random nature of
JQ, we consider a functional R : L→ (−∞,∞] that operates on random variables.
Functional R is what we call a risk measure, and leads us to the following risk
optimization (RO) problem:

(RO)
{
Q? = arg minQ∈H2 R{JQ(θ)},
JQ(θ) = ‖F (·; θ)−QE(·; θ)‖∞.

The filter variable Q manipulates the pdf of JQ, in the sense that different Q’s
lead to different pdf’s of J . One might choose Q? such that the pdf of JQ? attains
the least risk of falling into large values. Notice that an important issue in (RO) is,
precisely, choosing the risk measure.

10.1.1 The risk framework

As previously discussed, there are several ways to choose R, but we will restrict our
attention to the family of coherent measures of risk due to their attractive properties
such as convexity [40]. Within this family, we will derive a solution to (RM) when
the risk measure is chosen as CVaR defined, for a random variable X ∼ px(X) and
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for a user-defined parameter α ∈ (0, 1), as [123]

CVaRα(X) := 1
1− α

∫
x≥VaRα(X)

xpx(x)dx, (10.1)

where VaRα(X) is the α-value at risk of X [133]. It is known [126] that the definition
in (10.1) is equivalent to the following optimization problem:

CVaRα(X) = min
µ∈R

µ+ 1
1− αE {[X − µ]+} . (10.2)

Using this fact, we can cast the solution of (RO) as the solution of the CVaR
optimization (CO) problem

(CO)

Q? = arg min
Q∈H2,µ∈R

µ+ 1
1− αE {[JQ − µ]+},

JQ(θ) = ‖F (·; θ)−QE(·; θ)‖2∞.
This is the problem we aim to solve in the rest of the chapter. The squared
performance preserves convexity in the final optimization problem, as it will be
shown in the following sections. Technically, we are solving a relaxation of (DO).

Remark 10.2. As discussed in [24], coherent measures of risk such as expectation
and worst-case scenario are retrieved by limα→0+ CVaRα and limα→1− CVaRα,
respectively. This means that α can be seen as a tuning parameter that balances
between average and worst-case performance. 4

10.1.2 State-space realization
It is important, for future reference, to remark that since (F (·; θ), E(·; θ), Q) are LTI
filters, they admit state-space representations (SF (θ),SE(θ),SQ), where SΣ denotes
a state-space realization (AΣ(θ), BΣ(θ), CΣ(θ), DΣ(θ)), Σ ∈ {F (·, θ), E(·, θ), Q}, i.e.,
each filter satisfies the following state-space model{

xΣ(t+ 1) = AΣ(θ)xΣ(t) +BΣ(θ)uΣ(t)
yΣ(t) = CΣ(θ)xΣ(t) +DΣ(θ)uΣ(t)

. (10.3)

By defining P (q; θ) := H(q; θ)−Q(q)E(q; θ), the augmented system depicted in
Fig. 10.1, considering the augmented state vector as x := [xF xQ xE ]>, can be
expressed as

x(t+ 1) =

AF (θ) 0 0
0 AQ 0
0 BE(θ)CQ AE(θ)


︸ ︷︷ ︸

:=A(θ)

x(t) +

 BF (θ)
BQ

BE(θ)DQ


︸ ︷︷ ︸

=:B(θ)

u(t), (10.4)

y(t) =
[
CF (θ) −CQ −DQCE(θ)

]︸ ︷︷ ︸
=:C(θ)

x(t) + (DF (θ)−DQDE(θ))︸ ︷︷ ︸
=:D(θ)

u(t), (10.5)

which means that P (z; θ) = C(θ)(zI −A(θ))−1B(θ) +D(θ).
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In the following section we restate a generalized version of the KYP lemma,
which will allow us to recast the problem as LMIs.

10.2 Generalized Kalman-Yakubovic-Popov Lemma

The Kalman-Yakubovic-Popov (KYP) lemma [134], [135], [136] is one of the most
important tools in the field of dynamical systems analysis, feedback control and
signal processing. The result establishes a necessary and sufficient condition for
frequency-domain constraints in terms of LMIs that can be exploited for systems
synthesis. Let T (z) = C(zI −A)−1B +D ∈ Cn×m for some matrices (A,B,C,D).
The KYP lemma translates a frequency domain inequality (FDI), defined by matrices
(Π,Φ,Ψ) ∈ Sm+n × S2 × S2, of the form

(FDI)



[
T (z)
Im

]H

Π
[
T (z)
Im

]
< 0, ∀z ∈ Λ(Φ,Ψ),

Λ(Φ,Ψ) =
{
z ∈ C :

[
z

1

]H

Φ
[
z

1

]
=0,[

z

1

]H

Φ
[
z

1

]
≥ 0
}
,

into an LMI that depends on (Π,Φ,Ψ). Here Π defines a quadratic cost, while (Φ,Ψ)
define the curve in the complex plane for which the frequency inequality should
hold. For completeness, we now proceed to state a generalized version of the KYP
lemma, provided in [137], [138], that will be useful to solve (CM).

Lemma 10.3 (Generalized KYP lemma). Define

Γ(λ) :=
{

[In − λIn], λ ∈ C,
[0 − In], λ =∞.

(10.6)

Let Π ∈ Sn+m, M ∈ C2n×(n+m), and Φ,Ψ ∈ S2 be given. Denote by N(λ) the null
space of Γ(λ)M , as a function of λ. Then, the following statements are equivalent:

1. (FDI) NH(λ)ΠN(λ) ≺ 0, ∀λ ∈ Λ(Φ,Ψ).

2. (LMI) There exist Γ, S ∈ Sn, such that
MH(Φ⊗ Γ + Ψ⊗ S)M + Π ≺ 0,

S � 0.

4

Proof. See [137, Theorem 2]. �

Remark 10.4. Variable λ can be either used as the Laplace transform variable
s ∈ C or as the z-transform variable z ∈ C. 4
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10.2.1 Application to H∞ design

Let (A0, B0, C0, D0) be the state space realization of the n×m transfer-function
matrix P (z; θ0), described by (10.4) and (10.5) with p(θ) = δ(θ−θ0). The traditional
H∞ design in (DO) can be casted as the following FDI:

min
AQ,BQ,CQ,DQ

‖P0‖∞ = min
AQ,BQ,CQ,DQ,γ

γ

s.t.
[
P0(z)
Im

]H [
Im 0
0 −γ2Im

] [
P0(z)
Im

]
< 0,

∀z ∈ Λ
(

0,
[
1 0
0 −1

])
,

since ‖G0‖∞ ≤ γ ⇐⇒ PH
0 (ejω)P0(ejω) � γ2Im. By using Lemma 10.3 with

M = [ A0 B0
Im 0 ], Π =

[
C0 D0
0 Im

]H [ Im 0
0 γ2Im

] [
C0 D0
0 Im

]
, N(z) = [A0−zI B0 ]>, the above

FDI is equivalent to the following LMI:
min

AQ,BQ,CQ,DQ,γ,S
γ

s.t.

AH
0SA0 − S AH

0SB0 CH
0

BH
0 SA

H
0 BH

0 SB0 − γ2Im DH
0

C0 D0 −Im

 ≺ 0,

S � 0.
As it is well known [129], the constraints in the latter problem involve products

of the design parameters (AQ, BQ, CQ, DQ, S, γ) when (A0, B0, C0, D0) are defined
as in (10.4) and (10.5). In the following section we describe how to overcome this
issue for solving (CM) by restricting Q to be an finite impulse response (FIR) filter.

10.3 Minimal-H∞-risk filter design

In this section we present the main result of this work, where we solve (CO) by a
sequence of approximations based on N samples from p(θ) and restricting Q to be
an FIR filter of length L.

Finding the optimal ny×nu filter Q? in (CM) is equivalent to finding an optimal
state-space realization SQ = (AQ, BQ, CQ, DQ). Let QL be the set of FIR filters of
length L, that is

QL :=
{
Q : Q(z) =

L∑
i=0

wiz
−i

}
, (10.7)

where w0, w1, . . . , wL are ny × nu matrices. Then, every Q ∈ QL has a state space
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representation of the form[
AQ BQ
CQ DQ

]
=

 [
0 0

Inu(L−1) 0

] [
Inu
0

]
[w1 w2 · · · wL] w0

 , (10.8)

where 0 are zero matrices of adequate dimensions.
It is well known thatQL is dense inH2 as L→∞, since the functions gi(z) = z−i,

i = 0, 1, . . . form a complete orthonormal set in H2 [124]. This means that (CM) can
be well approximated by an equivalent problem where Q ∈ QL, with L sufficiently
large. On the other hand, even when the distribution of θ is known to the designer,
the explicit pdf of JQ(θ) for every Q ∈ QL might be hard to obtain. Therefore,
we employ a randomization approach (scenario approach) by sampling p(θ). In
other words, (CM) can be well approximated by solving the following approximated
minimization (AM) problem:

(AM)

Q
?
L = arg min

Q∈QL,µ∈R
µ+

∑N
i=1[JQ(θi)− µ]+
N(1− α) ,

JQ(θ) = ‖H(·; θi)−QE(·; θi)‖2∞.

Theorem 10.5. Let {θi}Ni=1 denote a set of N independent samples from θ ∼
p(θ), and let t = [t1 t2 · · · tN ]> ∈ RN . Let also w := [w0 w1 · · · wL] ∈
Rny×(L+1)nu . Then, under Assumption 10.1, the minimum in (AM) converges to
the one of (CM) as N,L → ∞, whose minimizer, for fixed N and L, is given by
Q?L(q) =

∑L
i=0 w

?
i q
−i, where w? is the solution of Problem 1 (P1).

(P1)



w? = arg min
w,µ,t

{γi}Ni=1,{Si}
N
i=1,

µ+ 1
N(1− α)1>t

subject to
AH
i SiAi − Si AH

i SiBi


(C(i)

H )H

−
[
ILnu 0

]
wH

−(C(i)
E )H

[
0 Inu

]
wH


∗ BH

i SiBi − γ2
i Im (D(i)

H − [0 1]wD(i)
E )H

∗ ∗ −Im


≺0,

Si � 0,
ti ≥ γ2

i − µ,
ti ≥ 0, ∀i = 1, . . . , N,

where ‘ ∗’ denotes the unique adequate expression so that the matrix is Hermitian. 4

Proof: Since Θ is compact and θ ∈ L, it follows, by Assumption 10.1, that
Jθ <∞ for every θ ∈ Θ. In particular, it means that supQ∈QL |E {JQ(θ)}| <∞ and
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that E {|[JQ(θ)− µ]+|} <∞. Thus, by the law of large numbers [125],∑N
i=1 JQ(θi)− µ

N

a.s.→
∫
θ∈Θ

[JQ(θ)− µ]+p(θ)dθ, (10.9)

which guarantees convergence of the cost functions of (CM) and (AM) for sufficiently
large L.

On the other hand, (AM) can be written as

min
Q∈QL,µ,t

µ+ 1>N t
N(1− α)

s.t. ti ≥ JQ(θi)− µ
ti ≥ 0, i = 1, . . . , N,

since the minimizer of
∑N
i=1[fi(x)]+ satisfies either [fi(x)]+ = fi(x) or [fi(x)] = 0,

for every i = 1, 2, . . . , N , i.e., one of them must be an active constraint. Re-
call that JQ(θi) denotes the H∞-norm of P for a fixed Q. Then, JQ(θi) satisfies∣∣PH
i (ejω)Pi(ejω)

∣∣ ≤ J2
Q(θi)Im, ∀ω ∈ [0, π], where Pi(z) := H(z; θi)−QE(z; θi) has

a state-space realization (Ai, Bi, Ci, Di) := (A(θi), B(θi), C(θi), D(θ)i, as defined
in (10.4) and (10.5).

Now, by means of Lemma 10.3, we have that
J2
Q(θi) = min

µi,Si
γ2
i

s.t.

AH
i SiAi − Si AH

i SiBi CH
i

BH
i SiA

H
i BH

i SiBi − γ2
i Im DH

i

Ci Di −Im

 ≺ 0,

Si � 0.
Therefore, the result follows from replacing J2

Q(θi) by a decision variable γ2
i .

Remark 10.6. Observe that when p(θ) = δ(θ− θ0) only one sample is enough, i.e.,
N = 1. Then, for α = 1, the solution of (P1) is also the solution to the problem in
Section 10.2.A. 4

10.4 Application to MISO control design

In this section we provide an application to risk-theoretical control design, together
with an insightful example showing the effectiveness of the framework proposed
along the previous sections.

Consider a strictly proper MISO 1×nG plant G and a noise shaping SISO (single-
input single-output) block H, being controlled by an nG × 1 controller C ∈ H2, as
depicted in Fig. 10.2. The disturbance v is zero-mean unit-variance white noise, and
the transfer function to the output y is denoted by Tv→y. Additionally, r is some
reference signal.
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Figure 10.2: Control loop in the application to risk-theoretical control design.

Assumption 10.7. G(z) = G0(z) is known (at least with sufficient certainty for
control purposes) and strictly proper, and H = H(z, θ) ∈ C is parametrized by a
random vector θ ∈ Θ, Θ compact, such that H(z, θ) is minimum-phase, biproper
and stable for every θ ∈ Θ.

4

The contribution of the disturbance v to output y is given by Tv→y = (1 −
GC)−1H. The specific problem is to design C so that the risk of ‖Tv→y‖∞ being
large is minimized.

Let us now parametrize the controller as [8]
C = (1−QG)−1Q̃ = Q(InG −GQ̃)−1, (10.10)

where Q̃ is an nG× 1 transfer-function matrix, known as the Youla Parameter. This
affine parametrization guarantees that the control loop in Fig. 10.2 is internally
stable if and only if Q̃ ∈ Q := {Q̃ : Q̃ is real-rational and stable} when the controller
is given as in (10.10). This affine parametrization allows us to write Tv→y =
(1 − GQ̃)H = H − HGQ̃. Note that the invertibility of this parametrization is
guaranteed only under Assumption 10.7. Now, due to the invariance of the H∞-norm,
it follows that ‖Tv→y‖∞ = ‖T>v→y‖∞ = ‖H −HQ̃>G>‖∞. Then, the risk-theoretical
control problem we aim to solve is given by

Q̃? := min
Q∈Q

CVaRα(‖H(·; θ)︸ ︷︷ ︸
=F (·;θ)

− Q̃>︸︷︷︸
=:Q

H(·; θ)G︸ ︷︷ ︸
=E(·;θ)

‖2∞), (10.11)

which can be solved efficiently as the semidefinite program provided by Theorem 10.5,
for fixed α, by finding Q?, and then Q̃? = (Q?)>.

Remark 10.8. The extension to the full MIMO case can be addressed by a more
complicated argument that involves deriving a state-space representation of GQ̃
in state-space matrices (AGQ̃, BGQ̃, CGQ̃, DGQ̃) such that (AGQ̃, BGQ̃) does not
depend on the parameters defining Q̃. For the sake of brevity, we only present here
the MISO case. 4

In what follows, we present a simulated study case that illustrates the properties
of CVaR with respect to other measures of risk.
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10.4.1 An illustrative example

Consider the control loop depicted in Fig. 10.2, for a plant

G(z) =
[

z
(z−2z0.5 cos(π/6)+0.5)2

1
(z−0.3)

−3
(z−0.8)

]
,

and an uncertain noise filter H parametrized by θ := [θ1 θ2 θ3 θ4]> as

H(z; θ) = z2 + θ1z + θ2

z2 + θ3z + θ4
, (10.12)

where (θ1, θ2, θ3, θ4) ∼ Unif.(−0.02148± 0.6, 0.210± 0.6, 0.164± 0.6,−0.0896± 0.6).
The goal is to design a controller C?L = (1− (Q̃>LG)−1Q̃L where Q̃?L = (Q?L)> the
L-FIR solution to the following optimization problem:

Q?L := arg min
Q∈QL

R{‖H(·; θ)−QH(·; θ)G>‖2∞},

whereR is picked among 4 different designs, namely Nominal, Mean (average/expected
value), Robust (worst-case) and CVaRα design, with α = 0.95. The solution for
the CVaR design is approximated (in N) by solving (AM) using Theorem 10.5.
The Nominal design assumes nominal models with θ0 = E {θ}, the Mean design
minimizes the cost function E

{
‖H(·; θ)−QH(·; θ)G>‖2∞

}
, and the Robust design

minimizes maxξ∈Θ ‖H(·; ξ)−QH(·; ξ)G>‖2∞. All controllers consider L = 20 and
are obtained by using N = 1000 samples from p(θ), described above, and evaluated
using Nval = 5000 validation points.

The results for different designs are presented in Fig. 10.3 where, for each design,
the top and the bottom ends of the blue boxes represent the 25th and 75th percentiles
of the samples, respectively, the red line inside the box stands for the sample median,
and observations beyond 1.5 times the interquartile length are marked as outliers,
displayed with red crosses. From Fig. 10.3 we can firstly notice how bad the nominal
design performs in terms of median and outliers compared to the other three designs,
showing that it is wiser to consider the information provided in p(θ). Secondly, we
notice that the behavior of the Mean design is slightly better than the CVaR0.95
and the Robust design but, as expected, there is no control on the tail distribution,
leading to larger outliers. On the other hand, the CVaR0.95 and the Robust design
have similar behavior in terms of outliers, presumably due to the fact that α is close
to 1. This shows how well CVaR0.95 compares to the other two designs.

10.5 Summary

We have presented a framework for H∞-risk minimization of multi-input multi-
output LTI systems as an LMI based on the celebrated KYP lemma. The only
information the framework requires is to have parametric models for F (q, θ) and
E(q, θ), where the prior distribution of θ, of compact support, is known. This
information can be obtained in the process of modeling the true systems, which
commonly provides confidence bounds on the estimations.
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Nominal Mean CVaR Robust

10-12

10-10

10-8

10-6

10-4

Performance Comparison

Figure 10.3: Results of the numerical example in terms of performance comparison
among 4 different designs. The performance is measured as ‖(1−GQ̃)H(·; θi)‖2∞,
where {θi}Nval

i=1 is the set of independent validation samples.

We have also presented an interesting application of this framework to robust
control design when the goal is to minimize the risk of falling into poor tracking
error performance. An illustrative example shows how CVaRα can be employed to
balance the behavior of such traditional risk measures as average and as worst-case
performance.



Chapter 11

Summary and Future Research Directions

The second part of this thesis has dealt with the model-based control design
problem when the uncertainty in the modeling error is encoded in a pdf. We
have presented a framework to minimize the risk of falling in poor H2 and H∞
performances, separately, when the uncertainty can be encoded in a random variable.
This framework is mainly based on ideas from the theory of risk for finance, where the
quantification of the uncertainty is done by employing measures of risk. In particular,
we explored how the so-called coherent measures of risk can be employed in these
setups. We have restricted our attention to this family of functional because they
have attractive properties such as convexity. Among the many coherent measures of
risk, we have studied how the conditional value-at-risk (CVaR) can be employed
to quantify the risk. As result, we have derived a systematic approach for control
synthesis in terms of optimization problems. For the H2 case, minimizing the CVaR
of the tracking error H2-norm involves solving a quadratically-constrained linear
problem, while minimizing the tracking error H∞-norm involves solving a set of
linear matrix inequalities.

We extended the framework for H2-risk minimization, developed in Chapter 8,
to cyberphysical, revealing the potential of this approach. In cyberphysical security,
we tackle the problem of designing a controller that is able to mitigate attacks,
where the attacker is able to inject malicious signals into the control loop.

11.1 Future research directions

In both approaches, we established the convergence of the sequence of costs functions,
defined by the length of the FIR filter and the number of samples drawn from p(θ),
to their respective original risk minimization problems. However, it is not clear
whether the minimizers also converge to the minimizers of the original problems.
This is still an open problem in both cases H2 and H∞.

The H2-risk minimization problem under CVaR is still quite restrictive: only
stable SISO systems can be considered and the uncertainty in the plant must be
small enough so a Youla parametrization can be applied. Potential extensions include
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designing a framework that accounts for unstable plants, as well as the extension
to the MIMO case. On the other hand, the framework developed for H∞-risk
minimization is valid for the MISO control case. Potential extensions include the
derivation of a framework that accounts for MIMO control systems.

Finally, future research directions include finding a systematic approach to
account for mixed H2/H∞-risk minimization.
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Université de Lille 1, France, 2010.
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